中长期电力负荷预测系统设计本科论文
电力系统中长期负荷预测方法综述
电力系统中长期负荷预测方法综述摘要:在电力系统中,中、长期负荷预测是电网规划中的基础性工作,它为电网规划提供了必不可少的基础数据,其精度的高低直接影响着整个规划工作的优劣,因此准确的中、长期负荷预测的准确性就显得尤为重要。
本文就目前电力系统中的经典预测方法、传统预测方法和现代预测方法做个一简单的介绍,对负荷预测方法的改进提供理论基础。
关键词:电力系统中长期负荷预测1 概述负荷预测中经常按时间期限进行分类,通常分为长期、中期、短期和超短期负荷预测。
长期负荷预测一般指10年以上并以年为单位的预测,中期负荷预测指5年左右并以年为单位的预测。
它们的意义在于帮助决定新的发电机组的安装(包括装机容量大小、型式、地点和时间)与电网的规划、增容和改建,是电力规划部门的重要工作之一。
短期负荷预测是指一年之内以月为单位的负荷预测,还指以周、天、小时为单位的负荷预测,通常预测未来一个月度、未来一周、未来一天的负荷指标,也预测未来一天24h中的负荷。
其意义在于帮助确定燃料供应计划;可以经济合理地安排本网内各机组的启停,降低旋转储备容量;可以在保证正常用电的情况下合理安排机组检修计划。
超短期负荷预测指未来lh、未来0.5h甚至未来10min的预测。
其意义在于可对电网进行计算机在线控制,实现发电容量的合理调度,满足给定的运行要求,同时使发电成本最小。
2 电力系统负荷预测的特点和难点作为预测问题,电力系统负荷预测的准确性是根本要求,但精确的负荷预测常常是不容易做到的,主要有如下几个困难:1.理论上讲,电力负荷的大小受到国民经济发展水平、产业结构、国家宏观经济政策、气候、突发性事件等因素的影响,可以说,现代社会的绝大多数生产活动都会对电力负荷产生影响。
因此,我们不可能在预测的时候考虑到所有的相关因素,而只能提取若干因素加以考虑。
2.某些因素,即使知道它们会对负荷产生影响,然而要定量的准确描述它们的影响却非常困难;而且,这种影响往往是变化的,同样的外部作用在不同的时间,对负荷的影响是不同的;更重要的是,并不能够事先确切的掌握这些因素在未来时段的状态,有时候对这些因素的预测甚至比负荷预测更加复杂和困难。
电力负荷预测设计实现论文
电力负荷预测设计与实现摘要:在对大量历史负荷数据进行统计分析的基础上,根据电力负荷的特点,在考虑天气温度、日类型、实际历史负荷等因素对预测负荷影响的基础上,本文介绍了一种基于bp神经网络的短期负荷预测方法。
该方法充分发挥了神经网络处理非线性问题的能力和人工神经网络自学习、自适应的优点。
实际算例表明,这种方法应用在短期负荷预测方面有较高的精度。
关键词:电力负荷预测电力负荷电力负荷预测基本算法0、引言短期负荷预测是随着电力系统ems的逐步发展而发展起来的,现已经成为ems必不可少的一部分和为确保电力系统安全经济运行所必需的手段之一。
短期负荷预测技术经过几十年的发展,人们提出了许多的预测方法。
现有的预测方法大体可以分为2类:经典的数学统计方法以及上世纪90年代兴起的各种人工智能方法。
1、电力负荷预测综述电力负荷有两方面的含义:一方面是指电力工业的服务对象;另一方面是指上述各用电单位、用电部门或用电设备使用电力和电量的具体数量。
电力负荷预测中的负荷概念是指国民经济整体或部门或地区对电力和电量消费的历史情况及未来的变化发展趋势。
电力负荷预测工作既是电力规划工作的重要组成部分,也是电力规划的基础。
本文运用神经网络对某市某年某月某日进行电力负荷的短期预测,它为这一地区电力规划奠定了一定的基础,同时也为这一地区电力工业布局、能源资源平衡和人力资源的需求与平衡提供可靠的依据。
因此,电力负荷预测是一项十分重要的工作,它对于保证电力工业的健康发展有着十分重要的意义。
2、电力负荷分析本文对某市进行电力短期负荷预测,电力负荷的构成与特点如下:电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等,不同类型的负荷具有不同的特点和规律。
城市民用负荷主要是城市居民的家用电器,它具有年年增长的趋势,以及明显的季节性波动特点,而且民用负荷的特点还与居民的日常生活和工作的规律紧密相关。
商业负荷,主要是指商业部门的照明、空调、动力等用电负荷,覆盖面积大,且用电增长平稳,商业负荷同样具有季节性波动的特性。
中长期电力负荷预测研究毕业论文
中长期电力负荷预测研究毕业论文目录摘要 (1)第一章绪论 (3)1.1中长期负荷预测研究背景和意义 (3)1.2负荷预测的基本原理 (4)1.3负荷预测的方法及特点 (5)1.4研究现状 (8)1.5目前存在的问题 (8)1.6本文的主要工作 (9)第二章负荷预测的方法 (10)2.1负荷预测的分类 (10)2.2负荷预测的特点 (11)2.3影响中长期负荷发展的因素 (12)2.4负荷预测的误差分析 (13)2.4.1产生误差的原因 (14)2.4.2预测误差分析 (14)第三章回归分析基本理论及预测模型 (16)3.1回归分析的基本思想 (16)3.2回归分析的基本原理与方法 (16)3.2.1基本原理 (16)3.2.2基本方法 (16)3.3回归分析步骤 (17)3.4实例分析 (18)第四章灰色系统的基本理论及预测模型 (22)4.1基本原则 (22)4.2基本方法 (23)4.3灰色系统建模的机理 (24)4.4灰色序列及其生成方法 (24)4.4.1累加生成 (25)4.4.2累减生成 (25)4.4.3均值生成 (26)4.5数列灰预测模型 (27)4.5.1灰色预测模型的建模 (27)4.5.2灰色预测模型的检验 (30)4.6 实例分析 (32)第五章总结和展望 (37)参考文献 (38)致谢 (39)附录一灰色模型仿真程序 (40)附录二翻译 (45)附录三任务书 (71)附录四开题报告 (75)第一章绪论1.1中长期负荷预测研究背景和意义电力负荷的预测意义不言而喻,当代社会处处离不开电,电力负荷同国民经济密切相关。
把生产出来的电能合理地分配给各地区,各工厂,各居民用户,同时维持稳定的电压、恰当功率,是电力系统的基本要求。
由于电能不能大量储存,生产的负荷不能太大,也不能太小,所以精准的费和预测对保持电网安全稳定运行具有重大意义;对于一个发电企业如果能提前知道某地区的用电量,可以减少不必要的储备容量;对于一个电网系统,明确子系统的用电量,无疑可以更合理地分配负荷,避免不必要的启停,减少意外的经济损失;对于整个国家,依据电力负荷和国民经济的密切关系,准确的负荷预测有利于国民经济的宏观调控。
电力系统中的长期电力负荷预测方法研究
电力系统中的长期电力负荷预测方法研究引言在电力系统运行中,准确预测长期电力负荷是至关重要的,这对于确保电力供应的可靠性和经济性都具有重要意义。
然而,由于电力负荷具有复杂的非线性特征和受许多因素的影响,预测长期电力负荷一直是一个具有挑战性的问题。
本文将介绍电力系统中的长期电力负荷预测方法的研究进展。
一、时间序列分析方法时间序列分析方法是最常用于预测电力负荷的方法之一。
其基本假设是未来的负荷与过去的负荷具有相关性。
常用的时间序列分析方法有移动平均法、指数平滑法和ARIMA模型等。
移动平均法通过计算历史负荷数据的平均值来进行预测,适用于负荷具有明显趋势和季节性的情况。
指数平滑法则是通过对历史负荷数据进行加权平均来预测未来负荷,适用于负荷波动较为平稳的情况。
ARIMA模型则是一种结合了自回归(AR)、差分(I)和滑动平均(MA)的模型,能够对负荷的趋势、季节性和随机性进行建模和预测。
二、神经网络方法神经网络方法是近年来在电力负荷预测中应用较多的方法之一。
神经网络具有良好的非线性逼近能力和自适应学习能力,能够对复杂的电力负荷数据进行建模和预测。
常用的神经网络模型有多层感知器(MLP)、循环神经网络(RNN)和长短期记忆网络(LSTM)等。
多层感知器是最基本的神经网络模型,其通过多个神经元层次的连接来进行信息处理和学习。
循环神经网络则具有记忆能力,能够处理序列数据,并且可以捕捉到序列数据中的长期依赖关系。
长短期记忆网络则是对循环神经网络的改进,解决了长期依赖问题,适合于电力负荷数据的建模和预测。
三、支持向量机方法支持向量机方法是一种基于统计学习理论的预测方法,具有较好的泛化能力。
支持向量机通过在特征空间中构建一个最优分类超平面来进行分类和回归。
在电力负荷预测中,支持向量机方法可以通过训练数据样本集来拟合一个预测模型,然后利用该模型对未来的电力负荷进行预测。
支持向量机方法的优点是能够处理高维数据和非线性问题,但是其也存在训练时间较长和对参数的选择较为敏感的问题。
电力系统中的长期负荷预测研究
电力系统中的长期负荷预测研究在电力系统中,长期负荷预测是非常重要的,它可以帮助电力公司更好地规划电力资源,提高电力系统的稳定性和可靠性。
因此,长期负荷预测一直是电力系统研究的热点。
一、长期负荷预测的意义电力系统中的长期负荷预测主要是指对未来较长一段时间内电力负载的变化趋势进行预测。
通常情况下,长期负荷预测的时间跨度为一年以上。
电力负载是指电力系统中用户的用电负荷,它与电力供给紧密相关。
进行长期负荷预测可以帮助电力公司更好地制定电网规划和变电站建设计划,以适应未来的供需关系,提高电力系统的稳定性和可靠性。
同时,长期负荷预测也是电力市场监测和调度的重要依据,对于电力市场价值的预测和电力价格的制定都起到了至关重要的作用。
二、长期负荷预测的方法1. 多元回归方法多元回归方法是一种常用的长期负荷预测方法,它将影响电力负荷的多种因素,如天气、节假日、季节等,作为自变量,利用历史负荷数据建立回归方程对未来的负荷进行预测。
2. 时间序列方法时间序列法是基于历史负荷数据的,根据负荷数据的变化趋势建立数学模型,再利用该模型预测未来的负荷变化。
时间序列法通常采用ARIMA模型进行预测。
3. 神经网络方法神经网络方法是一种基于人工智能的预测方法,它模拟了人脑神经系统的运作方式,根据历史负荷数据对未来的负荷进行预测。
神经网络方法的预测精度较高,但需要较多的历史数据用于训练网络模型。
三、长期负荷预测存在的问题1. 数据缺乏长期负荷预测需要大量的历史负荷数据用于建模和预测,但由于电力行业的快速发展和技术的快速更新,早期的历史数据往往不能代表今后电力负载的真实情况。
因此,历史数据缺乏是长期负荷预测面临的一个主要问题。
2. 无法考虑非定量因素电力负荷受到诸如气候、节假日、政策等非定量因素的影响,这些因素难以量化,无法准确地纳入预测模型中。
因此,长期负荷预测无法全面地考虑到这些因素的影响。
3. 预测精度难以保证长期负荷预测是一项非常复杂的任务,预测精度受到许多因素的影响,如所采用的模型和算法、历史数据的准确性、非定量因素的影响等。
电气自动化专业论文基于RBF的电力系统中长期负荷预测
基于RBF的电力系统中长期负荷预测摘要负荷预测是指系统地处理过去和未来负荷的一套数学方法的研究或使用,充分考虑了一些重要的系统运行特征,能力增长政策,自然条件和社会影响,以满足一定的精度要求。
在一些情况下,一定的时间量是确定的负载值。
负荷预测是一个被动的预测,受不确定性。
长期负荷预测电力系统意味着,在未来的五年中的负荷预测增加中长期负荷预测为扩展计划的能量系统的发展,其中包括的位置的范围的扩大和形状网络容量的和装机。
这是一个区域,其中电网,电网需求平衡的发展步伐,其余地方电力建设,电力工程布局,能源资源的平衡,全区已建立了可靠的依据规模之间的资金和人力资源。
此外,长期负荷预测也不会低估了能源系统安全预测。
针对电力系统中长期负荷预测方法繁多,本文采用一种传统预测方法和一种人工神经网络预测方法对太原某区的实际算例进行预测分析,并将两种方法进行误差比较,得出结论。
关键词:中长期负荷预测,智能神经网络,传统预测方法Long - term Load Forecasting of Power SystemBased on RBFABSTRACTLoad forecasting refers to the research or use of a set of mathematical methods that can systematically deal with past and future loads, taking full account of some important system operating characteristics, capacity increase policies, natural conditions and social impact, to meet certain accuracy requirements Under certain circumstances, determine the load value at a particular time. Load forecasting is a kind of passive prediction, which is influenced by uncertain factors. Long-term load forecasting of power system refers to the forecast of load over the next five years.Medium and long term load forecast is mainly used to develop the expansion of the power system, planning, including the size of the installed capacity of the form of location and capacity expansion on the grid. It provides a reliable basis for the power development speed, power construction scale, power industry layout, energy resource balance, interregional power outages, and the balance of demand for grid and human resources.In addition, the long-term load forecasting of the power system security also has a role can not be underestimated. In this paper, a traditional prediction method and an artificial neural network prediction method are used to predict and analyze the practical examples of a district in Taiyuan, and the error is compared and the conclusion is drawn.KEY WORDS: Medium and long term load forecasting,Intelligent neural network,Traditional forecasting method目录基于RBF的电力系统中长期负荷预测 (I)摘要 (I)Long - term Load Forecasting of Power System Based on RBF (II)ABSTRACT (II)目录 (IV)第一章绪论 (1)1.1负荷预测的意义与要求 (1)1.1.1负荷预测的意义 (1)1.1.2负荷预测的基本要求 (3)1.2负荷预测的分类 (4)1.3电力系统负荷预测 (6)1.3.1电力系统负荷预测的原理 (7)1.3.2电力系统负荷预测的特点 (9)1.3.3负荷预测影响因素 (9)1.4电力负荷预测特性分析 (10)1.5国内外研究现状 (12)1.5.1国外研究现状 (12)1.5.2国内研究现状 (13)1.6 传统预测方法与智能神经网络方法 (14)1.6.1传统预测方法 (15)1.6.2智能神经网络方法 (18)1.7本文主要工作及方法选取 (23)第二章回归分析预测法进行电力系统中长期负荷预测 (24)2.1 回归分析预测法简介及适用条件 (24)2.2计算步骤及数据总结 (25)2.3误差分析 (28)2.4 本章小结 (29)第三章径向基函数RBF神经网络模型在电力系统中长期负荷预测中的应用 (30)3.1径向基函数RBF神经网络模型 (30)3.2 RBF在MATLAB中的实现 (31)3.3预测结果及分析 (34)第四章电力系统中长期负荷预测最优方法选取 (35)总结和展望 (36)参考文献 (37)致谢 (39)英文文献 (40)外文翻译 (101)第一章绪论1.1负荷预测的意义与要求1.1.1负荷预测的意义电力行业的发展已成为生活不可缺少的一部分人的经济活动和发展。
电力系统负荷预测论文终结版
电力系统负荷预测论文—基于负荷预测方法理论与应用的认识前述电力负荷预测是通过研究国民经济和社会发展的各种相关因素与电力需求之间的关系,并根据系统的运行特性、增容决策、自然条件与社会影响等诸多因数,在满足一定精度要求的条件下,确定未来某特定时刻的负荷数据。
其中电力系统负荷预测主要包括最大负荷功率、负荷电量及负荷曲线的预测。
根据目的的不同可以分为超短期、短期、中期和长期. 其中,超短期负荷预测是指未来1h以内的负荷预测,短期负荷预测是指日负荷预测和周负荷预测,中期负荷预测是指月至年的负荷预测,长期负荷预测是指未来3~5年甚至更长时间段内的负荷预测。
本论文结合教材中提供的各种预测理论和方法,对负荷预测的方法进行归纳总结并对其在实际电力预测中的应用进行初步探讨。
主要介绍了趋势外推法、时间序列法、弹性系数法、回归分析法、指数平滑法、灰色理论预测法、神经网络法和优选组合法等电力负荷预测的方法,在适用条件、数据形式、计算难度和适用时间等方面对这几种预测方法进行了分析、比较。
得出结论:回归分析法、趋势分析法适用于大样本,且过去、现在和未来发展模式均一致的预测,灰色模型法适用于贫信息条件下的预测;灰色系统理论采用生成数序列建模,回归分析法、趋势分析法采用原始数据建模,指数平滑法是通过对原始数据进行指数加权组合直接预测未来值的;回归分析法和趋势分析法的计算相对简单;指数平滑法、灰色模型法较适宜近期预测,回归法、趋势分析法和改进型灰色模型较适于中、长期预测。
ANN应用于短期负荷预测比应用于中长期负荷预测更为适宜。
优选组合法较为准确合理,但是应用起来稍显复杂,运算量较大。
关键词:电力负荷预测方法应用。
正文电力负荷预测是指通过对电力系统负荷历史数据的分析和研究,运用统计学、数学、计算机、工程技术及经验分析等定性定量的方法,探索事物之间的内在联系和发展变化规律,对未来的负荷发展做出预先估计和推测。
负荷预测的目的就是提供负荷发展状况及水平,同时确定各供电区、各规划年供用电量、供用电最大负荷和规划地区总的负荷发展水平,确定未来用电负荷结构。
电力系统中长期负荷预测研究
存档编号题目电力系统中长期负荷预测研究摘要............................................ 错误!未定义书签。
第一章绪论...................................... 错误!未定义书签。
1.1中长期负荷预测研究背景和意义 .............. 错误!未定义书签。
1.2负荷预测的基本原理 ........................ 错误!未定义书签。
1.3负荷预测的方法及特点 ...................... 错误!未定义书签。
1.4研究现状.................................. 错误!未定义书签。
1.5目前存在的问题............................ 错误!未定义书签。
1.6本文的主要工作............................ 错误!未定义书签。
第二章负荷预测的方法........................... 错误!未定义书签。
2.1负荷预测的分类............................ 错误!未定义书签。
2.2负荷预测的特点............................ 错误!未定义书签。
2.3影响中长期负荷发展的因素 .................. 错误!未定义书签。
2.4负荷预测的误差分析 ........................ 错误!未定义书签。
2.4.1产生误差的原因................................. 错误!未定义书签。
2.4.2预测误差分析................................... 错误!未定义书签。
第三章回归分析基本理论及预测模型 ............... 错误!未定义书签。
3.1回归分析的基本思想 ........................ 错误!未定义书签。
课程设计负荷预测毕业论文
课程设计负荷预测毕业论文一、课程目标知识目标:1. 让学生掌握负荷预测的基本概念、原理和方法。
2. 使学生了解毕业论文中负荷预测部分的研究背景、现状及发展趋势。
3. 帮助学生掌握相关数据收集、处理和分析技巧,为毕业论文写作打下基础。
技能目标:1. 培养学生运用负荷预测方法解决实际问题的能力。
2. 提高学生运用文献资料、进行数据分析、撰写论文的能力。
3. 培养学生团队协作、沟通表达及批判性思维能力。
情感态度价值观目标:1. 激发学生对电力系统负荷预测领域的兴趣,培养其主动学习的热情。
2. 培养学生严谨的科学态度,使其在研究中遵循客观、公正、真实的原则。
3. 引导学生关注社会热点问题,提高其社会责任感和使命感。
本课程针对高年级本科生,结合学科特点和教学要求,注重理论与实践相结合,旨在培养学生具备扎实的专业知识、较强的实践能力和创新意识。
通过本课程的学习,使学生能够在毕业论文中独立完成负荷预测相关研究,为未来从事电力系统及相关领域工作打下坚实基础。
二、教学内容1. 负荷预测基本概念:介绍负荷预测的定义、分类及在电力系统中的应用。
相关教材章节:第一章 负荷预测概述2. 负荷预测方法:讲解时间序列分析法、回归分析法、人工神经网络法等常用负荷预测方法。
相关教材章节:第二章 负荷预测方法及其原理3. 数据收集与处理:指导学生如何收集、整理和分析负荷及相关数据。
相关教材章节:第三章 数据收集与处理4. 负荷预测模型构建:介绍负荷预测模型的构建过程,包括模型选择、参数设置等。
相关教材章节:第四章 负荷预测模型构建5. 毕业论文写作技巧:讲解如何撰写负荷预测部分的研究背景、现状、方法、结果与分析等。
相关教材章节:第五章 毕业论文写作技巧6. 实践环节:组织学生进行实际案例分析和小组讨论,提高学生的实际操作能力。
相关教材章节:第六章 负荷预测案例分析教学内容安排和进度:共安排12个课时,其中基本概念、方法、数据收集与处理各占2个课时,模型构建和毕业论文写作技巧各占3个课时,实践环节占2个课时。
中长期电力负荷预测研究
存档编号XXOO!大学毕业设计题目电力系统中长期负荷预测研究学院电力学院专业热能与动力工程姓名VVBB学号200907925指导教师HHJJ完成时间2013年5月25日教务处制独立完成与诚信声明本人郑重声明:所提交的毕业设计(论文)是本人在指导教师的指导下,独立工作所取得的成果并撰写完成的,郑重确认没有剽窃、抄袭等违反学术道德、学术规范的侵权行为。
文中除已经标注引用的内容外,不包含其他人或集体已经发表或撰写过的研究成果。
对本文的研究做出重要贡献的个人和集体,均已在文中作了明确的说明并表示了谢意。
本人完全意识到本声明的法律后果由本人承担。
毕业设计(论文)作者签名:指导导师签名:签字日期: 签字日期:毕业设计(论文)版权使用授权书本人完全了解KKJJ大学有关保管、使用毕业设计(论文)的规定。
特授权华北水利水电大学可以将毕业设计(论文)的全部或部分内容公开和编入有关数据库提供检索,并采用影印、缩印或扫描等复制手段复制、保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交毕业设计(论文)原件或复印件和电子文档(涉密的成果在解密后应遵守此规定)。
毕业设计(论文)作者签名:导师签名:签字日期:签字日期:ﻩ目录摘要ﻩ错误!未定义书签。
第一章绪论ﻩ错误!未定义书签。
1.1中长期负荷预测研究背景和意义ﻩ错误!未定义书签。
1.2负荷预测的基本原理 ........................ 错误!未定义书签。
1.3负荷预测的方法及特点 ...................... 错误!未定义书签。
1.4研究现状ﻩ错误!未定义书签。
1.5目前存在的问题............................ 错误!未定义书签。
1.6本文的主要工作 (9)第二章负荷预测的方法........................... 错误!未定义书签。
2.1负荷预测的分类.......................... 错误!未定义书签。
电力负荷预测方法研究毕业设计(论文)
电力负荷预测方法研究1 绪论电力工业的发展一方面直接制约着国民经济和社会的发展,另一方面电力工业的发展也依赖于社会对电力的需求。
电力系统的作用就是对各类用户提供尽可能经济可靠而合乎标准要求的电能,以随时满足各类用户的要求,用电力系统的术语来说,就是满足负荷要求。
所以正确的电力负荷预测既可以为国民经济的发展提供充足的电力,也可以为电力系统自身的发展提供帮助,特别是对于电力系统规划而言,准确的负荷预测是整个规划工作的基础和前提。
电力系统短期负荷预测对未来1日至1周的负荷进行预测,而中期负荷预测则是对未来一月至一年的负荷进行预测的。
中、短期负荷预测是随着电力系统EMS的逐步发展而发展起来的,现已经成为EMS必不可少的一部分和为确保电力系统安全经济运行所必需的手段之一。
电力系统负荷预测为这一地区电力规划奠定了一定的基础,同时也为这一地区电力工业布局、能源资源平衡、电力余缺调剂,以及电网资金和人力资源的需求与平衡提供可靠的依据。
因此,电力负荷预测是一项十分重要的工作,它对于保证电力工业的健康发展,乃至对于整个国民经济的发展均有着十分重要的意义。
负荷预测技术经过几十年的发展,人们提出了许多的预测方法。
现有的预测方法大体可以分为2类:经典的数学统计方法以及上世纪90年代兴起的各种人工智能方法。
经典的数学统计方法包括线性外推法、多元线性回归法、时间序列法和状态空间法等。
人工智能方法包括人工神经网络法、专家系统方法和模糊推理方法、小波分析等。
本文介绍了一种基于BP神经网络的短期负荷预测方法[1]。
其中首先根据实际经验将一周的7天分为工作日(星期一到星期五)和休息日(星期六和星期天)等两种类型;然后建立相应的人工神经网络模型用以预测负荷归一化系数;最后通过最小二乘法预测日最大负荷和日最小负荷。
利用相应的BP神经网络方法对未来24小时负荷进行短期预测[2],该方法充分发挥了神经网络处理非线性问题的能力和人工神经网络自学习、自适应的优点。
电力负荷预测方法的研究毕业论文
毕业设计(论文)文献综述系别:电子与电气工程系年级专业:2009级电气工程与其自动化姓名:AA学号:09AAAAAA题目名称:电力负荷预测方法的研究电力负荷预测方法的研究文献综述[容摘要]:负荷预测是电力系统规划、计划、用电、调度等部门的基础工作。
讨论了年度负荷预测、月度负荷预测和短期负荷预测的特点、成熟方法,分析了负荷预测问题的各种解决方案,并指出未来的主要研究方向。
根据国电力系统负荷预测的实践和国外的经验,对我国开展电力系统负荷预测工作提出了一些建议。
[关键词]:电力系统;负荷预测;模型;参数辨识电力负荷预测方法与应用一、概述电力工业是国民经济的基础工业。
随着我国产业结构完善和人民整体生活水平的改善,对电能的需求逐年加大,同时对电力质量的要求也越来越高,且由于电能生产和消费的同时性,对电网建设和布局提出了更高的要求。
电力负荷预测是电网规划建设的依据和基础。
随着电力工业在国民经济中扮演着越来越重要的角色,电力负荷的正确预测显得尤为重要。
电力负荷预测是指通过对电力系统负荷历史数据的分析和研究,运用统计学、数学、计算机、工程技术与经验分析等定性定量的方法,探索事物之间的在联系和发展变化规律,对未来的负荷发展做出预先估计和推测。
电力负荷预测结果的准确与否直接关系到电力投资的效益,供电的可靠性,用电需求的正常发展,以与社会的经济效益和社会效益。
但要做到预测准确或较准确是很困难的,因为影响电力负荷预测的因素相当多,且由于各地区产业结构和人民生活水平不同,各具体因素对电力负荷预测的敏感度是不一样的,因而电力负荷预测具模糊性。
回顾我国“十五”期间的预测情况与实际发展情况是很有意义的。
基于“九五”期间国民经济和电力工业的发展状况,在全国电力供需趋于平衡的前提下,我国制定的“十五”规划对电力工业发展提出了“可持续发展”的要求:电力工业发展方式要从数量速度型向质量效益型转变,从以供给导向为主转向以需求导向为主,优化电力资源配置。
李亮,中长期电力负荷预测系统文献综述
电力负荷预测文献综述随着国民经济的发展和人民生活水平的不断提高,电力已成为国民经济建设和人民生活中必不可少的重要能源,这使得负荷预测越来越引起人们的重视。
正确的电力负荷预测,既是为国民经济各部门及人民生活供应充足的电力,也是编制全国电力规划的依据。
因此,电力负荷预测对于保证电力工业的健康发展,乃至整个国民经济的发展均有着十分重要的意义,从而促使电力研究者们不断地对电力负荷预测进行研究,追求精益求精的效果。
中长期电力负荷的变化是一个受到社会、经济等多方面因素综合影响的动态过程,规律性和周期性较差,传统的中长期电力负荷预测技术已难以适应发展的需要。
例如传统的弹性系数法其核心问题是确定预测(规划)期的电力弹性系数值。
该方法虽然简单、易于计算,但需做大量的统计调研工作。
另外影响电力弹性系数值的因素很多,主要有经济发展水平、业结构、科技及工艺水平、生活水平、电价水平及节电政策和措施等。
再如单耗法单耗法虽然方法简单,但需做大量细致的统计分析工作,且由于政治经济等因素的影响,对中、远期预测的准确性难以确定,因此该法仅对短期预测特别有效。
另一种常用的就是专家经验法顾名思义当对某一项目进行预测时,邀请这方面的专家,请他们根据自己的知识和经验,对过去发生和现在正在发生的情况做出直观的预测。
这种方法所得预测结果的准确性,完全依赖于专家的知识的丰富程度和预测经验的多少。
但当权威人士错误时,然导致预测结果的失误;另一缺点是少数专家发表了不正确的意见后,碍于面子不愿在会上修正自己的意见,从而造成意见难以集中造成对于地区的负荷预测可能不可靠,不完整或不切实际。
生活用电和其它用电四大类,将各类负荷分别进行预测,然后相加后乘同时系数得到这就是所谓的分类负荷预测法。
分类负荷预测的优点在于:在某一类负荷中,其增长趋势的不正常情况有分类负荷预测法分类负荷预测法一般将负荷划分为:工业用电、农业用电、可能被发现,并且由于各类负荷都得预测,因此总的负荷结果是比较明确的,缺点是统计信息的搜集工作较大较复杂。
电力系统中长期负荷预测方法的研究.
电力系统中长期负荷预测方法的研究与程序设计摘要:本文在探讨了电力系统负荷的组成、特点,并分析比较了常用的预测方法优缺点的基础之上,采用了灰色预测法与回归法相结合的方法建立了中长期负荷预测模型,把负荷预测工作分为两部分:即用灰色预测法进行相关因素的预测和用回归法进行负荷预测。
充分利用了灰色预测的要求负荷数据少、不考虑分布规律、不考虑变化趋势、运算方便、易于检验等优点以及回归法能够考虑到负荷所受的多种因素,模型参数估计技术比较成熟,预测过程简单。
关键词:中长期负荷预测 灰色预测 回归法1.引言负荷预测是指在充分考虑一些重要的系统运行特性,增容政策,自然条件和社会影响的条件下,研究或利用一套能系统地处理过去与未来负荷的数学方法,在满足一定精度要求的前提下,确定某特定时刻的负荷值。
负荷预测是一种被动型预测,受到不确定因素影响较大。
电力系统中长期负荷预测指未来5年以上负荷的预测 [1]。
2.电力系统中长期负荷预测的基本方法 2.1回归分析法回归分析法就是通过对观察数据的统计分析和处理,寻找负荷与影响因素之间的因果关系,建立回归模型进行预测的方法。
其特点是:将影响预测对象的因素分解,在考察各个因素的变动中,估计预测对象未来的数量状态。
2.1.1 线性回归分析法如果预测对象只有一个,并且与相关因素之间呈线性关系,那么可采用单 变量线性回归分析法,一般即称为线性回归分析法[2]。
线性回归分析法假定负荷Y 与多个独立相关因素j X (j=1,2,…,k )之间存在线性关系,若有n 个实际观测值(样本数据),因变量Y 的每一个观察值与其相应的诸独立变量j X (j=1,2,…,k )的线性关系可表达为:01122i i i k ki i Y b b X b X b X e =+++++ i =1,2,…,n (2.1)式中,0b 和j b (j=1,2,…,k )分别为回归常数和回归系数,i e 为回归余项,也称为残差项,这里假定回归余项线性独立,且服从正态分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北华大学毕业设计(论文)论文题目:中长期电力负荷预测系统设计班级学号:_________________________ 姓 名:_________________________专 业 名 称:________________________2015年06月05日电子11—1 09号 电子信息科学与技术北华大学毕业设计(论文)毕业设计题目:中长期电力负荷预测系统设计作者:_________________________指导教师:单位:北华大学协助指导教师:单位:单位:完成日期:2015年06年05摘要中长期电力负荷预测是目前非常受人们关注的研究方向,精准的预测,是高效地完成电力系统规划的基础。
而且由于现代化的工业和农业的水平一直都在不断发展之中,人民群众生活的水平也在日益的提高,整个社会对电力供应的需求量也在不断的增长。
因此为了能够满足日益增加的社会电力需要,就必须而且一定得不断扩大电力系统的规模。
所以趋于合理的精确的电力负荷预测已成为迫切的需要,而且预测的水平已成为衡量一个电力部门的管理是否跨入国际先进行列的重要象征,尤其是我国的电力事业现在正处于迅猛发展的阶段,成功的解决电力负荷预测问题的考验已经成为我们所要面对的一项重要而又艰巨的任务,对我国的国民经济和民族强盛具有十分深刻的意义。
本文在开头先简要地对中长期电力负荷预测研究的国内外背景和意义、以及预测的原理进行了介绍,简要的概述了中长期电力负荷预测研究的现状,简要的介绍了预测的分类、特征、以及影响负荷预测的诸多因素,最后多方比较后决定从灰色理论的方法着手,建立GM(1,1)模型,来对未来一定时间内吉林省的电力负荷进行预测。
关键词:电力负荷,预测,灰色理论,GM(1,1)模型- 1 -AbstractMedium - and - term electric load forecasting is the research direction of the people pay close attention to at present, accurate forecast, it is the foundation that the electric power system plan is accomplished effectively.And because the modern industry and agriculture level always in the continuous development of people's living level also in the increasingly improved, the whole society on the power supply demand also in constant growth.Therefore, in order to meet the need of increasing social power, it is necessary and must enlarge the scale of power system..So tending to reasonably accurate power load forecasting has become the urgent need and predict the level has become the measure of the management of a power sector is entering an important symbol of the advanced ranks.Especially in China's power industry is now in the stage of rapid development,The successful solution to the problem of power load forecasting has become an important and difficult task we should face.,It has very deep significance for our country's national economy and the national power..In the beginning, the paper briefly introduces the long-term power load forecasting of its domestic and international background, and the principle of forecasting.,And the present situation of the medium and long term load forecasting is briefly summarized.,And briefly introduced the forecast classification, the characteristic, and the influence load forecast many factor,Finally, the method of gray theory is decided to decide the method of gray theory.,The establishment of GM (1,1) model, to predict the power load of Jilin province within a certain time in the future.Key words:Power Load,Forecasting,Gray theory,Model of GM(1,1)- 2 -目录摘要........................................................................................................................ - 1 -Abstract ........................................................................................................................ - 2 -引言 ....................................................................................................................... - 1 -1绪论 .............................................................................................................................. - 2 -1.1中长期电力负荷预测的意义及背景............................................................. - 2 -1.2国内外发展现状 .............................................................................................. - 2 -1.3研究中存在的问题.......................................................................................... - 3 -1.4本文的主要工作 .............................................................................................. - 3 -2中长期电力负荷预测的原理..................................................................................... - 5 -2.1电力负荷预测的原理...................................................................................... - 5 -2.2电力负荷预测的特点...................................................................................... - 6 -2.3电力负荷预测的方法及特点 ......................................................................... - 6 -2.4影响电力负荷预测的因素.............................................................................. - 9 -3基于灰色模型的中长期电力负荷预测 ..................................................................- 10 -3.1灰色系统理论 ................................................................................................- 11 -3.2灰色生成.........................................................................................................- 11 -3.2.1累加生成 .............................................................................................- 11 -3.2.2累减生成 .............................................................................................- 12 -3.2.3均值生成 .............................................................................................- 13 -3.2.4级比生成 .............................................................................................- 14 -3.3灰色预测模型建立........................................................................................- 14 -3.4灰色预测模型的精度检验............................................................................- 16 -3.4.1相对残差检验.....................................................................................- 18 -3.4.2后验差检验 .........................................................................................- 18 -3.4.3关联度检验..........................................................................................- 20 -3.5改进的灰色预测模型....................................................................................- 21 -3.5.1残差模型 .............................................................................................- 21 -3.5.2等维新息模型.....................................................................................- 21 -3.5.3参数修正模型.....................................................................................- 21 -3.5.4GM(1,N)模型的建立...........................................................................- 23 -3.5.5灰色模型群的建立.............................................................................- 25 -4吉林省中长期电力负荷预测实例分析 ..................................................................- 26 -4.1样本采集与处理 ............................................................................................- 26 -4.2仿真及预测.....................................................................................................- 26 -4.3改进的GM(1,1)模型.....................................................................................- 35 -结论......................................................................................... 错误!未定义书签。