DOE及Minitab使用初级知识(中)
合集下载
DOE基础知识(minitab软件操作实例讲解DOE)精品PPT课件
--依据2因子以上的特定因子水准的组合而引起的效果
DOE基础知识
实验计划法概要
实验的类型
● 试行与事故试验(Trial and Error) ● 一次一个的要因(One-Factor-at-a Time:OFAT) ● 部份要因实验( Fractionl Factorial Designs ) ● 完全要因实验( Full Factorial Designs ) ● 反应表面实验(Response Surface Methodology) ● EVOP调优试验设计 (Evolutionary Op部交 所有的主效果和 输出变量的预测
向
互作用
交互作用 模型(曲率效果)
(线形效果)
说明:考虑实验的目的和预算等来选择DOE
DOE基础知识
完全要因实验
定义
Kn要因配置法 不按因子数为N个,因子的水准数为K的实验计划法重复实验, 也应该可以实施Kn个的实验次数 2k要因实验是由具有2水准的K个因子构成
●处理(Treatment) --所谓的处理是指各因子单一水准的组合。如:100度温度下,压力1气压
●处理组合( Treatment Combination) --是指因子各水准的组合。如2x2x2的情况下,实验的处理组合是8
●重复(Repeat) ●主要效果(Main Effect)
--是指各输入变量由不同水准间变化时因水准间差异而引起的输出变量变化的平均值 ●交互作用(Interaction)
DOE基础知识
完全要因实验例题
实验顺序
1 2 3 4 5 6 7 8
区分 总和总和+ 差 平均效果
反应温度 浓度 压力 A*B (A) (B) (C)
-1
-1
DOE基础知识
实验计划法概要
实验的类型
● 试行与事故试验(Trial and Error) ● 一次一个的要因(One-Factor-at-a Time:OFAT) ● 部份要因实验( Fractionl Factorial Designs ) ● 完全要因实验( Full Factorial Designs ) ● 反应表面实验(Response Surface Methodology) ● EVOP调优试验设计 (Evolutionary Op部交 所有的主效果和 输出变量的预测
向
互作用
交互作用 模型(曲率效果)
(线形效果)
说明:考虑实验的目的和预算等来选择DOE
DOE基础知识
完全要因实验
定义
Kn要因配置法 不按因子数为N个,因子的水准数为K的实验计划法重复实验, 也应该可以实施Kn个的实验次数 2k要因实验是由具有2水准的K个因子构成
●处理(Treatment) --所谓的处理是指各因子单一水准的组合。如:100度温度下,压力1气压
●处理组合( Treatment Combination) --是指因子各水准的组合。如2x2x2的情况下,实验的处理组合是8
●重复(Repeat) ●主要效果(Main Effect)
--是指各输入变量由不同水准间变化时因水准间差异而引起的输出变量变化的平均值 ●交互作用(Interaction)
DOE基础知识
完全要因实验例题
实验顺序
1 2 3 4 5 6 7 8
区分 总和总和+ 差 平均效果
反应温度 浓度 压力 A*B (A) (B) (C)
-1
-1
DOEMinitab操作教程
点击每一个方框,使其选中, 然后单击OK。
然后回到Session窗口:
Paired T-Test and CI: Material A, Material B H0:两种材料寿命没有差异
Paired T for Material A - Material B
Ha:两种材料寿命有差异
N Mean StDev SE Mean
H0:两种材料寿命没有差异 Ha:两种材料寿命有差异
P>0.05,接收H0。
Difference = mu (Material A) - mu (Material B) Estimate for difference: -0.410000 95% CI for difference: (-2.754808, 1.934808) T-Test of difference = 0 (vs not =): T-Value = -0.37 P-Value = 0.717 DF = 17
0.0
Differences
两种材料有显著差异,研发处的建议被接受。
6、为什么会得到不同的结论?
• 到底我们该相信那个结论? 不了解基本的统计观念会有什么坏处?
2、化学实验设计案例
Factor (因子)
Temperature(T) Concentration(C) Catalyst (K)
Level (水準)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
_
X
-0.5
Ho
-1.2
-1.0
-0.8
-0.6 -0.4
-0.2
0.0
0.2
Differences
两种材料有显著差异,研发处的建议被接受。
DOEMinitab操作教程
DOEMinitab操作教程
书山有路勤为径, 学海无涯苦作舟
2020年4月13日星期一
1、男球鞋案例
1、资料登陆 2、选择统计工具2 sample t 3、图形 4、选择统计工具Paired t 5、图形 6、为什么会得到不同的结论
书山有路勤为径, 学海无涯苦作舟
1、资料登陆
• 1、把资料登陆到Minitab软件,输入资料的 操作类似Excel软件,如下图:
•95% CI for mean difference: (-0.686954, -0.133046)
•T-Test of mean difference = 0 (vs not = 0): T-Value = -3.35 P-Value = 0.009
书山有路勤为径, 学海无涯苦作舟
5、图形
书山有路勤为径, 学海无涯苦作舟
书山有路勤为径, 学海无涯苦作舟
•点击每一个方框,使其 选中,然后单击OK。
书山有路勤为径, 学海无涯苦作舟
点击 到Session视窗
Results for: BOY'S SHOE.MTW
Two-Sample T-Test and CI: Material A, Material B
Two-sample T for Material A vs Material B
•Type of Design:选择设计种类 •Number of Factors:选择因子数目 •Design:选择设计(解析度、中心点、反复数)
•Factor:输入名称和水准 •Options:(取消)随机化选项
•执行实验:收集实验数据
Minitab:Stat>DOE>Factorial>Create Factorial Design
书山有路勤为径, 学海无涯苦作舟
2020年4月13日星期一
1、男球鞋案例
1、资料登陆 2、选择统计工具2 sample t 3、图形 4、选择统计工具Paired t 5、图形 6、为什么会得到不同的结论
书山有路勤为径, 学海无涯苦作舟
1、资料登陆
• 1、把资料登陆到Minitab软件,输入资料的 操作类似Excel软件,如下图:
•95% CI for mean difference: (-0.686954, -0.133046)
•T-Test of mean difference = 0 (vs not = 0): T-Value = -3.35 P-Value = 0.009
书山有路勤为径, 学海无涯苦作舟
5、图形
书山有路勤为径, 学海无涯苦作舟
书山有路勤为径, 学海无涯苦作舟
•点击每一个方框,使其 选中,然后单击OK。
书山有路勤为径, 学海无涯苦作舟
点击 到Session视窗
Results for: BOY'S SHOE.MTW
Two-Sample T-Test and CI: Material A, Material B
Two-sample T for Material A vs Material B
•Type of Design:选择设计种类 •Number of Factors:选择因子数目 •Design:选择设计(解析度、中心点、反复数)
•Factor:输入名称和水准 •Options:(取消)随机化选项
•执行实验:收集实验数据
Minitab:Stat>DOE>Factorial>Create Factorial Design
MiniTab使用说明(中文)
Minitab
删除 Cell(s) 的数据 – 下端的 cell 移动 复制 Cell(s) 粘贴 Cell(s) LinK粘贴 Link 管理 选择所有 cell 编辑最后操作的对话框
<资料输入及删除> 资料输入及删除>
打开命令编辑器 一般选项
指定变量名 : 在 C1(Col名) 下端的 cell 上输入变量名。 输入 Data : 把数据和文字输入到下端的 cell 上 但,要是先输入 数值把变量属性变更为数值变量后不能输入文字。 删除 Data : 把相关 cell 用鼠标 drag 后按 Del 键 相关 cell 的内容被删除掉,并且下端的 cell 向上移动。
练习)在 AUTO.MTW上 1) 删除 4,5 Row后把 C4, C5的 DATA 变更为 234 2) 把 C2 Col 移动到 C5 3) 把 C4 Column Size 变更为 12
<6>
Minitab 菜单(Manip) 菜单(Manip)
从活动 Worksheet 中复制数据,制作 subset Worksheet。 把活动 Worksheet 分成两个以上新的 Worksheet 把多个 Worksheet 合并为一个 Worksheet 把列上内容复制到其它列上 把一列以上的数据移到多个列上 把多个列上的数据合成一个列 交换行和列的位置 对齐排列数据 数据上注明序位 删除特定列的行 删除行、常数、行列 把多个列的文字数据合并为一个列 数据按变换条件交换 变更 Data的属性 把数据在Session窗口里输出
录
1 8 17 28 35 52 59 71 73 76 88
1. Minitab 的操作
什么是 Minitab ?
MINITAB在DOE试验中的使用方法
45.89 48.66 48.12 47.32 49.36 54.33 52.13 52.64 53.64 51.26
1 45.36 46.33 45.87 46.98 51.23 55.33 54.63 52.11 54.32 48.61 49.11 2 47.81 45.21 48.99 48.35 46.56 46.31 48.51 49.32 47.27 55.67 55.98 2 52.31 48.79 55.61 59.68 62.34 57.18 49.62 48.31 49.2 45.1 49.32 3 58.96 58.62 54.36 55.1 51.23 50.31 49.13 46.52 62.34 65.19 48.67 1 50.12 51.23 53.67 59.32 61.22 58.76 58.97 56.37 52.34 54.31 57.21
MINITAB在DOE试验中的使用方法 在 试验中的使用方法
Author : LF Yang
Date
: Oct 15 .2008
步骤一: 步骤一:
1.当试验因子和试验因子的设置水平确定后如何使用 当试验因子和试验因子的设置水平确定后如何使用MINITAB 进行正交分组,假定 进行正交分组, 当试验因子和试验因子的设置水平确定后如何使用 试验因子为4个分别为 个分别为: 水平, 试验因子为 个分别为:USG、 Force、 Time、 C/V,且均为 水平,如下表: 、 、 、 ,且均为3水平 如下表:
优先等级排序
Author : LF Yang
Date
: Oct 15 .2008
Author : LF Yang
Date
: Oct 15 .2008
Minitab实验设计DOE操作步骤
值影响较小
23
点击编辑上一对话框图标
24
先选中交互作用图
第二步点击设置
25
点击确定
显示此图形
再点击确定
26
图示解析:前半平面度和门磁角 度对于漏波值的大小无交互作用
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
28
双击此标识处
显示出以下对话框单击标识处显示到此对话框最后点击设计
选中因 子数3
37
出现此 对话框, 选择设
计
点击确
定
38
出现此对 话框,点 击显示可
用设计
39
1、点击全 因子
2、点击确定 40
点击确定
41
须选中类型是数 字还是文本
在右对话框中输入 因子名称和选中水
平高低
然后点击确定
42
然后点击确定
43
然后点击选项
44
取消勾选后,标准序C1 可以按照顺序排列
64
感谢阅读
感谢阅读
50
1、勾选主效应图 2、再点击设置
51
双击C8距离,点 选到下面的响应
框中
点击双箭头的标识,把 上面的三个因子选入到
右边的空白框中
52
点击确定
53
点击确定
54
点击:编辑上一对话框图标
1、生成距离主效 应图,进行分析
分析图示结果:
55
56
57
58
59
60
61
62
63
操作演示完
然后点击确定
45
点击结果
46
3、再点 击确定
2、出现 此对话框
1、点击 确定
23
点击编辑上一对话框图标
24
先选中交互作用图
第二步点击设置
25
点击确定
显示此图形
再点击确定
26
图示解析:前半平面度和门磁角 度对于漏波值的大小无交互作用
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
28
双击此标识处
显示出以下对话框单击标识处显示到此对话框最后点击设计
选中因 子数3
37
出现此 对话框, 选择设
计
点击确
定
38
出现此对 话框,点 击显示可
用设计
39
1、点击全 因子
2、点击确定 40
点击确定
41
须选中类型是数 字还是文本
在右对话框中输入 因子名称和选中水
平高低
然后点击确定
42
然后点击确定
43
然后点击选项
44
取消勾选后,标准序C1 可以按照顺序排列
64
感谢阅读
感谢阅读
50
1、勾选主效应图 2、再点击设置
51
双击C8距离,点 选到下面的响应
框中
点击双箭头的标识,把 上面的三个因子选入到
右边的空白框中
52
点击确定
53
点击确定
54
点击:编辑上一对话框图标
1、生成距离主效 应图,进行分析
分析图示结果:
55
56
57
58
59
60
61
62
63
操作演示完
然后点击确定
45
点击结果
46
3、再点 击确定
2、出现 此对话框
1、点击 确定
DOE(试验计划使用minitab)
分析结果 解释,对策
• 在已知的条件之内 导出结论 •确认实验与否的决定 • 确认实验的 再现性的确保
Data 分析
• Graph化 • 实验时的管理状态 与否及误差的 等分散性研讨 • 对missing value的事前 对策
实验的实施
•按照计划的 实验实施
• 因子(factor) : 影响data散布的无数原因当中直接与实验有关的原因 • 水平(level) : 为了实验而选定的因子的条件 • fixed factor : 技术性指定的因子(温度, 压力, 强度 等)变量因子 • Block : 把实验分为时间性, 空间性,在内部能够造成实验环境均匀
→ 按结果,设定作业标准,提供选择原料、装置、测定方法等 的基准
14 -3/29
实验设计
什么是实验设计(DOE) ?
对已知的事实 检证或 确认未知的事实 的假设
(进行实验)
Prism(DOE)
(实验设计)
True State of Nature
Noise
New Data
Available Data
T
93.67 1.67 18.33 9.00 19.67 -9.67 -1.00
P
0.007 0.344
0.01250 0.13750 0.06750 0.14750 -0.07250 -0.00750
0.00625 0.06875 0.03375 0.07375 -0.03625 -0.00375
实验设计(DOE)-完全配置法例题(23 实验)
对实验设计(DOE)的适用结果解释及对策事项是 ?
•Minitab Menu : Stat / DOE / Factorial/Factorial Plot 2. 分析 1) 主效果(Main Effects Plot)
DOEMinitab操作教程
DOEMinitab操作教程
1. 什么是DOE(设计实验)?
DOE(Design of Experiments),即设计实验,是一种系统、有效地进行试验设计和数据分析的方法。
它通过合理地选择实验方案,充分利用有限的资源和时间,提高实验效率,提供科学依据来优化产品和工艺。
2. 为什么使用DOE进行实验设计?
使用DOE进行实验设计有以下几个优点:
•提高实验效率:通过设计合理的实验方案,可以充分利用有限的资源和时间,减少试验次数,提高实验效率。
•优化产品和工艺:DOE可以通过充分考虑多个因素之间的交互作用,找到最佳的组合方案,优化产品和工艺参数。
•提供科学依据:DOE提供了数据分析和统计方法,能够从实验数据中提取有效信息,从而为决策提供科学依据。
3. Minitab简介
Minitab是一种常用的统计软件,提供了丰富的数据分析和实验设计功能。
在DOE方面,Minitab可以帮助用户设计合适的实验方案,分析实验数据,得出结论,并提供可视化的结果。
4. DOEMinitab操作步骤
使用DOEMinitab进行实验设计的操作步骤如下:
步骤1:安装和启动Minitab软件
在Minitab官方网站上下载最新版的Minitab软件,并按照官方指导进行安装。
安装完成后,启动Minitab软件。
步骤2:创建工作表
在Minitab软件中,点击。
Minitab实验设计DOE操作步骤(精选)
然后点击选项
Minitab实验设计DOE操作步骤
44
取消勾选后,标准序C1 可以按照顺序排列
然后点击确定
Minitab实验设计DOE操作步骤
45
点击结果
Minitab实验设计DOE操作步骤
46
2、出现此
1、点击
3、再点击
对话框
确定
Minitab实验设计DOE操作步骤
47
确定
在工作表中输入每次试验 的结果“距离”
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
Minitab实验设计DOE操作步骤
28
双击此标识处
显示出以下对话框
单击标识处
显示到此对话框
最后点击确定
Minitab实验设计DOE操作步骤
29
再点击确定
Minitab实验设计DOE操作步骤
30
图示解析:通过实验设计分析, 试验结果显示出门磁角度在92, 前半平面度在0.3时,漏波值是最
再点击确定
Minitab实验设计DOE操作步骤
22
图示解析:门磁 角度越大漏波值 越小;反之,门 磁角度越小漏波 值越大,且门磁 角度的大小对漏
波值影响很大
图示解析:前半平面 度越大漏波值越小; 反之,前半平面度越 小漏波值越大,前半 平面度的大小对漏波
值影响较小
Minitab实验设计DOE操作步骤
23
点击编辑上一对话框图标
Minitab实验设计DOE操作步骤
24
先选中交互作用图
第二步点击设置
Minitab实验设计DOE操作步骤
25
点击确定
显示此图形
再点击确定
Minitab运用之 DOE篇 (NXPowerLite)
Minitab運用之 DOE篇
KM名稱 KM作者 Minitab運用之DOE篇 唐榮亮 建立日期 版本 2009.06.30 1.0
KM類別
摘要
專業技朮
Minitab 軟體使用和案例 分析
一 對DOE的認識
部門分類
關鍵字
PA技朮
DOE,Minitab等
KM大綱
二 DOE的三大基本原則 三 選擇DOE方法的步驟 四 Minitab的運用 五 案例分析
DOE案例分析---擬合選定模型
2.看ANOVA表中的失擬現象
此處有一假設檢驗: H0:無失擬<--->H1:失擬. 如果對應的P value大于0.05,則無法拒絕原假設,即無失擬. 如果對應的P value小于0.05,則拒絕原假設,即失擬. 如果出現失擬,則需要分析其可能原因:
實驗設計中漏掉了重要因子; 在因子篩選實驗中盡可能多的加入因子.
Minitab 菜單解析
選擇要變更的因子數 選擇兩水平的部分析 因或通用全因子實驗
• StatDOEFactorialDefine Custom Factorial Design
Minitab 菜單解析
根據需要變更 因子信息
選擇編碼和不編碼
Minitab 菜單解析
根據需要變更標准 順序和運行順序
DOE案例分析---擬合選定模型
4.擬合相關系數(R-sq)和修正擬合相關系數(R-sq(adj))
判斷一個模型的優劣:
1. R-sq和R-sq(adj) 兩個值都越接近1. 2. 刪減模型中R-sq和R-sq(adj) 兩個值都越接近.
DOE案例分析---擬合選定模型
5.樣本標准差(s)和樣本方差(s2)
DOE案例分析---殘差分析
KM名稱 KM作者 Minitab運用之DOE篇 唐榮亮 建立日期 版本 2009.06.30 1.0
KM類別
摘要
專業技朮
Minitab 軟體使用和案例 分析
一 對DOE的認識
部門分類
關鍵字
PA技朮
DOE,Minitab等
KM大綱
二 DOE的三大基本原則 三 選擇DOE方法的步驟 四 Minitab的運用 五 案例分析
DOE案例分析---擬合選定模型
2.看ANOVA表中的失擬現象
此處有一假設檢驗: H0:無失擬<--->H1:失擬. 如果對應的P value大于0.05,則無法拒絕原假設,即無失擬. 如果對應的P value小于0.05,則拒絕原假設,即失擬. 如果出現失擬,則需要分析其可能原因:
實驗設計中漏掉了重要因子; 在因子篩選實驗中盡可能多的加入因子.
Minitab 菜單解析
選擇要變更的因子數 選擇兩水平的部分析 因或通用全因子實驗
• StatDOEFactorialDefine Custom Factorial Design
Minitab 菜單解析
根據需要變更 因子信息
選擇編碼和不編碼
Minitab 菜單解析
根據需要變更標准 順序和運行順序
DOE案例分析---擬合選定模型
4.擬合相關系數(R-sq)和修正擬合相關系數(R-sq(adj))
判斷一個模型的優劣:
1. R-sq和R-sq(adj) 兩個值都越接近1. 2. 刪減模型中R-sq和R-sq(adj) 兩個值都越接近.
DOE案例分析---擬合選定模型
5.樣本標准差(s)和樣本方差(s2)
DOE案例分析---殘差分析
DOE培训系列MintabDOE操作说明
因子數選擇3 DOE培训系列MintabDOE操作说明
中心複合設計
n 3:點擊
確認中心复合试验设计的因素数所对应的运行次数
DOE培训系列MintabDOE操作说明
中心複合設計
n 4:點擊
選择中心复合试验设计的因素数和对应的运行次数
DOE培训系列MintabDOE操作说明
中心複合設1 +1
+1.682 +1.682 +1.682
实际设置 1400 800 1.6
1268 834 1.7
DOE培训系列MintabDOE操作说明
中心複合設計
11:數據輸入: 12:在MINITAB下拉式菜单选:Stat>Factorial>Response Surface>Analysis Response Surface Design 如下图
从(A、C、Y)图中可以 看出,因素A、C对Y的是 非线性的,因为表面图发 生弯曲。
从(B、C、Y)图中可以看出, 因素B、C对Y的是接近线性的, 因为表面图接近一个平面。
PS: (A、B、Y)图和(A、C、Y)图发生弯曲的原因为 因素A存在二次项,在(B、C、Y)图中,A因素被 固定为0,表面图反映的只是因素B与C的影响,是线 性的,表现在表面图上为表面图形近似为平面。
确定试验因素水平表
Factor A.射出壓力(psi) B.保持壓力(psi)
C射出時間(s)
水平1200 700 1.2
水平+ 1400 800 1.6
DOE培训系列MintabDOE操作说明
中心複合設計
n 1. 在MINITAB工作表选择:Stat>DOE>Response Surface>Create Response Surface Design,如下表:
DOE及Minitab使用初级知识(中)
•12
多指标的分析方法---综合评分法
例 某厂生产一种化工产品,需要检验两下指标:核酸统一纯度和 回收率,这两个指标都是越大越好。有影响的因素有4个,各 有3个水平。试通过试验分析找出较好的方案
解:这是4因素3水平的试验,可以选用正交表L9(34)。试验结 果如表。
•13
总分 = 4 x 纯度 + 1 x 回收率
2) 碱度C对三个指标的极差都不是最大的,是次要的因素。对抗压 强度和裂纹度来讲,碱度取1.1最好;对落下强度,取1.3最好,但取 1.1也不是太差,综合考虑碱度取1.1;
3) 水分A对裂纹度来讲是最大的因素,以取9为最好;但对抗压强度 和落下强度来讲,水分的极差都是最小的,是影响最小的因素。综 合考虑水分取9; 最后较好的试验方案是B3C1A2
•18
有交互作用的正交试验设计表
• 例6:(水平数相同) • 我们用一个3因素2水平的有交互作用的例子来说明 • 某产品的产量取决于3个因素A,B,C,每个因素都有两个水 • 平。每两个因素之间都有交互作用,试验指标为产量,越高 • 越好。具体如下:
•19
• 解:这是3因素2水平的试验。3个因素A, B, C要占3列,它们 之
•31
单素方差分析
•单因素方差基本公式
•nj为组内样本大小,i = 1, … , n. nj为同一水平下的抽样数。 •g为组数,j=1, … , g, • 为总平均值 • 为同一水平差
• 计算总平方和 •SST = Q =
• 计算因子影响
•=( ng-1)×S2
通过分析可以得出:各因素对试验指标(铁水温度)的影响按大小次序应当是C (底 焦高度) A (焦比) B (风压);最好的方案应当是C2A3B2。与此结果比较接近的是第9 号试验。
多指标的分析方法---综合评分法
例 某厂生产一种化工产品,需要检验两下指标:核酸统一纯度和 回收率,这两个指标都是越大越好。有影响的因素有4个,各 有3个水平。试通过试验分析找出较好的方案
解:这是4因素3水平的试验,可以选用正交表L9(34)。试验结 果如表。
•13
总分 = 4 x 纯度 + 1 x 回收率
2) 碱度C对三个指标的极差都不是最大的,是次要的因素。对抗压 强度和裂纹度来讲,碱度取1.1最好;对落下强度,取1.3最好,但取 1.1也不是太差,综合考虑碱度取1.1;
3) 水分A对裂纹度来讲是最大的因素,以取9为最好;但对抗压强度 和落下强度来讲,水分的极差都是最小的,是影响最小的因素。综 合考虑水分取9; 最后较好的试验方案是B3C1A2
•18
有交互作用的正交试验设计表
• 例6:(水平数相同) • 我们用一个3因素2水平的有交互作用的例子来说明 • 某产品的产量取决于3个因素A,B,C,每个因素都有两个水 • 平。每两个因素之间都有交互作用,试验指标为产量,越高 • 越好。具体如下:
•19
• 解:这是3因素2水平的试验。3个因素A, B, C要占3列,它们 之
•31
单素方差分析
•单因素方差基本公式
•nj为组内样本大小,i = 1, … , n. nj为同一水平下的抽样数。 •g为组数,j=1, … , g, • 为总平均值 • 为同一水平差
• 计算总平方和 •SST = Q =
• 计算因子影响
•=( ng-1)×S2
通过分析可以得出:各因素对试验指标(铁水温度)的影响按大小次序应当是C (底 焦高度) A (焦比) B (风压);最好的方案应当是C2A3B2。与此结果比较接近的是第9 号试验。
DOEMinitab操作教程
83 B
Catalyst 72
A 180
Six Sigma-34
3、解读实验结果
解读Minitab 输出
检验ANOVA表格(缩减模式,最佳模式) 检验图表
(交互作用、主效应、立体、残差、及等方差图) 考虑实际上为显著的效应
(计算效应在模式中的百分比) 数学模式
残差分析
Six Sigma-35
ANOVA表格
Temperature 160 180
C o ncentratio n 20 40
C ataly st
Six Sigma-32
Mean of Yield
Main Effects Plot
Main Effects Plot (data means) for Yield
T e mpe rat ure 75
Stat>DOE>Factorial>Analyze Factorial Design
:输入回应值
Six Sigma-25
Terms:选取分析因子
全因子选3 部分因子选1或2
Six Sigma-26
Graphs:选择图表
Six Sigma-27
效应柏拉图
Term
A AC
B AB
C ABC
BC
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.35 P-Value = 0.009
Six Sigma-10
5、图形
Frequency
Histogram of Differences
(with Ho and 95% t-confidence interval for the mean)