共射放大电路的安装调试报告
单级共射放大电路实验报告
单级共射放大电路实验报告
实验电路图如下:
一、调试静态工作点:
实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量UE=2V 左右,如果偏差太大可调节静态 工作点(电位器RP )。
然后测量UB 、UC
4)关掉电源,断开开关S ,用万用表的欧姆挡(1×1K )测量RB2。
将 所有测量结果记入表中。
5)根据实验结果可用:IC ≈IE=RE UE
,UBE=UB-UE,UCE=UC-UE ,求出静态工作点。
实验及计算数据如下表: 测量值 计算值 UB(V) UE(V) UC(V) RB2(Ω) UBE (V )
UCE(V) IC (mA )
2.6
2
7.2
60
0.6
5.2
2
1)接通电源,从信号发生器上输出一个频率为1KHZ ,幅值为10mV 的正弦信号加入到放大器输入端。
2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫伏表
三、测量输入电阻和输出电阻
输入电阻:Ri=Ii Ui =Rs Ui Us Ui /)(-=ui Us Ui
-Rs
输出电阻:Ro=UoL Uo -=UoL
Uo -RL
在输出电压波形不是真的情况下,用交流毫伏表测出uS 、ui 和uL 记入表中。
断开负载电阻RL ,保持uS 不变,测量输出电压Uo ,记入表中 四、电压放大倍数的测量
Au=Ui Uo =101500
=150。
晶体共射极放大电路实验报告
晶体共射极放大电路实验报告
本实验是一项关于晶体共射极放大电路的实验。
该电路是基于晶
体管的一种放大器电路,被广泛应用于各种电子设备中,如收音机、
电视机、音响、电子计算机等。
在本次实验中,我们选择了一款常见的晶体共射极放大电路,使
用一块NPN型晶体管和相关电子元件进行搭建。
该电路是通过共射极
放大器的方式进行的,即将输入的信号与输出的信号通过晶体管进行
放大,并将放大后的信号输出。
通过调整电路中的各个元件参数,我
们可以实现电路的放大系数和频率响应的调节。
在实验过程中,我们首先进行了电路的装配和串联,然后进行了
电路参数的调节。
通过实验,我们发现在调节晶体管的输入电压时,
电路输出的信号的值也会发生变化,因此我们需要合理地调整输入电压,以获得合适的输出信号。
另外,我们还进行了电路频率响应的测试。
我们通过输入不同频
率的信号,来测试电路的频率响应情况。
通过实验,我们发现电路的
响应频率范围为数百Hz至几十kHz之间。
这对于一些需要精细调节频
率的电子设备非常重要。
最终,我们达到了预期的实验效果,成功地搭建出了一个晶体共
射极放大电路,并实现了合适的放大系数和频率响应。
此外,我们还
讨论了电路中各种元件的作用和特点,深入理解了晶体共射极放大电
路的工作原理和应用。
总之,晶体共射极放大电路是一种十分重要的电路,其在各种电
子设备中的应用也非常广泛。
通过本次实验我们深入了解了该电路的
原理和应用,这将对我们今后的电子学习和实践活动具有重要的意义。
共射放大电路实验报告
共射放大电路实验报告共射放大电路实验报告引言:共射放大电路是电子学中常见的一种放大电路,它具有放大电压和功率的能力。
本实验旨在通过搭建共射放大电路并进行实验验证,深入理解其工作原理和特性。
一、实验目的本实验的主要目的有以下几点:1. 理解共射放大电路的基本原理和结构;2. 学习如何搭建和调试共射放大电路;3. 通过实验验证共射放大电路的放大倍数和频率响应特性;4. 掌握使用示波器和万用表等实验仪器进行电路测试和测量的方法。
二、实验原理共射放大电路由三个主要元件组成:NPN型晶体管、输入电容和输出电容。
晶体管的基极通过输入电容与输入信号相连,发射极与输出电容相连,集电极则与负载电阻相连。
当输入信号施加在基极上时,晶体管的发射极电流会随之变化,从而引起集电极电流的变化,实现信号的放大。
三、实验步骤1. 按照电路图搭建共射放大电路,注意连接的正确性;2. 使用示波器观察输入和输出信号波形,调节电源电压和负载电阻,使得输出信号幅度适中;3. 使用万用表测量电路中各个元件的电压和电流数值;4. 调节输入信号的频率,观察输出信号的变化,记录并分析实验数据。
四、实验结果与分析在实验中,我们搭建了共射放大电路,并进行了一系列的测试和测量。
通过示波器观察到的输入和输出信号波形,我们可以清晰地看到输入信号在放大电路中被放大了。
通过测量电压和电流数值,我们可以进一步计算出放大倍数和功率增益等参数。
五、实验讨论在实验过程中,我们发现共射放大电路的放大倍数与输入信号频率有关。
当频率较低时,放大倍数较高;而当频率较高时,放大倍数会逐渐下降。
这是由于晶体管的频率响应特性所决定的。
此外,我们还发现负载电阻的大小对放大倍数和输出功率也有一定的影响。
六、实验总结通过本次实验,我们深入学习和理解了共射放大电路的工作原理和特性。
通过搭建和调试电路,我们掌握了使用示波器和万用表等实验仪器进行电路测试和测量的方法。
通过实验结果和数据分析,我们进一步加深了对共射放大电路的认识。
共射极放大电路实验报告
共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。
本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。
一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。
二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。
在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。
1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。
注意连接正确,避免短路和接反等问题。
2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。
通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。
3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。
四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。
通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。
2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。
3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。
通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。
通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。
实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。
共射极单管放大电路实验报告
共射极单管放大电路实验报告一、实验目的。
本实验旨在通过搭建共射极单管放大电路,掌握共射极放大电路的基本原理,了解其放大特性,并通过实验验证其放大性能。
二、实验原理。
共射极单管放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大特性,实现信号的放大。
在共射极放大电路中,输入信号加在基极上,输出信号则从集电极上取出。
当输入信号加在基极上时,晶体管的输出电流会随之变化,从而实现对输入信号的放大。
三、实验仪器与器材。
1. 三极管(晶体管)×1。
2. 电阻(1kΩ,10kΩ)×2。
3. 电容(0.1μF,10μF)×2。
4. 信号发生器。
5. 示波器。
6. 直流稳压电源。
7. 万用表。
8. 面包板。
9. 连接线。
四、实验步骤。
1. 将三极管、电阻和电容等元器件按照电路图连接在面包板上;2. 将信号发生器的正负极分别连接到输入端,将示波器的探头分别连接到输入端和输出端;3. 调节直流稳压电源,给电路提供适当的电压;4. 调节信号发生器的频率和幅度,观察示波器上的波形变化;5. 记录输入信号和输出信号的波形,并测量其幅度。
五、实验结果与分析。
通过实验观察和记录,我们得到了输入信号和输出信号的波形图,并测量了其幅度。
根据实验数据,我们可以得出共射极单管放大电路的放大倍数、频率响应等性能指标。
六、实验结论。
通过本次实验,我们成功搭建了共射极单管放大电路,并对其放大特性进行了验证。
实验结果表明,共射极单管放大电路具有良好的放大效果和频率响应特性,能够对输入信号进行有效放大,并且在一定频率范围内保持稳定的放大倍数。
七、实验总结。
本次实验使我们深入了解了共射极单管放大电路的工作原理和特性,掌握了搭建和调试放大电路的方法,提高了对电子电路的实际操作能力和理论知识的应用水平。
通过本次实验,我们不仅学到了共射极单管放大电路的基本原理和实验操作技巧,还对电子电路的实际应用有了更深入的了解。
希望通过今后的实验学习,能够进一步提高自己的实验能力和动手能力,为今后的学习和科研打下坚实的基础。
共射级放大电路实验报告
共射级放大电路实验报告共射级放大电路实验报告引言:共射级放大电路是电子学中常用的一种放大电路。
通过实验,我们可以深入了解共射级放大电路的工作原理、特性和应用。
本实验报告将详细介绍实验的目的、实验步骤、实验结果以及对实验结果的分析和讨论。
实验目的:1. 了解共射级放大电路的基本原理和特性;2. 掌握共射级放大电路的设计方法;3. 学会使用示波器和万用表等实验仪器。
实验步骤:1. 搭建共射级放大电路电路图;2. 连接电路并接通电源;3. 调节电位器,使得输入信号幅度适当;4. 使用示波器观察输入信号和输出信号的波形;5. 使用万用表测量电路中各节点的电压值。
实验结果:在实验中,我们搭建了一个共射级放大电路,并进行了相应的测量和观察。
通过示波器,我们观察到了输入信号和输出信号的波形,并使用万用表测量了电路中各节点的电压值。
在输入信号幅度适当的情况下,我们观察到输出信号的幅度明显大于输入信号的幅度,这说明共射级放大电路具有放大功能。
同时,我们还注意到输出信号的相位与输入信号相位相反,这是由于共射级放大电路的特性决定的。
通过测量各节点的电压值,我们可以得到电路中各元件的工作状态。
例如,输入信号经过耦合电容进入晶体管的基极,经过放大后,输出信号从集电极输出。
同时,我们还可以观察到集电极和发射极之间的电压差,这是晶体管的放大效果导致的。
分析和讨论:通过实验结果的观察和测量,我们可以得出以下结论:1. 共射级放大电路可以将输入信号进行放大,从而增加信号的幅度;2. 输出信号的相位与输入信号的相位相反,这是共射级放大电路的特性;3. 通过调节电位器,可以控制输入信号的幅度,从而调节放大倍数;4. 通过测量各节点的电压值,可以了解电路中各元件的工作状态。
共射级放大电路在实际应用中具有广泛的用途。
例如,在音频放大器中,共射级放大电路可以将微弱的音频信号放大为足够大的信号,以驱动扬声器产生声音。
此外,共射级放大电路还可以在通信系统中扮演重要角色,用于信号的放大和传输。
共发射极放大电路实验报告
共发射极放大电路实验报告共发射极放大电路实验报告一、引言共发射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。
本实验旨在通过搭建共发射极放大电路并进行测试,探究其工作原理和性能。
二、实验器材1. 信号发生器2. 电阻、电容、二极管等元件3. 示波器4. 直流电源5. 万用表三、实验步骤1. 按照电路图搭建共发射极放大电路。
2. 将信号发生器的输出接入电路的输入端,调节信号发生器的频率和幅度。
3. 使用示波器测量电路的输入和输出信号波形,并记录数据。
4. 测量电路的电压增益、频率响应等性能指标。
5. 对比分析实验结果,总结共发射极放大电路的特点和应用。
四、实验结果与分析1. 输入输出波形图通过示波器测量,我们得到了共发射极放大电路的输入和输出波形图。
从波形图中可以看出,输入信号经过放大后,输出信号的幅度明显增大,符合共发射极放大电路的工作原理。
2. 电压增益通过测量输入和输出的电压值,我们计算出了共发射极放大电路的电压增益。
电压增益是衡量放大电路放大能力的重要指标,它表示输出信号的幅度与输入信号的幅度之比。
在本实验中,我们得到了电压增益为10。
3. 频率响应为了研究共发射极放大电路在不同频率下的放大性能,我们调节了信号发生器的频率,并测量了输出信号的幅度。
通过绘制频率-幅度曲线,我们可以得到共发射极放大电路的频率响应。
实验结果显示,该电路在低频段具有较好的放大效果,但在高频段会出现衰减。
五、实验总结通过本次实验,我们深入了解了共发射极放大电路的工作原理和性能。
共发射极放大电路具有电压增益高、输入输出阻抗匹配、频率响应宽等优点,因此在音频放大、通信等领域有着广泛的应用。
然而,该电路也存在一些问题,如高频衰减、温度漂移等。
因此,在实际应用中需要根据具体情况进行优化设计。
六、实验心得通过亲自搭建共发射极放大电路并进行实验测试,我对电子电路的工作原理和性能有了更深入的了解。
实验过程中,我学会了使用示波器、信号发生器等仪器,并掌握了测量电压、频率等参数的方法。
单管共射放大电路实验讨论在调试过程中出现的问题
单管共射放大电路实验讨论在调试过程中出现的问题
单管共射放大电路是一种常见的电子电路,用于放大信号。
在实验中,可能会出现一些调试问题,下面就这些问题进行讨论。
1. 电路无法工作
如果电路无法工作,首先需要检查是否有接线错误。
检查所有连接是
否正确,并确认元器件是否正确安装。
如果仍然无法工作,则需要检
查供电电源是否正常工作,以及是否有其他故障。
2. 放大效果不佳
如果放大效果不佳,可以从以下几个方面进行排查:
(1)检查输入信号源是否正常工作,并确认信号源输出的幅度和频率是否符合要求。
(2)检查输入端和输出端之间的连接线路是否良好。
(3)确认管子本身是好的,可以通过更换管子或者使用测试仪器来确认。
(4)调整偏置电压。
偏置电压过高或过低都会影响放大效果。
(5)调整负载阻抗。
负载阻抗对于放大效果有很大影响,需要根据实际情况进行调整。
3. 噪声较大
如果噪声较大,可以从以下几个方面进行排查:
(1)检查输入端和输出端之间的连接线路是否良好,并确保接地良好。
(2)检查电源供电是否稳定,是否有噪声干扰。
(3)检查管子的工作点是否正确。
如果偏置电压过高或过低都会导致噪声增加。
(4)尝试使用更好的管子或者更好的元器件来替代原来的元器件,以减少噪声。
总之,在单管共射放大电路实验中,出现问题是很常见的。
需要仔细
排查问题,并根据实际情况进行调整。
只有这样才能保证电路正常工
作并达到预期效果。
单管共射放大电路实验报告
竭诚为您提供优质文档/双击可除单管共射放大电路实验报告篇一:实验二单管共射放大电路实验实验二单管共射放大电路实验一、实验目的:1.2.3.4.研究交流放大器的工作情况,加深对其工作原理的理解。
学习交流放大器静态调试和动态指标测量方法。
进一步熟悉示波器、实验箱等仪器仪表的使用方法。
掌握放大器电压放大倍数、输入电阻、输出电阻和最大不失真输出电压的测试方法。
二、实验仪器设备:1.实验箱2.示波器3.万用表三、实验内容及要求:1.按电路原理图在试验箱上搭接电路实验原理:如图为电阻分压式共射放大电路,它的偏置电路由Rw、Rb1和Rb2组成,并在发射极接有电阻Re’和Re’’,构成工作点稳定的放大电路。
电路静态工作点合适的情况下,放大器的输入端加入合适的输入信号Vi后,放大器的输出端便可得到一个与Vi 相位相反、幅度被放大了的输出信号V0,从而实现了电压放大。
2.静态工作点的测试打开电源,不接入输入交流信号,调节电位器w2使三极管发射极电位ue=2.8V。
用万用表测量基极电位ub、集电极电位uc和管压降uce,并计算集电极电流Ic。
、3.动态指标测量(1)由信号源输入一频率为1khz,峰峰值为400mv的正弦信号,用示波器观察输入、输出的波形,观察并在同一坐标系下画出输入ui和uo的波形示意图。
(2)按表中的条件,测量us、ui、uo、uo,并记算Au、ri和ro。
4.研究静态工作点与波形失真的关系riuiui??Rsisirouo??ouo?uooRL在以上放大电路动态工作情况下,缓慢调节增大和减小w2观察两种不同失真现象,并记录失真波形。
若调节w2到最大、最小后还不出现失真,可适当增大输入信号。
5.实验数据记录。
(1).静态工作点的测试(2).动态指标测量1.ui和uo的波形uoui(3)测量us、ui、uo、uo,并记算Au、Ri和Ro。
t(4)研究静态工作点与波形失真的关系uouituoui增大Rw2四、思考题(1)总结放大电路静态工作点、负载、旁路电容的变化,对放大电路的电压放大倍数及输出波形的影响。
共射放大电路实验报告
共射放大电路实验报告一、实验目的:1.了解共射放大电路的基本原理和特性。
2.学习如何设计并调整共射放大电路。
二、实验原理:1.原理电路中共射放大电路能得到相反的放大和100%总共增益。
2.共射放大电路具有较大的输入输出阻抗,能适应不同负载条件。
3.共射放大电路能够实现电流放大。
4.共射放大电路具有固定的输入相位和变化的输出相位特性。
三、实验仪器和器件:1.双踪示波器2.函数发生器3.电压表4.变阻器5.电容器6.电感器7.电阻器8.三极管晶体管四、实验步骤:1.确定实验电路拓扑。
根据实验要求,选取合适的电路拓扑进行组装。
根据实验需求,选取晶体管的类型、电阻和电容的数值,设计并组装线路。
2.进行电路连接。
按照实验电路拓扑图,将所需元器件一一连接起来。
注意检查导线连接,使其牢固可靠。
3.检查电路连接的正确性。
使用万用表仔细检查各个连接点,确保电路连接正确。
4.接入电源。
将电路连接到电源供电。
注意选择合适的电源电压,并检查电源电压是否正常。
5.测量输入输出电压。
通过函数发生器产生不同频率的正弦信号,分别测量输入和输出电压,并记录数据。
6.分析和计算输出功率、电压增益等参数。
根据测量数据,计算输出功率和电压增益等参数,并完成实验报告。
7.结束实验。
断开电源,拆除实验装置,清理实验现场。
五、实验结果:根据实验记录的数据,计算得到不同频率下的电压增益,并绘制出增益-频率特性曲线。
计算得到的输出功率也需要列出。
六、实验讨论:通过实验数据对比,可以分析不同频率下的放大能力和输出功率的变化情况。
分析结构和原理,讨论实验结果的合理性,并解释观察到的现象。
七、实验总结:总结实验内容、实验结果和实验过程中遇到的问题,并提出改进意见。
列出实验所参考的相关书籍、资料或论文。
以上是共射放大电路实验报告的基本框架,根据实际实验情况和实验结果进行调整和补充,可以详细描述实验步骤、实验数据和实验结论,最终得出科学合理的实验报告。
晶体管共射极放大电路实验报告
晶体管共射极放大电路实验报告一、实验目的1.掌握共射极放大电路的基本原理和组成。
2.学习如何调试和优化放大电路的性能。
3.通过实验数据分析,加深对晶体管放大原理的理解。
二、实验原理共射极放大电路是一种常见的模拟放大电路,它利用晶体管的放大效应将输入信号放大,并通过电阻、电容等元件进行信号处理和反馈控制。
该电路具有较高的电压放大倍数和良好的频率特性,被广泛应用于各种电子系统中。
三、实验步骤1.搭建共射极放大电路:连接电源、输入信号源、晶体管、电阻、电容等元件,组成共射极放大电路。
2.调试放大电路:通过调节电源电压、输入信号源幅度、晶体管偏置等参数,使放大电路达到最佳的工作状态。
3.测量电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。
4.分析实验数据:记录不同参数下的放大倍数、输入电阻、输出电阻等数据,分析其对放大电路性能的影响。
5.优化电路性能:根据实验数据分析结果,调整元件参数或采用不同的元件,优化放大电路的性能。
四、实验数据分析1.电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。
实验数据显示,随着输入信号幅度的增加,放大倍数逐渐增大;但当输入信号幅度达到一定值时,放大倍数趋于稳定。
这是因为晶体管已经处于饱和状态,无法再通过增加输入信号幅度来提高放大倍数。
2.输入电阻和输出电阻:输入电阻和输出电阻的大小直接影响放大电路的性能。
输入电阻越大,输入信号源的负载越小,对信号源的影响越小;输出电阻越小,输出电压的负载越大,对负载的影响越小。
实验数据显示,随着反馈系数的增加,输入电阻和输出电阻都呈下降趋势。
这是因为反馈系数越大,对输入和输出信号的衰减越大,导致输入和输出电阻减小。
3.通频带:通频带是衡量放大电路频率响应的重要指标。
实验数据显示,随着反馈系数的增加,通频带逐渐变宽。
这是因为反馈系数的增加导致电路的稳定性提高,能够更好地处理高频信号。
五、实验结论与优化建议通过本次实验,我们验证了共射极放大电路的工作原理和性能特点。
共发射极放大电路实验报告
共发射极放大电路实验报告共发射极放大电路实验报告引言:共发射极放大电路是一种常见的放大电路,具有较高的放大倍数和较低的失真。
本实验旨在通过搭建共发射极放大电路并进行实验验证,探究其特性和性能。
一、实验目的本实验的主要目的有以下几点:1. 了解共发射极放大电路的基本原理;2. 学习搭建共发射极放大电路的方法;3. 分析共发射极放大电路的特性和性能。
二、实验器材和元件1. 变压器2. 电容3. 电阻4. 二极管5. NPN型晶体管6. 示波器7. 功率放大器8. 信号发生器9. 直流电源10. 万用表三、实验步骤1. 按照电路图搭建共发射极放大电路,确保连接正确无误。
2. 将信号发生器接入电路的输入端,设置合适的频率和幅度。
3. 将示波器接入电路的输出端,调节示波器的垂直和水平扫描,观察输出波形。
4. 通过调节电源电压和电阻的值,改变电路的工作状态,观察输出波形的变化。
5. 测量并记录电路的输入电压、输出电压、电流等数据。
6. 分析实验数据,计算电路的放大倍数、输入阻抗和输出阻抗等指标。
四、实验结果与分析通过实验观察和数据记录,我们得到了以下结果:1. 随着输入信号幅度的增加,输出信号也相应增大,表现出较好的放大效果。
2. 调节电源电压和电阻的值可以改变电路的工作状态,进而影响输出波形的形状和幅度。
3. 在一定范围内,输入电压与输出电压呈线性关系,说明电路具有较好的线性放大特性。
4. 根据实验数据计算得到的放大倍数较高,达到了预期的效果。
根据以上结果,我们可以得出以下结论:共发射极放大电路具有较高的放大倍数和较低的失真,适用于信号放大和处理等应用场景。
通过调节电源电压和电阻的值,可以改变电路的工作状态,进一步优化电路性能。
然而,在实际应用中,还需要考虑电路的稳定性、温度特性等因素,以确保电路的可靠性和稳定性。
五、实验总结通过本次实验,我们深入了解了共发射极放大电路的原理和特性。
通过搭建电路、观察波形和计算指标,我们验证了共发射极放大电路的放大效果和线性特性。
共射放大电路实验报告(精品文档)_共10页
实验报告课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名:一、实验目的1、学习晶体管放大电路的设计方法,2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。
3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。
4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。
5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。
二、实验任务与要求1.设计一个阻容耦合单级放大电路已知条件:,,=+10V cc V 5.1L R k =Ω10,600i SV mV R ==Ω性能指标要求:,对频率为1kHz 的正弦信号30L f Hz <15/,7.5v i A V V R k >>Ω2.设计要求(1)写出详细设计过程并进行验算(2)用软件进行仿真3.电路安装、调整与测量自己编写调试步骤,自己设计数据记录表格4.写出设计性实验报告三、实验方案设计与实验参数计算共射放大电路(一).电路电阻求解过程(β=100)(没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计):(1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取,即4V,25BBCC VV =(3),恰为电阻标称值0.7 3.3BB EEV R k I -≈=Ω(4)212124:3:2CCBB R V V VR R R R ==+∴=取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k ,R 1=33.75k ;ΩΩ112110=0.1,60,40cc BB V V IR I mA R K R K IR -===Ω=Ω由综上:取标称值R1=51k ,R2=33k ΩΩ(5) 25T T eE CV V r I I =≈=Ω(6)从输入电阻角度考虑:,R i =R 1//R 2//[(β+1)(r e +R E1)]>7.5kΩ取(获得4V 足够大的正负信号摆幅)得:R i =9kΩ,V c =35V CC =6VR E1=118Ω,R E 2= 3.3kΩ,R C = 6.6kΩ从电压增益的角度考虑:>15V/V,取得:A v =5100//R Cr e +R E1A v =20V/V;;R E1=86Ω,R E 2= 3.3kΩ,R C =4kΩ为综上:取标称值R E1=100Ω,R E 2= 3.3kΩ,R C = 5.1kΩ(二).电路频率特性(1)电容与低频截止频率取;f L =25HZ <30HZ C E =12πf [R E 2//(R E1+r e +R s //R 2//R 11+β=48.3μFC E 取标称值47μF ,C 1,C 2取推荐的标称值22μF (三).参数指标验算过程由已确定的参数: ,,R E1=86Ω,R E 2= 3.3kΩ,R C =4kΩ,=+10V cc V 5.1LR k =Ω,计算得:10,600i S V mV R ==ΩC 1=C 2=22μF,C E =47μFI C=V BB‒V BER BB1+β+R E=0.917m A,V CC‒I C R C=5.323V,|A v|=20.24>15VV,|A v|=20.24>15VV, R i=8.305kΩ>7.5kΩ,f L=12π∗C E∗R=26HZ<30HZ;,所有参数符合指标.(R为与CE串联的等效电阻)四、实验步骤与过程(一).实验电路仿真:1.代入参数的实验电路2.直流工作点Q:2.1仿真类型与参数设置:选择时域瞬态分析(Time domain),由于交流小信号的频率为1kHZ,设置仿真时间为2个周期,0-2ms,扫描步长为0.02ms,精度足够2.2图像处理:将交流小信号源断开,分别观察IC,VCE,VBE,VC,的波形,利用标尺(toggle cursor)得到仿真值为:IC=0.892V,VCE=2.38V,VBE=0.622V,VC=5.45V3.交流参数分析:3.1仿真类型与参数设置:选择频域分析(AC SWEEP),要将电压源由给定频率的VSIN源换成可供频率扫描的VAC,幅值设定为10mV;为得到完整频域特性,扫描频率选择对数扫描,从1HZ到100MHZ,采样点设置为10,3.2图像处理(其他图像略去,只摘取需要用到标尺工具的复杂图像)(1).电压增益:观察V2(RL)/V1(RS)的频域波形,用标尺得出1Khz时的电压增益为17.607;在直流分析中,设置y轴变量为max(V2(RL))/max(V1(RS),利用标尺得到电压增益为178.55mv/9.993mv=17.87;(2).上下限截止频率与通频带:同样是上面的频域增益波形,利用orcad自带的信号处理函数可以得到:Fl=26.24877HZ,FH=1.99MHZ,由于FL相对较小,通频带近似为FH(3).输入电阻:观察V(VS+)/I(C1)的频域波形,利用标尺可得,当信号源的频率为1Khz时,输入电阻Ri=7.6816kΩ4.数据处理与误差分析计算可得除VCE外直流工作点的相对误差约为2.5%,而频幅特性相对误差约为10 %,较大;直流工作状态的误差主要是由于将VCE直接认定为0.7V导致的,而交流特性是由三极管直流工作点决定的,且计算时忽略了电容对电路产生的影响,且忽略厄利效应,所以会有至少3类误差的叠加,导致误差较大.(二).实际电路测试:1.测试原理:(注释:由于事先不知道实际测试电路所用三极管放大倍数只有160的,而我设计是用100的,所以在测试时无法利用我的设计方案,采用了另一个设计方案,附在报告最后.)1.静态工作点:(1)按元件参数安装、连接电路(2)不加输入信号,调节R C 两端的电压使IC 符合设计值(3)测量放大电路的静态工作点,并和理论值相比较2.电压增益:(1)保持静态工作点不变,利用示波器观察输入信号波形,调节信号源,使输出信号为频率1kHz,幅值30MV 的正弦波.(2)输入、输出波形用双踪显示观察,指出它们的相位关系。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的,通过搭建单级共射放大电路,了解其工作原理和特性,并通过实验验证其放大功能和频率响应。
实验仪器和器材,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单级共射放大电路是一种常用的放大电路,其工作原理是利用三极管的放大特性,将输入信号进行放大。
在单级共射放大电路中,输入信号通过输入电容耦合到基极,经过输入电阻进入三极管的基极,通过基极-发射极间的电流放大作用,输出到负载电阻上,实现信号放大。
实验步骤:1. 按照电路图连接实验电路,注意接线正确,电路连接紧密。
2. 调节直流稳压电源,使其输出电压为所需工作电压。
3. 调节信号发生器,输入所需频率和幅值的正弦信号。
4. 连接示波器,观察输入信号和输出信号的波形,记录波形特点和参数。
5. 调节信号频率和幅值,观察输出信号的变化,记录频率响应曲线。
实验结果:经过实验观察和记录,我们得到了以下实验结果:1. 输入信号和输出信号的波形基本一致,幅值经过放大。
2. 随着输入信号频率的增加,输出信号的幅值有所下降,频率响应存在一定的衰减。
实验分析:通过实验结果的观察和分析,我们可以得出以下结论:1. 单级共射放大电路具有信号放大的功能,能够将输入信号进行放大。
2. 由于电容和电感元件的存在,单级共射放大电路存在一定的频率响应特性,随着频率的增加,放大倍数会有所下降。
实验总结:本次实验通过搭建单级共射放大电路,验证了其放大功能和频率响应特性。
同时,通过观察实验现象和分析实验结果,加深了对单级共射放大电路的工作原理和特性的理解。
在今后的学习和工作中,我们将更加熟练地运用单级共射放大电路,并加深对其特性的认识。
实验存在的不足和改进方向:在实验过程中,我们发现了一些不足之处,比如实验中可能存在的误差、实验数据的不够精确等。
因此,我们需要在以后的实验中加强对实验过程的控制,提高实验数据的准确性和可靠性。
通过本次实验,我们对单级共射放大电路有了更深入的了解,也为以后的学习和工作积累了宝贵的经验。
共射共集放大电路实验报告(共5篇)
共射共集放大电路实验报告(共5篇)一、实验目的学习共射共集放大电路的基本原理,掌握共射、共集级的放大作用和特点,熟悉放大电路的设计和调节方法。
二、实验原理共射放大器是以晶体三极管为放大元件,以共射的方式运行的放大电路。
它的信号输入在集-发极之间,输出在集-基极之间。
共射电路的输入电阻较低,输出电阻较高,放大系数较大。
但它的频率特性差,相位反向和输出幅度变化比较大。
共射、共集级的组合可以形成共射共集放大电路,由于两级的互补性,可以克服它们各自的缺点,达到比较理想的放大效果。
在实际应用中,经常用共射共集级组成放大电路,用于通过各种接口将信号处理后送到外围设备,并隔离载波。
共射共集放大电路的放大系数较大,输入输出阻抗均低,相位差小,具有广泛的应用。
三、实验步骤1.检查实验装置,准备好实验用品,并按照电路图连接电路。
2.接通电源,调节稳压电源直至设定值。
3.打开测量仪器,调整电位器,使输入端电压到达工作点。
4.调整电位器,使输出端交流信号最大。
5.更改输入信号,测量输出信号幅度的变化,记录测量结果。
6.重复操作5,并更改电源电压和电阻值,记录实验结果。
7.实验结束后,关闭电源,拆除实验装置,清理现场。
四、实验结果与分析1.实验中电路连接正确,电源电压、电阻值选择合适,实验过程稳定。
2.实验结果表明,当输入信号发生变化时,输出信号幅度随之变化。
同时,当电源电压或电阻值发生变化时,放大电路的增益也会发生变化。
3.对于共射放大器,输入阻抗低,输出阻抗高,放大系数大,但是频率特性差相位反向。
对于共集放大器,输入输出阻抗均低,放大系数小,但具有良好的频率特性和相位不反向等特点。
4.当通电电压较是3V时,测量到的输入电压为2.1V,输出电压为6V,增益约2.9倍。
输出波形为正弦波。
5.整个实验过程中,注意电源电压不要过高或过低,否则会影响实验结果。
同时,要注意接线正确,切勿操作不当以免损坏实验装置。
五、实验总结通过本次实验,掌握了共射共集放大电路的基本原理和调节方法。
晶体管共射极单管放大电路实验报告
晶体管共射极单管放大电路实验报告实验目的:通过搭建晶体管共射极单管放大电路,了解晶体管的工作原理和放大特性,并通过实验验证晶体管的放大效果。
实验原理:晶体管共射极单管放大电路是一种常用的放大电路,它可以将输入信号进行放大,并输出到负载电阻上。
该电路由一个晶体管和负载电阻组成。
晶体管的基极接收输入信号,发射极连接到地线,而集电极接在负载电阻上。
当输入信号作用在基极上时,晶体管的电流和电压都会发生变化。
通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。
当输入信号的幅度足够小,使得晶体管工作在线性放大区域,此时,输出信号的幅度将是输入信号的若干倍。
实验步骤:1.将NPN型晶体管插入实验板上的晶体管座子中,并连接好各个电子元件,注意极性的正确连接。
2.用万用表测量负载电阻的阻值,并连接到晶体管的集电极处。
3.通过调节偏置电阻的阻值,使得晶体管进入放大工作区。
4.施加输入信号,观察电路输出信号的变化。
可以使用信号发生器提供正弦波信号作为输入信号。
5.测量输入和输出信号的电压幅度,并计算出放大倍数。
6.尝试改变输入信号的频率,观察输出信号的变化情况。
实验结果与分析:在实验中,通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。
观察输出信号的幅度变化,可以发现晶体管放大效果的实验验证。
随着输入信号的幅度增加,输出信号的幅度也相应增加。
通过测量输入和输出信号的幅度,可以计算出放大倍数。
实验还可以通过改变输入信号的频率,观察输出信号的变化情况,验证晶体管放大电路的频率特性。
实验总结:通过这次实验,我对晶体管共射极单管放大电路的工作原理和放大特性有了更深入的了解。
通过实验验证,我成功搭建并调试了该电路,观察到了输入信号经过放大后的输出信号。
在实验过程中,我也学到了使用信号发生器、万用表等实验仪器的方法和技巧。
这次实验对于我的电子电路实验能力的提高有很大的帮助,也使我对晶体管的应用有了更深刻的理解。
在以后的学习中,我将继续加深对晶体管和其他电子元件的认识和理解,提高自己的实验能力和电路设计能力。
单管共射放大电路实验报告
单管共射放大电路实验报告单管共射放大电路实验报告引言:单管共射放大电路是电子学中常见的一种电路结构,它可以将输入信号放大并输出。
本实验旨在通过搭建单管共射放大电路并进行实验观察,深入理解其工作原理和特性。
实验设备:1. NPN型晶体管2. 直流电源3. 信号发生器4. 电阻、电容等元器件5. 示波器6. 万用表实验步骤:1. 按照实验电路图搭建单管共射放大电路。
2. 将直流电源接入电路,调整电源电压为合适的数值。
3. 连接信号发生器,调节频率和幅度。
4. 使用示波器观察输入和输出信号波形。
5. 测量电路中各个元器件的电压和电流数值。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 输入信号经过放大后,输出信号的幅度明显增大。
2. 输入信号的频率对放大效果有一定影响,不同频率下放大倍数可能有所不同。
3. 输出信号的波形与输入信号的波形基本一致,只是幅度发生了变化。
4. 在特定的输入信号幅度范围内,输出信号的幅度变化基本线性。
讨论与分析:单管共射放大电路的放大效果和特性与电路中的元器件参数有关。
在实验中,我们可以通过调整电源电压、改变电阻和电容的数值来观察其对放大效果的影响。
此外,晶体管的工作状态也会对放大效果产生影响,如静态工作点的选择和偏置电流的设置等。
在实际应用中,单管共射放大电路常用于音频放大、信号处理等领域。
通过调整电路中的元器件参数,可以实现对不同频率和幅度的信号的放大。
然而,单管共射放大电路也存在一些问题,例如频率响应范围有限、输出波形失真等。
因此,在实际应用中需要根据具体需求选择合适的电路结构。
结论:通过本次实验,我们成功搭建了单管共射放大电路,并观察了其放大效果和特性。
实验结果表明,单管共射放大电路能够有效地放大输入信号,并输出相应的放大信号。
通过进一步的实验和研究,可以深入了解电路的工作原理和优化方法,为实际应用提供参考。
总结:单管共射放大电路是电子学中重要的电路结构之一,通过本次实验我们深入理解了其工作原理和特性。
单管共射放大电路实验讨论在调试过程中出现的问题
单管共射放大电路实验讨论引言单管共射放大电路是一种常见的基本放大电路,也是电子工程学习的重要内容之一。
在实际调试过程中,经常会出现一些问题。
本文将围绕单管共射放大电路实验的调试过程,讨论一些可能出现的问题,并提供解决方案。
实验背景单管共射放大电路是一种用于放大电压信号的电路,它由一个晶体管、若干个电阻和电容组成。
在实验中,我们通常会使用直流电源和信号发生器提供电源和输入信号,使用示波器观察输出信号。
问题讨论1. 输入信号失真在单管共射放大电路中,输入信号的失真可能会导致输出信号的畸变。
输入信号失真的主要原因有:•输入信号源的内阻过大,导致输入信号电压下降;•输入信号的频率超出放大电路的工作范围,或者输入信号的幅度过大,导致饱和或截断现象。
解决方案:•使用低内阻的输入信号源;•根据放大电路的工作范围选择合适的输入信号。
2. 晶体管工作点偏离理想值单管共射放大电路的正常工作需要一个合适的偏置点(也称为工作点),以确保晶体管工作在放大区。
偏置点的选取不当可能导致晶体管处于饱和或截断状态,不利于正常放大。
偏置点的选取可以依据以下原则:•偏置点应选取在负载线中心;•偏置点的选取需要综合考虑信号的幅度和频率,以及晶体管参数。
3. 输出信号失真输出信号的失真可能由多种原因造成,如晶体管的非线性特性、电源的噪声干扰以及电容的放大失真等。
解决方案:•使用高质量的晶体管,以减小非线性失真;•使用稳定的电源,以减小电源噪声;•使用高品质的电容器,以减小放大失真。
4. 功率损耗过大功率损耗过大可能会导致电路元件的过热甚至损坏。
解决方案:•使用适当的电阻值,以减小功率损耗;•使用散热器等降低元件温度的措施。
5. 输入和输出阻抗不匹配当输入源的阻抗与放大电路的输入阻抗不匹配时,会导致信号的反射和失真。
解决方案:•使用匹配的输入和输出阻抗;•添加适当的阻抗变换电路。
6. 温度效应对电路性能的影响晶体管的参数随温度的变化而变化,温度升高可能导致放大电路性能的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子信息工程系电子组装与调试报告学生姓名学号班级专业指导教师2014 年 6 月目录项目一共射放大电路 (1)一、目的要求 (1)二、简述共射放大电路工作原理 (1)1、整机结构框图和电原理图 (1)2、各单元电路图及工作原理 (2)三、电路参数设计 (4)1、根据项目要求设计电子元件参数 (4)2、元件清单 (4)四、共射放大电路调试 (5)1、安装原理图 (5)2、调各级静态工作点 (5)五、所遇故障分析与解决。
(6)1、故障现象说明 (6)故障:底部失真 (6)2、故障检修流程 (6)3、解决方法 (6)六、安装调试体会与建议。
(7)项目二路灯自动控制器的原理与设计 (8)一、目的要求 (8)二、简述路灯自动控制电路的工作原理 (8)1、电路原理图 (8)2、电路组成 (9)3、基本工作原理 (10)三、电路参数设计 (10)1、电子原件参数设计 (10)2、原件清单 (11)四、路灯自动控制的安装与测试 (12)1、根据原理图安装电路 (12)2、用万用表1K档测量一下各点阻值 (12)3、现象正常,测量一下各点数据 (12)五、安装调试体会与建议 (13)项目三电压比较器的分析与设计 (14)一、目的要求 (14)二、实验内容及原理 (14)1、电路原理图 (8)2、各单元电路图及工作原理 (15)3、实验原理 (15)三、电路参数设计 (21)1、设计电路元件参数 (21)2、元件清单 (22)四、电压比较器的安装与调试 (17)1、根据原理图安装电路 (17)2、测量结果 (18)3、测量现象 (19)五、安装体会 (19)项目四RC正弦震荡电路的分析与制作 (20)一、实验目的 (20)二、实验原理 (20)1、电路原理图 (20)2、实验工作原理 (20)3、电路的组成 (21)三、电路参数设计 (21)1、设计电路元件参数 (21)2、元件清单 (22)四、正弦震荡电路的安装与调试 (22)1、实验安装图 (22)2、实验现象图 (23)3、实验仿真图 (24)4、测试结果 (25)五、安装调试体会与建议 (25)项目一共射放大电路一、目的要求1、掌握共射放大电路元器件参数的选择方法2、调试电路,测试放大电路的各项性能指标3、学习使用仿真软件,对所设计的共射放大电路进行仿真测试4、熟悉三极管的结构及符号;掌握三极管的识别与检测;掌握三极管直流放大特性5、熟悉电路的结构,掌握晶体三极管的三种工作状态的外部条件及应用6、掌握晶体三极管的动态放大特性。
二、简述共射放大电路工作原理1、整机结构框图和电原理图原理图2、各单元电路图及工作原理(1)工作原理:输入信号从基极输入经过Rb1 、Rb2、Re回到输入端。
静态的概念:即当输入信号电压ui=0时, 放大电路称为静态, 或称为直流工作状态。
这时电路中没有变化量,电路中的电压、电流都是直流量,此时IB,IC,UCE的值对应三极管输出特性曲线上的一点,该点称为放大电路的静态工作点。
⑵静态工作点的表示用三极管的电流、电压来表示静态工作点,也可用符号Q表示。
电流、电压分别是基极电流IBQ、集电极电流ICQ 、集射极电压UCEQ在模拟电子电路中理想的Q点应该处在放大区。
⑶静态分析的估算法公式:(2)工作原理:输入信号从电源UCC重新组合输出。
直流负载线反映静态时电流Ic和电压UCE的变化关系,根据直流通路分析,其斜率仅与电阻Rc有关。
交流负载线则反映动态时电流Ic和电压UCE的变化关系,根据交流通路分析,其斜率不仅与电阻Rc有关,还和与其并联的负载电阻RL有关,所以交流负载线比直流负载线要陡直一些。
而且当输入电流为零时,放大电路仍应工作在静态工作点Q,可见交流负载线也要通过Q点。
电压放大倍数的计算:Au =-β x ( RL∥Rc ) / rbe三、电路参数设计1、根据项目要求设计电子元件参数参数如下:U Re=2v 、IE=100mA、U cc=12V,、C1=C2=100μF,、CE=220μF,晶体管为9013,β=100,要求静态工作点ICQ≥1mA,UCEQ≥3V,Au=100,Ri=2k Ω,R0=5.1kΩ,RL=5.1kΩ。
2、元件清单四、共射放大电路调试1、安装原理图2、调各级静态工作点调试静态工作点是通过测量集电极电流来调整。
首先使输入信号为零,将万用表电流挡串联在集电极回路中。
调整基集偏置电阻,使Icq达到预订值。
一般取集电极最大电流的一半即可,利用示波器调试,如果出现饱和失真,需要增大基极偏置电阻,如果出现截止失真,则需要减小基极上的偏置电阻,使输出幅值最大,失真最小的即为最佳静态工作点。
五、所遇故障分析与解决。
1、故障现象说明故障:底部失真2、故障检修流程(1)用万用表检测电路之间是否是导通的,有无原件损坏,有无漏焊虚焊现象(2)检查电路是否连接正确3、解决方法Rp减小---VBQ增加----VEQ增大----IEQ增加----IBQ增加----ICQ增加--UCEQ增加,当电路输入交流信号时,很容易使UCE<0.4V而进入饱和区,使输出不能如实地反映输入信号的状态,则出现图2.17(b)所示的底部失真波形。
该现象是因为三极管进入饱和区所引起的,故称为饱和失真。
只要将输入回路中的基极偏置电阻Rb增大,以降低IBQ、ICQ,使静态工作点Q降低,进入三极管放大区的中间位置,便可解决饱和失真问题。
六、安装调试体会与建议。
体会:通过此次实验我掌握了共射放大电路元器件参数的选择方法,通过调试电路元件参数来测试放大电路的各项性能指标。
并且学习使用仿真软件,对所设计的共射放大电路进行了仿真测试,也让我懂得了实践操作能力的重要性。
建议:建议焊接电路板的时候,仔细检查电路问题及焊接问题,是否有无虚焊漏焊现象。
项目二路灯自动控制器的原理与设计一、目的要求利用晶体三极管设计一个路灯,傍晚时自动亮,天亮时自动熄灭的控制电路要求:1、用光敏电阻器控制三极管的工作状态2、用三极管来驱动继电器的工作3、用继电器来控制路灯亮熄二、简述路灯自动控制电路的工作原理1、电路原理图2、电路组成电源显示电路共集放大:只放大电路共射放大电路:驱动灯3、基本工作原理当光照减弱时,光敏电阻阻值增大,于是晶体管VT1的基极电压升高至4V 左右,VT1导通,VT2导通,继电器JK线圈得电常开触点JK闭合,接通220V 电路,灯泡点亮。
反之,当光照增强到一定时,光敏电阻阻值减小,VT1的基极电压减小到0.7V一下,VT1截止,VT2截止,继电器JK线圈失电,常开触点断开,灯熄灭。
三、电路参数设计1、电子原件参数设计电源电压取12V、高低切换继电器:JZC22V OC12V/10A、Ib2=2.6mA、R3=1K、VT2的输入端口电压U2为:U2=Ib2R3+Ube2=3.3v,9013型的三极管、R2=3KΩ、IC1≈IE1=3.7mA、IB1=IC/β=37mA、UB1=4V、I1=0.37mA、R1=11.2KΩ、URB1=8V、rb1=21.6KΩ,红色发光二极管Ud=2v、Id=10m、R4=1KΩ2、原件清单四、路灯自动控制的安装与测试1、根据原理图安装电路2、用万用表1K档测量一下各点阻值3、现象正常,测量一下各点数据①灯泡灭时:VT1:Vb=0.31v Vc=12v ve=o Vbe=0.68v Vce=12v 状态:截止VT2:Vb=0 Vc=12v Ve=0 Vbe=0 Vce=12v 状态:截止②灯泡亮时:VT1:Vb=7.2v Vc=12v ve=7.4v Vbe=0.68v Vce=4.6v 状态:放大VT2:Vb=0.8 Vc=0.03v Ve=0 Vbe=0 .8 Vce=0.04v 状态:饱和五、安装调试体会与建议体会:通过该次课程设计,我深深感觉到自己理论知识的欠缺,还要加强自己的动手能力。
课题的选择、方案的设计和修改、电路的仿真再到实物的制作,都需要理论与动手能力的结合。
在焊接过程中稍不小心哪怕只焊错一个引脚、一根导线都会导致整个电路无法正常工作,因此必须要有极大地耐心与细心。
我认为本次课程设计是非常有必要的,不仅对我们的学习有利,而且对以后的工作实践也是非常帮助的。
建议:建议加强小组合作能力,如有小组成员的的电路板出了问题,可以大家合作一起解决。
项目三电压比较器的分析与设计一、目的要求1、了解电压比较器与运算放大器的性能区别2、掌握电压比较器的结构及特点3、掌握电压比较器电压传输特性的测试方法4、学习比较器在电路设计中的应用二、实验内容及原理1、电路原理图2、各单元电路图及工作原理工作原理:继续调节电位器RP1滑动臂得到输入电压ui,当输入电压ui大于阀值电压UC,电压比较器UIA输出端uo=UOH时,相连的三极管VT3导通,发光二极管D3发光;工作原理:继续调节电位器RP1滑动臂得到输入电压ui,当输入电压ui大于阀值电压UD,电压比较器UIA输出端uo=UOH时,相连的三极管VT4导通,发光二极管D4发光。
3、实验原理电压比较器(简称为比较器)是对输入信号进行鉴幅和比较的集成器件,它可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。
可用作模拟电路和数字电路的接口,也可用作波形产生和变换电路等。
比较器看起来像是开路结构中的运算放大器,但比较器和运算放大器在电气性能参数方面有许多不同之处。
运算放大器在不加负反馈时,从原理上讲可以用作比较器,但比较器的响应速度比运算放大器快,传输延迟时间比运算放大器小,而且不需外加限幅电路就可直接驱动TTL 、CMOS 等数字集成电路。
静态工作点分析:利用电路的对称性,将电路分解成两半,左右两边的静态值完全相同。
原电路中的Re (电流为2Ib )在等效电路中位2Re(电流为Ie),可用近似估算法计算静态值:三、电路参数设计1、根据项目要求设计电子元件参数根据以下公式可算出各参考点比较电压CCD CCC CCB CCA V R R R R R R R R R U V R R R R R R R R U V R R R R R R R U V R R R R R R U 543215432543215435432154543215+++++++=++++++=+++++=++++=UA=0.7 UB=1.33 UC=2 UD=2.67该项目驱动的设备是发光二极管,所以UCC 取6V RP1取10K 、选用LM324集成运放2、元件清单四、电压比较器的安装与调试1、根据原理图安装电路2、测量结果3、测量现象现象正常,D1至D4依次亮,依次熄灭。
五、安装体会1、在做运放实验时,接线需要小心谨慎,特别是对于偏置电压的接入,一定要判断清楚恒压源的正负极才能接入。