2006年高考全国卷I
高考优秀作文案例赏析:卷I 材料作文:乌鸦模仿老鹰
卷I 材料作文:乌鸦模仿老鹰高考优秀作文赏析优秀案例:2006年全国卷I高考优秀作文:正确估量自己生活有时像个迷宫,我们在向着自己理想的方向前进时针因为某些原因而迷失自我。
于是我们开始迷惘,从而无法正确的估量自己。
而令我们迷失的原因许多时候都是上点点细小而琐碎的事。
而许多人都是在自己的贪恋和物欲中迷失。
当一个人有能力的时候,他会依据自己的能力而换取自己想要的东西。
然而,每个人的能力都是不同的,我们的举动也应该以自己的能力为基底。
因此,我们应当学着如何正确的估量自己。
正确的估量自己就是要看清自己的能力,如果一个人的口头表达能力很弱时,他就不应该强迫自己去做演说家;如果一个人字写的非常难看时,他也不应该强迫自己去做书法家。
每个人都有在某方面能力较弱的时候,如果拿自己的弱处去比别人的长处,去做自己做不好的事,即使再怎样努力,都只会事倍功半,最终说不定不仅没成功,还给自己带来空难。
而有些人,能正确的估量自己,看到自己在哪方面能力有限,能力不足时,他就不会去挑战自己那仅有的一点点能力,而是在自己在有把握的地方下功夫。
不过不是人人都能做到能正确估量自己的能力,也不是每时每刻都能正确的估量自己。
因为当我们看到别人在方面小有成就、小有作为时,难免会发出羡慕的想法;当我们看到自己想要得到的东西时,难免会有那种想要立刻得到的欲望。
这种思想和欲望总是会蒙蔽了我们的眼睛,而在此时,我们应该保持理性的心态和心理去面对,我们应该好好地考虑一下我们的能力现在有多少,离这个目标是否还遥远,我们是否有足够的能力去完成它或是得到它。
如果不能,我们要到达哪一步才会成功。
通过理性的看待自己,再决定自己下一步该如何做,这样的步骤有助于我们正确的评估自己,所以当我们深陷于自己的贪恋、欲望的迷宫时,要理性思考。
也许人人都会走入一个迷宫,当我们走入这个迷宫时,请用理性的眼光来审视自己,用正确的尺度来衡量自己,为自己找到一条走出迷宫的路。
的方向盘乌鸦模仿老鹰俯冲抓小羊而身陷困境,为牧羊人所获。
2006年全国高考物理试题(附答案)
2006年普通高等学校招生全国统一考试理科综合能力测试(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、陕西等省用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至5页,第Ⅱ卷6至11页。
全卷共300分。
考试用时150分钟。
祝考试顺利第Ⅰ卷(共21小题,每小题6分,共126分)二、选择题(每小题包括8小题。
每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分)14.某原子核A Z X 吸收一个中子后,放出一个电子,分裂为两个α粒子。
由此可知A .A=7,Z =3B .A=7,Z =4C .A=8,Z =3D .A=8,Z =415.红光和紫光相比,A .红光光子的能量较大;在同一种介质中传播时红光的速度较大B .红光光子的能量较小;在同一种介质中传播时红光的速度较大C .红光光子的能量较大;在同一种介质中传播时红光的速度较小D .红光光子的能量较小;在同一种介质中传播时红光的速度较小16.我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量约为地球质量的181 ,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为A .0.4km/sB .1.8km/sC .11km/sD .36km/s17.图中为一“滤速器”装置示意图。
a 、b 为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O 进入a 、b 两板之间。
为了选取具有某种特定速率的电子,可在a 、b 间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选 电子仍能够沿水平直线OO'运动,由O'射出。
不计重力作用。
可能达到上述目的的办法是A .使a 板电势高于b 板,磁场方向垂直纸面向里B .使a 板电势低于b 板,磁场方向垂直纸面向里C .使a 板电势高于b 板,磁场方向垂直纸面向外D .使a 板电势低于b 板,磁场方向垂直纸面向外18.下列说法中正确的是:A .气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B .气体体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C.压缩一定量的气体,气体的内能一定增加D.分子a 从远外趋近固定不动的分子b ,当a 到达受b 的作用力为零处时,a 的动能一定最大19.一砝码和一轻弹簧构成弹簧振子,图1所示的装置可用于研究该弹簧振子的受迫振动。
全国1卷十年高考满分作文(2006-2016)
全国1卷十年高考作文审题及满分作文欣赏(2006年——2016年)一、2006年高考全国卷I作文题【材料】乌鸦因羡慕老鹰能从山上俯冲下来抓走小羊的本领,于是模仿老鹰的俯冲姿势拼命练习。
一天,乌鸦觉得自己练得很棒了,便哇哇地从树上猛冲下来,想抓住山羊往上飞,可是它的身子太轻,爪子又被羊毛缠住,无论怎样拍打翅膀也飞不起来。
结果被牧羊人抓住了。
当牧羊人的孩子问这是什么鸟时,牧羊人说:“这是一只忘记自己叫什么的鸟。
”孩子摸着乌鸦的羽毛说:“它也很可爱呀!”要求全面理解材料,但可以选择一个侧面、一个角度确定立意。
【审题立意】【满分作文】绕树三匝,何枝可依?“月明星稀,乌鹊南飞,绕树三匝,何枝可依?”这是曹孟德的《短歌行》中的诗句。
我们何不以此自问,“何枝可依?”问自己什么是适合自己的,找准自己的位置,找到自己的归附。
老鹰凶猛、健壮,飞翔速度迅猛,从鹫峰顶俯冲而下,捕获猎物,这是它生存的本领,是它依附的枝头。
而乌鸦生性弱小,却一味模仿老鹰,事倍功半,最后落入牧羊人手中,也是可以料想的。
诚然它的精神是可嘉的,然而它却忘记了考虑自身的优点与弱点。
物犹如此,人亦然。
找准自己的位置,找到适合自己依附的枝头,生命才能达到极致。
一代先师孔子,初时以建立以“仁”治国的完美社会为志,周游列国之后,最终没有成功,退而办学,他却成了很好的老师。
孔子的弟子遍及天下,他也最终成为我国伟大的思想家、教育家。
找到自己的枝头,生命的价值才能实现。
一代喜剧大师卓别林,年少时因相貌不佳总被人取笑,后来在他的喜剧生涯中这恰恰成为了一种优势,他演的无声喜剧电影,达到了无声胜有声的境界。
我们不能不说,他事业的成功离不开他正确认知自我并发挥了自身优势。
世界首富比尔·盖茨,本是一名著名大学的学生,然而当他感到大学所教的并不适合自己时,便毅然离开学校,从事电脑设计,最终积累了世界上无人能比的财富。
社会在发展,然而道理却没有变,找准自己的位置,找到适合自己的枝头,生命才能绽放光彩。
历年高考物理 全国卷 2006年
历年高考物理-全国卷-2006年2006年普通高等学校招生全国统一考试理科综合能力测试(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、陕西等省用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至5页,第Ⅱ卷6至11页。
全卷共300分。
考试用时150分钟。
第Ⅰ卷(共21小题,每小题6分,共126分)二、选择题(每小题包括8小题。
每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分)A X吸收一个中子后,放出一个电子,分裂为两个α粒子。
由此可知14.某原子核Z 3C.A=8,Z= 4 =A.A=7,Z3 B.A=7,Z=4 =,ZD.A=8 红光和紫光相比,15.红光光子的能量较大;在同一种介质中传播时红光的速度较大A.红光光子的能量较小;在同一种介质中传播时红光的速度较大B..C红光光子的能量较大;在同一种介质中传播时红光的速度较小.红光光子的能量较小;在同一种介质中传播时红光的速度较小D且贴近。
设该卫星的轨道是圆形的,我国将要发射一颗绕月运行的探月卫星“嫦娥1号”16.11地球上,月球表面。
已知月球的质量约为地球质量的,月球的半径约为地球半径的481 9km/s,则该探月卫星绕月运行的速率约为的第一宇宙速度约为7.C.11km/s .. B18km/s 0A..4km/s36km/sD.为水平放置的平行金属板,一束具有各种不同速17a图中为一“滤速器”装置示意图。
、b.两板之间。
为了选取具有某种特定速率的电子,进入率的电子沿水平方向经小孔Oab、电子仍能够沿水ba可在、间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选射出。
不计重力作用。
可能达到上述目的的办O'运动,由平直线OO'a法是O'板电势高于b板,磁场方向垂直纸面向里a使.A Oba使.B板电势低于板,磁场方向垂直纸面向里b7/ 1年历年高考物理-全国卷-2006板,磁场方向垂直纸面向外使a板电势高于bC.板,磁场方向垂直纸面向外a板电势低于b使D.下列说法中正确的是:18.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器.A 壁的作用力增大,从而气体的压强一定增大气体体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数.B 增多,从而气体的压强一定增大C.压缩一定量的气体,气体的内能一定增加的动能一定的作用力为零处时,a到达受从远外趋近固定不动的分子b,当ab D.分子a 最大所示的装置可用于研究该弹簧振子的受迫振动。
2006年高考试题及答案-理科数学-全国卷
普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(2)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(3)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (4)如果(m 2+i)(1+mi)是实数,则实数m=(A )1(B )-1(C )2(D )-2(5)函数f(x)=tan(x+4π)的单调递增区间为(A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(6)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43 (C )42 (D )32(7)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π(8)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57(C )58(D )3(9)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0,如果平面向量b 1、b 2、b 3满足|b i |=2|a i |,且a i 顺时针旋转30︒后与同向,其中i=1、2、3,则(A )-b 1+b 2+b 3=0 (B )b 1-b 2+b 3=0(C )b 1+b 2-b 3=0 (D )b 1+b 2+b 3=0(10)设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=(A )120 (B )105 (C )90 (D )75(11)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2(C )355cm 2(D )20cm 2(12)设集合I={1,2,3,4,5},选择I 的两个非空子和B ,要使B 中的最小的数大于A 中最大的数,则不同的选择方法共有(A )50种 (B )49种 (C )48种 (D )47种第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2006年全国高考四川卷(Word版有答案
2006年普通高等学校招生全国统一考试(四川卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至5页,第Ⅱ卷6至11页。
全卷300分。
考试用时150分钟。
第Ⅰ卷(共21小题,每小题6分共126分)注意事项:1.答题前,考生务必将自己的姓名、准考证号、填写在试题卷和答题卡上,并将准考证号条形码年铁在答题卡上的指定位置。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷上无效。
3.考试结束后,监考人员将本试题卷和答题卡一并交回。
以下数据可供解题时参考:相对原子质量(原子量):H 1 C 12 N 14 O 16一、选择题(本题包括13小题,每小题只有一个....选项符合题意)1.于热带雨林生态系统,下列叙述不正确...的是A.动植物种类繁多,群落结构复杂B.高温多雨,分解者的活动旺盛C.恢复力稳定性比草原生态系统强D.可用样方法调查某物种的种群密度2.下列关于免疫的叙述,正确的是A.吞噬细胞吞噬外来细菌,必须有抗体参与B.B细胞和T细胞所含基因不同,功能也不同C.“先天性胸腺发育不全”的患者,细胞免疫有缺陷D.B细胞与骨髓瘤细胞融合形成的杂交瘤细胞都能合成单克隆抗体3.细胞增殖过程中DNA含量会发生变化。
通过测定一定数量细胞的DNA含量,可分析其细胞周期。
根据细胞DNA含量不同,将某种连续增殖的细胞株细胞分为三组,每组的细胞数如右图。
从图中所示结果分析其细胞周期,不正确...的是A.乙组细胞正在进行DNA复制B.细胞分裂间期的时间比分裂增长C.丙组中只有部分细胞的染色体数目加倍D.将周期阻断在DNA复制前会导致甲组细胞数减少4.基因工程技术可使大甩手杆菌合成人的蛋白质。
下列叙述不正确...的是A.常用相同的限制性内切酶处理目的基因和质粒B.DNA连接酶和RNA聚合酶是构建重组质粒必需的工具酶C.可用含抗生素的培养基检测大肠杆菌中是否导入了重组质粒D.导入大肠杆菌的目的基因不一定能成功表达浓度,5.将川芎植株的一叶片置于恒温的密闭小室,调节小室CO在适宜光照强度下测定叶片光合作用的强度(以CO2吸收速率表示),测定结果如下图。
2006年高考理综(全国卷一)及答案
2006年普通高等学校招生全国统一考试(一)全国卷I(湖北、湖南、河北、河南、山西、山东、海南、甘肃、宁夏、广西、安徽、浙江、陕西、福建)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第卷1至5页,第Ⅱ卷6至11页。
全卷共300分。
考试用时150分钟。
第Ⅰ卷(共21小题,每小题6分,共126分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准确无误考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
回以下数据可供解题时参考:以下数据可供解题时参考:相对原子质量(原子量):H 1 C 12 N 14 O 16一、选择题(本题包括13小题。
每小题只有一个....选项符合题意)1.有些神经细胞既能传导兴奋,又能合成与分泌激素。
这些细胞位于A.大脑皮层B.垂体C.下丘脑D.脊髓2.一般情况下,用抗原免疫机体,血清中抗体浓度会发生相应变化。
如果第二次免疫与第一次免疫所用的抗原相同且剂量相等,下列四图中能正确表示血清中抗体浓度变化的是3.下列关于动物细胞培养的叙述,正确的是A.培养中的人效应T细胞能产生单克隆抗体B.培养中的人B细胞能够无限地增殖C.人的成熟红细胞经过培养能形成细胞株D.用胰蛋白酶处理肝组织可获得单个肝细胞4.锄足蟾蝌蚪、雨蛙蝌蚪和蟾蜍蝌蚪均以浮游生物为食。
在条件相同的四个池塘中,每池放养等量的三种蝌蚪,各池蝌蚪总数相同。
再分别在四个池塘中放入不同数量的捕食者水螈。
一段时间后,三种蝌蚪数量变化结果如图。
下列分析,错误..的是A.无水螈的池塘中,锄足蟾蝌蚪数量为J型增长B.三种蝌蚪之间为竞争关系C.水螈更喜捕食锄足蟾蝌蚪D.水螈改变了三种蝌蚪间相互作用的结果5.采用基因工程将人凝血因子基因导入山羊受精卵,培育出了转基因羊。
全国1卷2006-2015高考作文审题分析加满分作文参考
全国1卷十年高考作文审题及满分作文欣赏一、2006年高考全国卷I作文题【材料】乌鸦因羡慕老鹰能从山上俯冲下来抓走小羊的本领,于是模仿老鹰的俯冲姿势拼命练习。
一天,乌鸦觉得自己练得很棒了,便哇哇地从树上猛冲下来,想抓住山羊往上飞,可是它的身子太轻,爪子又被羊毛缠住,无论怎样拍打翅膀也飞不起来。
结果被牧羊人抓住了。
当牧羊人的孩子问这是什么鸟时,牧羊人说:“这是一只忘记自己叫什么的鸟。
”孩子摸着乌鸦的羽毛说:“它也很可爱呀!”要求全面理解材料,但可以选择一个侧面、一个角度确定立意。
【满分作文】绕树三匝,何枝可依?“月明星稀,乌鹊南飞,绕树三匝,何枝可依?”这是曹孟德的《短歌行》中的诗句。
我们何不以此自问,“何枝可依?”问自己什么是适合自己的,找准自己的位置,找到自己的归附。
老鹰凶猛、健壮,飞翔速度迅猛,从鹫峰顶俯冲而下,捕获猎物,这是它生存的本领,是它依附的枝头。
而乌鸦生性弱小,却一味模仿老鹰,事倍功半,最后落入牧羊人手中,也是可以料想的。
诚然它的精神是可嘉的,然而它却忘记了考虑自身的优点与弱点。
物犹如此,人亦然。
找准自己的位置,找到适合自己依附的枝头,生命才能达到极致。
一代先师孔子,初时以建立以“仁”治国的完美社会为志,周游列国之后,最终没有成功,退而办学,他却成了很好的老师。
孔子的弟子遍及天下,他也最终成为我国伟大的思想家、教育家。
找到自己的枝头,生命的价值才能实现。
一代喜剧大师卓别林,年少时因相貌不佳总被人取笑,后来在他的喜剧生涯中这恰恰成为了一种优势,他演的无声喜剧电影,达到了无声胜有声的境界。
我们不能不说,他事业的成功离不开他正确认知自我并发挥了自身优势。
世界首富比尔·盖茨,本是一名著名大学的学生,然而当他感到大学所教的并不适合自己时,便毅然离开学校,从事电脑设计,最终积累了世界上无人能比的财富。
社会在发展,然而道理却没有变,找准自己的位置,找到适合自己的枝头,生命才能绽放光彩。
乌鸦勇于拼搏、喜爱学习的精神固然是值得肯定的,然而它不能认清自己,注定是要以失败告终的。
2006年全国统一高考数学试卷(理科)(全国卷一)及解析
2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅B.M∩N=M C.M∪N=M D.M∪N=R2.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x 对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)3.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.4.(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.5.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.6.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C. D.7.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π8.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.39.(5分)设平面向量1、2、3的和1+2+3=0.如果向量1、2、,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,3则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=010.(5分)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.7511.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm212.(5分)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.14.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.15.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).16.(4分)设函数.若f(x)+f′(x)是奇函数,则φ=.三、解答题(共6小题,满分74分)17.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.18.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.19.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.20.(12分)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.21.(14分)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.22.(12分)设数列{a n}的前n项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.2.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f (x)是y=e x的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.3.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.4.(5分)(2006•全国卷Ⅰ)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.【分析】注意到复数a+bi(a∈R,b∈R)为实数的充要条件是b=0 【解答】解:复数(m2+i)(1+mi)=(m2﹣m)+(1+m3)i是实数,∴1+m3=0,m=﹣1,选B.5.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C6.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C. D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.7.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.8.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y ﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.9.(5分)(2006•全国卷Ⅰ)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=0 【分析】三个向量的和为零向量,在这三个向量前都乘以相同的系数,我们可以把系数提出公因式,括号中各项的和仍是题目已知中和为零向量的三个向量,当三个向量都按相同的方向和角度旋转时,相对关系不变.【解答】解:向量1、2、3的和1+2+3=0,向量1、2、3顺时针旋转30°后与1、2、3同向,且|i|=2|i|,∴1+2+3=0,故选D.10.(5分)(2006•全国卷Ⅰ)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.【解答】解:{a n}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选B.11.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.12.(5分)(2006•全国卷Ⅰ)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【分析】解法一,根据题意,按A、B的元素数目不同,分9种情况讨论,分别计算其选法种数,进而相加可得答案;解法二,根据题意,B中最小的数大于A中最大的数,则集合A、B 中没有相同的元素,且都不是空集,按A、B中元素数目这和的情况,分4种情况讨论,分别计算其选法种数,进而相加可得答案.【解答】解:解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;总计有49种,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B 集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°14.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y ﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.15.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:240016.(4分)(2006•全国卷Ⅰ)设函数.若f(x)+f′(x)是奇函数,则φ=.【分析】对函数求导结合两角差的正弦公式,代入整理可得,,根据奇函数的性质可得x=0时函数值为0,代入可求φ的值【解答】解:,则f(x)+f′(x)=,为奇函数,令g(x)=f(x)+f′(x),即函数g(x)为奇函数,g(0)=0⇒2sin(φ)=0,∵0<φ<π,∴φ=.故答案为:.三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A 为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为18.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:∴数学期望Eξ=3×=.19.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.20.(12分)(2006•全国卷Ⅰ)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.【分析】(1)利用相关点法求轨迹方程,设P(x0,y0),M(x,y),利用点M的坐标来表示点P的坐标,最后根据x0,y0满足C的方程即可求得;(2)先将用含点M的坐标的函数来表示,再利用基本不等式求此函数的最小值即可.【解答】解:(I)椭圆方程可写为:+=1式中a>b>0,且得a2=4,b2=1,所以曲线C的方程为:x2+=1(x>0,y>0).y=2(0<x<1)y'=﹣设P(x 0,y0),因P在C上,有0<x0<1,y0=2,y'|x=x0=﹣,得切线AB的方程为:y=﹣(x﹣x0)+y0.设A(x,0)和B(0,y),由切线方程得x=,y=.由=+得M的坐标为(x,y),由x0,y0满足C的方程,得点M 的轨迹方程为:+=1(x>1,y>2)(Ⅱ)||2=x2+y2,y2==4+,∴||2=x2﹣1++5≥4+5=9.且当x2﹣1=,即x=>1时,上式取等号.故||的最小值为3.21.(14分)(2006•全国卷Ⅰ)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.【分析】(Ⅰ)根据分母不为0得到f(x)的定义域,求出f'(x),利用a的范围得到导函数的正负讨论函数的增减性即可得到f(x)的单调区间;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1即要讨论当0<a≤2时,当a>2时,当a≤0时三种情况讨论得到a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,1)∪(1,+∞).对f (x)求导数得f'(x)=e﹣ax.(ⅰ)当a=2时,f'(x)=e﹣2x,f'(x)在(﹣∞,0),(0,1)和(1,+∞)均大于0,所以f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅱ)当0<a<2时,f'(x)>0,f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅲ)当a>2时,0<<1,令f'(x)=0,解得x1=,x2=.当x变化时,f′(x)和f(x)的变化情况如下表:f (x )在(﹣∞,),(,1),(1,+∞)为增函数,f (x )在(,)为减函数. (Ⅱ)(ⅰ)当0<a ≤2时,由(Ⅰ)知:对任意x ∈(0,1)恒有f (x )>f (0)=1.(ⅱ)当a >2时,取x 0=∈(0,1),则由(Ⅰ)知f (x 0)<f (0)=1(ⅲ)当a ≤0时,对任意x ∈(0,1),恒有>1且e﹣ax ≥1,得f (x )=e ﹣ax ≥>1. 综上当且仅当a ∈(﹣∞,2]时,对任意x ∈(0,1)恒有f (x )>1.22.(12分)(2006•全国卷Ⅰ)设数列{a n }的前n 项的和,n=1,2,3,…(Ⅰ)求首项a 1与通项a n ;(Ⅱ)设,n=1,2,3,…,证明:.【分析】对于(Ⅰ)首先由数列{a n }的前n 项的和求首项a 1与通项a n ,可先求出S n ﹣1,然后有a n =S n ﹣S n ﹣1,公比为4的等比数列,从而求解;对于(Ⅱ)已知,n=1,2,3,…,将a n=4n﹣2n代入S n=a n﹣×2n+1+,n=1,2,3,得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)然后再利用求和公式进行求解.【解答】解:(Ⅰ)由S n=a n﹣×2n+1+,n=1,2,3,①得a1=S1=a1﹣×4+所以a1=2.再由①有S n﹣1=a n﹣1﹣×2n+,n=2,3,4,将①和②相减得:a n=S n﹣S n﹣1=(a n﹣a n﹣1)﹣×(2n+1﹣2n),n=2,3,整理得:a n+2n=4(a n﹣1+2n﹣1),n=2,3,因而数列{a n+2n}是首项为a1+2=4,公比为4的等比数列,即:a n+2n=4×4n﹣1=4n,n=1,2,3,因而a n=4n﹣2n,n=1,2,3,(Ⅱ)将a n=4n﹣2n代入①得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)=×(2n+1﹣1)(2n﹣1)T n==×=×(﹣)所以,=﹣)=×(﹣)<(1﹣)。
2006年高考英语试题及答案(全国卷1)
2006年普通高等学校招生全国统一考试英语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至12页。
第Ⅱ卷13至14页。
考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.£19.15.B.£9.15.C.£9.18.答案是B。
1.How much will the man pay for the tickets?A.£7.5.B.£15.C.£50.2.Which is the right gate for the man’s flight?A.Gate 16.B.Gate 22.C.Gate 25.3.How does the man feel about going to school by bike?A.Happy.B.Tired.C.Worried.4.When can the woman get the computers?A.On Tuesday.B.On Wednesday.C.On Thursday.5.What does the woman think of the shirt for the party?A.The size is not large enough.B.The material is not good.C.The color is not suitable.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话。
2006年高考英语试题及答案(全国卷I)
2006年普通高等学校招生全国统一考试英语(全国卷1)第一节语法填空(共15小题;每小题1分,满分15分)例:It is generally considered unwise to give a child he or she wants. (whatever)21.The house belongs to my aunt but she (not ,live) here any more.22.We missed the last bus ____ didn’t have any money for taxi, so we had to walk home.23.See the flags on top of the building? That was_ we did this morning.24.There’s no light on -- they______ not be at home.25.—Excuse me, can you tell me where the nearest bank is, please? —Mm, let me thi nk. Oh yes! It’s past the post office, next to a big market.26.If I can help , I don’t like working late into the night.27.Mike didn’t play football yesterday because he had (hurt) his leg .28. he has limited technical knowledge, the old worker has a lot of experience.29.The water_____(feel)cool when I jumped into the pool for morning exercise.30.—Hello, could I speak to Mr. Smith?—Sorry, wrong number, There isn’t Mr. Smith here.31.Eliza remembers everything exactly as if it (happen)yesterday.32. (surprise) and happy, Tony stood up and accepted the prize.33.Please remind me he said he was going. I may be in time to see him off.34.—I wonder______ I could possibly use your car for tonight?—Sure, go ahead. I’m not u sing it anyhow.35.Mary, (come) here---everybody else, stay where you are.第二节完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,从短文后所给各题的四个选项(A、B、C和D)中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
2006年高考试题与答案(全国卷1文综)
2006年普通高等学校招生全国统一考试文科综合能力测试全国卷1本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至8页,第II卷9至12页。
全卷共300分。
考试时间150分钟。
第I卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
4.第I卷共35小题,每小题4分,共140分。
在每题给出的四个选项中,只有一项是最符合题目要求的。
图1显示我国四个省2004年三种谷物的种植面积。
读图1,回答1~2题。
1.①、②、③代表的谷物依次是A.小麦、水稻、玉米B.玉米、小麦、水稻C.水稻、小麦、玉米D.水稻、玉米、小麦2. M省可能是A.山西B.安徽C.广东D.甘肃雪线高度是指终年积雪下限的海拔。
图2表示全球不同纬度多年平均雪线高度、气温、降水量的分布。
读图2,回答3~5题。
3.表示多年平均雪线高度、气温、降水量的曲线依次是A.①②③ B.①③② C.③②① D.③①②4.多年平均雪线高度A.随纬度增高而降低 B.在副热带地区最高C.在降水量大的地区较高 D.在南半球低纬度地区最低5.依图示资料可知A.北半球高纬地区多年平均气温与降水量变化趋势基本一致B.南半球中纬地区多年平均雪线高度与降水量变化趋势基本一致C.多年平均雪线高度与气温变化趋势一致D.北半球高纬地区陆地比重小于南半球表1为四个国家1998年能源消费情况。
读表1,回到6~8题。
6.表1数据表明A.①国以煤为主,且核电消费量最大B.②国矿物能源消费构成较均衡,且石油消费量最大C.③国以石油为主,且石油消费量在四国中居首位D.④国以天然气为主,且天然气消费量在四国中居首位7.所代表的国家依次是A.俄罗斯、美国、日本、中国B.中国、美国、日本、俄罗斯C.美国、中国、日本、俄罗斯D.中国、美国、俄罗斯、日本8.人均能源消费量较为相近的一组是A.①② B.②③ C.③④ D.①④据报道,哈尔滨地区2004年10月14日出现的日偏食开始于9时20分,结束于10时57分。
2006年高考语文试题及答案(全国卷1)
2006年普通高等学校招生全国统一考试语文全国卷1本试卷分第I卷(选择题)和第II卷两部分。
第I卷1至4页,第II卷5至8页。
考试结束后,将本试卷和答题卡一并交回。
第I卷一、(12分,每小题3分)1.下列各组词语中,有两个错别字的一组是(D)A.啜泣层峦叠嶂嗑碰义愤填膺B.辑拿额手称庆坍塌班师回朝C.秸秆大有稗益赘述披肝沥胆D.摩娑厝火积薪巨擘见风驶舵2.下列各句中,加点的成语使用恰当的一句是(B)A.许多农民巧妙地将服装厂剪裁后废弃的“下脚料”做成帘子,当作蔬菜大棚的“棉被“,这真是一念之差....,变废为宝。
B.王大伯十分喜爱小动物,只要见到流浪的小猫小狗,他都要想办法把它们喂饱,有的人对此感到不解,他却乐此不疲....。
C.文艺演出现场,身着盛装的表演者光着脚、微笑着,一边跳着傣族舞,一边向人们泼水致意,在场群众纷纷拍手称快....。
D.厂长动情地说:“为了扭转目前的不利局面,我们将采用一种新的对策,希望大家共同努力,功败垂成....,在此一举!”3.下列各句中,没有语病的一句是(A)A.青藏铁路纵贯青海、西藏两省区,跨越青藏高原,是连接西藏与内地的一条具有重要战略意义的铁路干线。
B.这家老字号食品厂规模不大,但从选料到加工制作都非常讲究,生产的食品一直都是新老顾客倍受信赖的。
C.天安门广场等七个红色旅游景点是否收门票的问题,国家旅游局新闻发言人已在记者招待会上予以否认。
D.中央财政将逐年扩大向义务教育阶段家庭经济困难的学生免费提供教科书,地方财政也将设立助学专项资金。
4.填入下面横线处的句子,与上下文衔接最恰当的一组是(C)遍布华夏的古村落,作为乡土建筑的精华,,,,。
,,承载着丰富的历史文化信息,对中国人的价值观念、生活方式的形成产生过深刻的影响。
①却辉映着辉煌的过去②鲜明地折射出中国悠久的历史③具有很高的文物价值④它们看似陈旧⑤生动地展现着民族文化的丰富多样⑥成为了解中国文化和历史的一个重要窗口A.④①③⑥②⑤B.②⑤⑥①④③C.③⑤②⑥④①D.⑥④①③②⑤二、(9分,每小题3分)阅读下面的文字,完成5~7题。
2006年全国统一高考数学试卷(理科)(全国卷ⅰ)
2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R2.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)3.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.4.(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.5.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.6.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.7.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π8.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.39.(5分)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=010.(5分)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.7511.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm212.(5分)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B 中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.14.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.15.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).16.(4分)设函数.若f(x)+f′(x)是奇函数,则φ=.三、解答题(共6小题,满分74分)17.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.18.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.19.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.20.(12分)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.21.(14分)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.22.(12分)设数列{a n}的前n项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.2.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=e x 的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.3.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.4.(5分)(2006•全国卷Ⅰ)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.【分析】注意到复数a+bi(a∈R,b∈R)为实数的充要条件是b=0【解答】解:复数(m2+i)(1+mi)=(m2﹣m)+(1+m3)i是实数,∴1+m3=0,m=﹣1,选B.5.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x 的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C6.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.7.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.8.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.9.(5分)(2006•全国卷Ⅰ)设平面向量1、2、3的和1+2+3=0.如果向量、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,1则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=0【分析】三个向量的和为零向量,在这三个向量前都乘以相同的系数,我们可以把系数提出公因式,括号中各项的和仍是题目已知中和为零向量的三个向量,当三个向量都按相同的方向和角度旋转时,相对关系不变.【解答】解:向量1、2、3的和1+2+3=0,向量1、2、3顺时针旋转30°后与1、2、3同向,且|i|=2|i|,∴1+2+3=0,故选D.10.(5分)(2006•全国卷Ⅰ)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.【解答】解:{a n}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选B.11.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.12.(5分)(2006•全国卷Ⅰ)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【分析】解法一,根据题意,按A、B的元素数目不同,分9种情况讨论,分别计算其选法种数,进而相加可得答案;解法二,根据题意,B中最小的数大于A中最大的数,则集合A、B中没有相同的元素,且都不是空集,按A、B中元素数目这和的情况,分4种情况讨论,分别计算其选法种数,进而相加可得答案.【解答】解:解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;总计有49种,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°14.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.15.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:240016.(4分)(2006•全国卷Ⅰ)设函数.若f(x)+f′(x)是奇函数,则φ=.【分析】对函数求导结合两角差的正弦公式,代入整理可得,,根据奇函数的性质可得x=0时函数值为0,代入可求φ的值【解答】解:,则f(x)+f′(x)=,为奇函数,令g(x)=f(x)+f′(x),即函数g(x)为奇函数,g(0)=0⇒2sin(φ)=0,∵0<φ<π,∴φ=.故答案为:.三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为18.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B 有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:∴数学期望Eξ=3×=.19.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH 为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.20.(12分)(2006•全国卷Ⅰ)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.【分析】(1)利用相关点法求轨迹方程,设P(x0,y0),M(x,y),利用点M 的坐标来表示点P的坐标,最后根据x0,y0满足C的方程即可求得;(2)先将用含点M的坐标的函数来表示,再利用基本不等式求此函数的最小值即可.【解答】解:(I)椭圆方程可写为:+=1式中a>b>0,且得a2=4,b2=1,所以曲线C的方程为:x2+=1(x>0,y>0).y=2(0<x<1)y'=﹣设P(x0,y0),因P在C上,有0<x0<1,y0=2,y'|x=x0=﹣,得切线AB的方程为:y=﹣(x﹣x0)+y0.设A(x,0)和B(0,y),由切线方程得x=,y=.由=+得M的坐标为(x,y),由x0,y0满足C的方程,得点M的轨迹方程为:+=1(x>1,y>2)(Ⅱ)||2=x2+y2,y2==4+,∴||2=x2﹣1++5≥4+5=9.且当x2﹣1=,即x=>1时,上式取等号.故||的最小值为3.21.(14分)(2006•全国卷Ⅰ)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.【分析】(Ⅰ)根据分母不为0得到f(x)的定义域,求出f'(x),利用a的范围得到导函数的正负讨论函数的增减性即可得到f(x)的单调区间;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1即要讨论当0<a≤2时,当a>2时,当a≤0时三种情况讨论得到a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,1)∪(1,+∞).对f(x)求导数得f'(x)=e﹣ax.(ⅰ)当a=2时,f'(x)=e﹣2x,f'(x)在(﹣∞,0),(0,1)和(1,+∞)均大于0,所以f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅱ)当0<a <2时,f'(x )>0,f (x )在(﹣∞,1),(1,+∞)为增函数. (ⅲ)当a >2时,0<<1,令f'(x )=0, 解得x 1=,x 2=.当x 变化时,f′(x )和f (x )的变化情况如下表:f (x )在(﹣∞,),(,1),(1,+∞)为增函数,f (x )在(,)为减函数. (Ⅱ)(ⅰ)当0<a ≤2时,由(Ⅰ)知:对任意x ∈(0,1)恒有f (x )>f (0)=1.(ⅱ)当a >2时,取x 0=∈(0,1),则由(Ⅰ)知f (x 0)<f (0)=1 (ⅲ)当a ≤0时,对任意x ∈(0,1),恒有>1且e ﹣ax ≥1,得f (x )=e ﹣ax ≥>1.综上当且仅当a ∈(﹣∞,2]时,对任意x ∈(0,1)恒有f (x )>1.22.(12分)(2006•全国卷Ⅰ)设数列{a n }的前n 项的和,n=1,2,3,…(Ⅰ)求首项a 1与通项a n ;(Ⅱ)设,n=1,2,3,…,证明:. 【分析】对于(Ⅰ)首先由数列{a n }的前n 项的和求首项a 1与通项a n ,可先求出S n,然后有a n=S n﹣S n﹣1,公比为4的等比数列,从而求解;﹣1对于(Ⅱ)已知,n=1,2,3,…,将a n=4n﹣2n代入S n=a n﹣×2n+1+,n=1,2,3,得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)然后再利用求和公式进行求解.【解答】解:(Ⅰ)由S n=a n﹣×2n+1+,n=1,2,3,①得a1=S1=a1﹣×4+所以a1=2.=a n﹣1﹣×2n+,n=2,3,4,再由①有S n﹣1将①和②相减得:a n=S n﹣S n﹣1=(a n﹣a n﹣1)﹣×(2n+1﹣2n),n=2,3,整理得:a n+2n=4(a n﹣1+2n﹣1),n=2,3,因而数列{a n+2n}是首项为a1+2=4,公比为4的等比数列,即:a n+2n=4×4n﹣1=4n,n=1,2,3,因而a n=4n﹣2n,n=1,2,3,(Ⅱ)将a n=4n﹣2n代入①得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)=×(2n+1﹣1)(2n﹣1)T n==×=×(﹣)所以,=﹣)=×(﹣)<(1﹣)。
2006年全国高考物理一卷试题
2006年全国高考一卷试题物理试卷考生注意:1.答卷前,考生务必将姓名、准考证号、校验码等填写清楚。
2.本试卷共10页,满分150分。
考试时间120分钟。
考生应用蓝色或黑色的钢笔或圆珠笔将答案直接写在试卷上。
3.本试卷一、四大题中,小题序号怕标有字母A的试题,适合于使用一期课改教材的考生;标有字母B的试题适合于使用二期课改教材的考生;其它未标字母A或B的试题为全体考生必做的试题。
不同大题可以分别选做A类或B类试题,同一大题的选择必须相同。
若在同一大题内同时选做A类、B类两类试题,阅卷时只以A类试题计分。
4.第20、21、22、23、24题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程的,不能得分。
有关物理量的数值计算问题,答案中必须明确写出数值和单位。
一.(20分)填空题.本大题共5小题,每小题4分。
答案写在题中横线上的空白处或指定位置,不要求写出演算过程。
本大题第1、2、3小题为分叉题,分A、B两类,考生可任选一类答题。
若两类试题均做,一律按A类试题计分。
A类题(适合于使用一期课改教材的考生)1A.如图1所示,一束卢粒子自下而上进人一水平方向的匀强电场后发生偏转,则电场方向向,进入电场后,β粒子的动能(填“增加”、“减少”或“不变”).图1 图2 图32A.如图2所示,同一平面内有两根互相平行的长直导线1和2,通有大小相等、方向相反的电流,a、b两点与两导线共面,a点在两导线的中间与两导线的距离均为r,b点在导线2右侧,与导线2的距离也为r.现测得a点磁感应强度的大小为B,则去掉导线1后,b点的磁感应强度大小为,方向.3A.利用光电管产生光电流的电路如图3所示.电源的正极应接在端(填“a”或“b”);若电流表读数为8μA,则每秒从光电管阴极发射的光电子至少是个(已知电子电量为l.6×10-19C)B类题(适合于使用二期课改教材的考生)1B.如图所示,一束β粒子自下而上进入一垂直纸面的匀强磁场后发生偏转,则磁场方向向,进人磁场后,p粒子的动能(填“增加”、“减少”或“不变”)2B.如图所示,一理想变压器原、副线圈匝数分别为nl 和n2,当负载电阻R中流过的电流为I时,原线圈中流过的电流为;现减小负载电阻R的阻值,则变压器的输入功率将(填“增大”、“减小”或“不变”).3B.右图为包含某逻辑电路的一个简单电路图,L为小灯泡.光照射电阻R’时,其阻值将变得远小于R.该逻辑电路是门电路(填“与”、“或”或“非”)。
2006年高考语文全国I卷的分析评价
2006年高考语文全国I卷的分析评价概述:纵观2006年全国高考语文试卷,我们可以发现,今年的试卷和往年相比,无论是题型,题量,试题的结构,还是所考查的内容,都没有太大的变化,基本体现了考纲所规定的有关原则,较为稳定。
总观全卷,我们会有一个较为明显的感觉,就是今年的这份考题,知识点的覆盖,所选文段,考查范围的大小,题目难易的搭配,名个分数段的区分度,题量与题型等都较为合理科学。
与此同时,本试卷加重了对文意间内在关联和对文章内涵的理解的考查,更突出了语文的逻辑性、思想性及艺术性。
在思维能力的考查上,注意了对语意的概括,知识要点的把握。
注意了基础知识与基本技能,与平日的教学基本关联,考查面广,难易适中,从基础知识到文章内容的理解及写作,基本都没有偏、怪、难的题。
好多知识都是考生平常生活和教学所见过、学过的,这也就体现了语文的社会性,基本性。
对指导今后的语文教学及考试起到了较为积极的指导作用。
这次高考,语音,标点符号,文学文化常识没有考,文体的考查也仅限于科技说明文、记叙性散文、古代诗歌,没有出现其他新的文体。
总体概括说来,难易程度和去年相比,相差不大,或稍难于去年一点。
经初步了解,大部分考生都感觉不很难,好入手,但要想得一个较高的分数也非易事。
根据考纲“稳中有变”的原则,今年的“变”,也较多,主要体现在以下几方面。
第一,比较有特点的题是12题诗歌阅读。
较往年比较,考查的角度有点变化,试题设置上,也增加了一些难度。
具体表现在,明确考查了诗歌的层次结构,所问问题答案不是那么明显,必须对原诗进行认真的阅读与理解,才可得出自己的看法,进而给予解答。
如果还是按照往年或个别老师所教的那种不管什么观点,一律先答“同意”的方法,势必难以得满分。
从中可以看出,就更突出了对原文内涵的理解和考核。
第二,13题名篇名句的背诵,也稍有改变,今年的背诵不是简单几句的填空,而成了整段文章与文意的默写,难度虽然不大,都是我们常见过或学过的,却不能有一字的差错,你必须把整篇(段)文章学过、背下来才可得分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年高考全国卷I(河北、河南、山西、海南、甘肃、宁夏、广西)理综卷和答案2006年普通高等学校招生全国统一考试Ⅰ理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第卷1至5页,第Ⅱ卷6至11页。
全卷共300分。
考试用时150分钟。
★祝考试顺利★第Ⅰ卷(共21小题,每小题6分,共126分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准确无误考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
回以下数据可供解题时参考:以下数据可供解题时参考:相对原子质量(原子量):H 1 C 12 N 14 O 16一、选择题(本题包括13小题。
每小题只有一个选项符合题意)1.有些神经细胞既能传导兴奋,又能合成与分泌激素。
这些细胞位于A.大脑皮层 B.垂体 C.下丘脑 D.脊髓2.一般情况下,用抗原免疫机体,血清中抗体浓度会发生相应变化。
如果第二次免疫与第一次免疫所用的抗原相同且剂量相等,下列四图中能正确表示血清中抗体浓度变化的是3.下列关于动物细胞培养的叙述,正确的是A.培养中的人效应T细胞能产生单克隆抗体B.培养中的人B细胞能够无限地增殖C.人的成熟红细胞经过培养能形成细胞株D.用胰蛋白酶处理肝组织可获得单个肝细胞4.锄足蟾蝌蚪、雨蛙蝌蚪和蟾蜍蝌蚪均以浮游生物为食。
在条件相同的四个池塘中,每池放养等量的三种蝌蚪,各池蝌蚪总数相同。
再分别在四个池塘中放入不同数量的捕食者水螈。
一段时间后,三种蝌蚪数量变化结果如图。
下列分析,错误的是A.无水螈的池塘中,锄足蟾蝌蚪数量为J型增长B.三种蝌蚪之间为竞争关系C.水螈更喜捕食锄足蟾蝌蚪D.水螈改变了三种蝌蚪间相互作用的结果5.采用基因工程将人凝血因子基因导入山羊受精卵,培育出了转基因羊。
但是,人凝血因子只存在于该转基因羊的乳汁中。
以下有关叙述,正确的是A.人体细胞中凝血因子基因编码区的碱基对数目,等于凝血因子氨基酸数目的3倍B.可用显微注射技术将含有人凝血因子基因的重组DNA分子导入羊的受精卵C.在该转基因羊中,人凝血因子基因存在于乳腺细胞,而不存在于其他体细胞中D.人凝血因子基因开始转录后,DNA连接酶以DNA分子的一条链为模板合成mRNA6.在常温常压下呈气态的化合物,降温使其固化得到的晶体属于A.分子晶体 B.原子晶体C.离子晶体 D.何种晶体无法判断7.下列叙述正确的是A.同一主族的元素,原子半径越大,其单质的熔点一定越高B.同一周期元素的原子,半径越小越容易失去电子C.同一主族的元素的氢化物,相对分子质量越大,它的沸点一定越高D.稀有气体元素的原子序数越大,其单质的沸点一定越高8.用NA代表阿伏加德罗常数,下列说法正确的是A.0.5 mol Al与足量盐酸反应转移电子数为1NAB.标准状况下,11.2 L SO3所含的分子数为0.5NAC.0.1 mol CH4所含的电子数为1NAD.46 g NO2和 N2O4的混合物含有的分子数为1NA9.把分别盛有熔融的氯化钾、氯化镁、氯化铝的三个电解槽串联,在一定条件下通电一段时间后,析出钾、镁、铝的物质的量之比为A.1:2:3 B.3:2:1 C.6:3:1 D.6:3:210.浓度均为0.1mol·L-1的三种溶液等体积混合,充分反应后没有沉淀的一组溶液是A.BaCl2 NaOH NaHCO3B.Na2CO3MgCl2H2SO4C.AlCl3 NH3·H2O NaOHD.Ba(OH)2 CaCl2Na2SO411.在0.1mol·L-1CH3COOH溶液中存在如下电离平衡:CH3COOH CH3COO-+H+对于该平衡,下列叙述正确的是A.加入水时,平衡向逆反应方向移动B.加入少量NaOH固体,平衡向正反应方向移动C.加入少量0.1 mol·L-1HCl溶液,溶液中c(H+)减小D.加入少量CH3COONa固体,平衡向正反应方向移动12。
茉莉醛具有浓郁的茉莉花香,其结构简式如下所示:关于茉莉醛的下列叙述错误的是A.在加热和催化剂作用下,能被氢气还原B.能被高锰酸钾酸性溶液氧化C.在一定条件下能与溴发生取代反应D.不能与氢溴酸发生加成反应13.由硫酸钾、硫酸铝和硫酸组成的混合溶液,其pH=1,c(Al3+)=0.4 mol·L-1,c(SO42-)=0.8 mol·L-1,则c(K+)为A.0.15 mol·L-1B.0.2 mol·L-1C.0.3 mol·L-1D.0.4 mol·L-1二、选择题(本题包括8小题。
每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分)14.某原子核吸收一个中子后,放出一个电子,分裂为两个α粒子。
由此可知A.A=7,Z=3B.A=7,Z=4C.A=8,Z=3D.A=8,Z=415.红光和紫光相比,A.红光光子的能量较大;在同一种介质中传播时红光的速度较大B.红光光子的能量较小;在同一种介质中传播时红光的速度较大C.红光光子的能量较大;在同一种介质中传播时红光的速度较小D.红光光子的能量较小;在同一种介质中传播时红光的速度较小16.我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量约为地球质量的1/81,月球的半径约为地球半径的1/4,地球上的第一宇宙速度约为7.9 km/s,则该探月卫星绕月运行的速率约为A. 0.4 km/sB. 1.8 km/sC. 11 km/sD. 36 km/s17.图中为一“滤速器”装置的示意图。
a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间。
为了选取具有某种特定速率的电子,可在间a、b加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO’运动,由O’射出,不计重力作用。
可能达到上述目的的办法是aA.使a板电势高于b板,磁场方向垂直纸面向里O’OB.使a板电势低于b板,磁场方向垂直纸面向里C.使a板电势高于b板,磁场方向垂直纸面向外bD.使a板电势低于b板,磁场方向垂直纸面向外18.下列说法中正确的是:A.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B.气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C.压缩一定量的气体,气体的内能一定增加D.分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大19.一砝码和一轻弹簧构成弹簧振子,图1所示的装置可用于研究该弹簧振子的受迫振动。
匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动。
把手匀速转动的周期就是驱动力的周期,改变把手匀速转动的速度就可以改变驱动力的周期。
若保持把手不动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图2所示。
当把手以某一速度匀速转动,受迫振动达到稳定时,砝码的振动图线如图3所示。
若用T0表示弹簧振子的固有周期,T表示驱动力的周期,Y表示受迫振动达到稳定后砝码振动的振幅,则A.由图线可知T0=4sB.由图线可知T0=8sC.当T在4s附近时,Y显著增大,当T比4s小得多或大得多时,Y很小D.当T在8s附近时,Y显著增大;当T比8s小得多或大得多时,Y很小20.一位质量为m的运动员从下蹲状态向上起跳,经Δt时间,身体伸直并刚好离开地面,速度为v。
在此过程中,A.地面对他的冲量为mv+mgΔt,地面对他做的功为mv2B.地面对他的冲量为mv+mgΔt,地面对他做的功为零C.地面对他的冲量为mv,地面对他做的功为mv2D.地面对他的冲量为mv-mgΔt,地面对他做的功为零21.如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直于纸面朝里,另有两根金属导轨c、d分别平等于oa、ob放置。
保持导注意事项:第二金属导轨的电阻不计。
现经历以下四个过程:①以速率v移动d,使它与ab的距离增大一倍;②再以速率v移动c,使它与oa的距离减小一半;③然后,再以速率2v移动c,使它回到原处;④最后以速率2v移动d,使它也回到原处。
设上述四个过程中通过电阻R的电量的大小依次为Q1、Q2、Q3和Q4,则A.Q1=Q2=Q3=Q4B.Q1=Q2=2Q3=2Q4C.2Q1=2Q2=Q3=Q4D.Q1≠Q2=Q3≠Q4第Ⅱ卷(共10题,共174分)注意事项:第Ⅱ卷用0.5毫米黑色签字笔或黑色墨水钢笔直接答在答题卡上。
答在试题卷上无效。
22.(17分)(1)利用图中装置研究双缝干涉现象时,有下面几种说法:A.将屏移近双缝,干涉条纹间距变窄B.将滤光片由蓝色的换成红色的,干涉条纹间距变宽C.将单缝向双缝移动一小段距离后,干涉条纹间距变宽D.换一个两缝之间距离较大的双缝,干涉条纹间距变窄E.去掉滤光片后,干涉现象消失其中正确的是______________(2)现要测量某一电压表V的内阻。
给定的器材有:待测电压表V(量程2V,内阻约4kΩ);电流表mA (量程1.2mA,内阻约500Ω);直流电源E(电动势约2.4V,内阻不计);固定电阻3个:R1=4000Ω,R 2=10000Ω,R3=15000Ω;电键S及导线若干。
要求测量时两电表指针偏转均超过其量程的一半。
I.试从3个固定电阻中选用1个,与其它器材一起组成测量电路,并在虚线框内画出测量电路的原理图。
(要求电路中各器材用题中给定的符号标出。
)II.电路接通后,若电压表读数为U,电流表读数为I,则电压表内阻R v=_________。
23.(16分)天空有近似等高的浓云层。
为了测量云层的高度,在水平地面上与观测者的距离为d=3.0km处进行一次爆炸,观测者听到由空气直接传来的爆炸声和由云层反射来的爆炸声时间上相差Δt=6.0s。
试估算云层下表面的高度。
已知空气中的声速v= km/s。
24.(19分)一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度α0开始运动,当其速度达到v后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
25.(20分)有个演示实验,在上下面都是金属板的玻璃盒内,放入了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。