物理高级级结论

合集下载

高等考试物理常用的“二级结论”

高等考试物理常用的“二级结论”

高考物理常用的 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:T S S V V V V t 2221212+=+== 3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体:n 秒末速度(m/s ): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g = 7.相对运动:共同的分运动不产生相对位移。

高中物理重要二级结论(全)汇总

高中物理重要二级结论(全)汇总

高中物理重要二级结论(全)汇总物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F FF +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF ==4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被F1已知F 2的最mF 2的最F 2的最压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

二、运动学 1匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2)1(::)23(:)12(:1::::321----=n nt t t t n ΛΛ)::3:2:1n Λn ::3:2:1ΛFS 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:)::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理常见结论公式二级结论)

高中物理常见结论公式二级结论)

高中物理二级结论集温馨提示1、“二级结论”是常见知识和经验的总结,都是可以推导的。

2、先想前提,后记结论,切勿盲目照搬、套用。

3、常用于解选择题,可以提高解题速度。

一般不要用于计算题中。

一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共面共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:3.匀变速直线运动:时间等分时, S S aT n n -=-12 ,位移中点的即时速度V V V S212222=+, V V S t 22>纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--1214.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶……5.自由落体: (g 取10m/s 2)n 秒末速度(m/s ): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g=7.相对运动:共同的分运动不产生相对位移。

高一物理二级结论

高一物理二级结论

高一物理二级结论全文共四篇示例,供读者参考第一篇示例:高一物理学习的二级结论是指在学习一定内容之后所得到的一些较为深刻的结论。

通过学习高一物理课程,学生将会掌握许多有关物理世界的知识和规律,例如力学、热学、光学等。

也会通过实验和实践探究这些知识,从而得出一些结论和规律。

下面就根据高一物理学习的内容,总结了一些重要的二级结论。

1. 力学方面的结论:力是物理学中的基本概念,是描述物体运动状态和相互作用的重要因素。

力的作用可以改变物体的运动状态,包括速度、方向和形状等。

在学习力学的过程中,我们得出了许多结论,例如:- 牛顿三定律:牛顿第一定律指出,物体静止或匀速直线运动时,受到的合力为零;牛顿第二定律则指出,物体的加速度与作用在其上的合力成正比,与物体的质量成反比;牛顿第三定律则讲述了作用力与反作用力的相互作用关系。

- 常见力的计算方法:包括重力、弹力、摩擦力等,都可以通过相关公式进行计算。

2. 热学方面的结论:热学是研究热现象和热力学规律的学科。

在学习热学的过程中,我们得出了一些重要的结论,例如:- 热力学第一定律:也称能量守恒定律,它表明热量可以相互转化,但总量守恒,并不会凭空消失或增加。

- 热力学第二定律:它表明热量不会自发地从低温物体传递到高温物体,热量只会自发地从高温物体传递到低温物体。

- 热传导、热辐射等热现象的规律及计算方法。

3. 光学方面的结论:光学是研究光现象和光的传播规律的学科。

在学习光学的过程中,我们得出了一些重要的结论,例如:- 光的直线传播:光线在同一介质中的传播是直线传播,在不同介质间的传播会发生折射现象。

- 光的衍射和干涉:当光通过狭缝或与波媒介相遇时,会出现衍射和干涉现象,这些现象是光的波动性质的体现。

- 镜像成像:平面镜和曲面镜的成像规律,包括实像和虚像的成像特点。

4. 电学方面的结论:电学是研究电现象和电磁场规律的学科。

在学习电学的过程中,我们得出了一些重要的结论,例如:- 静电场和静电力:带电物体之间会产生静电力相互作用,其大小与距离的平方成反比。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =n::3:2:1ΛFF 2的最小值mgF 2的最小值F 2的最小值F 2② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

物理重要二级结论(全)

物理重要二级结论(全)

物理重要二级结论(全)一.力物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F大+F小≥F合≥F大-F小。

三个大小相等的力平衡,力之间的夹角为1200。

3.物体沿斜面匀速下滑,则μa=tg。

4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上。

6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理)。

7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。

二.直线运动:1.匀变速直线运动:平均速度:TSSVVVVt2221212时间等分时:SSaTnn-=-12,中间位置的速度:VVVS纸带处理求速度、加速度:TSSVt2212+=,212TSSa-=,(aSSnTn=--12。

2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比1:3:5:……等分位移:相等位移所用的时间之比。

3.竖直上抛运动的对称性:t上=t下,V上=-V下。

4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离。

5.“S=3t+2t2”:a=4m/s2,V0=3m/s。

6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等。

7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短。

船的合运动方向垂直河岸时,过河的位移最短。

8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解。

三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力。

失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。

高中物理重要二级结论(模板)

高中物理重要二级结论(模板)

物理重要二级结论一、静力学1.物体沿倾角为α的斜面匀速下滑时, μ= tanα2.轻质硬杆上的力未必沿杆,但用铰链连接的轻质硬杆上的力一定沿杆方向。

3.绳上的力一定沿着绳子指向绳子收缩的方向。

4.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

摩擦力方向一定与支持力(压力)垂直。

5.共点力平衡方法一:三角形图解法。

特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法二:相似三角形法。

特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) (1)时间等分(T ):① 1T、2T 、3T …位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末…速度比:V 1:V 2:V 3=1:2:3③ 第一个T 、第二个T 、第三个T …的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2(2)位移等分(S 0):① 1S 0处、2 S 0处、3 S 0处…速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 2.匀变速直线运动中的中间时刻的速度中间位置的速度 3.变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。

则全程的平均速度: 前一半路程v 1,后一半路程v 2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:)::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高一物理必修1、2二级结论大全(非常适用)

高一物理必修1、2二级结论大全(非常适用)

2013-3-12高一物理必修1、2二级结论归纳一.静力学:1.几个力平衡,则一个力是与其它力的合力平衡的力。

2.两个力的合力:F 大 +F 小≥F 合≥F 大 –F 小。

三个大小相等的力平衡,力之间的夹角为120度。

3.物体沿斜面匀速下滑,则μ=tan α。

4.正交分解法的三个常规方程:x 轴上的平衡方程和y 轴上的平衡方程另加有相对运动时的F f = F N5.对物体进行受力分析的顺序:重、弹、摩、其它力。

二.运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:-V =V 2/t =221V V +=TS S 221+3.匀变速直线运动:当时间等分时:S n -Sn-1=aT 2. 位移中点的即时速度:Vs/2=22221V V +,Vs/2>Vt/2纸带点迹求速度加速度:Vt/2=TS S 212+, a=212T S S -, a=21)1(T n S S n --4.上抛运动:对称性:t 上= t 下 V 上= -V下5.相对运动:相同的分速度不产生相对位移。

6.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。

7."S=3t+2t 2”:a=4m/s 2,V 0=3m/s 。

(s = v 0t+ at 2/2) 三.运动定律:1.水平面上滑行:a=-µg2.系统法:动力-阻力=m总a 绳牵连系统3.沿光滑斜面下滑:a=gs inα时间相等: 450时 时间最短: 无极值:4.一起加速运动的物体:N=212m m m F,(N 为物体间相互作用力),与有无摩擦(μ相同)无关,平面斜面竖直都一样。

5.几个临界问题:a=gtgα(注意α角的位置)光滑,相对静止弹力为零6.速度最大时合力为零:四.圆周运动、平抛运动:运动的全成和和解一个结论:物体的实际运动为合运动(应用:在水中拉船的问题。

高中物理选修静电场知识点与常用结论归纳

高中物理选修静电场知识点与常用结论归纳

高中物理选修静电场知识点与常用结论归纳一、电荷及电荷守恒定律1. 元电荷、点电荷(1) 元电荷:e=1.6 ×10 -19 C ,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同。

(2) 点电荷:当带电体本身的大小和形状对研究的问题影响很小时,可以将带电体视为点电荷。

2. 静电场(1) 定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质。

(2) 基本性质:对放入其中的电荷有力的作用。

3. 电荷守恒定律(1) 内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。

(2) 起电方式:摩擦起电、接触起电、感应起电。

(3) 带电实质:物体带电的实质是得失电子。

二、库仑定律1. 内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比。

作用力的方向在它们的连线上。

2. 表达式:,式中k=9.0 ×10 9N ·m 2/C2,叫静电力常量。

3. 适用条件:真空中的点电荷。

三、电场强度、点电荷的场强1. 定义:放入电场中某点的电荷受到的电场力F与它的电荷量q的比值。

2. 定义式:3. 点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度:4. 方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向。

5. 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则。

四、电场线1. 定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱。

2. 特点①电场线从正电荷或无限远出发,终止于无限远或负电荷.②电场线不相交,也不相切,更不能认为电场就是电荷在电场中的运动轨迹.③同一幅图中,场强大的地方电场线较密,场强小的地方电场线较疏.五、匀强电场电场中各点场强大小处处相等,方向相同,匀强电场的电场线是一些平行的等间距的平行线.六、电势能、电势1. 电势能(1) 电场力做功的特点:电场力做功与路径无关,只与初、末位置有关。

高中物理常见结论公式二级结论)

高中物理常见结论公式二级结论)

荿高中物理二级结论集葿温馨提示螅1、“二级结论”是常见知识和经验的总结,都是可以推导的。

膂2、先想前提,后记结论,切勿盲目照搬、套用。

蒂3、常用于解选择题,可以提高解题速度。

一般不要用于计算题中。

蕿一、静力学:膆1.几个力平衡,则一个力是与其它力合力平衡的力。

F 大+F 小 F 合 F 大-F羄2 .两个力的合力:小。

膁三个大小相等的共面共点力平衡,力之间的夹角为120。

虿3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

F F F(拉密定理)。

薇4.三力共点且平衡,则 1 2 3sin sin sin1 2 3tan 。

莁5.物体沿斜面匀速下滑,则罿6 .两个一起运动的物体“刚好脱离”时:虿貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

羇7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

肃8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

羂9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

蝿10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

肄二、运动学:袅1.在描述运动时,在纯运动学问题中,可以任意选取参照物;螁在处理动力学问题时,只能以地为参照物。

衿2 .匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: 蒅3.匀变速直线运动:芃时间等分时,SSaT nn 12,薀位移中点的即时速度VS 22 2VV 122, VVS t 22羈纸带点痕求速度、加速度:袆V t2S12TS2,SS21a, a2TS S n 1n 1 T2羅4.匀变速直线运动, v 0 = 0 时:荿时间等分点:各时刻速度比: 1:2:3: 4:5肈各时刻总位移比: 1: 4:9:16:25 芇各段时间内位移比: 1:3:5:7:9蒃位移等分点:各时刻速度比:1∶ 2 ∶ 3 ∶ ⋯ ⋯莂到达各分点时间比 1∶ 2 ∶ 3 ∶ ⋯ ⋯膈通过各段时间比 1∶ 2 1 ∶ ( 3 2)∶ ⋯ ⋯蒄5.自由落体: (g 取 10m/s2)膅n 秒末速度( m/s ): 10 ,20,30,40,50 膁n 秒末下落高度 (m) :5、20、45、80、125芈第 n 秒内下落高度 (m) : 5、15、 25、35、45袅6 .上抛运动:对称性:t 上=t , vv下下上,hm2v 2g薃7 .相对运动:共同的分运动不产生相对位移。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:F1 F F F F 方向与大力相同2 1 23.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即F1 F F2 3 sin sin sin4.两个分力F1 和F2 的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

F1已知方向F1 F2的最小值F1F FF2的最小值mg F2的最小值5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

9.已知合力不变,其中一分力F1 大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则F1二、运动学F2 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)F 时间等分(T):①1T 内、2T 内、3T 内······位移比:S1:S2:S3=12:22:32②1T 末、2T 末、3T 末······速度比:V 1:V2:V 3=1:2:3③第一个T 内、第二个T 内、第三个T 内···的位移之比:SⅠ:SⅡ:SⅢ=1:3:5④ΔS=aT2 S n-S n-k= k aT 2 a=ΔS/T2 a =(S n-S n-k)/k T 2位移等分(S0):①1S0 处、2 S0 处、3 S0 处···速度比:V1:V 2:V3:···V n=1: 2 : 3 : : n②经过1S0 时、2 S0 时、3 S0 时···时间比:1: 2 : 3 : : n)③经过第一个1S0、第二个 2 S0、第三个 3 S0···时间比t1 :t2 :t3 : :t n 1: ( 2 1) : ( 3 2) : : ( n n 1)12.匀变速直线运动中的平均速度vv v S S0 t 1 2vt / 2 2 2T3.匀变速直线运动中的中间时刻的速度v vt/ 2v2vt中间位置的速度vt/22v 22vt4.变速直线运动中的平均速度前一半时间v1,后一半时间v2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: )::3:2:1n Λn::3:2:1ΛF已知方向2F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理模型及二级结论总结

高中物理模型及二级结论总结

高中物理模型及二级结论总结引言高中物理作为一门基础学科,其核心内容包括物理模型和结论。

物理模型是对实际物体或现象的简化和理想化描述,而结论则是通过实验证据得出的科学推理结果。

本文将以高中物理中常见的几个模型和结论为例,进行总结和介绍。

一、匀速直线运动模型匀速直线运动模型是高中物理中最简单的模型之一。

对于匀速直线运动的物体,其速度保持恒定,位移与时间成正比。

根据这个模型,我们可以得出以下二级结论:1. 物体的位移与速度成正比,即位移越大,速度越快。

2. 物体的速度与时间成正比,即时间越长,速度越大。

二、自由落体模型自由落体模型是描述物体在重力作用下自由下落的模型。

对于自由落体运动的物体,其速度随时间的增加而增加,位移随时间的增加而增大。

根据这个模型,我们可以得出以下二级结论:1. 物体的速度与时间成正比,即时间越长,速度越大。

2. 物体的位移与时间的平方成正比,即时间越长,位移越大。

三、牛顿第一定律模型牛顿第一定律是描述物体运动状态的模型。

根据牛顿第一定律,物体如果受到合力作用,将发生加速度变化,如果没有合力作用,将保持匀速直线运动。

根据这个模型,我们可以得出以下二级结论:1. 物体受到合力作用时,会产生加速度。

2. 物体没有受到合力作用时,将保持匀速直线运动。

四、牛顿第二定律模型牛顿第二定律是描述物体受力和加速度关系的模型。

根据牛顿第二定律,物体的加速度与作用在物体上的合力成正比,与物体的质量成反比。

根据这个模型,我们可以得出以下二级结论:1. 物体受到的合力越大,加速度越大。

2. 物体的质量越大,加速度越小。

五、能量守恒模型能量守恒模型是描述能量转化和守恒的模型。

根据能量守恒原理,能量可以在物体间相互转化,但总能量始终保持不变。

根据这个模型,我们可以得出以下二级结论:1. 能量可以在不同形式之间转化,如机械能、热能、电能等。

2. 总能量始终保持不变,即能量守恒。

小结高中物理的模型和结论是学习物理的基础,它们帮助我们理解和描述物理世界的规律。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T):① 1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32② 1T末、2T末、3T末······速度比:V1:V2:V3=1:2:3③ 第一个T内、第二个T内、第三个T内···的位移之比:SⅠ:SⅡ:SⅢ=1:3:5④ΔS=aT2 Sn-Sn-k= k aT2 a=ΔS/T2 a =( Sn-Sn-k)/k T2位移等分(S0):① 1S0处、2 S0处、3 S0处···速度比:V1:V2:V3:···Vn=② 经过1S0时、2 S0时、3 S0时···时间比:③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v1,后一半时间v2。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

高中物理重要二级结论(全)1.力学原理:(1) 首先,运动定律,它指出了物体的外力关于物体的运动的总的反作用关系,既包括平衡态及非平衡态下物体的做功量,其中,动量定理、速率定理和能量定理是非常重要的原理;(2) 其次,万有引力定律,它指出了物体之间引力的规律,其中,万有引力定律由施特劳斯提出,随后被贝瑟尔用数学公式描述出来;(3) 最后,粒子的相对论,它指出了物体所产生的力是由粒子之间的相互作用来决定的,它为物理学提供了一种新的、深刻的思路。

2.物质质量与能量关系:(1) 物质质量与能量关系,它可以用泰勒-弗拉克定律来描述,即E=mc2,其中E表示能量,m表示物质的质量,c表示光速;(2) 此外,物质质量与能量关系还可以通过伦理考证电磁力学思想来解释,即物质能够从一种形式转换到另一种形式,物质的质量可以转换成能量,能量可以转化成物质;(3) 最后,物质与能量关系也可以从热力学角度理解,比如热能可以转化成动能,电能可以转换为化学能,而化学能又可以转换成电能,这就是典型的物质与能量的相互转换。

3.光的电磁理论:(1) 在光的电磁理论方面,先由Maxwell提出电磁场的旋转性质,即无穷小的电磁场可以相互展开,变换,并以一个正弦波的方式传播,这就是光的电磁理论;(2) 其次,光的电磁理论还包括光的真空中传播及物质间的传播,其中真空中传播通过电場、场强及波长等概念来描述,而物质间传播则包含反射、折射、衍射等性质;(3) 最后,光的传播可以经由干涉和衍射来描述,其中衍射是一种特殊的干涉效应,它的特征在于小的粒子可以产生明显的衍射现象。

4.电磁场原理:(1) 首先,山斯坦·佩尔定律,它指出了电场与磁场之间存在着对应关系,即当电场发生变化,就会对磁场产生影响,反之,当磁场发生变化,就会对电场产生影响;(2) 其次,电场电位定律,又称梅森·纳什现象,它指出了电位与电场之间存在着对应关系,即当电场发生变化时,电位也会发生变化;(3) 最后,电位及电场的相互作用,指的是在电位的剧烈变化处,极对对应的电场也会发生巨大的集中。

高级中学物理中的通用公式定理和二级结论情况总结

高级中学物理中的通用公式定理和二级结论情况总结

一、运动学公式整理:匀变速直线运动基本公式推论:1、1、2、2、3、3、4、无论加速、减速总有不变关系V t/2V s/25、无初速的匀加速直线运动比例式:时间等分点:各时刻速度比:各时刻总位移比:各段时间内位移比:位移等分点:各时刻速度比:到达各分点时间比通过各段时间比纸带法求速度和加速度:有用结论:1、在v-t图象中,图象上各点切线的斜率表示;某段图线下的“面积”数值上与该段相等。

特殊图像(a-x图像包围面积=1/2(v t2-v02)(1/v-x图像面积为时间)2、在初速度为V0的竖直上抛运动中,返回原地的时间T= ;抛体上升的最大高度H= 。

对称性的应用;竖直上抛物体与自由落体物体相遇时速度相等,则两物体运动情况类似。

3、平抛(类平抛)物体运动中,速度夹角的正切值等于位移夹角正切的两倍;速度的反向延长线交于位移中点;从斜面平抛的小球落回斜面时与斜面夹角一定。

(落回斜面的时间、位置、距斜面最远)平抛落到台阶问题4、初速为零以a1匀加速t秒加速度变为a2再经过t秒回到出发点,a2= a15、小船渡河时,船头总是直指对岸所用的最短;满足什么条件航程最短(两种情况)6、追及相遇问题临界条件7、质点做简谐运动时,靠近平衡位置时,加速度而速度;离开平衡位置时,加速度而速度。

8、紧靠点光源向对面墙平抛的物体,在对面墙上的影子的运动是运动。

9、等时圆的结论:时间相等:450时时间最短:无极值:10、“刹车陷阱”11、速度分解问题:绳和杆相连的物体,在运动过程中沿绳或杆的分速度大小相等;加速度关系与速度关系不同12、平均速率一般不等于平均速度的大小,只有在单向(不返回)直线(不转弯)运动中二者才相等。

这是由于位移和路程的区别所导致的。

但瞬时速率与瞬时速度的大小相等。

13、在一根轻绳的上下两端各拴一个小球$若人站在高处手拿上端的小球由静止释放则两小球落地的时间差随开始下落高度的增大而减小14、飞机投弹问题15、皮带轮问题(专题总结)16、质心系的选取(弹簧双振子模型)18、多普勒效应:f uV v V f ±='(f 为波源频率,f’为接收频率,V 为波在介质中的传播速度,v 为观察者速度,u 为波源速度)19、几个做抛体运动的物体,相对匀速直线运动。

高中物理二级结论总结

高中物理二级结论总结

高中物理二级结论总结引言高中物理是一门以观察、实验和推理为基础的科学学科,通过对物理现象的研究,我们可以更好地理解我们所处的世界。

在高中物理研究的过程中,我们掌握了很多基本概念和理论,并且通过实验验证了这些理论。

本文将对高中物理的二级结论进行总结,帮助我们巩固知识,并将其应用到实际问题中。

一、运动学1. 匀速直线运动- 匀速直线运动的速度和位移成正比。

- 匀速直线运动的速度不变,加速度为零。

2. 加速直线运动- 加速直线运动的速度和位移不成正比。

- 加速直线运动的速度随时间变化,加速度不为零。

3. 自由落体运动- 自由落体运动的加速度在近地面条件下近似为重力加速度g。

- 自由落体运动的时间与物体下落的高度无关,只与初速度和加速度有关。

二、力学1. 牛顿第一定律- 牛顿第一定律也称为惯性定律,物体在无外力作用下保持静止或匀速直线运动。

2. 牛顿第二定律- 牛顿第二定律描述了物体的加速度与作用力之间的关系:F = ma。

- 物体的加速度与作用力成正比,质量越大,加速度越小。

3. 牛顿第三定律- 牛顿第三定律描述了物体间相互作用力的性质:作用力和反作用力大小相等,方向相反,作用在不同物体上。

三、能量1. 动能- 动能是物体运动时具有的能量,计算公式为:Ek = 1/2 *mv^2,其中m为物体质量,v为物体速度。

2. 势能- 势能是物体由于位置的不同而具有的能量,常见的势能有重力势能和弹性势能。

3. 动能定理- 动能定理描述了物体受力时动能的变化:ΔEk = W,其中ΔEk为动能的变化量,W为物体所受的合外力所做的功。

结论高中物理学习的过程中,我们通过实验和理论推导,掌握并验证了许多二级结论。

这些结论帮助我们更好地理解了物理现象,并将其应用到实际生活中解决问题。

从运动学到力学再到能量,我们逐渐建立了关于物理世界的基本认知,为进一步深入研究和应用物理学打下了坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“二级结论”集一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的力平衡,力之间的夹角为1200。

3.物体沿斜面匀速下滑,则μα=tg 。

4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: TS S V V V Vt 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12 , 位移中点的即时速度VV V S 212222=+, V V S t 22>纸带点痕求速度、加速度:TS S Vt 2212+=,212TS S a -=,()aS S n Tn =--1214.自由落体:V t (m/s ): 10,20,30,40,50H 总(m): 5、20、45、80、125 H 分(m): 5、15、25、35、455.竖直上抛运动:对称性:t 上= t 下,V 上= -V下 6.相对运动:共同的分运动不产生相对位移。

7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。

8.“S=3t+2t 2”:a=4m/s2,V0=3m/s。

9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。

三、运动定律:1.水平面上滑行:a=-μg 2.系统法:动力-阻力=m总a 3.沿光滑斜面下滑:a=gSin α时间相等: 450时时间最短: 无极值:4.一起加速运动的物体: Fm m m N 212+=,与有无摩擦(μ相同)无关,平面、斜面、竖直都一样。

5.几个临界问题: αgtg a = 注意α角的位置!光滑,相对静止 弹力为零 弹力为零 6.速度最大时合力为零:汽车以额定功率行驶四、圆周运动 万有引力:1.向心力公式:R m R f m R Tmm Rmv F ωππω=====222222442.在非匀速圆周运动中使用向心力公式的办法:沿半径方向的合力是向心力。

3.竖直平面内的圆运动(1)“绳”类:最高点最小速度gR ,最低点最小速度5gR , 上、下两点拉力差6mg 。

要通过顶点,最小下滑高度2.5R 。

最高点与最低点的拉力差6mg 。

(2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg ,向心加速度2g (3)“杆”:最高点最小速度0,最低点最小速度gR 4。

4.重力加速2rGM g =,g 与高度的关系:()gh R Rg ⋅+=225.解决万有引力问题的基本模式:引力=向心力6.人造卫星:h 大V 小T 大a 小F 小。

速率与半径的平方根成反比,周期与半径的平方根的三次方成正比。

同步卫星轨道在赤道上空,h=4.6R,V=3.1km/s7.卫星因受阻力损失机械能:高度下降、速度增加、周期减小。

8.变换:GM=gR29.在卫星里与重力有关的实验不能做。

10.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。

11.第一宇宙速度:Rg V =1,RGM V=1,V 1=7.9km/s五、机械能:1.求机械功的途径:(1)用定义求恒力功。

(2)用动能定理(从做功和效果)或能量守恒求功。

(3)由图象求功。

(4)用平均力求功(力与位移成线性关系) (5)由功率求功。

2.恒力做功与路径无关。

3.功能关系:摩擦生热Q =f ·S 相对=系统失去的动能,Q 常不等于功的大小。

4.保守力的功等于对应势能增量的负值:p E W ∆-=保5.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能。

六、动量:1.反弹:()∆p m v v =+122.“弹开”(初动量为零,分成两部分):速度和动能都与质量成反比。

3.一维弹性碰撞:()'=-++V m m V m V m m 112122122,()Vm m V m V m m 221211122'=-++动物碰静物:V 2=0, ()'=-+'=+V m m V m m V m V m m 112112211122,质量大碰小,一起向前;质量相等,速度交换;小碰大,向后转。

4.A追上B发生碰撞,则(1) V A >V B (2)B 的动量和速度增大 (3)动量守恒 (4)动能不增加 (5)A 不穿过B ('<'V V A B )。

5.碰撞的结果总是介于完全弹性与完全非弹性之间。

6.解决动力学问题的三条路:路径 物理规律 适用的力 能研究的量不能研究的量运用的场合 运动定律 运动定律+运动学公式 恒力S ,V ,t无 恒力作用过程 动量 动量定理 动量守恒定律恒力或变力 V ,t S 运动传递过程 功、能动能定理 机械能守恒定律 能量守恒定律 功能关系恒力或变力 V ,St能量转化过程七、振动和波:1.物体做简谐振动, 在平衡位置达到最大值的量有速度、动能在最大位移处达到最大值的量有回复力、加速度、势能通过同一点有相同的位移、速率、回复力、加速度、动能、势能 可能有不同的运动方向经过半个周期,物体运动到对称点,速度大小相等、方向相反。

经过一个周期,物体运动到原来位置,一切参量恢复。

2.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解” 3.波形图上,介质质点的运动方向:“上坡下,下坡上”4.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比。

5.波发生干涉时,看不到波的移动。

八、热学1.阿伏加德罗常数把宏观量和微观量联系在一起。

宏观量和微观量间计算的过渡量:物质的量(摩尔数)。

2.分析气体过程有两条路:一是用参量分析(PV/T=C )、二是用能量分析(ΔE=W+Q )。

3.一定质量的理想气体,内能看温度,做功看体积,吸热放热综合以上两项用能量守恒分析。

九、静电学:1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值:电电E W ∆-=。

2.电现象中移动的是电子(负电荷),不是正电荷。

3.粒子飞出偏转电场时“速度的反向延长线,通过电场中心”。

4.讨论电荷在电场里移动过程中电场力的功、电势能变化相关问题的基本方法:定性用电力线(把电荷放在起点处,分析功的正负,标出位移方向和电场力的方向,判断电场方向、电势高低等); 定量计算用公式。

5.电容器接在电源上,电压不变;断开电源时,电容器电量不变;改变两板距离,场强不变。

6.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。

十、恒定电流:1.串联电路:U 与R 成正比,U R R R U 2111+=。

P 与R 成正比,PR R R P 2111+=。

2.并联电路:I 与R 成反比, IR R R I 2121+=。

P 与R 成反比, PR R R P 2121+=。

3.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。

4.路端电压:IrE U -=,纯电阻时ErR R U +=。

5.并联电路中的一个电阻发生变化,电流有“此消彼长”关系:一个电阻增大,它本身的电流变小,与它并联的电阻上电流变大。

:一个电阻减小,它本身的电流变大,与它并联的电阻上电流变小。

6.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。

外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。

7.改画电路的办法:始于一点,止于一点,盯住一点,步步为营。

8.在电路中配用分压或分流电阻时,抓电压、电流。

9.右图中,两侧电阻相等时总电阻最大。

10.纯电阻电路,内、外电路阻值相等时输出功率最大,rEP m 42=。

R 1 R 2 = r 2 时输出功率相等。

11.纯电阻电路的电源效率:η=R R r+。

12.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。

稳定时,与它串联的电阻是虚设,如导线。

在电路变化时电容器有充、放电电流。

直流电实验:1. 考虑电表内阻的影响时,电压表和电流表在电路中, 既是电表,又是电阻。

2. 选用电压表、电流表: ① 测量值不许超过量程。

② 测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。

③ 电表不得小偏角使用,偏角越小,相对误差越大 。

3.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便。

选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。

4.选用分压和限流电路:(1)用阻值小的变阻器调节阻值大的用电器时用分压电路,调节范围才能较大。

(2)电压、电流要求“从零开始”的用分压。

(3)变阻器阻值小,不能保证用电器安全时用分压。

(4)分压和限流都可以用时,限流优先(能耗小)。

5.伏安法测量电阻时,电流表内、外接的选择: “好表内接误差小”(AX R R 和XV R R 比值大的表好)。

6.多用表的欧姆表的选档:指针越接近R中误差越小,一般应在4中R 至4中R 范围内。

选档、换档后,经过“调零”才能进行测量。

7.故障分析:串联电路中断路点两端有电压,通路两端没有电压。

8.由实验数据描点后画直线的原则:(1)通过尽量多的点,(2)不通过的点应靠近直线,并均匀分布在线的两侧,(3)舍弃个别远离的点。

十一、磁场:1.粒子速度垂直于磁场时,做匀速圆周运动:qBmV R =,qBmT π2=(周期与速率无关)。

2.粒子径直通过正交电磁场(离子速度选择器):qvB=qE ,BE V=。

3.粒子作圆运动穿过匀强磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角。

十二、电磁感应:1.楞次定律:“阻碍”的方式是“增反、减同”楞次定律的本质是能量守恒,发电必须付出代价,楞次定律表现为“阻碍原因”。

2.运用楞次定律的若干经验:(1)内外环电路或者同轴线圈中的电流方向:“增反减同”(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

(3)“×增加”与“·减少”,感应电流方向一样,反之亦然。

(4)单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。

通电螺线管外的线环则相反。

3.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

4.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来求功和能量。

相关文档
最新文档