汽轮机数字电液控制系统的组成及功能
汽轮机数字电液控制系统
第六章汽轮机数字电液调节系统DEH(digital electric hydraulic control system)即汽轮机数字式电液控制系统,是目前大型电站汽轮机普遍采用的控制装置,它主要完成机组在启停及正常运行过程中对汽轮机转速和功率的控制功能、汽轮机的超速保护功能,以及对汽轮机的进汽和排汽参数、缸温、轴承温度及转速、发电机功率等重要参数的监视。
第一节 汽轮机自动调节系统的发展汽轮机是电厂中的重要设备,在高温高压蒸汽的作用下高速旋转,完成热能到机械能的转换。
汽轮机驱动发电机转动,将机械能转换为电能,电力网将电能输送给各个用户。
为了维持电网频率,要求汽轮机的转速稳定在额定转速附近很小的一个范围内,通常规定此范围为±1.5~3.0r/min。
为了达到此要求,汽轮机必须配备可靠的自动调节系统。
汽轮机自动调节系统的发展经历了以下几个阶段:一、机械液压式调节系统(MHC)纯液压式(同步器、伺服马达、油动滑阀)早期的汽轮机调节系统是由离心飞锤、杠杆、凸轮等机械部件和错油门、油动机等液压部件构成的, 称为机械液压式调节系统 (mechanical hydraulic control, MHC), 简称液调。
这种系统的控制器是由机械元件组成的, 执行器是由液压元件组成的。
由汽轮机原理知道,MHC仅具有窄范围的闭环转速调节功能和超速跳闸功能, 其转速—功率静态特性是固定的, 运行中不能加以调节。
但是由于它的可靠性高, 并且能满足机组运行的基本要求, 所以至今仍在使用。
精度差二、电气液压式调节系统(EHC)电液并存(相互跟踪不便、振荡)随着机组单机容量的增大和中间再热机组的出现, 单元制运行方式的普遍采用以及电网自动化水平的提高, 对汽轮机调节系统提出了更高的要求, 仅依靠机械液压式调节系统已不能完成控制任务。
这时产生了电气液压式调节系统 (electric hydraulic control, EHC), 简称电液调节。
汽轮机数字电液控制系统
汽轮机数字电液控制系统本文档是关于汽轮机数字电液控制系统的详细说明和操作指南。
本文档将从介绍数字电液控制系统的基本原理开始,然后逐步介绍系统的组成、工作流程、操作方法以及故障排除等内容。
希望本文档能够对用户正确使用和维护数字电液控制系统提供帮助。
请阅读本文档前,请务必仔细阅读以下内容:⒈数字电液控制系统基本原理⑴数字电液控制系统的定义⑵传统液压控制系统与数字电液控制系统的区别⑶数字电液控制系统的工作原理⒉数字电液控制系统的组成⑴主控制器⑵传感器⑶执行器⑷液压元件⒊数字电液控制系统的工作流程⑴传感器信号采集⑵主控制器信号处理⑶控制指令⑷执行器控制⑸反馈信号处理⒋数字电液控制系统的操作方法⑴系统开机操作⑵参数设置与调整⑶控制模式切换⑷故障报警与处理⒌数字电液控制系统的故障排除⑴常见故障及排除方法⑵故障诊断与修复流程⑶故障记录与分析⒍附件⑴数字电液控制系统操作手册⑵数字电液控制系统维护手册⑶数字电液控制系统技术规范法律名词及注释:- 汽轮机:指利用汽轮机原理进行工作的机器,其中通过燃烧燃料产生高温高压气体,再通过汽轮机的叶轮转动产生动力。
- 数字电液控制系统:指以数字信号进行控制的液压系统,通过数字信号控制液压元件的工作状态。
本文档涉及的附件:- 数字电液控制系统操作手册:详细介绍了如何正确操作和使用数字电液控制系统的手册。
- 数字电液控制系统维护手册:详细介绍了如何进行数字电液控制系统的日常维护和保养。
- 数字电液控制系统技术规范:详细说明了数字电液控制系统的技术要求和性能指标等。
汽轮机数字电液控制系统的组成及功能
曲线校正后形成各 个阀门的开度指令, 阀门同时开启,对 应于4组喷 嘴同时进汽。
说出上图的在本教材中的图号,并说明阀特性曲线的特点 (快开、直线、抛物线、等百分比)
⑵喷嘴调节 在正常(额定)负荷范围内采用喷嘴调节变压 运行方式,可使机组有最好的热经济性和运行灵活性。
采用喷嘴调节、部分进汽时,当I、Ⅱ号调节阀阀杆开启到 24.6m时,Ⅲ号调节阀开启;当Ⅲ号调节阀阀杆行程达到 15.8mm时,Ⅳ号调节阀开始开启。
冷态启动:温度小于150℃。 温态启动:150~300℃。 热态启动:300~400℃。 极热态启动:温度大于400℃。 2.启动方式
本机组具有中压缸启动和高中压缸联合启动两种方式。
中压缸启动方式,具有降低高中压转子的寿命损耗、改 善汽缸热膨胀和缩短启动时间等优点。
中压缸启动时,在机组冲转前、锅炉点火升温时,蒸汽通过高压旁路,倒暖阀RFV进入 高压缸,对高压缸预暖,同时对高压主汽管、高压主汽调节阀和再热器、中压联合 汽阀进行加热;
⑴滑压控制
⑵这种运行方式能够提高机组变工况运行时的热经济性,减少 进汽部分的温差和负荷变化时的温度变化,因而降低了机组 的低周热疲劳损伤。
采用滑压运行能改变机组在变工况运行时的热应力和热变形, 使机组启停时间缩短,减小节流损失,降低给水泵功率消耗, 提高机组效益。
⑶μT= μT0 ⑷变化
⑸根据机组运行方式
(即定压运行还是滑
压运行)产生压力设
定值P0 ⑹
⑺试在定-滑-定曲线上画出相应的μT曲线 ⑻ECR/MCR-额定功率/最大功率
⑼定压运行允许的最大 负荷变化率为 3%ECR/min。 ⑽滑压运行时允许的 最大负荷变化率为 5%ECR/min。
DEH系统简介
伺服阀 快关电磁阀
二、DEH系统调节原理 转 速
功率
当发电机带上负荷时 维持额定转速 转速增加
出现定子电流 产生定子磁场
阻碍转子旋转 开大调门 汽机转速降低
汽机进汽量增加
三、DEH系统组成
常规模件 电子部分 DEH DO、DI、AO、AI、HUB等
专用模件 供油部分
测速模块、伺服模块、同期模块等 油箱、油泵、控制块、滤油器、过滤器、 溢流阀、蓄能器、冷油器、再生装置等 EH油供油系统、油动机、伺服阀、LVDT、 电磁阀等
i衔铁Leabharlann 时针旋转挡板左向偏移左间隙变小右间隙变大 力变滑 变大阀 小,左 右侧 侧压 压力 滑 阀 右 移 油路通, 阀门动
左间隙=右间隙
伺服阀回到零位
滑阀左移 位置反馈= 位置指令 衔铁回到中间位
左压力变小 右压力变大 挡板右移
i=0
LVDT(线性可 变差动变压)是测 量油动机的实际行 程的。伺服卡是通 过LVDT的反馈信 号和指令信号进行 比较后从而输出指 令信号,实现对油 动机的控制。
LVDT是由芯杆、 线圈、外壳等所组成, 主要应用差动变压器 原理工作的。分一个 初级线圈和两个次级 线圈。两个次级线圈 是反向差动连接。当 铁芯与线圈间有相对 移动时,次级线圈感 应出的交流电压经过 整流滤波后成为直流 信号,便变为表示铁 芯与线圈相对位移信 号输出,作为负反馈 。
LVDT 油动机
DEH系统的控制任务: 调节汽轮发电机组的转速、功率,使其满足电网 的要求。
DEH系统的控制对象: 汽轮机,具体来说是汽轮机的进汽阀门。
DEH系统的保安功能: 在紧急情况下,迅速关闭所有进汽阀门来实现跳 闸 DEH系统的监测功能: 在汽轮机启停和运行过程中,对一些重要参数和 状态进行监视、记录和报警。
汽轮机DEH系统介绍
汽轮机DEH系统介绍汽轮机DEH系统介绍---------------------------------------------------------1.引言在汽轮机发电厂中,DEH (Digital ElectroHydraulic Governors)系统是一种广泛应用的控制系统,它采用数字化电液控制技术,用于调节汽轮机的运行参数,实现稳定的发电过程。
本文将对汽轮机DEH系统的功能、组成、工作原理以及常见问题进行详细介绍。
2.DEH系统概述DEH系统是汽轮机的核心控制系统,主要用于控制并维持汽轮机运行在稳定的工作状态。
该系统通过电液传动装置实现对汽轮机的转速、负荷、汽门、调速器等参数的精确控制。
3.DEH系统组成3.1 数字控制器:DEH系统的控制核心,负责处理各类输入信号,并通过输出信号控制电液传动装置。
3.2 电液传动装置:将数字控制器输出的电信号转换为液压信号,通过推杆或伺服阀控制汽轮机的调节部件,如汽门等。
3.3 传感器及信号输入模块:收集汽轮机运行相关参数的传感器,如转速传感器、温度传感器等,并将传感器信号转换为数字信号输入给数字控制器。
3.4 接口模块:负责数字控制器与其他系统的通信,如监控系统、SCADA系统等。
4.DEH系统工作原理4.1 模式选择:DEH系统根据运行需求选择适当的模式,如恒速模式、恒功率模式等。
4.2 信号采集与处理:DEH系统通过传感器采集汽轮机运行参数的实时信号,并经过数字控制器进行处理。
4.3 控制信号计算:根据信号处理结果,数字控制器计算出相应的控制信号,并输出给电液传动装置。
4.4 电液传动装置控制:电液传动装置将数字控制器输出的电信号转换为液压信号,并通过推杆或伺服阀实现对汽轮机调节部件的精确控制。
4.5 参数反馈与调整:DEH系统根据反馈的参数值对控制信号进行调整,以保持汽轮机运行在稳定的工作状态。
5.DEH系统常见问题5.1 故障诊断:DEH系统能够实时监测汽轮机运行状态,并对故障进行诊断,提供相应的故障信息。
汽轮机数字电液控制系统概述课件
汽轮机数字电液控制系统的软件开发
软件开发平台
一般采用面向对象的编程语言, 如C或Java等。
软件架构设计
一般采用分层式或模块化的设计 方法,提高软件的模块性和可维
护性。
软件测试
对软件进行严格的测试,包括功 能测试、性能测试和安全测试等 ,确保软件的正确性和可靠性。
05
汽轮机数字电液控制系统的应用 案例
制。
汽轮机数字电液控制系统的关键技术
实时数据处理技术
该技术用于快速、准确地处理传 感器采集的数据,并将处理后的 数据实时反馈给控制单元进行决
策。
先进控制算法
该算法用于实现复杂的控制逻辑, 提高系统的控制精度和稳定性。
故障诊断技术
该技术用于实时监测系统的运行状 态,发现异常情况及时进行处理, 保障系统的安全运行。
01
02
03
硬件部分
包括计算机、数据采集卡 、控制板卡、电源等设备 ,用于实现数据采集、处 理和控制输出等功能。
软件部分
包括控制算法程序、监控 程序和组态软件等,用于 实现DEH系统的各种控制 策略和监控功能。
网络部分
包括通信接口和网络通信 线缆等,用于实现DEH系 统与其它控制系统的数据 交互。
汽轮机数字电液控制系统的功能
转速控制
负荷控制
通过调节汽轮机的进汽量或进汽压力,控 制汽轮机的转速在设定值范围内。
通过调节汽轮机的进汽量或进汽压力,控 制汽轮机的输出功率在设定值范围内。
压力控制
保护控制
通过调节汽轮机的进汽量或进汽压力,控 制汽轮机的高压缸排气压力在设定值范围 内。
监测汽轮机的各种参数,如转速、温度、 压力等,当参数超过设定值时,触发相应 的保护动作,确保汽轮机的安全运行。
汽轮机数字电液控制系统
汽轮机数字电液控制系统摘要300 MW的自备电厂建成后,300 MW的发电设备在国内市场上占据着举足轻重的位置,目前国内300 MW的发电机组已经投入使用,为国家的经济和社会的稳定发展作出了巨大贡献。
300 MW汽轮机采用的是苏联的技术,其设备设计和制造水平与国外相比有很大的差异。
该系统使用了常规的机械式液力调整,存在灵敏度低,迟滞率大,负荷适应能力差,自动化程度低等问题,对机组的安全和经济性造成了一定的影响。
该系统具有转速控制、负荷控制、甩负荷控制功能、超速保护功能、汽轮机自启动和负荷控制功能、主汽压力控制功能等功能。
介绍了300 MW电力电子调节的设计与使用,并着重介绍了超速保护、阀门管理、ATC及甩载测试等方面的工作。
关键词:300MW机组全电调控制升速升负荷阀门管理ATC EH系统高压遮断一、绪论1.1概述汽轮机是火力发电厂中的一个关键装置,它由高温和高压水蒸气带动,实现了热能向机械能的转化。
水轮机组带动发电机旋转,将机器能量转换成电能,电力网向不同的客户供电。
为保持电力系统的运行,需要将汽轮机的速度控制在接近标称速度的极低值,一般在-1.5-3.0 r/分钟之间。
为此,汽轮机需要有一个稳定的、自动化的设备。
水轮发电机组的发展经过了若干个发展时期,首先采用一组机械式的水力机械,完成了对速度的自动调整和对负载的人工控制。
这种体系通常被称作是水力调整。
1.2 300MW国产机组调节系统的现状及改造国内300 MW汽轮机的调速控制主要是由纯水压力的低压汽轮机油和凸轮配汽器组成。
这种调整系统是蒸汽机的常规运行方式,它具有一定的可视性,但是它的运行和数据收集都要靠手工完成,很难适应当前蒸气机组的高自动化、现代化的运行管理需求,所以需要对机组进行全电调的改进,从而达到自动控制的目的。
改进后的全电调速系统包括:液压伺服、高压防油屏蔽、机油供给、低压汽轮机油屏蔽等四大部分。
燃油供给系统的作用是供给高压燃油,驱动伺服系统,高压燃油屏蔽系统。
第二章汽轮机数字电液控制系统的组成及功能2
DEH控制系统的控制软件可分为以下四大类。 (1)汽轮机超速保护部分(简称AB,OPC)的控制逻辑,软件驻留
在2号MFP模件中,主要功能有转速测量信号处理、103%超 速报警和110%电超速保护等。 (2)汽轮机自动部分(简称AD,BTC)的控制逻辑,软件驻留在4号 MFP中,主要完成PID计算,实现目标值给定、遮断试验、喷 油试验、负荷反馈、负荷限制等功能。 (3)汽轮机阀门管理(简称AF,VMC)的控制逻辑,软件驻留在6号 MFP模件中,主要完成阀门的控制和管理,实现远方挂闸、 快卸负荷、单顺阀切换、阀门活动试验等功能。 (4)汽轮机自启动部分(简称AH,ATC)的控制逻辑,软件驻留在8 号MFP模件中,主要完成应力计算等功能。
____则接受高压保安油(HPT)及超速限制油压(OSP)的控制。 A.伺服阀;B.电磁阀;C.卸荷阀 HPT油压由高压遮断集成块和机械遮断阀控制,高压油经各主
汽阀执行机构的节流孔及卸荷阀形成高压安全油(HPT)。
⑾发生哪些情况时要卸掉HPT油? 当21项保护之一动作时,高压遮断集成块及机械遮断阀动作,
侧高压阀组,十个阀门的编号和布置情况如图2-3所示。 由图知,左侧高压阀组包括高压主汽阀MSV1,高压调节阀
CV2、CV3;右侧高压阀组包括高压主汽阀MSV2,高压调 节阀CV1、CV4。同理,中压阀组也分为左、右两组。左 侧中压阀组包括中压主汽阀RSV1和中压调节阀ICV1;右侧 中压阀组包括中压主汽阀RSV2和中压调节阀ICV2。
危急遮断系统由低压保安系统、高压保安系统、高低压接口装 置三部分组成,三部分协调动作,完成机组挂闸和遮断任务。
⒂电气控制系统的功能是什么?实现如转速控制、功率控制、 手/自动切换等各种控制功能,并最终形成各个阀门的阀位 指令
DEH系统介绍
LVDT接线有两种情况: 1、零点在里:铁芯向外拉时输出信号增大。 1——红 2——蓝 3——黄 2、零点在外:铁芯向里推时输出型号增大。 1——黄 2——蓝 3——红
2017/1/11
棕 1P+
1S+ 绿
黄 1P+
1S+黑
1S- 黑
2S+ 蓝
1S-- 绿 2S+红
黄 1P-
2S- 红 棕 1P--
2017/1/11
S值: S值为伺服阀的输入电压值。它代 表伺服阀的机械偏置大小,S值为正时 ,说明伺服阀为负偏置。反之,若S值 为0或负值时,则伺服阀机械偏置为零 或正偏。此时,当伺服阀失电后,调门 会关的很慢或者反而开大,说明伺服阀 机械偏置不正确。有时滤网或喷嘴堵也 会造成S值的波动。此时,油动机将无 法控制,需要更换伺服阀。
2017/1/11
出现定子电流 产生定子磁场
维持额定转速
阻碍转子旋转 开调门 汽机转速降低
汽机进汽量增加
2017/1/11
一次调频的工作原理是将机组的实际转速与额定转 速(3000转/分)比较后的差值经“死区——线性—— 限幅”的非线性函数处理后,得到的转速差直接动作调 门(非功控时)。以保证机组负荷满足电网要求。
2017/1/11
阀门严密性试验及阀门活动试验
阀门严密性试验分为主汽门严密性试验和调门 严密性试验。 主门严密性试验是关闭所有主汽门,开启 所有调节门。调门严密性试验是关闭所有调节 门,开启所有主汽门。DEH同时记录下转速惰 走时间,计算当前工况下的严密性指标,判断 严密性是否合格。 阀门活动试验是为了防止阀门卡涩,DEH系统 可以对所有阀门进行全行程或部分行程试验。
汽轮机TSI、DEH、ETS系统介绍
汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍⒈汽轮机TSI系统介绍⑴ TSI系统概述汽轮机TSI(Turbine Supervisory Instrumentation)系统是一个监控和控制汽轮机运行的关键系统。
它主要由传感器、仪表、控制器和监控软件组成,用于实时监测和记录汽轮机的各种参数,以确保其安全可靠运行。
⑵ TSI系统功能TSI系统的功能包括:●监测并记录汽轮机的转速、温度、压力等参数。
●实时显示汽轮机的运行状态。
●报警和保护措施,一旦出现异常情况,系统会发出警报并采取相应的保护措施。
⑶ TSI系统组成TSI系统由以下几个主要组成部分组成:●传感器:用于测量汽轮机的各种参数,如转速、温度、压力等。
●仪表:用于显示汽轮机的运行状态和相关参数。
●控制器:用于实时监控和控制汽轮机的运行。
●监控软件:用于记录和分析汽轮机运行数据。
⒉ DEH系统介绍⑴ DEH系统概述DEH(Digital Electro-Hydraulic)系统是一种数字化电液控制系统,用于控制汽轮机的调速、负荷控制和安全保护。
它通过电信号与液压系统进行交互,实现对汽轮机的精确控制。
⑵ DEH系统功能DEH系统的功能包括:●汽轮机的精确调速控制。
●负荷控制,根据电网需求自动调整汽轮机的负荷。
●安全保护,监测并保护汽轮机免受过载、过热等危险情况。
⑶ DEH系统组成DEH系统由以下几个主要组成部分组成:●控制器:负责接收和处理控制信号,并控制液压系统。
●电液伺服阀:通过控制液压系统,实现对汽轮机调速和负荷的精确控制。
●传感器:用于测量汽轮机的转速、负荷等参数。
●人机界面设备:用于显示和操作DEH系统。
⒊ ETS系统介绍⑴ ETS系统概述ETS(Emergency Trip System)系统是一种紧急停机保护系统,用于监测和保护汽轮机在紧急情况下的安全停机。
⑵ ETS系统功能ETS系统的功能包括:●监测和检测汽轮机运行中的紧急情况。
汽轮机数字电液控制系统
二.引起反调现象的原因
用发电机功率反馈代替汽轮机内功率,这两者在动态情况下并不 一样。(图2-3)
三.克服反调现象的方法
1. 2. 3. 4. 用转速微分信号将发电机功率信号修正为汽轮机内功率信号 使发电机功率信号延滞后送入控制系统 在系统中引入负的功率微分信号 甩电负荷时,切除功率给定
第三章 数字电液调节系统
汽轮机数字电液控制系统
Digital Electro-Hydraulic Control System for Steam Turbines
教材:数字式电液调节系统-肖增弘
第一章 汽轮机调节系统的基本概念
第一节 汽轮机调节保护的基本内容
一个完善的汽轮机控制系统应包括的功能
一.自动监视系统
连续监测汽轮机运行中各主要参数的变化、越限报警、
三.自动调节系统
汽轮机的闭环自动调节系统包括转速调节系统、功率 调节系统、压力调节系统。 满足启动、停机和变负荷要求
四.汽轮机自启停控制系统(ATC)
汽轮机自启停控制(Automatic Turbine Control, ATC)
能够完成从盘车、升速并网、带负荷、甩负荷、停机 的全部过程自动控制。 其中一种是模仿人的操作过程,按事先规定的步骤和 时间完成;另一种是考虑热应力控制的自动启停过程
一次调频与二次调频概念区别 • 一次调频是按并列运行机组的静态特性自动分配负荷,而二次 调频要靠同步器人为地进行; • 并列运行的机组通常都参与一次调频,但一次调频通常不可能 保持电网周波不变而只能减小周波变化的程度; • 一次调频可以认为是暂态的。 即当电网负荷变化后,二次 调频来不及立即保证电网有 功功率的供求平衡,暂时由 一次调频来维持电网周波不 致有过大变化而造成严重后 果,当二次调频使周波恢复 Δp 正常后,一次调频作用便消 失。
汽轮机TSI、DEH、ETS系统介绍
汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍1.汽轮机TSI系统介绍1.1 TSI系统概述汽轮机TSI(Turbine Supervisory Instrumentation)系统是用于监测和控制汽轮机运行状态的关键系统。
它通过实时监测和分析多个关键参数,提供对汽轮机性能、可靠性和安全性的综合评估。
1.2 TSI系统功能TSI系统具有以下功能:- 监测和显示汽轮机的关键参数,如转速、温度、压力等。
- 进行故障诊断和报警,提供对可能的故障情况进行实时预警。
- 控制汽轮机的运行状态,在必要时进行自动调节和保护处理。
2.DEH系统介绍2.1 DEH系统概述DEH系统(Digital Electro-Hydraulic Control System)是一种数字电液控制系统,用于控制汽轮机的调节和保护。
它通过电子和液压技术的结合,实现对汽轮机的精确调节和可靠保护。
2.2 DEH系统功能DEH系统具有以下功能:- 实现对汽轮机负荷的自动调节,保持稳定的负荷输出。
- 监测和控制汽轮机的转速、压力等参数,确保汽轮机的安全运行。
- 实时诊断和记录汽轮机的工况数据,用于分析和故障排除。
3.ETS系统介绍3.1 ETS系统概述ETS系统(Emergency Trip System)是一种紧急停机系统,用于保护汽轮机在可能发生危险情况时的快速停机。
3.2 ETS系统功能ETS系统具有以下功能:- 在检测到危险情况(如高温、高压等)时,迅速切断汽轮机的供电和燃料供应,使其停机。
- 提供对汽轮机停机过程的监测和报警功能,确保停机过程的安全和可靠性。
- 可选装备自动复位功能,使系统在危险消失后能够自动恢复到正常运行状态。
附件:本文档附带以下资料:- 汽轮机TSI系统的技术规范书- DEH系统的操作手册- ETS系统的安装和维护指南法律名词及注释:- TSI:Turbine Supervisory Instrumentation,汽轮机监控仪表系统。
汽轮机数字电液控制系统的组成及功能课件
01
遗传算法
02
模糊控制算法
03
汽轮机数字电液控制系统的调试
调试前的准备工作 调试过程中的注意事项 调试后的总结和评估
汽轮机数字电液控制系统的运行
运行前的准备工作 运行过程中的注意事项 运行后的维护和管理
汽轮机数字电液控制系统的应用
01
发电厂
02
石油化工
03
船舶电力
汽轮机数字电液控制系统的发展趋势
智能化 网络化 节能环保
应用案例一:提高汽轮机的效率
总结词
详细描述
应用案例二:优化汽轮机的运行参数
总结词
详细描述
应用案例三:实现汽轮机的远程监控与管理
总结词
汽轮机数字电液控制系统可以实现远程监控和管理。
详细描述
借助现代通讯技术和传感器技术,数字电液控制系统能够与远程监控系统相连, 实时传输数据和报警信息。这使得工作人员可以在远离现场的地方对汽轮机进行 监控和管理,提高生产效率和管理水平。
THANKS
感谢观看
处理。
组成
控制器主要由控制单元、输入输 出接口、通讯接口等组成。
执行器
定义
功能 组成
传感器
定义 功能 组成
监控系统
01
定义
02
功能
03
组成
汽轮机数字电液控制系统的基本控制逻辑
01
02
03
转速控制
负荷控制
温度控制
汽轮机数字电液控制系统的复杂控制逻辑
顺序控制
保护控制
优化控制
汽轮机数字电液控制系统的优化算法
汽轮机数字电液控制系统的组成
汽轮机数字电液 统的核心设备,负责接收并处理 输入信号,输出控制指令,实现
汽轮机数字电液控制系统( DEH) 的结构功能及其与CCS的接口
汽轮机数字电液控制系统(DEH) 的结构功能及其与CCS的接口摘要:介绍了汽轮机数字电液控制系统(即DEH系统)的一般功能及硬件、软件的结构。
着重介绍了协调控制系统(CCS)与DEH系统密切相关的几个重要信号——CCS指令信号、RB信号、FCB信号的产生,它们与DEH相互联系的方式以及对DEH指令信号的作用,并剖析了投入协调运行后汽轮机控制系统、协调控制系统作为一个整体时的工作原理及工作方式。
关键词:DEH系统;协调控制系统(CCS);RB信号;FCB信号汽轮机数字电液控制系统(Digital Electric-Hydraulic Control System,以下简称DEH)是当今汽轮机特别是大型汽轮机必不可少的控制系统,是电厂自动化系统最重要的组成部分之一。
现代DEH系统由于采用计算机控制技术为核心的分散控制系统结构,提高了控制精度,并且能够方便地实现各种复杂的控制算法。
其执行部分由于采用了液压控制系统,具有响应快速、安全、驱动力强的特点。
1DEH系统的硬件结构DEH系统主要由计算机控制部分与液压控制部分(EH)组成。
DEH部分完成各种控制回路、控制逻辑的运算,通过操作员站等人机接口设备完成运行操作、监控及系统管理。
根据对汽轮机、发电机运行参数的实时采集,经过各种控制策略、控制回路的运算,将最终的阀门控制指令输出到执行机构,通过EH系统由液压执行部件驱动阀门完成对机组的负荷、转速、压力等被调节变量的控制。
人机接口是操作人员或系统工程师与DEH系统的人机界面。
操作员通过操作员站对DEH进行操作,给出汽轮机的运行方式、控制目标值等各种控制指令,完成各种试验,进行回路投切等。
EH系统是DEH的执行机构,主要包括供油装置(油泵、油箱)、油管路及附件(蓄能器等)、执行机构(油动机)、危急遮断系统等。
供油系统为系统提供压力油。
执行机构响应DEH的指令信号,控制油动机的位置,以调节汽轮机各蒸汽进汽阀的开度,从而控制汽轮机运行。
DEH系统的作用、功能及组成
DEH系统的作用、功能及组成一、DEH的作用DEH全称为数字式功频电液调节系统。
它将现场的模拟信号转化成数字信号,通过计算机的运算,完成对汽轮机的启动、监视、保护和运行。
二、DEH的功能1、操作方式的选择。
(1)手动方式。
配备手操盘,计算机发生故障或其它特殊情况下(如炉熄火,快减负荷),可满足手动升降负荷的要求。
实现汽轮机组启动操作方式和运行方式的选择。
(2)操作员自动(OA)。
启动时必须采用的方式,可实现机组的冲转、升速、暖机、并网、带负荷的整个阶段。
(3)汽轮机程序启动(A TC)。
实现机组从启动到运行的全部自动化管理。
2、启动方式的选择。
可实现高、中压缸联合启动或中压缸启动(300MW机组)。
3、运行方式的选择。
机跟炉、炉跟机、协调等。
4、阀门管理。
可实现“单阀”或“多阀”运行。
并可实现无扰切换。
5、超速保护功能(OPC)。
主要由103%超速保护及甩负荷预测功能。
当转速超过停机值(110%额定转速)时,发出跳机信号,迅速关闭所有主汽门和调门。
6、阀门试验功能。
可在线进行主汽门、调门的全行程关闭试验或松动试验。
三、DEH系统的组成1、计算机控制部分(1)M MI站。
人机接口。
(2)D EH控制柜。
DPU分布式控制单元;卡件;端子柜。
DEH组成示意图2、液压控制部分(1)E H高压抗燃油控制系统。
抗燃油泵。
提供高压抗燃油,并由它来驱动伺服执行机构。
还包括:再生装置,滤油装置和冷却装置。
功能:提供压力油。
(2)控制汽轮机运行执行系统。
伺服阀,卸荷阀、逆止阀等组成。
将DEH来的指令电信号,转变为液压信号,最终改变调门的开度。
(3)保护系统。
OPC电磁阀,隔膜阀,AST电磁阀组成。
属保护机构。
当设备的参数达到限定值时(轴向位移、高压差胀、真空等),或关闭主汽门、调门。
四、DEH的优点1、精度高,速度快,延迟性小(迟缓率<0.06%(原来0.6%),油动机快关时间<0.2S(部颁规定0.5S)。
(迟缓率:单机运行从空负荷到额定负荷,汽轮机的转速n2由降至n1,该转速的变化值与额定转速之比的百分数δ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷态启动
温态启动 热态启动
极热态启动 正常停机 负荷变化 带厂用电
l020 2050
120 3800 14000 l5
0.015 0.0l
高中压缸联合启动时,高中压缸同时进汽,当机组负 荷达到30%以上时,中压调节阀全开,由高压调节 阀控制机组功率。
3.运行操作控制方式 (1)运行人员手动方式(手动)。 该方式时,运行人员通过 操作盘“阀增”、“阀减” 按钮。手动改变阀位,实 行手动调节。 (2)运行人员自动方式(半自 动)。该方式时,由运行人 员给出每个阶段的目标值, 由电液调节系统自动形成 设定值,通过PI运算后形 成指令,由阀门管理程序 形成各阀门开度指令。 (3)汽轮机自启动方式(全自 动)。该方式下,由DEH系 统根据机组的热状态及运 行工况给出各个阶段的目 标值、升速率,通过基本 控制回路控制机组的转速 和负荷,不需要运行人员 干预,控制汽轮机自动完 成冲转、升速、同期并网、 带初负荷等启动过程。 手动、半自动、全自动的信 号从图中的何处输入?
⑴在什么情况下,主汽压力设定值是机组功率 的函数? ⑵滑压运行有何优点? ⑶滑压时,汽轮机调节阀门开度变化吗? ⑷定压时,汽轮机调节阀门开度变化吗? ⑸机前压力设定值回路的作用是什么? ⑹画出定-滑-定曲线。 ⑺试在定-滑-定曲线上画出相应的μT曲线。 ⑻说明ECR/MCR的含义。 ⑼定压运行允许的最大负荷变化率为多少? ⑽滑压运行时允许的最大负荷变化率为多少?
⑴滑压控制 ⑵这种运行方式能够提高机组变工况运行时的热经济性,减少 进汽部分的温差和负荷变化时的温度变化,因而降低了机组 的低周热疲劳损伤。 采用滑压运行能改变机组在变工况运行时的热应力和热变形, 使机组启停时间缩短,减小节流损失,降低给水泵功率消耗, 提高机组效益。 ⑶μT= μT0 ⑷变化 ⑸根据机组运行方式 (即定压运行还是滑 压运行)产生压力设 定值P0 ⑹ ⑺试在定-滑-定曲线上画出相应的μT曲线 ⑻ECR/MCR-额定功率/最大功率
• • • • • • • • • •
(1)汽轮机自动启动功能: (2)汽轮机自同期功能; (3)转子应力监控功能; (4)阀门管理功能; (5)转速调节功能; (6)负荷控制功能: (7)超速保护功能; (8)阀门活动试验功能; (9)CCS接口功能。 本章第三节DEH的功能有11条。DEH的核 心功能是什么?
曲线校正后形成各 个阀门的开度指令, 阀门同时开启,对 应于4组喷 嘴同时进汽。
说出上图的在本教材中的图号,并说明阀特性曲线的特点 (快开、直线、抛物线、等百分比)
⑵喷嘴调节 在正常(额定)负荷范围内采用喷嘴调节变压 运行方式,可使机组有最好的热经济性和运行灵活性。 采用喷嘴调节、部分进汽时,当I、Ⅱ号调节阀阀杆开启到 24.6m时,Ⅲ号调节阀开启;当Ⅲ号调节阀阀杆行程达到 15.8mm时,Ⅳ号调节阀开始开启。
• 4.根据表2-1计算30年寿命总消耗量是多少? • 5.若汽轮机MCR为330MW,用煤最小稳燃负荷是多少?通过 旁路系统调整,汽轮机最小负荷是多少?
• 1.见图2-1。 • MSV:高压主汽阀;I:中压缸;H:高压缸;L:低压缸;CV: 高压调节阀;RSV:中压调节阀;P:给水泵;C:凝汽器;G: 发电机;ICV:中压调节阀;HPB:高压旁路;VV:真空阀; LPB:低压旁路;RFV:反流阀;HPCV:止回阀;Breaker: 主断路器;Over heater:过热器;Boiler:锅炉
第一节汽轮机本体简介 一、主要技术规范 (1)型号:N300-16.7/537/537—4(合缸)。 N-凝汽式(B,C,CC,CB,H,G,Y);300-额定 功率;16.7-蒸汽初压; 537-蒸汽初温;537-中间再 热蒸汽温度;4-变型设计序数;合缸-高中压合缸 (2)型式:亚临界中间再热两缸两排汽凝汽式汽轮机。 (3)额定功率(ECR):300MW。 (4)最大功率(MCR):330MW。 (5)转速:3000r/min。 (6)转向:从汽轮机向发电机方向看为顺时针方向。 (7)额定蒸汽参数。 • 新蒸汽:(高压主汽阀前)16.7MPa/535℃。 • 再热蒸汽:(中压联合汽阀前)3.3MPa/535℃。 • 背压:冷却水温为20℃时,设计背压为5.20kPa。
第二章汽轮机电液调节系统的组 成及功能 第一节汽轮机本体简介
• 为了使读者对DEH的组成及功能有更深入的 了解,本书中重点以某电厂300MW机组配套 的INFI-90数字电液调节系统为例加以介绍。 • 该电厂的300MW汽轮机为东方汽轮机厂制造, 为一次中间再热两缸两排汽凝汽式汽轮机。 它与相应容量的锅炉和汽轮发电机配套,构 成大型火力发电机组,在电网中以带基本负 荷为主,也可承担部分调峰任务。 • 该汽轮发电机组采用高压抗燃油数字电液控 制系统,该系统从美国BAILEY集团ETSI公司 引进,它可以和其他上位机取得联络实现机 电炉的协调控制。控制系统具备如下基本功 能。
• 热力系统部件符号如图所示,试画出火电厂生产过程热力系 统简图,并解释各符号的含义。
• 1.试画出300MW机组热力系统图,并解释MSV、I、H、L、 CV、RSV、P、C、G、ICV、HPB、VV、LPB、RFV、 HPCV、Breaker、Over heater、Boiler的含义。(作业6) • 2.若30年寿命消耗量是10%,每次寿命消耗量为0.05(%/ 次),则冷态启动周期寿命(即冷态启动次数)是多少? • 3.试用“→”符号画出图2-1的汽水流程(即汽水都流经了哪 些设备,包括高低压旁路)。
• 再热蒸汽通过2个中压联合汽阀从汽缸下半左、 右两侧分别进入中压部分,中压部分为全周进 汽。中压联合汽阀内主汽阀和调节阀共用1个阀 座,由各自独立的油动机分别控制。 • 中压联合汽阀内主汽阀和调节阀共用1个阀座, 统一由一个油动机控制。( × ) • 流量在30%以下时,中压调节阀起调节作用, 以维持再热器内必要的最低压力, • 流量大于30%时,中压调节阀一直保持全开, 仅由高压调节阀调节负荷。
中压缸启动时,在机组冲转前、锅炉点火升温时,蒸汽通过高压旁路,倒暖阀RFV进入 高压缸,对高压缸预暖,同时对高压主汽管、高压主汽调节阀和再热器、中压联合 汽阀进行加热; 与锅炉点火同时,凝汽器开始抽真空,在高压内缸预暖到150℃时可以逐渐开启中压调 节阀进行冲转,中压调节阀打开的同时,关闭倒暖阀RFV,开启通风阀VV,联通至 凝汽器的真空系统,高压缸内呈现高真空。并网后进一步开大中压调节阀增加负荷, 同时逐渐关闭低压旁路。低压旁路全关后,进行高中压缸切换,即开启高压调节阀, 蒸汽流过高压缸,高压排汽止回阀自动打开,同时关闭通风阀VV ,并投入高压缸夹 层加热系统。
二、机组运行特点 1.启动状态 本机组启动状态的划分是根据高压内缸上半调节级后的 金属温度来确定的。电液调节系统采集该点的温度, 并通过相应的程序判断当前的启动状态。共有以下四 种启动状态。 冷态启动:温度小于150℃。 温态启动:150~300℃。 热态启动:300~400℃。 极热态启动:温度大于400℃。 2.启动方式 本机组具有中压缸启动和高中压缸联合启动两种方式。 中压缸启动方式,具有降低高中压转子的寿命损耗、改 善汽缸热膨胀和缩短启动时间等优点。
⑼定压运行允许的最大 负荷变化率为 3%ECR/min。 ⑽滑压运行时允许的 最大负荷变化率为 5%ECR/min。
7.热力系统 简化的热力系统如图2-1所示。从锅炉过热器出来的主蒸汽经 过系统两根主蒸汽管和两个电动阀门进入高压主汽阀,然 后再由四根高压主汽管导入高压缸。在高压缸内做功后的 蒸汽通过两个高压排汽止回阀,经两根冷段再热蒸汽管进 入锅炉再热器。再热后的蒸汽温度升高到537℃,压力为 3.3MPa,再经过两根热段再热蒸汽管进入中压联合汽阀, 然后由两根中压主汽管导入中压缸。高压旁路蒸汽从电动 阀门前引出,经一级减温减压后排至再热器冷段;低压旁 路蒸汽由中压联合汽阀前引出,经二级和三级减温减压后 排至凝汽器。 用→画出300MW机组汽水流程图。
状 态 周期寿命(次) 每次寿命消耗量(%/次) 30年的寿命消耗量(%) 210 0.05
冷态启动
温态启动 热态启动
极热态启动 正常停机 负荷变化 带厂用电
l020 2050
120 3800 14000 l5
0.015 0.0l
0.Ol O.000l 0.000l 0.0l
根据下表计算汽轮机运行30年的寿命消耗量
5.转子寿命管理 为了把转子热应力作为指导启动运行的主要依据,并应用寿命损 耗概念对机组进行科学技术管理,本机组配置了转子应力监控功 能,转子应力程序提供应力和温度计算的有关信息,汽轮机自启 动功能(ATC)根据这些信息作出汽轮机启动和升负荷的判据。汽 轮机运行寿命如表2-1所示。表中计算有一处错误请指出。
(8)额定新汽流量:935t/h。 (9)最大新汽流量:1025t/h。 (10)回热系统:由三个高压加热器、三个低压加热器 和一个除氧器构成,除氧器采用滑压运行,各加热 器疏水逐级自流。 (11)通流级数:总共28级,其中 • 高压缸:1调节级+8压力级。 • 中压缸:6压力级。 • 低压缸:2×6压力级。 (12)给水泵拖动方式:3×50%B-MCR电动调速给水 泵。 (13)轴系临界转速。 • 第一临界转速区:1353~1453r/min。 • 第二临界转速区:1616~1816r/min。
4.阀门管理 为了进一步提高机组运行的经济性和安全性,本机组采用了 阀门管理方法,能够实现节流调节与喷嘴调节的无扰切换。 ⑴节流调节 采用节流调节方式,可使汽轮机快速启停和变负 荷时不致产生过大的热应力,减少机组寿命损耗; 采用节流调节、 全周进汽时, 高压部分四个 调节阀根据控 制系统的指令 经阀门特性
30年的寿命消耗量( %) 10 2.周期寿命(次) 200 (次) 每次寿命消耗量( % / 次) 0.05