电液速度控制系统

合集下载

第4章电液控制系统设计

第4章电液控制系统设计

(3)力矩马达工作原理
用弹簧管支承衔铁的力矩马达 1——弹簧管,2——液压放大元件 永磁动铁式力矩马达
在零位时,衔铁正 好处于四个气隙的中间 位置,弹簧管也正好在 正中零位。当输入 i 而 产生电磁力矩后,电磁 力矩使衔铁偏转,弹簧 管也受力歪斜变形,作 用在衔铁上的电磁力矩 与弹簧管变形时的弹性 力矩平衡,也就是电磁 力矩 Td 通过弹簧管弯曲 变形而转化为衔铁的角 位移。
力反馈两级电液伺服阀结构原理图
力矩马达(或力马达):将电气信号转换为力矩或力 液压放大器:控制流向液压执行机构的流量或压力 阀流量较大时,采用两级或三级电液伺服阀的形式。 包括液压前置级和功率级 液压前置级:单(双)喷嘴挡板阀、滑阀、射流管 阀、射流元件 功率级:滑阀 反馈机构(或平衡机构):使伺服阀的输出压力或流 量与输入电气控制信号成比例,使伺服阀本身成为闭 环系统 平衡机构:用于单级伺服阀和两级弹簧对中式伺服阀, 通常为各种弹性元件,为一力-位移转换元件
3.电液比例控制系统的分类
①按所用的电液比例控制元件的种类可分为:电液 比例压力控制系统、电液比例流量控制系统、电液 比例方向控制系统和电液比例变量泵控制系统。 ②按被控物理量种类可分为:电液比例位置控制系 统、电液比例速度控制系统和电液比例力控制系统。 ③按系统输出信号是否反馈可分为:闭环系统和开 环系统。 ④按对液压执行元件的控制方式可分为:阀控系统 和泵控系统。
式中,
h
2 4 e Ap
Vt M t
为无阻尼液压固有频率;
Bp 4 Ap Vt e M t
K h ce Ap
e M t
Vt
为阻尼比。
(2)阀-液压马达动力装置
对阀控液压马达,由阀的线性化流量方程、进出油

电液控制系统具体技术要求

电液控制系统具体技术要求

电液控制系统具体技术要求1、支架配置电液控制系统,能够完成支架要求电控的各种动作功能。

2、电液控制系统显示菜单语言为中文。

3、支架可实现成组程序自动控制,包括成组自动移架、成组自动推溜、成组自动伸收护帮。

4、支架可实现邻架电控的手动、自动操作,实现本架电磁阀按钮的手动操作。

5、配备红外线发射、接收装置,以确定采煤机位置。

6、对立柱的工作压力、推移千斤顶的行程、煤机的位置、方向进行监测,能在井下主控计算机上显示。

7、电液控制系统设有声音报警、急停、本架闭锁及故障自诊断显示功能,并能方便地进行人工手动操作,能够在线进行参数调整设定。

8、电液控制系统的电源为隔爆兼本安型,供电电压为 AC 127V 50Hz。

9、电液控制系统具备防水防尘能力,主要电液控制装置外壳防护等级不低于IP68。

10、电液控制系统具备抗干扰能力,不允许有误动作。

11、电控系统连接器的插接可靠,有较好的抗砸、抗挤、抗拉能力,插接灵活。

12、压力传感器的量程60MPa。

13、电控系统为非主-从机型,当工作面控制系统与顺槽控制主机断开后,仍能完成各种操作功能和操作模式设置。

14、具备初撑力自动保持功能,补偿初撑力可调(不超过泵压);具有带压移架功能。

15、支架配备自动反冲洗过滤器,过滤精度25μm,流量1000L/min;具有自动反冲洗功能,能够实现定时自动反冲洗。

16、高压过滤站过滤精度25μm,流量1000L/min;具有自动反冲洗功能,能够实现定时自动反冲洗、根据进出口压差自动反冲洗及顺序反冲洗滤芯功能。

17、回液过滤站过滤精度60μm,流量2000L/min,结构上具有可方便切换操作的备用过滤装置。

18、进入泵站的清水要符合MT419—1995标准和经过60μm清水过滤装置的过滤。

19、所供应的货物将按下列标准(推荐)进行设计和制造电气: IEC标准/EN标准机械: ISO标准类似或高于上述标准的货物原产国的国家标准或其它目前使用的国家标准。

电液伺服系统及其控制文档

电液伺服系统及其控制文档

电液系统及其控制1概述1.1电液控制系统工作原理及组成一.工作原理电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统.由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点.输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示:在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止.举例:1.阀控式电液位置控制伺服系统(如上图)图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化.系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成.其工作原理如下:指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工作台的移动, 电桥输出偏差电压逐渐减小,当工作台移动Oxp等于指令电位器位移Oxi时, 电桥输出偏差电压为零, 工作台停止移动.反之亦然.系统的工作原理方块图如下:2.泵控式电液速度控制伺服系统该系统的液压动力执行元件由变量泵和液压马达组成,变量泵既是液压能源又是液压控制元件.由于操纵变量机构所需要的力较大,通常采用一个小功率的液压放大装置作为变量控制机构.如图所示为一泵控式电液速度控制伺服系统的原理图.图中所示系统采用阀控式电液位置控制机构作为泵的变量控制机构. 液压马达的输出速度由测速发电机检测,转换为反馈电压信号uf,与输入指令电压信号ur相比较,得出偏差电压信号ue=ur-uf,作为变量控制机构的输入信号.当速度指令为ur0时, 负载以某个给定的转速w0工作,测速机输出反馈电压uf0,则偏差电压ue0=ur0-uf0,这个偏差电压对应于一定的液压缸位置,从而对应于一定的泵流量输出,此流量为保持负载转速w0所需的流量.如果负载变化或其它原因引起转速变化时,则uf 不等于uf0,假如w大于w0,即uf大于uf0,则ue=ur0-uf小于ue0,使液压缸输出位移减小,使泵输出流量减小,液压马达转速自动下调至给定值.反之,如果转速下降,则uf小于uf0,则ue=ur0-uf大于ue0,使液压缸输出位移增大,使泵输出流量增大,液压马达转速自动回升至给定值.结论: 速度指令一定时, 液压马达转速保持恒定;速度指令变化时, 液压马达转速也相应变化.系统的工作原理方块图如下:二.电液伺服控制系统组成1.输入元件---其功用是给出输入信号加于系统的输入端.可以是机械的,电气的等如靠模,电位器,计算机等.2.反馈测量元件---测量系统输出并转换为反馈信号.如各类传感器(位置传感器,压力传感器,速度传感器等).3.比较元件---将输入信号与反馈信号进行比较,给出偏差信号.4.放大转换元件---将偏差信号放大,转换成液压信号.妲伺服放大器,电液伺服阀等.5.执行元件---产生调节动作加于控制对象上,如液压缸和液压马达等.6.控制对象---被控制的设备等,即负载.7.液压能源装置及各种校正装置等.1.2电液伺服控制的分类电液伺服控制系统可按不同的原则分类,基本上有五大类.一.按被控对象的物理量名称分类1.位置伺服控制系统主要是控制被控对象的位置精度的伺服控制系统,妲机床工作台的位置,板带轧机的板厚,振动试验台等系统.2.速度伺服控制系统主要是控制被控对象的速度精度的伺服控制系统,如原动机的调速,雷达天线的速度控制等.3.力伺服控制系统以力为被调量的伺服控制系统,如材料试验机,轧机张力控制系统等.二.按执行元件的控制方式分类1.阀控式伺服控制系统利用伺服阀控制的伺服控制系统称为阀控式伺服控制系统.它又可分为阀控缸系统和阀控马达系统两种.其优点是响应速度快,控制精度高,结构简单.缺点是效率低.2.容积式伺服控制系统利用变量泵或变量马达控制的伺服控制系统称为容积式伺服控制系统.它又可分伺服变量泵系统和伺服变量马达系统.三.按系统输入信号的变化规律分类1. 定值控制系统当系统输入信号为定值时称为定值控制系统.它的任务是将系统的实际输出量保持在希望值上.2. 程序控制系统当系统输入信号为按预先给定的规律变化时称为程序控制系统..3. 伺服控制系统伺服控制系统又称随动系统,其输入信号是时间的未知函数,而输出量能够准确快速地复现输入量的变化规律.四.按信号的方式分类1.模拟信号控制系统系统中全部信号都是连续的模拟量的系统称之.2.数字信号控制系统系统中全部信号都是数字量的系统称之.3. 数字-模拟混合控制系统系统中部分信号是数字量部分信号是模拟量的系统称之.五.按信号传递介质的形式分类1.机液伺服控制系统输入信号给定,反馈测量和比较均用机械构件实现的系统称之.2.电液伺服控制系统用液压动力元件,偏差信号的检测校正和初始放大等均用电气电子元件实现的系统称之.1.3电液伺服控制的优缺点一. 电液伺服控制的优点1.液压元件功率-重量比和力矩-惯量比(力-质量比)大,因而结构紧凑,体积小,重量轻,用于中大型功率系统优点更明显.比较举例:电气元件:最小尺寸取决于有效磁通密度,而有效磁通密度又受磁性材料的磁饱和限制;功率损耗产生的发热量散发又比较困难.因此功率-重量比和力矩-惯量比小,结构尺寸大.液压元件:功率损耗产生的发热量由油带到散热器去散热,其最小尺寸取决于最大工作压力,而工作压力可以很高(通常可达32MPa),因而元件尺寸小,重量轻, 功率-重量比和力矩-惯量比大.同功率:液压泵重量/电动机重量=10%-20%液压泵尺寸/电动机尺寸=12%-13%液压马达功率重量比=10倍相当容量的电动机液压马达力矩-惯量比=10-20倍电动机2.液压动力元件快速性好,系统响应快.加速能力强,能高速起动和制动.3.液压伺服系统抗负载的刚度大.二. 电液伺服控制的缺点1.液压元件抗污染能力差,对工作介质清洁度要求高.工作介质随温度变化而变化,对系统性能有影响.2. 液压元件制造精度高,成本高,且若元件的密封制造使用不当,易外漏,造成环境污染.3.液压能源传输不如电气系统方便2 电液伺服阀电液伺服阀是电液伺服系统中的主要元件,它既是电液转换元件,又是功率放大元件.它能够把微小的电信号转换成大功率的液压能(流量和压力),是电液伺服控制系统的核心和关键.电液伺服阀的输入信号是由电气元件来完成的,由它再转换成液压流量和压力,输出给执行机构,实现对执行机构各物理量的控制.2.1电液伺服阀的组成与分类一.组成电液伺服阀通常由力矩马达,液压放大器,反馈机构三部分组成.以下图的两级中力反馈式电液伺服阀为例,简单介绍如下:图中上半部为力矩马达,下半部为液压放大器(由四通滑阀组成的液压放大器), 反馈机构则由反馈杆11组成.它们的作用分别是:1.力矩马达(力马达)将输入的电信号转换成力矩或力控制液压放大器运动.2.液压放大器控制液压能源流向执行机构的流量和压力.3.反馈机构使伺服阀输出的流量和压力获得与输入信号相应的特性.二.分类电液伺服阀的种类很多,按不同的结构和机能常有以下几种分类:1.按输出量的控制功能分有:电液流量伺服阀---主要控制输出的液流流量特性,即在额定输入信号范围内,具有线性流量控制特性.电液压力伺服阀---在额定输入信号范围内,具有线性压力控制特性.电液压力-流量伺服阀---在额定输入信号范围内,具有线性压力-流量控制特性.2.按液压放大器的级数分有:单级伺服阀---只有一级放大元件.结构简单,价格低廉,但输出力和力矩小,输出流量小,对负载变化敏感.用于低压小流量和负载变化不大的场合.两级伺服阀---有两级放大元件.它克服了单级伺服阀的缺点,是最常用的型式.三级伺服阀---由一个两级伺服阀作前置级,控制第三级功率滑阀.通常只用于大流量(200L/min)以上的场合.3.按第一级阀的结构分有:滑阀---第一级阀的结构是滑阀.此类阀流量和压力增益高,输出流量大,对油清洁度要求较低.但加工复杂,分辨率低,响应慢,滞环较大,阀芯受力大.喷咀挡板--- 第一级阀的结构是喷咀挡板. 此类阀灵敏,动态响应快,线性度好.但对油清洁度要求高,挡板受力小,驱动功率小.射流管--- 第一级阀的结构是射流管阀. 此类阀抗污染强,但动态响应慢,受油温响应大.4.按反馈形式分有:滑阀位置反馈---利用滑阀的位置反馈的阀,常用的有直接位置反馈,机械位置反馈,位置电反馈,位置力反馈等.直接位置反馈---阀芯位移通过反馈杆与挡板相连,构成滑阀位移力反馈.常用于两级伺服阀.机械位置反馈---将功率级滑阀的位移通过机械机构反馈到前置级.位置电反馈---将功率级滑阀的位移通过位移传感器反馈到伺服阀的放大器输入端,实现功率级滑阀阀芯定位.2.2 力矩马达力矩马达是将电信号转换成机械运动的一种电气-机械转换.一.力矩马达工作原理利用电磁原理,由永久磁铁(或激磁线圈)产生极化磁场,而电信号通过控制线圈产生控制磁场,两个磁场相互作用,产生与控制信号成比例并能反映控制信号的极性的力或力矩,使其运动部分产生直线位移或角位移的机械运动.二.力矩马达分类1. 根据运动形式分1) 角位移马达--力马达,可移动件是直角位移.2) 直线位移马达—力马达,可移动件是直线位移.2.按可动件结构分1)动铁式---可动件是衔铁.2)动圈式---可动件是控制线圈.3.按极化磁场产生的方式分1)永磁式---利用永久磁铁建立极化磁通.2)非极磁式---无专门的极磁线圈,两个控制线圈差动连接,利用常值电流产生极化磁通.3)固定电流极磁式---利用固定电流通过极磁线圈建立极化磁场.三.力矩马达要求1.能产生足够的输出力和行程,且要求体积小,重量轻.2.动态性能好,响应速度快.3.直线性好,死区小,灵敏度高,磁滞小.4.抗震,抗冲击,不受环境温度和压力影响.四.典型力矩马达1. 永磁动铁式力矩马达1)组成下图所示为一种常用的永磁动铁式力矩马达工作原理图,它由永久磁铁(2),上下导磁体(3,5),衔铁(4),弹簧管(1),控制线圈(两个控制线圈套在衔铁上).2)工作原理永久磁铁将上下导磁体磁化,一个为N极, 一个为S极.无信号电流时,即两个控制线圈的电流i1=i2,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的, 永久磁铁在四个工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无力矩输出.当有信号电流通过控制线圈时,线圈产生控制磁通(其大小和方向取决于信号电流的大小和方向).假设i1>i2,如上图所示,在气隙1,3中控制磁通与极化磁通方向相同,而在气隙2,4中控制磁通与极化磁通方向相反,因此气隙1,3中其控制磁通与永久磁铁磁通合成大于气隙2,4中控制磁通与极化磁通的合成,于是衔铁上产生顺时针方向的电磁力矩,使衔铁绕弹簧管转动中心顺时针方向转动.当弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁停止转动.如果信号电流反向,则电磁力矩也反向,衔铁向反方向转动.电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例.因此调节信号电流便可调节电磁力矩的大小,也就调节衔铁的转角大小.2.永磁动圈式马达1)组成永久磁铁,可动线圈,对中弹簧等.2)工作原理图所示为一种常见的结构原理图图中,永久磁铁在工作气隙中形成极化磁通,当控制信号电流加到线圈上时,线圈就会受到电磁力的作用克服弹簧力和负载力而运动.线圈的位移与控制电流成比例.因此输入信号电流就会得到电磁力,且呈正比关系,具有线性特性.3.动铁式力矩马达与动圈式力马达比较动铁式力矩马达动圈式力马达磁滞大磁滞小工作行程小工作行程大输出力矩大,弹簧刚度大,. 输出力矩小,固有频率低.固有频率高同功率体积小, 价格高同功率体积大,价格低五.力矩马达的数学模型(电磁力矩计算)1) 永磁动铁式力矩马达的数学模型(电磁力矩计算)电磁力矩是由于控制线圈输入电流,在衔铁产生了控制磁通而形成的.因此需先求出力矩马达的控制电流.通过力矩马达的磁路分析可求出电磁力矩的计算公式.a.力矩马达的控制电流参看永磁动铁式力矩马达的工作原理图,在其工作时, 两个控制线圈由一个放大器供电,其常值电压Eb在每个控制线圈中产生的常值电流I0大小相等方向相反.当放大器有输入电压时,两个控制线圈的电流分别为:I1= I0+iI2= I0-i式中i1 i2--- 每个控制线圈中的电流;I0---每个控制线圈中的常值电流i---每个控制线圈中的信号电流;两个控制线圈的差动电流为Δi=i1-i2=2I=i c(1)I c ---输入马达的控制电流b. 衔铁中产生的控制磁通根据力矩马达的磁路原理图,应用磁路的基尔霍夫第二定律可得气隙的合成磁通, 继而应用磁路的基尔霍夫第一定律求出衔铁磁通:φa=φ1-φ2=2φgθ(a/Lg)+Δi(Nc/ Rg)式中φa ---衔铁磁通;φg ---衔铁在中位时气隙的极化磁通;θ---衔铁转角; a ---衔铁转动中心到磁极面中心的距离;Lg ---衔铁在中位时每个气隙的长度;Rg ---工作气隙的磁阻;NcΔi---永久磁铁产生的控制磁动势;c. 作用在衔铁上的电磁力矩根据马克斯威尔公式计算衔铁在磁场中所受的电磁吸力,可得由控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为Td=KtΔi+Kmθ式中Td ---作用在衔铁上的电磁力矩;Kt---力矩马达的中位电磁力矩系数;Km---力矩马达的中位磁弹簧刚度;从式中可看出,在衔铁中产生的控制磁通以及由此产生的电磁力矩比例于差动电流.2) 永磁动圈式力马达的数学模型(电磁力矩计算)参见永磁动圈式力马达的工作原理图,力矩马达的可动线圈悬置于工作气隙中,永久磁铁在工作气隙中形成极化磁通,当控制电流加到线圈上时,线圈就会受到电磁力的作用而运动.其运运动方向和电流方向按左手定则判断.线圈上的电磁力克服弹簧力和负载力,产生一个与控制电流成比例的位移.由于电流方向与磁通方向垂直,根据载流导体在均匀磁场中所受的电磁力公式,可得力马达线圈所受的电磁力:F=BgлDNcic=Ktic式中F---线圈所受的电磁力;K t---电磁力系数F=BgлDNcN c---控制线圈的匝数.B g---工作气隙中的磁感应强度;D---线圈的平均直径;I c---通过线圈的控制电流.结论: 永磁动圈式力马达的电磁力与控制电流成正比,具有线性特性.2.3 液压放大元件电液伺服阀另一个组成部分是液压放大器,它是一种以机械运动来控制流体动力的元件.它将力矩马达(或力马达)输出的机械运动(转角或位移)转换为液压信号(液体的流量和压力)输出,并进行了功率放大.液压放大元件是伺服系统中的一种主要控制元件,其静动态特性对系统的性能影响很大.且结构简单,单位体积输出功率大,工作可靠和动态性能好.一.液压放大元件的种类液压放大元件有滑阀,喷咀挡板阀和射流管阀等.二.滑阀滑阀是靠节流原理工作的.它借助于阀芯与阀套间的相对运动改变节流口面积的大小,对流体流量或压力进行控制.滑阀结构形式多,控制性能好,在电液系统中应用最广泛.1.滑阀的结构及分类(1)按进出阀的通道数划分它与液压方向阀的通道数一样,有四通阀,三通阀和二通阀.四通阀有一个进油口,一个回油口,两个控制口.可用来控制双作用液压缸或马达.如图a所示.三通阀有一个进油口,一个回油口,一个控制口.只可用来控制差动液压缸.如图b所示.图b 三通阀图c 二通阀二通阀一个进油口,只有一个可变节流口,须和一个固定节流孔配合使用,才能用来控制差动液压缸. 如图c所示.(2)按滑阀的工作边数划分a.四边滑阀--与上对应四通阀有四个可控的节流口,又称四边滑阀,控制性能最好.如上图a所示.b. 双边滑阀--三通阀有两个可控的节流口,又称双边滑阀, 控制性能居中. 如上图b所示.c. 单边滑阀--单边滑阀只有一个可控的节流口, 控制性能最差.(3)按滑阀的预开口型式划分按滑阀阀芯在中位时,阀芯凸肩与阀套槽宽的几何尺寸关系划分有:a.正开口--阀芯凸肩与阀套槽宽的几何尺寸是负重叠的(即阀芯凸肩宽度大于阀套槽宽),参见图a.b.零开口--阀芯凸肩与阀套槽宽的几何尺寸是零重叠的(即阀芯凸肩宽度等于阀套槽宽),参见图b.c.负开口--阀芯凸肩与阀套槽宽的几何尺寸是正重叠的(即阀芯凸肩宽度小于阀套槽宽),参见图c.图a 正开口图b 零开口图c 负开口.阀的预开口形式对其性能,特别是零位附近特性影响很大.如下图所示:零开口阀具有线性流量增益特性,性能比较好.负开口阀由于流量增益特性有死区,将引起稳态误差,有时还可能引起游隙,从而产生稳定性问题.正开口在正开口区内外的流量增益变化大,压力灵敏度低,零位泄漏量大.图不同开口形式的流量特性1-零开口2-正开口3-负开口2.滑阀静态特性滑阀静态特性是指稳态情况下,阀的负载流量qL, 负载压力pL和滑阀的位移xv三者之间的关系,即qL=f(pL, xv).它表示滑阀的工作能力和性能,对系统的静动态特性计算有重大意义.阀的静态特性可用方程(压力-流量方程),曲线或特性参数(阀的系数)表示.(1) 滑阀静态特性a.压力-流量方程滑阀的控制流量可由滑阀节流口流量公式表示,其流量是阀芯位移和节流口的压降的函数.为了使问题简化,在推导压力-流量方程时,作了以下假设:a)液压能源是理想的恒压源,供油压力Ps为常数,回油压力P0为零.b)忽略管道和阀腔内的压力损失.c)假定液体是不可压缩的.d)假定阀各节流口流量系数相等.e)阀的窗口都是匹配和对称的.根据节流口流量公式,以四边滑阀为例,可推导出压力-流量方程:负载流量为QL=CdA2√1/ρ(ps - pL)- CdA1√1/ρ(ps + pL)式中Cd-为流量系数,ρ-为油密度, (ρ=870Kg/m3)A1- 为节流口1的面积;A2-为节流口2的面积;ps –为恒压油源压力pL-为负载压力,pL=p1-p2.供油流量为Qs=CdA2√1/ρ(ps - pL)+ CdA1√1/ρ(ps + pL)b.滑阀的静态特性曲线a)流量特性曲线阀的流量特性是指负载压降等于常数时, 负载流量与阀芯位移之间的关系,其图形表示即为流量特性曲线. 负载压降为0时的流量特性称空载流量特性.相应的曲线为空载流量特性曲线,如图a所示.图a 空载流量特性曲线图图b 压力特性曲线b)压力特性曲线阀的压力特性是指负载压降等于常数时, 负载压降与阀芯位移之间的关系,其图形表示即为压力特性曲线.通常所指的压力特性是指负载流量为0时的压力特性,相应的曲线为压力特性曲线,如图b所示.c)压力-流量特性曲线阀的压力-流量特性曲线是指阀芯位移一定时, 负载流量与负载压降之间关系的图形. 如下图所示为理想零开口四边滑阀的压力-流量特性曲线族.它全面描述了阀的稳态特性,并可获得阀的全部性能参数.阀在最大位移下的压力-流量特性曲线可以表示阀的工作能力和规格.当负载所需的压力和流量能被阀在最大位移下的压力-流量特性曲线所包围时,阀就能满足负载的要求阀的压力-流量特性曲线(2)零开口四边滑阀的静态特性a. 理想零开口四边滑阀的静态特性理想零开口滑阀是指径向间隙为零,工作边锐利的滑阀,如图所示.由于径向间隙为零,工作边锐利,因而在讨论静态特性时可不考虑它们的影响.且认为节流阀口为矩形,其面积A=W xv, (W-面积梯度xv-阀芯位移).a)理想零开口四边滑阀的压力-流量方程 理想零开口四边滑阀的压力-流量方程:QL=Cd W xv -(1)b)压力-流量曲线根据无因次压力-流量方程绘制压力-流量曲线如下图所示.因阀窗口是匹配且对称的,所以压力-流量曲线对称于原点.当阀在正常工作状态是按图中Ⅰ,Ⅲ象限曲线.只有在瞬态情况下,才会处于Ⅱ,Ⅳ象限曲线.⎪⎪⎭⎫ ⎝⎛-Lv v s p p χχρ1。

工程机械电液控制系统

工程机械电液控制系统

工程机械电液控制系统简介工程机械电液控制系统是指通过电气与液压相结合的方式,对工程机械进行控制和调节的系统。

该系统使用了电气控制和液压驱动,通过电液转换器进行信号的传递和执行器的控制,从而实现对工程机械的运动、位置、力量等参数的调节和控制。

本文将详细介绍工程机械电液控制系统的结构、工作原理以及应用领域。

结构工程机械电液控制系统主要由以下几个部分组成:1.电控部分:包括控制器、传感器、执行器等电气元件。

控制器负责接收和处理输入信号,通过传感器获取机械的运动状态和环境参数,然后通过执行器输出相应的控制信号,实现对机械的控制和调节。

2.液压部分:包括液压传动系统、液压执行元件等。

液压传动系统负责将电气信号转换成液压信号,通过液压执行元件控制机械的运动、位置、力量等参数。

3.电液转换器:用于将电气信号转换成液压信号,实现电气与液压的相互转换。

常用的电液转换器包括电磁阀、电液换向阀等。

4.连接件:用于连接电气元件和液压元件,实现信号和能量的传递。

工作原理工程机械电液控制系统的工作原理如下:1.电控部分接收输入信号,并经过处理后输出控制信号。

2.控制器通过传感器获取工程机械的运动状态和环境参数。

传感器将这些参数转换成电信号,并传输给控制器。

3.控制器根据输入信号和传感器的反馈信号,进行逻辑运算和控制计算,并生成相应的控制信号。

4.控制信号通过连接件传递给电液转换器,将电信号转换成液压信号。

5.液压部分接收液压信号,并经过液压传动系统的传递和液压执行元件的作用,控制和调节工程机械的运动、位置、力量等参数。

6.工程机械根据液压部分的控制信号,进行相应的动作和运动。

应用领域工程机械电液控制系统广泛应用于各个领域的工程机械中,如挖掘机、装载机、推土机、起重机等。

它们通过电气和液压的相互协作,实现了对机械的高效控制和操作。

在工程机械的挖掘方面,电液控制系统能够精确控制挖斗的位置、速度和力量,提高挖掘效率和准确性。

在装载方面,可以根据物料的不同特性,调节装载斗的位置和倾斜角度,实现高效的装载和卸载操作。

机电一体化——电液控制系统设计

机电一体化——电液控制系统设计

6.电液控制系统设计6.1概述电液控制系统是常用机电一体化系统之一。

它是将计算机电控和液压传动结合在一起,既发挥了计算机控制或电控制技术的灵活性,又体现了液压传动的优势,充分显示出大功率机电控制技术的优越性。

电液控制系统的种类很多,可以从不同的角度分类,而每一种分类方法都代表一定的特征:1)根据输入信号的形式和信号处理手段可人为数字控制系统、模拟控制系统、直流控制系统、电液开关控制系统。

2)根据输入信号的形式和信号处理手段可分为数字控制系统、模拟控制系统、直流控制系统、交流控制系统、振幅控制系统、相位控制系统。

3)根据被控量的物理量的名称可分为置控制系统、速度控制系统、力或压力控制系统等。

4)根据动力元件的控制方式可分为阀控系统和泵控系统。

5)根据所采用的反馈形式可分为开环控制系统、闭环系统和半闭环控制系统。

本章主要介绍电液控制系统的组成、控制元件,系统数字模型以及系统的设计。

6.2电液控制元件电液控制元件主要包括电液伺服阀、电液比例阀、电液数字阀以及由数字阀组成的电液步进缸、步进马达、步进泵等。

它胶是电液控制系统中的电-液能量转换元件,也是功率放大元件,它能够将小功率的电信号输入转换为大功率的液压能(流量与压力)或机械能的输出。

在电液控制系统中,将电气部分与液压部分连接起来,实现电液信号的转换与放大,主要有电液伺服阀、电液比例阀、电液数字阀以及各种电磁开关阀等。

电液控制阀是电液控制系统的核心,为了正确地设计和使用电液控制系统,就必须掌握不同类型电液控制阀的原理和性能。

6.2.1控制元件的驱动6.2.1.1电气—机械转换器电气—机械转换器有“力电机(马达)”、“力矩电机(马达)”以及直流伺服电动机和步进电动机等,它将输入的电信号(电流或电压)转换为力或力矩输出,去操纵阀动作,推行一个小位移。

因此,电气-机械转换器是电液控制阀中的驱动装置,其静态特性和动态特性在电液控制阀的设计和性能中都起着重要的作用。

电液伺服系统原理

电液伺服系统原理

电液伺服系统原理
电液伺服系统是一种通过控制液压油流来实现位置、速度和力的精确控制的系统。

它由液压系统、电气系统和机械执行部分组成。

液压系统是电液伺服系统的核心部分,它包括液压泵、液压缸、液压阀和液压油箱。

液压泵通过压力油将液压油推送给液压缸,从而产生力或运动。

液压阀用于控制液压油的流动方向和流量。

液压油箱用于储存液压油,并保持其温度和清洁度。

电气系统通过控制电信号来控制液压系统。

它包括传感器、控制器和执行器。

传感器用于检测被控对象的位置、速度和力,并将其转化为电信号。

控制器接收传感器反馈的电信号,经过计算和处理后,输出控制信号给执行器。

执行器接收控制信号,并控制液压阀的开关状态,从而控制液压系统的运动和力。

机械执行部分将液压系统的力和运动传递给被控对象。

它包括液压缸、阀门、连接杆等元件。

液压缸接收液压油的力,并将其转化为线性运动。

阀门用于控制液压油流的方向和流量。

连接杆将液压缸的运动传递给被控对象,实现位置、速度和力的控制。

总之,电液伺服系统通过控制液压油流来实现位置、速度和力的精确控制。

液压系统、电气系统和机械执行部分相互配合,完成对被控对象的精确控制。

电液比例控制系统分析与设计

电液比例控制系统分析与设计

电液比例控制系统分析与设计1.输入信号接收与处理:电液比例控制系统通常采用模拟输入信号,如电压、电流等。

因此,需要设计电路对输入信号进行放大、滤波和隔离等处理,以满足系统的要求。

2.控制逻辑设计:根据实际应用需求,设计相应的控制逻辑。

常见的控制方式有PID控制、模糊控制等。

根据被控对象的特性和要求,选择合适的控制方式,并进行调参及优化。

3.输出信号处理:将控制逻辑输出信号转换为适合驱动液压元件的信号形式。

通常采用A/D转换器将模拟信号转换为数字信号,并输出给液压部分。

1.液压能量转换与控制:液压部分负责将电气信号转换为液压能量,并控制液压元件的工作状态。

常见的液压元件有液压泵、液压缸、液控单元等。

通过液压阀的开关控制,来实现液压能量的转换和流动的控制。

2.液压系统参数设计:根据系统需求,确定液压泵的最大工作压力、液压缸的位移要求、流量要求等。

根据这些要求,选用合适的液压元件,并进行相应的参数设计与计算。

3.液压系统的安全性与稳定性:液压系统工作中容易产生高压、高温等危险因素,因此需要对液压系统进行安全性设计。

同时,为了保证系统的稳定性,需要对液压阀的开关速度、压力等进行合理控制。

1.机械传动装置设计:根据实际运动要求,设计机械传动装置,包括连接方式、传动比、轴承选型等,以满足系统对力、速度和位置的要求。

2.机械结构设计:根据机械运动要求,设计相应的机械结构,包括液压缸的安装方式、支撑结构设计等,以保证机械执行部分的可靠性和稳定性。

3.机械部件的选用与配合设计:根据实际负载和工作条件,选用合适的机械部件,并进行合理的配合设计,以确保机械执行部分的准确性和稳定性。

总结:电液比例控制系统的分析与设计是一个复杂而庞大的工程。

需要考虑多个方面的因素,如控制逻辑设计、液压部分的能量转换和控制、机械执行部分的设计等。

只有综合考虑这些因素,才能设计出稳定、高效的电液比例控制系统。

汽轮机DEH系统介绍

汽轮机DEH系统介绍

汽轮机DEH系统介绍汽轮机DEH系统介绍---------------------------------------------------------1.引言在汽轮机发电厂中,DEH (Digital ElectroHydraulic Governors)系统是一种广泛应用的控制系统,它采用数字化电液控制技术,用于调节汽轮机的运行参数,实现稳定的发电过程。

本文将对汽轮机DEH系统的功能、组成、工作原理以及常见问题进行详细介绍。

2.DEH系统概述DEH系统是汽轮机的核心控制系统,主要用于控制并维持汽轮机运行在稳定的工作状态。

该系统通过电液传动装置实现对汽轮机的转速、负荷、汽门、调速器等参数的精确控制。

3.DEH系统组成3.1 数字控制器:DEH系统的控制核心,负责处理各类输入信号,并通过输出信号控制电液传动装置。

3.2 电液传动装置:将数字控制器输出的电信号转换为液压信号,通过推杆或伺服阀控制汽轮机的调节部件,如汽门等。

3.3 传感器及信号输入模块:收集汽轮机运行相关参数的传感器,如转速传感器、温度传感器等,并将传感器信号转换为数字信号输入给数字控制器。

3.4 接口模块:负责数字控制器与其他系统的通信,如监控系统、SCADA系统等。

4.DEH系统工作原理4.1 模式选择:DEH系统根据运行需求选择适当的模式,如恒速模式、恒功率模式等。

4.2 信号采集与处理:DEH系统通过传感器采集汽轮机运行参数的实时信号,并经过数字控制器进行处理。

4.3 控制信号计算:根据信号处理结果,数字控制器计算出相应的控制信号,并输出给电液传动装置。

4.4 电液传动装置控制:电液传动装置将数字控制器输出的电信号转换为液压信号,并通过推杆或伺服阀实现对汽轮机调节部件的精确控制。

4.5 参数反馈与调整:DEH系统根据反馈的参数值对控制信号进行调整,以保持汽轮机运行在稳定的工作状态。

5.DEH系统常见问题5.1 故障诊断:DEH系统能够实时监测汽轮机运行状态,并对故障进行诊断,提供相应的故障信息。

液压支架电液控制系统概述

液压支架电液控制系统概述

液压支架电液控制系统概述液压支架电液控制系统的主要组成部分包括液压系统、执行机构、控制器以及传感器等。

液压系统由液压泵、液压阀、液压缸等部件组成,负责提供液压驱动力,使液压支架能够实现运动。

执行机构是液压支架的核心部分,通过液压油将液压能转换为机械能,实现支架的伸缩、抬升、倾斜等动作。

控制器是液压支架电液控制系统的大脑,负责接收和处理信号,并输出相应的控制指令,实现对液压支架的精确控制。

传感器则用于感知液压支架的姿态、位置和运动等信息,将其反馈给控制器,以实现对支架运动的闭环控制。

液压支架电液控制系统的工作原理是利用控制器和传感器的配合,实现对液压系统的控制。

首先,传感器感知和采集液压支架的姿态、位置和运动等信息,并将这些信息传输给控制器。

控制器根据传感器的反馈信息,通过分析和处理确定液压支架的运动方案,并输出相应的控制指令。

这些控制指令通过电气信号传输到液压系统的控制阀,控制阀根据控制指令的要求调整液压系统的工作状态,实现对液压支架的运动和控制。

液压支架电液控制系统具有多种运动模式,常见的有定速模式、定位模式、示教模式等。

在定速模式下,液压支架以固定的速度运动,用于一些连续工作场合。

在定位模式下,液压支架通过控制阀控制腔的压力,在达到设定的压力上限或下限时停止运动,用于一些精确定位的任务。

在示教模式下,液压支架可以通过人工操作将其运动轨迹记录下来,然后在控制器的指令下,实现对液压支架的模拟运动。

液压支架电液控制系统具有广泛的应用前景。

在工程机械领域,它可以应用于挖掘机、装载机等设备上,实现对斗、臂等部件的运动和控制。

在航空航天领域,它可以应用于飞机机翼的折叠、起落架的伸缩等操作中,提高飞机的机动性能和适应性。

在自动化生产线上,它可以应用于输送带、机械臂等设备,实现对物料的运动和处理。

综上所述,液压支架电液控制系统是一种利用液压系统和电子控制系统实现支架运动和控制的系统。

它具有结构简单、运动平稳、控制精度高等特点,广泛应用于工程机械、航空航天、自动化生产线等领域。

汽轮机数字电液控制系统

汽轮机数字电液控制系统

汽轮机数字电液控制系统摘要300 MW的自备电厂建成后,300 MW的发电设备在国内市场上占据着举足轻重的位置,目前国内300 MW的发电机组已经投入使用,为国家的经济和社会的稳定发展作出了巨大贡献。

300 MW汽轮机采用的是苏联的技术,其设备设计和制造水平与国外相比有很大的差异。

该系统使用了常规的机械式液力调整,存在灵敏度低,迟滞率大,负荷适应能力差,自动化程度低等问题,对机组的安全和经济性造成了一定的影响。

该系统具有转速控制、负荷控制、甩负荷控制功能、超速保护功能、汽轮机自启动和负荷控制功能、主汽压力控制功能等功能。

介绍了300 MW电力电子调节的设计与使用,并着重介绍了超速保护、阀门管理、ATC及甩载测试等方面的工作。

关键词:300MW机组全电调控制升速升负荷阀门管理ATC EH系统高压遮断一、绪论1.1概述汽轮机是火力发电厂中的一个关键装置,它由高温和高压水蒸气带动,实现了热能向机械能的转化。

水轮机组带动发电机旋转,将机器能量转换成电能,电力网向不同的客户供电。

为保持电力系统的运行,需要将汽轮机的速度控制在接近标称速度的极低值,一般在-1.5-3.0 r/分钟之间。

为此,汽轮机需要有一个稳定的、自动化的设备。

水轮发电机组的发展经过了若干个发展时期,首先采用一组机械式的水力机械,完成了对速度的自动调整和对负载的人工控制。

这种体系通常被称作是水力调整。

1.2 300MW国产机组调节系统的现状及改造国内300 MW汽轮机的调速控制主要是由纯水压力的低压汽轮机油和凸轮配汽器组成。

这种调整系统是蒸汽机的常规运行方式,它具有一定的可视性,但是它的运行和数据收集都要靠手工完成,很难适应当前蒸气机组的高自动化、现代化的运行管理需求,所以需要对机组进行全电调的改进,从而达到自动控制的目的。

改进后的全电调速系统包括:液压伺服、高压防油屏蔽、机油供给、低压汽轮机油屏蔽等四大部分。

燃油供给系统的作用是供给高压燃油,驱动伺服系统,高压燃油屏蔽系统。

电液控的基本原理

电液控的基本原理

电液控的基本原理电液控制(Electro-hydraulic control)是一种基于电力和液压的控制技术,用于控制和调节机械系统的运动和操作。

它是将电力信号转换为液压能量,并利用液压传动来实现机械系统的运动控制。

电液控制广泛应用于工业生产和机械设备中,具有高效、可靠、快速和精确的特点。

电液控制系统主要由电源、电控信号传输、电液转换、执行器和反馈传感器等组成。

其中,电源提供电能;电控信号传输将控制信号传达给电液转换部分;电液转换部分将电控信号转换为液压能量;执行器接收液压能量,并将其转换为机械力或运动;反馈传感器用于监测执行器的位置、速度或力量,并将其反馈给电控系统,以实现闭环控制。

在电液控制系统中,电液转换部分是关键组成部分。

它由液压泵、液压阀、液压缸和油管等组成。

液压泵将电能转换为液压能,通过压力油管输送液压能量到液压阀。

液压阀根据接收的电控信号控制液压能量的流动方向、流量和压力等参数。

液压缸是执行器的一种形式,通过液压能量驱动活塞进行线性或旋转运动。

液压缸的运动通过连杆或机构与要控制的机械系统连接,从而实现位置、速度和力量等的控制。

电液控制系统的工作原理是通过电控信号控制液压能量的流动和分配,从而控制执行器的运动。

控制信号可以是电压、电流或数字信号等形式。

当控制信号变化时,电控系统会根据预设的控制算法调整液压阀的工作状态,以实现预期的机械运动。

电液控制系统可以实现多种控制方式,包括位置控制、速度控制和力控制等。

位置控制是通过控制液压阀的开关状态来控制液压缸的位置。

速度控制是通过控制液压阀的流量来控制液压缸的运动速度。

力控制是通过控制液压阀的压力来控制液压缸的输出力量。

这些控制方式可以单独应用,也可以结合使用,以实现更复杂的机械运动控制需求。

电液控制系统的优点在于其高效、可靠、快速和精确的特点。

由于液压系统具有较大的功率密度和传动效率,能够在短时间内提供大量的力矩和功率输出。

同时,液压系统具有较好的响应速度和控制精度,能够实现高速运动和精确控制。

《电液控制系统》课件

《电液控制系统》课件
《电液控制系统》PPT课 件
欢迎来到《电液控制系统》PPT课件!本课程将带您深入了解电液控制系统的 基本知识、应用场景、优缺点以及设计与实现。让我们开始吧!
电液控制系统概述
电液控制系统是一种将电力与液压技术结合的控制系统,可以广泛应用于工 业、农业和交通运输等领域。了解其组成部分以及常见的应用场景。
2 缺点
存在油箱容量大、系统复杂、维护成本高等缺点。
电液控制系统设计与实现
1
设计要点
根据应用需求确定系统参数、选择合适的元件和控制方式。
2
实现步骤
制定系统设计方案、进行元件选型和系统组装、进行系统调试和优化。
典型应用案例
了解电液控制系统在工业生产、农业机械和交通运输等领域的广泛应用。
电液控制系统的维护与保养
速度控制
控制液压系统的流量,调节执行元件的运动速 度。
压力控制
控制液压系统的工作压力,确保系统稳定运行。
流量控制
控制液压系统的流量,实现对液压执行元件的 流量调节。
混合控制
多种控制方式的组合,用于实现复杂的运动控 制。
电液控制系统的优缺点分析
1 优点
具备高功率密度、精密控制、参数调节能力强等优点。
电液元件介绍
液压泵
液压缸
将机械能转换为液压能,提供液压系统所需的动力。 将液压能转化为机械能,实现线性或旋转运动。
溢流阀
控制液压系统的最大工作压力,保护系统元件。
比例阀
根据输入信号精确控制液压系统的流量和压力。
控制方式及分类
开闭控制
通过控制液压系统的阀门状态实现的控制方式。
位置控制
精确控制液压执行元件的位置,实现定点运动。
1 维护方法

工程机械高效高可靠电液控制系统关键技术与产业化 团体标准

工程机械高效高可靠电液控制系统关键技术与产业化 团体标准

工程机械高效高可靠电液控制系统关键技术与产业化团体标准标题:探讨工程机械高效高可靠电液控制系统关键技术与产业化团体标准导语:工程机械作为现代建筑和交通运输领域的重要设备之一,其高效高可靠的电液控制系统关乎整个工程机械的性能和稳定性。

团体标准作为推动产业发展的重要支撑,对于电液控制系统的关键技术和产业化具有重要指导意义。

本文将深入探讨工程机械高效高可靠电液控制系统关键技术与产业化团体标准,以期为读者带来全面的了解和深入的思考。

一、电液控制系统的基本原理电液控制系统是一种以液压元件和电气元件为主要组成部分的控制系统,其基本原理是利用电气信号控制液压执行元件,实现对工程机械运动的精确控制。

电液控制系统具有反应速度快、控制精度高、承载能力强等优点,因此在工程机械中得到广泛应用。

二、工程机械高效高可靠电液控制系统的关键技术1. 电液比例技术电液比例技术是电液控制系统中的核心技术之一,其主要作用是将电气信号转换为相应的液压信号,实现对执行元件的精确控制。

优化的电液比例技术能够提高工程机械系统的控制精度和响应速度,从而提高工作效率和性能稳定性。

2. 智能控制技术随着人工智能和大数据技术的发展,智能控制技术在工程机械电液控制系统中得到了广泛应用。

智能控制技术能够实现对工程机械系统的实时监测、故障诊断和自动调节,提高系统的可靠性和自适应能力。

3. 节能环保技术节能环保是当前工程机械行业发展的重要方向,电液控制系统作为工程机械的核心部件,其节能环保技术尤为关键。

采用高效的液压元件、优化的系统设计和智能节能控制策略,能够有效降低能耗和减少环境污染,实现工程机械的可持续发展。

三、电液控制系统关键技术的产业化团体标准产业化团体标准是指由行业协会、企业联盟等组织共同制定的关于产品质量、技术规范、测试方法等方面的标准。

针对工程机械高效高可靠电液控制系统的关键技术,制定产业化团体标准具有重要意义。

1. 促进技术创新产业化团体标准将行业内的技术研发力量进行整合,形成共性技术和关键技术的共识,有利于促进电液控制系统技术的创新和应用。

电液速度控制系统建模与仿真--资料

电液速度控制系统建模与仿真--资料

引言液压伺服系统是以液体压力能为动力的机械量(位移、速度和力)自动控制系统按系统。

控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。

电液控制系统的基本元件包括电磁阀、电液开关控制阀、光电耦合器、功率放大器、电—机械转换器、普通电液伺服阀(频宽数十赫)、高频电液伺服阀(国内产品 400 赫)、电液比例流量阀、电液比例压力阀、电液比例方向阀、电液复合阀、电液比例泵、电液通断控制阀、电液数字阀、电液数字缸、电液数字泵等。

它们广泛用于机床工业、冶金工业、船舶工业、煤炭工业和工程机械等的控制系统中。

本文要研究的是电液速度控制系统及其仿真分析,是对电液速度控制系统的各个环节进行了数学模型的建立,并应用Matlab/Simulink对电液速度控制系统进行了仿真分析,通过幅频特性和相频特性的变化得到数学模型中各个部分对整个控制系统的影响。

1 绪论液压控制是液压技术领域的重要分支。

近20年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。

特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。

目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。

我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,液压控制系统的研究工作也取得很大进展。

1.1电液控制技术的发展及趋势液压技术的发展与流体力学理论研究相互关联。

自1650年帕斯卡提出静态液体中的压力传播规律--帕斯卡原理以来,1686年牛顿揭示了粘性液体的内摩擦定律,18世纪建立了流体力学的连续性方程。

这些理论的建立为液压技术的发展奠定了理论基础。

从1795年,英国人首先制造出世界上第一台水压机起,液压传动开始进入工程领域。

SAC电液控制系统技术交流汇报

SAC电液控制系统技术交流汇报
SAC电液控制系统技 术流汇报
目录
• SAC电液控制系统介绍 • SAC电液控制系统的关键技术 • SAC电液控制系统的优势与挑战 • SAC电液控制系统案例分析 • SAC电液控制系统与其他控制系统的比较 • SAC电液控制系统的发展前景与展望
01
SAC电液控制系统介绍
SAC电液控制系统的定义与特点
SAC电液控制系统的应用场景
总结词
SAC电液控制系统广泛应用于航空航天、能源、化工等领域,用于实现各种复杂动作和运动轨迹的控 制。
详细描述
SAC电液控制系统具有广泛的应用场景,如航空航天领域的飞行器起降、姿态控制等;能源领域的风 力发电、火电发电等;化工领域的反应釜控制、阀门开关等。在这些应用场景中,SAC电液控制系统 能够实现高精度和高响应速度的控制,提高生产效率和产品质量。
SAC电液控制系统的优势
高精度控制
快速响应
SAC电液控制系统能够实现高精度的位置和 速度控制,满足各种复杂工艺的要求。
由于电液转换器的快速响应特性,SAC电液 控制系统能够迅速对指令做出反应,提高 了系统的动态性能。
节能环保
易于维护
相比于传统的液压控制系统,SAC电液控制 系统具有节能环保的优势,能够降低能源 消耗和减少环境污染。
绿色化和可持续发展
随着环保意识的提高,SAC电液控制系统将更加注重绿色化和可持续 发展,采用环保材料和节能技术,降低对环境的影响。
04
SAC电液控制系统案例 分析
案例一
总结词
提高作业效率、降低能耗
详细描述
SAC电液控制系统在挖掘机中应用,通过精确控制液压系统,实现快速响应和精确控制,从而提高挖掘机的作业 效率。同时,该系统能够降低能耗,减少对环境的影响。

汽轮机数字电液控制系统的组成及功能课件

汽轮机数字电液控制系统的组成及功能课件
神经网络算法
01
遗传算法
02
模糊控制算法
03
汽轮机数字电液控制系统的调试
调试前的准备工作 调试过程中的注意事项 调试后的总结和评估
汽轮机数字电液控制系统的运行
运行前的准备工作 运行过程中的注意事项 运行后的维护和管理
汽轮机数字电液控制系统的应用
01
发电厂
02
石油化工
03
船舶电力
汽轮机数字电液控制系统的发展趋势
智能化 网络化 节能环保
应用案例一:提高汽轮机的效率
总结词
详细描述
应用案例二:优化汽轮机的运行参数
总结词
详细描述
应用案例三:实现汽轮机的远程监控与管理
总结词
汽轮机数字电液控制系统可以实现远程监控和管理。
详细描述
借助现代通讯技术和传感器技术,数字电液控制系统能够与远程监控系统相连, 实时传输数据和报警信息。这使得工作人员可以在远离现场的地方对汽轮机进行 监控和管理,提高生产效率和管理水平。
THANKS
感谢观看
处理。
组成
控制器主要由控制单元、输入输 出接口、通讯接口等组成。
执行器
定义
功能 组成
传感器
定义 功能 组成
监控系统
01
定义
02
功能
03
组成
汽轮机数字电液控制系统的基本控制逻辑
01
02
03
转速控制
负荷控制
温度控制
汽轮机数字电液控制系统的复杂控制逻辑
顺序控制
保护控制
优化控制
汽轮机数字电液控制系统的优化算法
汽轮机数字电液控制系统的组成
汽轮机数字电液 统的核心设备,负责接收并处理 输入信号,输出控制指令,实现

电液控制系统的组成

电液控制系统的组成

电液控制系统的组成电液控制系统是一种利用电力信号控制液压元件的系统,用于实现对液压执行元件的精确控制。

以下是电液控制系统的主要组成部分:1. 电力部分:1.1 电源:•提供系统所需的电能,通常是电动机、电动泵或其他电源。

1.2 控制器(Controller):•接收输入信号,对其进行处理,并输出相应的控制信号。

•可以是单独的控制器或是嵌入在 PLC(可编程逻辑控制器)等设备中。

1.3 传感器和检测器:•用于测量系统的输入和输出参数,例如位置、速度、压力等。

•常见的传感器包括位移传感器、压力传感器、速度传感器等。

2. 液压部分:2.1 液压泵(Hydraulic Pump):•通过电动机驱动,将液体压力增大,提供液压能源。

2.2 液压缸(Hydraulic Cylinder):•将液压能转化为机械能,实现线性运动。

2.3 液压阀(Hydraulic Valve):•控制液体流动的方向、流量和压力,以实现对液压执行元件的精确控制。

•包括方向控制阀、流量控制阀、压力控制阀等。

2.4 液压马达(Hydraulic Motor):•将液压能转化为机械能,实现旋转运动。

2.5 液压缓冲器和阻尼器:•用于平滑运动、减缓冲击和控制速度。

3. 控制元件:3.1 电磁阀(Solenoid Valve):•控制液压阀的电磁元件,根据控制信号打开或关闭阀门。

3.2 液压逻辑元件:•如逻辑阀、比例阀等,用于实现复杂的液压控制逻辑。

4. 传动部分:4.1 油箱和油过滤器:•存储液压油并确保其清洁,以维护系统的正常运行。

4.2 油管和连接件:•传递液压油流,连接系统的各个组件。

5. 辅助部分:5.1 管路和阀组:•构建液压系统的管道和阀门。

5.2 控制面板和操作元件:•提供人机界面,允许操作员对系统进行手动或自动控制。

电液控制系统通过将电力信号转换为液压信号,实现了对液压执行元件的高精度控制,广泛应用于工业、航空、建筑和农业等领域。

浅谈汽轮机电液控制系统控制策略及功能

浅谈汽轮机电液控制系统控制策略及功能

浅谈汽轮机电液控制系统控制策略及功能发布时间:2021-06-28T15:29:43.110Z 来源:《工程管理前沿》2021年2月第6期作者:刘美红[导读] 给水泵汽轮机电液控制系统(MEH)是以给水泵汽轮机为控制对象刘美红中国能源建设集团东北电力第一工程有限公司辽宁省沈阳市 11000摘要:给水泵汽轮机电液控制系统(MEH)是以给水泵汽轮机为控制对象,主要任务是通过控制进入给水泵汽轮机的蒸汽流量来改变其转速,最终实现锅炉给水泵的给水流量和压力的控制。

关键词:电液控制系统;汽轮机;锅炉给水泵;转速1概述1.1MEH内容给水泵汽轮机电液控制系统的液力系统为一套独立的高压抗燃油系统,执行机构包括高压主汽阀和低压主汽阀各1个,高/低压联合调节阀1个。

控制功能包括控制汽机的复位、跳闸、高低压主汽门启闭以及控制启动过程中的升速、正常运行和超速试验,并带有超速保护功能。

MEH控制系统还具有遥控接口与CCS相连,作为CCS的一个子系统,完成协调控制。

整个系统由过程控制单元PCU13、操作员面板、液压部件、伺服阀、转速测量装置、模拟量遥控接口及连接电缆等组成,由PCU13同时控制2台给水泵汽轮机运行。

控制柜的输出经伺服装置转换成油压信号,控制高/低压联合调节阀油动机开度,以调节给水泵汽轮机转速及给水泵出力。

MEH以计算机微处理技术为核心,一般采用分散控制系统,其主要内容包括:(1)转速控制:包括转速采样、转速处理、启动控制、目标转速及升降转速的设定和限制、转速自动过临界控制、转速比例积分调节、阀位控制、阀门伺服系统调整等。

(2)相关实验功能:包括机械和点超速试验、速关阀关闭试验、电磁阀在线试验、阀门校验等各种功能试验。

(3)超速、加速度保护:包括转速信号故障判断,汽轮机状态判断,机组跳机等。

(4)CRT显示、操作、报表、趋势打印等。

1.2 MEH特点MEH可以不单独设立操作员站,可与DCS或DEH共用,实现一体化设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档