九年级数学上册 22.1.4 二次函数的图象和性质同步练习 (新版)新人教版
人教版九年级数学上册二次函数的图象和性质复习同步练习题
22.1 二次函数的图象和性质1.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .2.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y = . 3.当m= 时,y=(m -1)xmm +2-3m 是关于x 的二次函数.4.当m= 时,抛物线y=(m +1)x mm +2+9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 5.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 28.抛物线,y=4 x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )错误!未找到引用源。
11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一 象限内的交点相同,则a 的值为( )A .4 B .2 C .21D .4112.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2); (2)y=ax 2与y=21x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=21x +3交于点(2,m ).13已知错误!未找到引用源。
是二次函数,且当错误!未找到引用源。
人教版数学九年级上册_22.1《二次函数的图像和性质》测试题(含答案及解析)
二次函数的图像和性质测试题时间:90分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3+√3,y3)三点.则关于y1,y2,y3大小关系正确的是()A. y1>y2>y3B. y1>y3>y2C. y2>y1>y3D. y3>y1>y22.如图是二次函数y=ax2+bx+c的图象,有下面四个结论:①abc>0;②a−b+c>0;③2a+3b>0;④c−4b>0其中,正确的结论是()A. ①②B. ①②③C. ①②④D. ①③④3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a−b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个4.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能是()A. B.C. D.5.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是()A. 先向左平移1个单位,再向上平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,下列结论:①b2−4ac<0;②abc>0;③a−b+c<0;④m>−2,其中,正确的个数有()A. 1B. 2C. 3D. 47.若抛物线y=x2−2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A. y=(x−2)2+3B. y=(x−2)2+5C. y=x2−1D. y=x2+48.二次函数y=2x2−3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点9.在二次函数y=−x2+2x+1的图象中,若y随x的增大而减少,则x的取值范围是()A. x<1B. x>1C. x<−1D. x>−110.直线y=52x−2与抛物线y=x2−12x的交点个数是()A. 0个B. 1个C. 2个D. 互相重合的两个二、填空题(本大题共10小题,共30.0分)11.已知抛物线y=x2−(k+2)x+9的顶点在坐标轴上,则k的值为______.12.二次函数y=−x2+2x+2图象的顶点坐标是______.13.函数y=x2+mx−4,当x<2时,y随x的增大而减小,则m的取值范围是______ .14.抛物线y=ax2+bx+c经过点A(−5,4),且对称轴是直线x=−2,则a+b+c=______ .15.二次函数y=−2(x−1)2+5的图象的对称轴为______ ,顶点坐标为______ .16.如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为______ .17.如图,抛物线C1:y=12x2经过平移得到抛物线C2:y=12x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______ .18.已知(−3,y1),(4,y2),(−1,y3)是二次函数y=x2−4x上的点,则y1,y2,y3从小到大用“<”排列是______.19.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=−1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2−4ac>0;③ab<0;④a−b+c<0,其中正确的结论是______ (填写序号).20.如图,抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(−3,y2),则y1>y2;④无论a,b,c取,0);⑤am2+bm+何值,抛物线都经过同一个点(−caa≥0,其中所有正确的结论是______ .三、计算题(本大题共4小题,共24.0分)21.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.22.已知二次函数y=(m−2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的解析式;(2)求出二次函数图象的顶点坐标和对称轴.23.已知函数y=−x2+(m−1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是______.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当−2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24.如图,已知二次函数y=ax2+bx+c的图象过点A(−1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当−1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.四、解答题(本大题共2小题,共16.0分)25.如图,已知抛物线y=−x2+bx+c与x轴交于点A(−1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a)(m2+1)=0有实数根.26.已知关于x的一元二次方程x2−(m+1)x+12(1)求m的值;(m2+1)的图象关于x轴的对称图形,然后将所作图(2)先作y=x2−(m+1)x+12形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2−4n的最大值和最小值.答案和解析【答案】 1. A 2. C 3. B 4. C 5. D6. B7. C8. D 9. B 10. C11. 4,−8,−2 12. (1,3) 13. m ≤−4 14. 415. x =1;(1,5) 16. (−2,0) 17. 418. y 2<y 3<y 1 19. ①②④ 20. ②④⑤21. 解:(1)设抛物线的解析式为y =a(x −3)2+5, 将A(1,3)代入上式得3=a(1−3)2+5,解得a =−12, ∴抛物线的解析式为y =−12(x −3)2+5, (2)∵A(1,3)抛物线对称轴为:直线x =3 ∴B(5,3),令x =0,y =−12(x −3)2+5=12,则C(0,12), △ABC 的面积=12×(5−1)×(3−12)=5.22. 解:(1)把(0,5)代入y =(m −2)x 2+(m +3)x +m +2得m +2=5, 解得m =3所以二次函数解析式为y =x 2+6x +5; (2)因为y =x 2+6x +5=(x +3)2−4,所以此二次函数图象的顶点坐标为(−3,−4),对称轴为直线x =−3. 23. D24. 解:(1)根据题意得{a −b +c =0c =3−b2a =1,解得{a =−1b =2c =3, 所以二次函数关系式为y =−x 2+2x +3,因为y =−(x −1)2+4,所以抛物线的顶点坐标为(1,4);(2)①当x =−1时,y =0;x =2时,y =3; 而抛物线的顶点坐标为(1,4),且开口向下, 所以当−1<x <2时,0<y ≤4;②当y =3时,−x 2+2x +3=3,解得x =0或2, 所以当y <3时,x <0或x >2.25. 解:(1)由点A(−1,0)和点B(3,0)得{−9+3b +c =0−1−b+c=0,解得:{b=2,(2)令x =0,则y =3, ∴C(0,3),∵y =−x 2+2x +3=−(x −1)2+4, ∴D(1,4);(3)设P(x,y)(x >0,y >0),S △COE =12×1×3=32,S △ABP =12×4y =2y ,∵S △ABP =4S △COE ,∴2y =4×32, ∴y =3,∴−x 2+2x +3=3,解得:x 1=0(不合题意,舍去),x 2=2, ∴P(2,3).26. 解:(1)对于一元二次方程x 2−(m +1)x +12(m 2+1)=0,△=(m +1)2−2(m 2+1)=−m 2+2m −1=−(m −1)2, ∵方程有实数根, ∴−(m −1)2≥0, ∴m =1.(2)由(1)可知y =x 2−2x +1=(x −1)2, 图象如图所示:平移后的解析式为y =−(x +2)2+2=−x 2−4x −2.(3)由{y =2x +n y =−x 2−4x −2消去y 得到x 2+6x +n +2=0, 由题意∆≥0,∴36−4n −8≥0, ∴n ≤7,∵n ≥m ,m =1, ∴1≤n ≤7, 令,∴n =2时,y′的值最小,最小值为−4, n =7时,y′的值最大,最大值为21, ∴n 2−4n 的最大值为21,最小值为−4.1. 解:二次函数对称轴为直线x=−−62×1=3,3−(−1)=4,3−1=2,3+√3−3=√3,∵4>2>√3,∴y1>y2>y3.故选A.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.2. 解:∵抛物线开口向上,∴a>0;∵抛物线的对称轴在y轴的右侧,∴x=−b2a>0,∴b<0;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵x=−1时,y>0,∴a−b+c>0,所以②正确;∵x=−b2a =13,∴2a+3b=0,所以③错误;∵x=2时,y>0,∴4a+2b+c>0,把2a=−3b代入得−6b+2b+c>0,∴c−4b>0,所以④正确.故选:C.根据抛物线开口方向得到a>0;根据对称轴得到x=−b2a>0,则b<0;根据抛物线与y轴的交点在x轴下方得到c<0,则abc>0,可判断①正确;当自变量为−1时对应的函数图象在x轴上方,则a−b+c>0,可判断②正确;根据抛物线对称轴方程得到x=−b2a =13,则2a+3b=0,可判断③错误;当自变量为2时对应的函数图象在x轴上方,则4a+2b+c>0,把2a=−3b代入可对④进行判断.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=--b2a;抛物线与y轴的交点坐标为(0,c).3. 解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;>0,即x1+x2>0,故③正确;由对称轴x>0,可知x1+x22由可知抛物线与x轴的左侧交点的横坐标的取值范围为:−1<x<0,∴当x=−1时,y=a−b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.4. 解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线>0,应在y轴的右侧,故不合题意,图形错误;y=ax2−bx来说,对称轴x=b2aB、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx<0,应在y轴的左侧,故不合题意,图形错误;来说,对称轴x=b2aC、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx>0,应在y轴的右侧,故符合题意;来说,图象开口向上,对称轴x=b2aD、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.5. 解:∵y=−3x2的顶点坐标为(0,0),y=−3(x−1)2−2的顶点坐标为(1,−2),∴将抛物线y=−3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=−3(x−1)2−2.故选:D.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.6. 解:如图所示:图象与x轴有两个交点,则b2−4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=−1时,a−b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:−2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c−m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,故④正确.故选:B.直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.7. 解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x−1)2+2,∴原抛物线图象的解析式应变为y=(x−1+1)2+2−3=x2−1,故答案为C.思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.8. 解:A、a=2,则抛物线y=2x2−3的开口向上,所以A选项错误;B、当x=2时,y=2×4−3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2−3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2−3=0解的情况对D进行判断.本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(−b2a ,4ac−b24a),对称轴为直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a时,y随x的增大而增大;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小.9. 解:y=−x2+2x+1=−(x−1)2+2,抛物线的对称轴为直线x=1,∵a=−1<0,∴当x>1时,y随x的增大而减少.故选B.先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(−b2a ,4ac−b24a),对称轴直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a 时,y随x的增大而增大;x=−b2a时,y取得最小值4ac−b24a,对称即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小;x=−b2a时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.10. 解:直线y=52x−2与抛物线y=x2−12x的交点求法是:令52x−2=x2−12x,∴x2−3x+2=0,∴x1=1,x2=2,∴直线y=52x−2与抛物线y=x2−12x的个数是2个.故选C.根据直线与二次函数交点的求法得出一元二次方程的解,即可得出交点个数.此题主要考查了一元二次方程的性质,根据题意得出一元二次方程的解的个数是解决问题的关键.11. 解:当抛物线y=x2−(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2−4×9=0,解得k=4或k=−8;当抛物线y=x2−(k+2)x+9的顶点在y轴上时,x=−b2a =k+22=0,解得k=−2.故答案为:4,−8,−2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.12. 解:∵y=−x2+2x+2=−(x2−2x+1)+3=−(x−1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.13. 解:∵x<2时,y随x的增大而减小,∴−m2×1≥2,∴m≤−4.故答案为:m≤−4.根据二次函数的性质,二次函数的顶点的横坐标不小于2列式计算即可得解.本题考查了二次函数的性质,熟记性质,根据顶点的横坐标列出不等式是解题的关键.14. 解:∵对称轴方程为x=−2,∴−b2a=−2,整理可得b=4a,∵抛物线y=ax2+bx+c经过点A(−5,4),∴4=25a−5b+c,把b=4a代入可得,4=25a−20a+c,解得c=4−5a,∴抛物线解析式为y=ax2+4ax+4−5a,当x=1时,则有a+b+c=a+4a+4−5a=4,故答案为:4.把A点坐标代入抛物线解析式结合对称轴方程可用a分别表示出b和c,则可用a表示出抛物线解析式,再令x=1代入可求得y的值,即a+b+c的值.本题主要考查二次函数的解析式,分别用a表示出b和c,得出抛物线解析式是解题的关键.15. 解:∵y=−2(x−1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1,故答案为:x=1,(1,5).由抛物线解析式可求得其顶点坐标及对称轴.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).16. 解:∵抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,∴P,Q两点到对称轴x=1的距离相等,∴Q点的坐标为:(−2,0).故答案为:(−2,0).直接利用二次函数的对称性得出Q点坐标即可.此题主要考查了二次函数的性质,正确利用函数对称性得出答案是解题关键.17. 解:抛物线C1:y=12x2的顶点坐标为(0,0),∵y=12x2+2x=12(x+2)2−2,∴平移后抛物线的顶点坐标为(−2,2),对称轴为直线x=−2,当x=−2时,y=12×(−2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:12×(2+2)×2=4,故答案为:4.确定出抛物线y=12x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.18. 解:y1=(−3)2+4×3=21,y2=42−4×4=0,y3=(−1)2+4×1=5,∴y2<y3<y1,故答案为:y2<y3<y1,可分别求出y1、y2、y3的值后,再进行比较大小.本题考查二次函数图象上的点的特征,解题的关键是求出各点的函数值,本题属于基础题型.19. 解:∵抛物线对称轴是直线x=−1,点B的坐标为(1,0),∴A(−3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2−4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=−1时,y=a−b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2−4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a−b+c的符号是解题关键.20. 解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c2−bc+aca=c(a−b+c)a,∵当x=−1时,y=a−b+c=0,∴当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(−ca,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=−2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c(a−b+c)a且a−b+c=0可判断④;由x=1时函数y取得最小值及b=−2a可判断⑤.本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.21. (1)设顶点式y=a(x−3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.22. (1)把已知点的坐标代入y =(m −2)x 2+(m +3)x +m +2可求出m 的值,从而得到抛物线解析式;(2)把(1)中的解析式配成顶点式,从而得到二次函数图象的顶点坐标和对称轴.本题考查了在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.23. 解:(1)∵函数y =−x 2+(m −1)x +m(m 为常数),∴△=(m −1)2+4m =(m +1)2≥0,则该函数图象与x 轴的公共点的个数是1或2,故选D ;(2)y =−x 2+(m −1)x +m =−(x −m−12)2+(m+1)24, 把x =m−12代入y =(x +1)2得:y =(m−12+1)2=(m+1)24, 则不论m 为何值,该函数的图象的顶点都在函数y =(x +1)2的图象上;(3)设函数z =(m+1)24,当m =−1时,z 有最小值为0;当m <−1时,z 随m 的增大而减小;当m >−1时,z 随m 的增大而增大,当m =−2时,z =14;当m =3时,z =4,则当−2≤m ≤3时,该函数图象的顶点坐标的取值范围是0≤z ≤4.(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可;(3)根据m 的范围确定出顶点纵坐标范围即可.此题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键.24. (1)把A 点和C 点坐标代入y =ax 2+bx +c 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出a 、b 、c 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x 为−1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y <3时,x 的取值范围.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.25. (1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x =0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P(x,y)(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S△ABP=4S△COE列出方程是解决问题的关键.26. (1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;本题考查抛物线与x轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.。
人教版 九年级数学上册 22.1 --22.3同步测试题(含答案)
人教版九年级数学上册22.1 --22.3同步测试题(含答案)22.1 二次函数的图象和性质一、选择题1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3) B.(1,-3)C.(-1,3) D.(-1,-3)2. 将抛物线y=-5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=-5(x+1)2-1 B.y=-5(x-1)2-1C.y=-5(x+1)2+3 D.y=-5(x-1)2+33. 二次函数y=x2-2x-3的图象如所示,当y<0时,自变量x的取值范围是()A.-1<x<3 B.x<-1C.x>3 D.x<-1或x>34. 已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的图象大致是()5. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为()A. y=(x-2)2+3B. y=(x-2)2+5C. y=x2-1D. y=x2+46. 若二次函数y=ax2+bx+c的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<07. 如图是二次函数y=ax2+bx+c的图象,有下列说法:①ac>0;②2a+b>0;③4ac<b2;④a+b+c<0;⑤当x>0时,y随x的增大而减小.其中正确的是()A.①②③B.①②④C.②③④D.③④⑤8. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④9. 二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的有()①abc<0;②b2-4ac<0;③2a>b;④(a+c)2<b2.A.1个B.2个C.3个D.4个10. 如图,在Rt △PMN 中,∠P =90°,PM =PN ,MN =6 cm ,在矩形ABCD 中,AB =2 cm ,BC =10 cm ,点C 和点M 重合,点B ,C(M),N 在同一直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线以每秒1 cm 的速度向右移动,至点C 与点N 重合为止.设移动x s 后,矩形ABCD 与△PMN 重叠部分的面积为y cm 2,则y 关于x 的大致图象是( )二、填空题11. (2019•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是__________.12. 二次函数y =-2x 2-4x +5的最大值是________.13. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.14. 将抛物线y =2x 2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为________________.15. 如图,已知抛物线过A ,B ,C 三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),且3AB =4OC ,则此抛物线的解析式为__________________.16. 已知抛物线y =ax 2+bx +c(a >0)经过A(-1,1),B(2,4)两点,顶点坐标为(m ,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是________.17. 如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.三、解答题18. 2018·南京已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?19. 已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP∶PD=2∶3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.20. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y =x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.人教版九年级数学上册23.1 二次函数的图象和性质课时训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] 已知原抛物线的顶点坐标为(0,1),平移后的顶点坐标是(-1,-1),因此平移后的抛物线的解析式为y=-5(x+1)2-1.故选A.3. 【答案】A[解析] 在抛物线y=x2-2x-3上,y<0的所有点在x轴的下方,这些点对应的x值为-1<x<3,所以自变量x的取值范围为-1<x<3.4. 【答案】B[解析] 根据二次函数的图象开口向上,得a>0,根据c是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选B.5. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.6. 【答案】D7. 【答案】C[解析] ①由图象可知:a>0,c<0,∴ac<0,故①错误;②由对称轴可知:-b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴Δ=b2-4ac>0,即4ac<b2,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>-b2a时,y随着x的增大而增大,故⑤错误.故选C.8. 【答案】C【解析】把(m,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确;当–(x–m)2–m+1=0时,x1=1m m--,x2=1m m+-,若顶点与x轴的两个交点构成等腰直角三角形,则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;故②正确;当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y随x的增大而减小,即y1>y2,故③错误;∵–1<0,∴在对称轴左侧y随x的增大而增大,∴m≥2,故④正确,故选C.9. 【答案】A[解析] ①由抛物线的开口方向向下知a<0,由对称轴在y轴的左侧得a,b 同号,∴b<0.由抛物线与y轴交于正半轴得c>0,∴abc>0,故结论①错误.②由抛物线与x轴有两个交点得b2-4ac>0,故结论②错误.③由图象知对称轴x=-b2a>-1得b2a<1;由a<0,结合不等式的性质三可得b>2a,即2a<b,故结论③错误.④由图象知:当x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,∴(a+c)2<b2.故结论④正确.故选A.10. 【答案】A[解析] (1)当点D位于PM上时,x=2.当0≤x<2时,重叠部分是等腰直角三角形,y=12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D位于PN上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.二、填空题11. 【答案】12x =-,25x =【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b ac a =-⎧⎨=-⎩,所以,关于x 的一元二次方程a(x-1)2+c=b-bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+, 化为:23100x x --=, 解得:12x =-,25x =, 故答案为:12x =-,25x =.12. 【答案】713. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.14. 【答案】y =2(x +1)2-215. 【答案】 y =-x2+2x +316. 【答案】①②④ [解析] ∵抛物线过点A(-1,1),B(2,4),∴⎩⎪⎨⎪⎧a -b +c =1,4a +2b +c =4, ∴b =-a +1,c =-2a +2. ∵a >0,∴b <1,c <2,∴结论①②正确;∵抛物线的顶点坐标为(m ,n),∴m =-b 2a =--a +12a =12-12a ,∴m <12,∴结论③不正确;∵抛物线y =ax 2+bx +c(a >0)经过A(-1,1),顶点坐标为(m ,n), ∴n≤1,∴结论④正确. 综上所述,正确的结论是①②④. 故答案为①②④.17. 【答案】③④ [解析] ∵抛物线开口向上,∴a >0.又∵对称轴为直线x =-b2a >0,∴b <0,∴结论①不正确;∵当x =-1时,y >0,∴a -b +c >0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac -b 24a =-2,c =-1,∴b 2=4a ,∴结论④正确.综上,正确的结论是③④.三、解答题18. 【答案】解:(1)证明:当y =0时,2(x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根. 综上,不论m 为何值,该函数的图象与x 轴总有公共点. (2)当x =0时,y =2(x -1)(x -m -3)=2m +6, ∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方.19. 【答案】解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).(2分)如图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a), ∴CE =OQ =1. ∵PQ ∥BD ,∴△CEP ∽△CFD , ∴CP CD =CE CF .又∵CP ∶PD =2∶3, ∴CE CF =CP CD =22+3=25,∴CF =2.5,(4分) ∴OB =CF =2.5,∴BQ =OB -OQ =1.5, ∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5, ∴A(-0.5,0),B(2.5,0).(5分)(2)∵tan ∠PDB =54, ∴CF DF =54,∴DF =45CF =45×2.5=2,(6分) ∵△CFD ∽△CEP , ∴PE DF =CE CF ,∴PE =DF·CE CF =2×12.5=0.8. ∵P(1,c -a),C(0,c),∴PE =PQ -OC =c -(c -a)=a , ∴a =0.8,(8分) ∴y =0.8x 2-1.6x +c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c =0, 解得c =-1.(9分)∴这个二次函数的关系式为:y =0.8x 2-1.6x -1.(10分)20. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上, ∴方程x 2-(m +3)x +9=0有两个相等的实数根, ∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9, 又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3, 可得⎩⎨⎧y =x 2-6x +9y =x +3,解得⎩⎨⎧x =1y =4或⎩⎨⎧x =6y =9,∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,解图∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15,S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分) 又∵S △PAB =2S △ABC , ∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上, ∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1, ∴a =7-732, ∴b =15+7-732=37-732.(10分)22.2《二次函数与一元二次方程》1.抛物线与两坐标轴的交点个数为( ) A.个B.个C.个D.个2.如图,以为顶点的二次函数的图象与轴负半轴交于点,则一元二次方程的正数解的范围是()A. B. C. D.3.下列表格是二次函数的自变量与函数值的对应值,判断方程,,,为常数)的一个解的范围是()A. B. C. D.4.关于的方程的两个相异实根均大于且小于,那么的取值范围是()A. B. C.或 D.5.函数的图象如图所示,那么关于的方程的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根6. 二次函数中,自变量与函数的对应值如下表:…………若,则一元二次方程的两个根,的取值范围是()A.,B.,C.,D.,7.利用函数图象求方程的实数根(精确到),要先作函数________的图象,如图所示,它与轴的公共点的横坐标大约是、,所以方程的实数根为________,________.8.二次函数的图象与轴交点的横坐标是________.9.若二次函数的图象与轴有两个交点,则实数的取值范围是________.10.若抛物线与轴有两个交点,则的取值范围是________.11.二次函数的图象与轴的交点坐标是________.12.已知二次函数的图象与轴交于、,顶点到轴的距离为,求函数的解析式.13.某商场计划购进两种新型节能台灯共盏,已知购进型台灯盏,型台灯盏需元;购进型台灯盏,项台灯盏需元.(1)填空.进价/(元/盏) 售价/(元/盏)型型(2)若商场购进型台灯不超过盏,预计进货款不多于元,则一共有多少种购买方案?(3)在的购买方案中,哪种方案能使商场在销售完这批台灯时获利最多?此时利润为多少元?14.求证:方程的一个根大于,另一个小于.15.如图,抛物线交轴于点、,交轴于点,其中点、的坐标分别为、.(1)求抛物线的解析式,并用配方法把其化为的形式,写出顶点坐标;(2)已知点在第二象限的抛物线上,求出的值,并直接写出点关于直线的对称点的坐标.16. 如图,已知的图象与的图象交于、两点且与轴,轴分别交于、两点,为坐标轴原点.(1)求点、的坐标;(2)求的值.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】,,8.【答案】和9.【答案】且10.【答案】且11.【答案】,12.解:由题意知,顶点为或.设抛物线的表达式为.①当顶点为时,∵抛物线过,∴,∴.∴抛物线解析式为,即;②当顶点为时,∵抛物线过,∴,∴.∴抛物线解析式为,即.13.解:(1)填表如下:进价/(元/盏) 售价/(元/盏)型型设项台灯的进价是元/盏,型台灯的进价是元/盏,根据题意列方程组,得解得故型台灯的进价是元/盏,型台灯的进价是元/盏.(2)设商场购进型台灯盏,型台灯的进价是元/盏,根据题意得,解得,故取直范围是.因为是正整数,所以,故共有种购买方案.(3)设商场销售完议批台灯可获利元,则∵∴随的增大而减小,∴当时,取得最大值,为.答:在()的购买方案中,商场购进型台灯盏,型台灯盏时,销售完这批台灯获利最多,此时利润为元.14.证明:的两个根为,,则方程一定有两个根,设方程的两根为,,当时,,当时,,当时,,则方程、的根一定一根大于,一根小于.15.解:(1)抛物线经过、两点,∴,解得.∴此抛物线的解析式为.(2)∵点在抛物线上,∴,解得,.∵点在第二象限,∴.令,解得,.∴.∴.连接,易知,,.∴.∴.过点作于,延长交轴于,∴.∴.∴.∴点即为点关于直线的对称点.∴,∴∴.16.解:(1)∵的图象与的图象交于、两点,∴解方程组,解得,故点的坐标为,点的坐标为.(2)作垂直与轴与点,垂直与轴与点将代入得,∴点的坐标为又∵点的坐标为,点的坐标为∴,,∴故的值为.22.3《实际问题与二次函数》一.选择题1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)2.用一根长60cm的铁丝围成一个矩形,那么矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为()A.y=x2﹣30x(0<x<30)B.y=﹣x2+30x(0≤x<30)C.y=﹣x2+30x(0<x<30)D.y=﹣x2+30x(0<x≤30)3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m5.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.48.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或9.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值610.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF =CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤二.填空题12.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y美元.设2017年到2019年该地区居民年人均收入平均增长率为x,那么y与x的函数关系式是.13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加m.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.15.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M 是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题17.某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x 元,每周从销售这种工艺品中获得的利润为y元.(1)填空:每件工艺品售价提高x元后的利润为元,每周可售出工艺品件,y关于x的函数关系式为;(2)若y=384,则每件工艺品的售价应确定为多少元?18.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m 的Q处时,乙扣球成功,求a的值.19.已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.20.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.2.解:由题意得:矩形的另一边长=60÷2﹣x=30﹣x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30﹣x)=﹣x2+30x (0<x<30).故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.5.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.6.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;②由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点,即速度为0,故③正确;④设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,∴当t=1.5s时,h=﹣(1.5﹣3)2+40=30,∴④正确.综上,正确的有②③④.故选:C.7.解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC﹣S△PBQ=×12×6﹣(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选:C.8.解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.9.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.10.解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选:A.11.解:①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时y的值随的x的增大而增大,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选:B.二.填空题12.解:设2017年到2019年该地区居民年人均收入平均增长率为x,那么根据题意得2019年年人均收入为:300(x+1)2,y与x的函数关系式是为:y=300(x+1)2.故答案为y=300(x+1)2.13.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4,故答案为:(2﹣4).14.解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=±,故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.15.解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,而S△MBP=×BP×ME,∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).16.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.三.解答题17.解:(1)∵该工艺品每件进价12元,售价为20元,∴每件工艺品售价提高x元后的利润为:(20﹣12+x)=(8+x)(元),∵把每件工艺品的售价提高1元,就会少售出2件,∴每周可售出工艺品:(40﹣2x)(件),∴y关于x的函数关系式为:y=(40﹣2x)(8+x))=﹣2x2+24x+320;故答案为:8+x;40﹣2x;y=﹣2x2+24x+320;(2)∵y=384,∴384=﹣2x2+24x+320,整理得出:x2﹣12x+32=0,(x﹣4)(x﹣8)=0,解得:x1=4,x2=8,4+20=24,8+20=28,答:每件工艺品的售价应确定为24元或28元.18.解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.19.解:(1)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(2)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(3)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.20.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),定义抛物线y=﹣x2+2x+3.令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).。
人教版九年级上《22.1二次函数的图象和性质》练习题含答案
二次函数图象与性质(1)1. 二次函数的定义:一般地,形如()20y ax bx c a b c a =++≠,,为常数,且的函数叫做二次函数,其中a 为二次项系数,b 为一次项系数,c 为常数项。
2. 当b =0且c =0时:二次函数变为()20y ax a =≠, (1)当a >0时,其图象如下:xyy = 2∙x 2y = x 2y = 12∙x 2y =110∙x 2O(2)当a <0时,其图象如下:可以看到:对于抛物线2y ax =,a 越大,开口越小。
3. 二次函数()20y axa =≠的图象与性质()20y ax a =>()20y ax a =<开口方向上下例题1 已知函数42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大。
(1)求k 的值;(2)写出抛物线的顶点坐标和对称轴。
思路分析:由二次函数的定义,求出k 的值,然后写出顶点坐标和对称轴。
答案:(1)由二次函数的定义,得242k k +-=,解得13k =-,22k =;当3k =-时,原函数为2y x =-,当0>x 时,y 随x 的增大而减小,故3k =-不合题意,舍去; 当2k =时,原函数为24=y x ,当0>x 时,y 随x 的增大而增大,符合题意; 故2k =。
(2)抛物线24=y x 的顶点坐标为(0,0),对称轴为y 轴。
点评:注意对k 的值进行合理的取舍。
例题2 (1)已知A (1,y 1)、B (-2,y 2)、C (-2,y3)在函数y =241x 的图象上,则y 1、y 2、y 3的大小关系是 。
(2)(潍坊)已知函数y 1=x 2与函数y 2=- 12x +3的图象大致如图,若y 1<y 2,则自变量x的取值范围是 。
思路分析:(1)最直接的思路是将自变量的值代入函数表达式,求出每个点的相应的纵坐标,然后进行比较;当然也可以利用数形结合、以形助数的方法。
人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练(含答案)
人教版九年级数学上册22.1 二次函数的图象和性质同步训练一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=74. 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1C.b≥1 D.b≤15. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点6. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度7. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n2二、填空题9. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.10. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.11. 抛物线y=-8x2的开口向________,对称轴是________,顶点坐标是________;当x>0时,y随x的增大而________,当x<0时,y随x的增大而________.12. 已知二次函数的图象经过原点及点(-12,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.13. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.19. 如图,等腰直角三角形ABC的直角边与正方形MNPQ的边长均为10 cm,边CA与边MN在同一直线上,开始时点A与点M重合,△ABC沿MN方向以1 cm/s 的速度匀速运动,当点A与点N重合时,停止运动.设运动的时间为t s,运动过程中△ABC与正方形MNPQ重叠部分的面积为S cm2.(1)试写出S关于t的函数关系式,并指出自变量t的取值范围;(2)当MA=2 cm时,重叠部分的面积是多少?20. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版九年级数学上册22.1 二次函数的图象和性质同步训练-答案一、选择题1. 【答案】B2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.4. 【答案】D [解析] 先根据抛物线的性质得到其对称轴为直线x =b ,且当x >b 时,y 的值随x 值的增大而减小.因为当x >1时,y 的值随x 值的增大而减小,所以b≤1.5. 【答案】D【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.6. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.7. 【答案】D8. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .二、填空题9. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x -h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.10. 【答案】y 1<y 2[解析] ∵抛物线的解析式是y =2(x -1)2,∴其对称轴是直线x =1,抛物线的开口向上, ∴在对称轴右侧,y 随x 的增大而增大.又∵抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,∴y 1<y 2.11. 【答案】下y 轴 (0,0) 减小 增大12. 【答案】y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y=x 2+x 或y =-13x 2+13x .13. 【答案】0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.14. 【答案】y =-3(x -2)215. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题17. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行, 设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.19. 【答案】解:(1)设AB 与MQ 交于点R.∵△ABC 是等腰直角三角形,四边形MNPQ 是正方形, ∴△AMR 是等腰直角三角形. 由题意知,AM =MR =t ,∴S =S △AMR =12t·t =12t 2(0≤t≤10).(2)当MA =2 cm ,即t =2时,重叠部分的面积是12×2×2=2(cm 2).20. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)。
人教版九年级数学上册:22.1.4二次函数的图象和性质同步测试题及答案(新审)
( 2)求 ABD 的面积。
3、如图所示,二次函数 y=-x2+2x+m 的图象与 x 轴的一个交点为 A( 3,0),另一个交点为 B,且与 y 轴交于点 C. ( 1)求 m 的值; ( 2)求点 B 的坐标; ( 3)该二次函数图象上有一点 D( x, y)(其中 x> 0,y> 0),使 S△ABD=S△ABC, 求点 D 的坐标.
D. -1< t< 1
bx c(a 0) 的 图 象 如 图 所 示 对 称 轴 为
1
x= .下列结论中,正确的是(
)
2
A . abc 0 B . a b 0 C. 2b c 0 D. 4a c 2b
8、二次函数 y ax 2 bx c 的图像如图所示,反比列函数
标系内的大致图像是(
)
y
y
y
a y 与正比列函数 y bx 在同一坐
1
4
即与 x轴得交点为( 3,0)或( 1,0)
则 P( 0, 9 ), Q( 3,0)或( 1,0),所以直线 PQ 可分两种情况: 4
10 若 P( 0, 9 ), Q (3,0 ) 4
3
设 l PQ : y k1 x b1 , 则 b1
9
k1
4 解得
3 k1 b1 0
b1
4 9
4
y 3x 9 44
( 1)求点 A 与点 C 的坐标; ( 2)当四边形 AOBC 为菱形时,求函数 y ax2 bx 的关系式.
y
22.1.4 二次函数
a( x
h)2
k (a
0) 的图像和性质
一、理解新知
1、直线 x=h (h, k) 2、相同 不同 向右平移 h 个单位,再向上平移 k 个单位; 向右平移 h 个单位,再向下平移 |k|个单位;向左平移 |h|个单位,再向上平移 k 个单位;
最新人教版九年级数学上册第22章同步测试题及答案
最新人教版九年级数学上册第22章同步测试题及答案第二十二章二次函数22.1二次函数的图象和性质一、选择题1. 二次函数的图象一定不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限.2. 抛物线的顶点坐标是A. ,B. ,C. ,D. ,3. 已知抛物线,是常数且,下列选项中可能是它大致图象的是A. B.C. D.4. 下列函数中,y的值随着x逐渐增大而减小的是A. B. C. D.5. 将抛物线向下平移2个单位后,所得抛物线解析式为A. B. C. D.6. 如果抛物线经过点,和,,那么对称轴是直线A. B. C. D.7. 函数是二次函数时,则a的值是A. 1B.C.D. 08. 将抛物线先向左平移1个单位,再向上平移4个单位后,与抛物线重合,现有一直线与抛物线相交,当时,利用图象写出此时x的取值范围是A. B. C. D.9. 将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为A. B. C. D.10. 小明将图中两水平线与的其中一条当成x轴,且向右为正方向;两铅垂线与的其中一条当成y 轴,且向上为正方向,并且在此平面直角坐标系上画出二次函数的图象,则关于他选择x 轴与y轴的叙述正确的是A. 为x轴,为y轴B. 为x轴,为y轴C. 为x轴,为y轴D. 为x轴,为y轴二、解答题11. 已知:抛物线经过,、,两点,顶点为A.求:抛物线的表达式;顶点A的坐标.12. 已知抛物线.求这个抛物线的对称轴和顶点坐标;将这个抛物线平移,使顶点移到点,的位置,写出所得新抛物线的表达式和平移的过程.13. 在平面直角坐标系xOy中如图,已知抛物线,经过点,、,.求此抛物线顶点C的坐标;联结AC交y轴于点D,联结BD、BC,过点C作,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.14. 如图,在平面直角坐标系中,抛物线与y轴交于点,,与x轴交于点,,点B坐标为,.求二次函数解析式及顶点坐标;过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点点P在AC上方,作PD平行于y 轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.答案一、选择题1. 【答案】A【解析】∵二次函数y=ax2-2x-3(a<0)的对称轴为直线x,∴其顶点坐标在第二或第三象限.∵当x=0时,y=-3,∴抛物线一定经过第四象限,∴此函数的图像一定不经过第一象限.故选A.2. 【答案】C【解析】根据抛物线的顶点式:y=a(x-h)2+k,(a≠0),则抛物线的顶点坐标为(h,k)可得:抛物线y=-(x+1)2+3的顶点坐标为(-1,3),所以C选项的结论正确.故选C.【点睛】抛物线的顶点式:y=a(x-h)2+k,(a≠0),则抛物线的顶点坐标为(h,k).3. 【答案】B【解析】∵抛物线y=ax2+3x+(a-2),a是常数且a<0,∴图象开口向下,a-2<0,∴图象与y轴交于负半轴,∵a<0,b=3,∴抛物线对称轴在y轴右侧.故选B.4. 【答案】D【解析】A选项:函数y=2x的图象是y随着x增大而增大,故本选项错误;B选项:函数函数y=x2的对称轴为x=0,当x≤0时y随着x增大而减小,故本选项错误;C选项:函数,当x<0或x>0时,y 随着x增大而增大,故本选项错误;D选项:函数,当x>0时,y随着x增大而减小,故本选项错误;故选D.5. 【答案】D【解析】抛物线y=(x+2)2的顶点坐标为(-2,0),向下平移2个单位后的顶点坐标是(-2,-2),所以,平移后得到的抛物线解析式为y=(x+2)2-2.故选D.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变换确定出函数解析式是此类题目常用的方法,一定要熟练掌握并灵活运用,平移规律“左加右减,上加下减”.6. 【答案】B【解析】∵抛物线y=ax2+bx+c与x轴两交点的坐标为(-1,0)和(3,0),而抛物线y=ax2+bx+c与x轴两交点是对称点,∴抛物线的对称轴为直线x=1.故选B.【点睛】本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.7. 【答案】B【解析】依题意,得a2+1=2且a-1≠0,解得a=-1.故选B.8. 【答案】C【解析】y1=x2-2x-3=(x-1)2-4,则它的顶点坐标为(1,-4),所以抛物线y1=x2-2x-3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组==得==或 ,所以当-1≤x≤3.故选C.9.【答案】D【解析】因为y=x2-4x-4=(x-2)2-8,所以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(-1,-3),所以平移后的抛物线的函数表达式为y=(x+1)2-3.故选D.10. 【答案】D【解析】y=-x2-2x+1=-(x+1)2+2,故抛物线的对称轴为:直线x=-1,顶点坐标为:(-1,2),则关于他选择x轴与y轴的叙述正确的是:l2为x轴,l4为y轴.故选D.【点睛】此题主要考查了二次函数的图象,正确求出二次函数的对称轴与顶点坐标是解题关键.二、解答题11. 【答案】(1)(2),【解析】(1)直接把B(3,0)、C(0,3)代入y=-x2+bx+c得到关于b、c的方程组,解方程组求出b、c,可确定抛物线的解析式;(2)把(1)的解析式进行配方可得到顶点式,然后写出顶点坐标即可.解:把,、,代入,解得.故抛物线的解析式为;(2)=,所以顶点A的坐标为,.12.【答案】(1) 对称轴是直线,顶点坐标为,;(2) 平移过程为:向右平移3个单位,向下平移3个单位【解析】(1)将抛物线整理成顶点式形式,然后解答即可;(2)根据向右平移横坐标加,向下平移纵坐标减解答.解:,,,所以,对称轴是直线,顶点坐标为,;新顶点,,,,,平移过程为:向右平移3个单位,向下平移3个单位.13. 【答案】(1), (2).【解析】(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.(2)本题介绍三种解法:方法一:分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH 和△HPG∽△CPB,列比例式可得HG的长;方法二:如图2,过点H作HM⊥CG于M,先根据勾股定理的逆定理证明∠BCD=90°,利用面积法求CH的长,再证明△OBD∽△MCH,列比例式可得CM的长,从而可得结论;方法三:直线AC:y=-x-1,求CH和BD的解析式,联立方程组可得H的坐标,由勾股定理可得GH的长.解:把,、,代入抛物线解析式,得:,解得:,抛物线的解析式为:,顶点,方法一:设BD与CG相交于点P,设直线AC的解析式为:把,和,代入得:解得:则直线AC:,,,同理可得直线BD:,,,∽,∽,,,;方法二:如图2,过点H作于M,,,,,,,,,∽,,,,,由勾股定理得:,方法三:直线AC:,,,直线BD:,,,直线CH:,联立解析式:,解得:,,.14. 【答案】(1), (2),【解析】(1)用待定系数法求抛物线解析式,并利用配方法求顶点坐标;(2)先求出直线AB解析式,设出点P坐标(x,-x2+4x+5),建立函数关系式S四边形APCD=-2x2+10x,根据二次函数求出极值;可得P的坐标.解:把点,,点B坐标为,代入抛物线中,得:,解得:,抛物线的解析式为:,顶点坐标为,;设直线AB的解析式为:,,,,,,解得:,直线AB的解析式为:,设,,则,,,点C在抛物线上,且纵坐标为5,,,,,四边形,有最大值,当时,S有最大值为,此时,【点睛】本题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.22.2二次函数与一元二次方程一、选择题1. 下列命题:若,则;若,则一元二次方程有两个不相等的实数根;若,则一元二次方程有两个不相等的实数根;若,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是A. 只有B. 只有C. 只有D. 只有2. 二次函数的图象如图所示,若一元二次方程有实数根,则m的取值范围是A. B. C. D.3. 已知二次函数的图象上部分点的横坐标x与纵坐标y的对应值如下表:A. 开口向上B. 与x轴的另一个交点是,C. 与y轴交于负半轴D. 在直线的左侧部分是下降的4. 在平面直角坐标系xOy中,开口向下的抛物线的一部分图象如图所示,它与x轴交于,,与y轴交于点B,,则a的取值范围是A. B. C. D.5. 二次函数的图象如图所示,那么一元二次方程,为常数且的两根之和为A. 1B. 2C. -1D. -26. 已知二次函数,当自变量x取m时对应的值大于0,当自变量x分别取、时对应的函数值为、,则、必须满足A. 、B. 、C. 、D. 、7. 如图,教师在小黑板上出示一道题,小华答:过点,;小彬答:过点,;小明答:;小颖答:抛物线被x轴截得的线段长为你认为四人的回答中,正确的有A. 1个B. 2个C. 3个D. 4个8. 已知函数,其中、为常数,且,若方程的两个根为、,且,则、、、的大小关系为A. B.C. D.9. 抛物线的顶点为,,与x轴的一个交点A在点,和,之间,其部分图象如图,其中错误的结论为A. 方程的根为B.C. D.10. 已知抛物线的对称轴为,若关于x的一元二次方程在的范围内有解,则c的取值范围是A. B. C. D.二、解答题11. 抛物线经过点,、,两点.(1)求抛物线顶点D的坐标;(2)抛物线与x轴的另一交点为A,求的面积.12. 在平面直角坐标系xOy中(如图),已知抛物线,经过点,、,.(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.13. 已知抛物线的对称轴是直线,(1)求证:;(2)若关于x的方程,有一个根为4,求方程的另一个根.14. 抛物线与y轴交于点,.(1)求抛物线的解析式;(2)求抛物线与坐标轴的交点坐标;(3)①当x取什么值时,?当x取什么值时,y的值随x的增大而减小?15. 如图,在平面直角坐标系中,点A是抛物线与x轴正半轴的交点,点B在抛物线上,其横坐标为2,直线AB与y轴交于点点M、P在线段AC上不含端点,点Q在抛物线上,且MQ平行于x 轴,PQ平行于y轴设点P横坐标为m.(1)求直线AB所对应的函数表达式.(2)用含m的代数式表示线段PQ的长.(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.答案一、选择题1.【答案】B【解析】①b2-4ac=(-a-c)2-4ac=(a-c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2-4ac=4a2+9c2+12ac-4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2-4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.2.【答案】A【解析】由图可知:y≥-3,即ax2+bx≥-3,∵ax2+bx+m=0,∴ax2+bx=-m,∴-m≥-3,∴m≤3.故选A. 3. 【答案】B【解析】A、由表格知,抛物线的顶点坐标是(1,4).故设抛物线解析式为y=a(x-1)2+4.将(-1,0)代入,得a(-1-1)2+4=0,解得a=-1.∵a=-1<0,∴抛物线的开口方向向下,故本选项错误;B、抛物线与x轴的一个交点为(-1,0),对称轴是x=1,则抛物线与x轴的另一个交点是(3,0),故本选项正确;C、由表格知,抛物线与y轴的交点坐标是(0,3),即与y轴交于正半轴,故本选项错误;D、抛物线开口方向向下,对称轴为x=1,则在直线x=1的左侧部分是上升的,故本选项错误;故选B.点睛:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.4. 【答案】B【解析】根据图象得:a<0,b<0,∵抛物线与x轴交于A(1,0),与y轴交于点B (0,3),∴==,∴a+b=-3,∵b<0,∴-3<a<0,故选B.5. 【答案】D【解析】∵抛物线与x轴的两交点坐标为(-3,0),(1,0),∴一元二次方程ax2+bx+c=0的两根分别为x1=-3,x2=1,∴-3+1=-,即=2,∴一元二次方程ax2+bx+c-m=0的两根之和=-=-2.故选D.6. 【答案】B【解析】令y=−x2+x−=0,解得:x=,∵当自变量x取m时对应的值大于0,∴<m<,∵点(m+1,0)与(m-1,0)之间的距离为2,大于二次函数与x轴两交点之间的距离,∴m-1的最大值在左边交点之左,m+1的最小值在右边交点之右.∴点(m+1,0)与(m-1,0)均在交点之外,∴y1<0、y2<0.故选B.7. 【答案】C【解析】∵抛物线过(1,0),对称轴是x=2,∴==,解得a=1,b=-4,∴y=x2-4x+3,当x=3时,y=0,小华正确;当x=4时,y=3,小彬也正确,小明也正确;∵抛物线被x轴截得的线段长为2,已知过点(1,0),∴另一点为(-1,0)或(3,0),∴对称轴为y轴或x=2,此时答案不唯一,∴小颖错误.故选C.8. 【答案】C【解析】函数y=(x-x1)(x-x2)的图象与x轴的交点的横坐标分别是x1、x2;函数y=(x-x1)(x-x2)-2的图象是由函数y=(x-x1)(x-x2)的图象向下平移2个单位得到的,则方程(x-x1)(x-x2)-2=0[或方程(x-x1)(x-x2)=2]的两根x3、x4即为函数y=(x-x1)(x-x2)-2的图象与x轴的交点的横坐标,它们的大致图象如图所示,根据图象知,x3<x1<x2<x4.故选C.9. 【答案】A【解析】∵x=-1时,y≠0,∴方程ax2+bx+c=0的根为-1这种说法不正确,∴结论A不正确;∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2-4ac>0,∴结论B正确;∵x=-,∴b=2a,∴顶点的纵坐标是=2,∴a=c-2,∴结论C正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=-1,与x 轴的一个交点A在点(-3,0)和(-2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论D正确;∴不正确的结论为:A.故选A.点睛:二次函数的图象与系数的关系:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).10. 【答案】D【解析】由抛物线y=x2+bx+c的对称轴为x=1,∴−=1,−=1,解得:b=-2,∴x2-bx-c=x2+2x-c,令y1=x2+2x-c,可求其对称轴为:x=-1,根据题意,当x=2时,y1>0,x2+2x-c>0,且当x=-1时,y1≤0,x2+2x-c≤0,或当x=-3时,y>0,9-6-c>0,且当x=-1时,y1≤0,x2+2x-c≤0,解得:-1≤c<8,或-1≤c <3,综上所述,-1≤c<8.故选D.二、解答题11. 【答案】(1)D(1,4);(2)6.【解析】(1)利用待定系数法代入求出a,c的值,进而利用配方法求出D点坐标即可;(2)首先求出图象与x轴的交点坐标,进而求出△ABC的面积.解:(1)由题意,得==,解得==,则y=-x2+2x+3=-(x-1)2+4,则D(1,4);(2)由题意,得-x2+2x+3=0,解得x1=-1,x2=3;则A(-1,0),又∵B(3,0)、C(0,3),∴S△ABC=×4×3=6.12. 【答案】(1)C(2,-3);(2).【解析】(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.(2)分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH和△HPG∽△CPB,列比例式可得HG的长解:(1)把A(-1,0)、B(5,0)代入抛物线解析式,得:==,解得:==,∴抛物线的解析式为:y=x2−x−= (x−2)2−3,∴顶点C(2,-3)(2)设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(-1,0)和C(2,-3)代入得:==,解得:==则直线AC:y=-x-1,∴D(0,-1),同理可得直线BD:y=x-1,∴P(2,−)∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴=,∴△HPG∽△CPB,∴=,∴=,∴HG=.13. 【答案】(1)见解析;(2)方程的另一个根为x=-2.【解析】(1)根据抛物线的对称轴为x=-=1可得;(2)根据抛物线的对称性得到抛物线与x轴的另一个交点可得答案.解:(1)∵抛物线的对称轴为直线x=1,∴-=1,∴2a+b=0;(2)∵关于x的方程ax2+bx-8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(-2,0),∴方程的另一个根为x=-2.14.【答案】(1);(2)x轴:,、,;Y轴:,(3)见解析. 【解析】(1)将点(0,3)代入抛物线的解析式中,即可求得m的值;(2)可以令y=0,可得出一个关于x的一元二次方程,方程的解就是抛物线与x轴交点的横坐标;(3)根据(2)中抛物线与x轴的交点以及抛物线的开口方向即可求得x的取值范围.解:(1)将点(0,3)代入抛物线y=-x2+(m-1)x+m,m=3,∴抛物线的解析式y=-x2+2x+3;(2)令y=0,-x2+2x+3=0,解得x1=3,x2=-1;x轴:A(3,0)、B(-1,0);y轴:C(0,3)(3)抛物线开口向下,对称轴x=1;所以)①当-1<x<3时,y>0;②当x≥1时,y的值随x的增大而减小.15. 【答案】(1)直线AB的解析式为;(2)见解析;(3)m的值为或.【解析】(1)先利用二次函数解析式求出A点和B点坐标,然后利用待定系数法求直线AB的解析式;(2)设P(m,-m+8),则Q(m,-m2+4m),讨论:当0<m≤2时,PQ=m2-5m+8;当2<m<8时,PQ=-m2+5m-8;(3)先表示出M(m2-4m+8,-m2+4m),讨论:当0<m≤2,QM=m2-5m+8,利用矩形周长列方程得到(m2-5m+8+m2-5m+8)=9,然后解方程求出满足条件m的值;当2<m<8,QM=-m2+5m-8,利用矩形周长列方程得到2(-m2+5m-8-m2+5m-8)=9,然后解方程求出满足条件m的值.解:(1)当y=0时,-x2+4x=0,解得x1=0,x2=8,则A(8,0);当x=2时,y=-x2+4x=6,则B(2,6),设直线AB所对应的函数表达式为y=kx+b,将A(8,0),B(2,6)代入可得==,解得==,所以直线AB的解析式为y=-x+8;(2)设P(m,-m+8),则Q(m,-m2+4m),当0<m≤2时,PQ=-m+8-(-m2+4m)=m2-5m+8;当2<m<8时,PQ=-m2+4m-(-m+8)=-m2+5m-8;(3)∵MQ∥x轴,∴M点的纵坐标为-m2+4m,∴M点的横坐标为m2-4m+8,即M(m2-4m+8,-m2+4m),当0<m≤2,QM=m2-4m+8-m=m2-5m+8,∵2(PQ+QM)=9,∴2(m2-5m+8+m2-5m+8)=9,整理得2m2-20m+23=0,解得m1=,m2=(舍去);当2<m<8,QM=m-(m2-4m+8)=-m2+5m-8,∵2(PQ+QM)=9,∴2(-m2+5m-8-m2+5m-8)=9,整理得2m2-20m+41=0,解得m1=,m2=(舍去);综上所述,m的值为或.22.3实际问题与二次函数一、课堂学习检测1. 矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2. 如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3. 如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O 点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)二、综合、运用、诊断4. 如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5. 某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6. 某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?三、拓展、探究、思考8. 已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A 在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.答案一、课堂学习检测1. 【答案】y=-x2+3x(0<x<3),图见解析.【解析】(1)根据矩形周长=2×(长+宽),可由周长为6m和宽为xm把矩形表示出来.再由矩形面积=矩形的长×矩形的宽就可列出函数关系式;(2)根据“矩形的宽大于0,而小于矩形周长的一半”可求出x的取值范围,并由此可画出函数的图像.解:由题意可得:y=(3-x)x=-x2+3x,故此函数是二次函数,自变量取值范围为:0<x<3,其图象如图所示:.2.【答案】5小时.【解析】首先在图中建立合适的坐标系(这里选择AB所在的直线为x轴,AB的垂直平分线为y轴,也可另外建立),然后根据题目中的已知条件可得A,B,C,D四点的坐标,设出解析式,代入相应点的坐标建立方程(组),解方程(组)求得待定系数的值得到解析式,由解析式可得到顶点E的坐标,再结合题中条件可解得答案.解:如上图,以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,则由已知得A(4,0),D(2,3),设抛物线解析式为:,把A、D坐标代入解析式可得:,解得:,∴抛物线解析式为:,∴顶点E的坐标为(0,4),设CD与y轴的交点为点F,∴EF=4-3=1(m),∵1÷0.2=5(小时),∴水过警戒水位后5小时淹到桥拱顶.3. 【答案】(1);(2)17米.【解析】(1)依题意代入x的值可得抛物线的表达式.(2)先求出OC的长,根据图示可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得2=-(x-6)2解得x的值即可知道CD、BD.解:(1)如图,设足球开始飞出到第一次落地时,抛物线的表达式为y=a(x-h)2+k,∵h=6,k=4,∴y=a(x-6)2+4,由已知:当x=0时y=1,即1=36a+4,∴a=-,∴表达式为y=-(x-6)2+4=-x2+x+1;(2)令y=0,-(x-6)2+4=0,∴(x-6)2=48,解得:x1=+6≈13,x2=-+6<0(舍去),∴OC≈13,如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴2=-(x-6)2+4,解得:x1=6-,x2=6+,∴CD=|x1-x2|=≈10,∴BD=13-6+10=17(米).二、综合、运用、诊断4. 【答案】(1)AB长为5米;(2)围成长为10米,宽为米的矩形ABCD花圃时,其最大面积为【解析】(1)由题意可知围成该花圃需要用到篱笆的宽有三条,而长只有一条,设宽AB的长为xm,则长BC为(24-3x)m,再设长方形面积为y,由矩形面积公式可得:y关于x的函数关系式,由y=45解得对应的x的值,可得答案;(2)把(1)中所得解析式配方化为顶点式,然后结合自变量的取值范围可求得y 的最大值,把最大值与45比较可得结论,并进一步可由自变量的取值范围和解析式求得最大面积;解:(1)设花圃的宽AB=x米,知BC应为(24-3x)米,故面积y与x的关系式为y=x(24-3x)=-3x2+24x.当y=45时,-3x2+24x=45,解出x1=3,x2=5.当x2=3时,BC=24-3×3>10,不合题意,舍去;当x2=5时,BC=24-3×5=9,符合题意.故AB长为5米.(2)能围成面积比45m2更大的矩形花圃.由(1)知,y=-3x2+24x=-3(x-4)2+48,∵,∴,由抛物线y=-3(x-4)2+48知,在对称轴x=4的右侧,y随x的增大而减小,∴当时,y=-3(x-4)2+48有最大值,且最大值为此时,BC =10m,即围成长为10米,宽为米的矩形ABCD花圃时,其最大面积为点睛:象本题这种实际问题中涉及到二次函数最值的问题,我们要在自变量取值范围内根据函数的增减性来确定其最值是在自变量取何值时取得的,再根据函数解析式来进行计算求得相应的最值,而不能直接用顶点的纵坐标代替最值.5. 【答案】(1)y=-3x2+252x-4860;(2)当x=42时,最大利润为432元.【解析】(1)根据:每天销售利润y(元)=单件商品利润每天销售量、单件商品利润=商品售价-商品进价,结合题中条件可得y与x间的函数关系式;再根据单件商品利润不低于0,销售量不低于0可求得自变量的取值范围;(2)把(1)中所得函数解析式配方化为顶点式,结合自变量的取值范围和函数的增减性可求得答案;解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件的销售利润为y=m(x-30),又∵m=162-3x,∴y=(x-30)(162-3x),即y=-3x2+252x-4860,∵x-30≥0,∴x≥30.又∵m≥0,∴162-3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=-3x2+252x-4860(30≤x≤54).(2)由(1)得y=-3x2+252x-4860=-3(x-42)2+432,又∵30≤x≤54,∴可得售价定为42元时获得的利润最大,最大销售利润是432元.6. 【答案】(1)y=-4x2+64x+30720;(2)增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.【解析】(1)生产总量=每台机器生产的产品数×机器数;(2)根据函数性质求最值.解:(1)由题意得y=(80+x)(384-4x)=-4x2+64x+30720;(2)∵y=-4x2+64x+30720=-4(x-8)2+30976,∴当x=8时,y有最大值,为30976,即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.【点睛】本题考查了二次函数的应用,解题的关键是弄清题意,根据题意列出函数关系式.7. 【答案】(1);(2)截止到10月末,公司累积利润可达到30万元;(3)第8个月公司获利润5.5万元.【解析】(1)由图可知:函数图象经过了点(1,-1.5)、点(2,-2)和点(5,2.5),设解析式为,代入三点的坐标,列出方程组,就可求得、、的值,从而得的解析式;(2)把代入(1)中所求得的解析式,解出的值,并结合实际意义可得答案;(3)把,分别代入(1)中所得的解析式,求出对应的的值,用可得8月份的利润;解:(1)设s与t的函数关系式为s=at2+bt+c,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得∴解得,∴(2)把s=30代入解得t1=10,t2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t=7代入得7月末的累积利润为s7=10.5(万元).把t=8代入得8月末的累积利润为s8=16(万元).∴s8-s7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.三、拓展、探究、思考8. 【答案】(1)y=x2-2x-3;(2)AD⊥BC,理由见解析;(3)存在,M1(1,-2),N1(4,-3).或M2(0,-3),N2(3,-4).【解析】(1)由题中条件:二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA,可得点C(0,-3)、点A(-1,0)、点B(3,0),把A、B两点的坐标代入解析式可求得a、b的值,就可得到解析式了;(2)把(1)中所求解析式配方化为顶点式,得到对称轴方程,就可得到D的坐标,再由A、B、C、D四点的坐标列方程组可求得直线AD和直线BC的解析式,计算两解析式中“k”的值的乘积是否为“-1”就可判断两直线是否垂直了;(3)如图,由(2)中所得AD、BC的解析式可列方程组解得P的坐标,由射线BC和射线AD互相垂直,垂足为点P,可知△APC和△PMN 都是直角三角形;然后分以下两种情况讨论:①当PN=PA,M与C重合时,△APC与△PMN全等;②当PM=PA,N与D重合时,△APC与△PMN全等,并求出相应的点M、N的坐标.解:(1)∵二次函数y=ax2+bx-3(a>0)与y轴交于点C,∴点C的坐标为(0,-3),∴OC=3,又∵OC=OB=3OA,∴OB=3,OA=1,又∵二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,∴点A、B的坐标分别为(-1,0)、(3,0),把A、B的坐标代入解析式y=ax2+bx-3(a>0)得:,解得:,∴二次函数解析式为:;(2)由可知,该抛物线的对称轴为直线;,。
数学人教版九年级上册22.1.4 y=ax2+bx+c的图象和性质 同步训练(解析版)
2019-2019学年数学人教版九年级上册22.1.4 y=ax2+bx+c的图象和性质同步训练一、选择题1. ( 2分) 抛物线y=x2﹣2x+1的顶点坐标是()A.(1,0)B.(﹣1,0)C.(﹣2,1)D.(2,﹣1)【答案】A【考点】二次函数y=ax^2+bx+c的性质【解析】【解答】由原方程,得y=(x﹣1)2,∴该抛物线的顶点坐标是:(1,0).故答案为:A.【分析】将二次函数的解析式转化为顶点式,就可求出顶点坐标。
或将a、b、c的值代入顶点式计算即可。
2. ( 2分) 用配方法将化成的形式为()A. B. C. D.【答案】B【考点】二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化【解析】【解答】故答案为::B【分析】在抛物线的解析式的右边加上一次项系数一半的平方,再减去一次项系数一半的平方,然后前三项利用完全平方公式分解因式,常数项合并在一起,即y = x2−8x+12=x2−8x+16−16+12= (x−4)2−4.3. ( 2分) 对二次函数y=3x2-6x的性质及其图象,下列说法不正确的是()A. 开口向上B. 对称轴为直线x=1C. 顶点坐标为(1,-3)D. 最小值为3【答案】D【考点】二次函数的最值,二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化【解析】【解答】A. 二次函数开口向上,不符合题意.B.对称轴不符合题意.C.当时,顶点坐标为:不符合题意.D.二次函数的最小值为:符合题意.故答案为::D【分析】首先将二次函数配成顶点式,根据顶点坐标式即可判断出其对称轴直线,顶点坐标,最值等问题,再根据二次项系数大于0,即可判断出抛物线的开口方向。
4. ( 2分) 二次函数y=ax2+bx-1(a≠0)的图象经过点(1,-3),则代数式1+a+b的值为( )A. -3B. -1C. 2D. 5 【答案】B【考点】代数式求值,二次函数图象上点的坐标特征【解析】【解答】二次函数的图象经过点把点代入二次函数的解析式,得:故答案为::B【分析】将点( 1 ,− 3 ) 得出代入二次函数的解析式+b=−2.,再整体代入代数式即可算出答案。
人教版九年级数学上册22.1 二次函数的图象和性质同步练习(含答案)
人教版九年级数学上册22.1 二次函数的图象和性质[测试时间:45分钟分值:100分]一、选择题(每题5分,共30分)1.与抛物线y=2(x-1)2+2形状相同的抛物线是()A.y=12(x-1)2B.y=2x2C.y=(x-1)2+2 D.y=(2x-1)2+22.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是()A BC D3.关于二次函数y=-12(x-3)2-2的图象与性质,下列结论错误的是()A.抛物线的开口向下B.当x=3时,函数有最大值-2 C.当x>3时,y随x的增大而减小D.抛物线可由y=12x2的图象经过平移得到4.已知二次函数y=a(x-1)2+3,当x<1时,y随x的增大而增大,则a 的取值范围是()A.a≥0 B.a≤0C.a>0 D.a<05.下列抛物线中,顶点坐标为(2,1)的是()A.y=(x+2)2+1 B.y=(x-2)2+1C.y=(x+2)2-1 D.y=(x-2)2-16.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图1),对应的两条抛物线关于y轴对称,AE∥x轴,AB=4 cm,最低点C在x轴上,高CH=2 cm,BD=2 cm,则右轮廓DFE所在抛物线的解析式为()图1A .y =12(x +3)2B .y =12(x -3)2C .y =-12(x +3)2D .y =-12(x -3)2二、填空题(每题4分,共24分)7.二次函数y =-(x -3)2+2的图象的顶点坐标是______________,对称轴是______________.8.已知二次函数y =-12x 2-3,如果x >0,那么函数值y 随着自变量x 的增大而________(填“增大”或“减小”).9.隧道的截面是抛物线形,以水平面为x 轴,隧道中线为y 轴,则抛物线的解析式为y =-19x 2+3.25,一辆车高3 m ,宽4 m ,该车________通过该隧道(填“能”或“不能”).10.如果抛物线C 1的顶点在抛物线C 2上,抛物线C 2的顶点也在抛物线C 1上时,此时我们称抛物线C 1与C 2是“互为关联”的抛物线.那么与抛物线y =2x 2是“互为关联”且顶点不同的抛物线的解析式可以是__________________(只需写出一个).11.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为103m ,喷出的水柱沿抛物线轨迹运动(如图2),在离中心水平距离4 m 处达到最高,高度为6 m ,之后落在水池边缘,那么这个喷水池的直径为________ m.图212.如图3,抛物线y =ax 2+c (a <0)交x 轴于点G ,F ,交y 轴于点D ,在x轴上方的抛物线上有两点B ,E ,它们关于y 轴对称,点G ,B 在y 轴左侧,BA ⊥OG 于点A ,BC ⊥OD 于点C ,四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为________.图3三、解答题(共46分)13.(8分)已知抛物线如图4,根据图象可得:图4(1)抛物线的顶点坐标为______________; (2)对称轴为______________;(3)当x =______________时,y 有最大值,最大值是______________; (4)当______________时,y 随着x 的增大而增大; (5)当______________时,y >0.14.(8分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出将此函数图象如何平移得到y =12x 2的图象.15.(10分)如图5,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约53 m .铅球落地点在B 处,铅球运行中在运动员前4 m 处(即OC =4 m)到达最高点,最高点高为3 m .已知铅球经过的路线是抛物线,根据如图的直角坐标系,你能算出该运动员的成绩吗?图516.(10分)如图6,点A是抛物线y=ax2上第一象限内的点,点A的坐标为(3,6),AB⊥y轴与抛物线y=ax2的另一交点为点B.(1)求a的值和点B的坐标;(2)在x轴上有一点C,点C的坐标为(5,0),求△AOC的面积.图617.(10分)如图7,抛物线的顶点为(1,-4),与x轴交于A,B两点,与y 轴负半轴交于点C(0,-3).(1)求抛物线的解析式;(2)点P为对称轴右侧抛物线上一点,以BP为斜边作等腰直角三角形,直角顶点M落在对称轴上,求P点的坐标.图7参考答案1.B 2.A 3.D 4.D 5.B 6.B7.(3,2)直线x=38.减小9.不能10.y=-2(x-1)2+2(答案不唯一)11.2012.413.(1)(-3,2)(2)直线x=-3(3)-32(4)x<-3(5)-5<x<-1 14.(1)抛物线的开口向上,顶点坐标为(-1,4),对称轴为直线x=-1.(2)图略,将二次函数y=12(x+1)2+4的图象向右平移1个单位长度,再向下平移4个单位长度可得到y=12x2的图象.15.该运动员的成绩为10 m.16.(1)a=23,点B的坐标为(-3,6).(2)S△AOC=15.17.(1)y=x2-2x-3.(2)点P的坐标为(2,-3)或(4,5).。
人教版九年级上册数学同步练习《二次函数的图象和性质》(习题+答案)
22.1 二次函数的图象和性质内容提要1.一般地,形如2y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做二次函数.其中,x 是自变量,a ,b ,c 分别是函数表达式的二次项系数、一次项系数和常数项.2.二次函数()20y ax bx c a =++≠的图象为抛物线,叫做抛物线2y ax bx c =++.3.二次函数()()20y a x h k a =-+≠的图象与性质:(1)二次函数()()20y a x h k a =-+≠的图象都可以由抛物线2y ax =向左(右)向上(下)平移得到,平移的方向、距离要根据h ,k 的值来决定.(2)抛物线()2y a x h k =-+的顶点为(),h k .当0a >时,开口向上;当0a <时,开口向下.对称轴为直线x h =.(3)二次函数()()20y a x h k a =-+≠的性质:①当0a >,在对称轴左侧()x h <,y 随着x 的增大而减小;在对称轴右侧()x h >,y 随着x 的增大而增大;当x h =时,y k =最小.②当0a <,在对称轴左侧()x h <,y 随着x 的增大而增大;在对称轴右侧()x h >,y 随着x 的增大而减小;当x h =时,y k =最大.4.研究二次函数()20y ax bx c a =++≠的图象特征和性质,一般都用配方法将二次函数的表达式转化为()2y a x h k =-+的形式.若问题只要求对称轴或顶点坐标,也可以直接利用顶点坐标公式计算.5.用描点法画二次函数的图象,一般采用“五点法”(顶点及抛物线上的两组对称点);若只需画二次函数的大致图象,且抛物线与x 轴有两个交点时,可用“四点法”(顶点及抛物线与坐标轴的三个交点).6.研究与二次函数相关的实际问题,常常需要结合图象,运用“数形结合”的方法解决.7.求二次函数的解析式,一般采用“待定系数法”. 22.1.1 二次函数基础训练1.下列函数中是二次函数的为( ) A .31y x =-B .231y x =-C .()221y x x =+-D .323y x x =+-2.若函数()23y a x x a =-++是二次函数,那么a 不可以取( ) A .0B .1C .2D .33.下列问题中的两个变量,能构成二次函数关系的是( ) A .在一定时间内,汽车行驶的速度与行驶路 B .底边长度一定,三角形的面积与高 C .正方体的体积与边长D .计算圆的面积时,面积与半径的关系4.已知二次函数2y ax c =+,当2x =时,9y =;当3x =时,19y =,则a c +的值是( ) A .4B .2C .1D .35.若二次函数2y ax =的图象经过点()2,4P -,则该图象必经过点( ) A .()2,4B .()2,4--C .()4,2-D .()4,2- 6.二次函数()()31y x x =+-化为一般形式后一次项系数为.7.在半径为4的圆中,挖去一个长为a 、宽为1a -的矩形,则余下部分的面积y 与a 的函数关系式为.8.正方形对角线长为x cm ,面积为y 2cm ,则y 与x 的函数关系式是.9.张燕存入银行人民币500元,年利率为x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存,那么两年后的本息和y 与x 的函数关系式是.10.已知函数()()222231y m m x m x m =--+-+.(1)当y 是x 的一次函数时,求m 的值并写出函数解析式; (2)当y 是x 的二次函数时,求m 的取值范围.22.1.2 二次函数2y ax =的图象和性质基础训练1.函数23y x =-的图象开口向 ,对称轴是,顶点是 .2.已知抛物线()20y ax a =≠经过点()2,8-,则a =.3.把函数22y x =-的图象沿x 轴翻折,得到的图象的解析式是 .4.函数2y x =,22y x =-图象的开口大小分别记为A ,B ,则A 与B 的大小关系为.5.若直线y ax =经过第一、三象限,则抛物线2y ax =( ) A .开口向上,且当0x <时,y 随x 的增大而增大 B .开口向上,且当0x >时,y 随x 的增大而增大 C .开口向下,且当0x <时,y 随x 的增大而增大 D .开口向下,且当0x >时,y 随x 的增大而增大 6.已知二次函数2y ax =,下列说法不正确的是( ) A .对称轴为y 轴B .当0a <,0x ≠时,y 总为负值C .当0a >时,y 有最小值0D .当0a <,0x <时,y 随x 的增大而减小7.已知点()11,x y ,()22,x y ,()33,x y 都在函数22y x =-的图象上,且1230x x x >>>,则( ) A .123y y y << B .132y y y << C .321y y y <<D .213y y y <<8.苹果熟了,从树上落下所经过的路程s 与下落的时间t 满足212s gt =(g 是不为0的常数),则s 与t 的函数图象大致是( )9.函数()20y ax a =≠与直线y x =-交于点()1,b . (1)求a ,b 的值;(2)画出此二次函数的图象;x…2-1-0 1 2 …y……(3)结合图象,写出这个二次函数的性质.22.1.3二次函数()2=-+的图象和性质y a x h k基础训练(1)二次函数2=+的图象和性质y ax k1.抛物线2y x=-的顶点坐标为;当x时,y随x的增大而减少.212.请写出一个开口向上,并且与y轴交于点()0,1的抛物线的解析式y=.3.将抛物线23y x=+的图象向上平移1个单位,则平移后的抛物线的解析式为. 4.函数21=+的图象大致是()y x5.已知二次函数21=-的图象开口向下,则直线1y ax=-经过的象限是()y axA.第一、二、三象限B.第一、二、四象限C .第一、三、四象限D .第二、三、四象限6.抛物线21y x 2=-+的对称轴是( ) A .直线12x =B .直线12x =-C .y 轴D .直线2x =7.对于抛物线231y x =-,下列说法不正确的是( ) A .向上平移一个单位可得到抛物线23y x = B .当0x =时,函数有最小值1- C .当0x <时,y 随x 的增大而增大 D .与抛物线231y x =-+关于x 轴对称8.(1)在同一坐标系中,画出下列函数的图象,并写出它们共同的性质:22y x =-; 21y x 2=-+; 221y x =--.x… 2- 1- 0 1 2 … 22y x =- … … 221y x =-+ … … 221y x =--……(2)写出抛物线2y ax k =+与2y ax =的关系.基础训练(2)二次函数()2y a x h =-的图象和性质1.函数()221y x =-的图象的对称轴是,顶点坐标是 .2.函数()221y x =-+的图象可以由函数22y x =-的图象向 平移1个单位得到;当x时,y 有最大值是.3.一个顶点在x 轴上的抛物线,其形状和开口方向与抛物线212y x =的相同,并且对称轴是直线2x =,这个函数的解析式是.4.将抛物线2y x =-向右平移2个单位后,得到的抛物线的解析式是( ) A .()22y x =-+ B .22y x =-+ C .()22y x =--D .22y x =--5.如果y kx b =+的图象在第一、二、三象限内,那么函数()2y k x b =-的图象大致是( )6.抛物线()21y x =-与直线1y x =-在同一坐标系中交点的个数为( ) A .0个B .1个C .2个D .无法确定7.(1)在同一坐标系中画出下列函数的图象:2y x =-;()22y x =-+;()22y x =--.x… 4-3-2- 1- 0 1 2 3 4 … 2y x =- …… ()22y x =-+……()22y x =--… …(2)写出抛物线()2y a x h =-与2y ax =的关系.基础训练(3)二次函数()2y a x h k =--的图象和性质1.抛物线()2534y x =+-的对称轴是 ,顶点坐标是 . 2.二次函数()2425y x =-++,当x =时,y 有最大值是;当x时,y 随x 的增大而增大.3.将抛物线24y x =-先向右平移2个单位,再向下平移1个单位,得到的抛物线的解析式为.4.已知抛物线()21433y x =--与x 轴的一个交点坐标为()1,0,则抛物线与x 轴的另一个交点的坐标是( ) A .()5,0B .()6,0C .()7,0D .()8,05.在不同坐标系中画出下列函数的图象: (1)()2211y x =+-;(2)()21252y x =+-.6.写出抛物线()2y a x h k =-+与()2y a x h =-及2y ax =的关系.7.已知抛物线()232y a x =-+经过点()1,2-. (1)求a 的值;(2)若点()1,A m y ,()2,B n y ()3m n <<都在该抛物线上,试比较1y 与2y 的大小.8.如图是一个抛物线形拱桥的示意图,桥的跨度AB 为100米,支撑桥的是一些等距的立柱,相邻立柱间的水平距离为10米(不考虑立柱的粗细),其中距A 点10米处的立柱EF 的高度为3.6米.(1)以AB 中点O 为原点,AB 所在直线为x 轴建立直角坐标系,求抛物线顶点C 的坐标; (2)求与OC 相邻的立柱的高.22.1.4 二次函数2y ax bx c =++的图象和性质基础训练(1)二次函数2y ax bx c =++的顶点坐标与配方法1.二次函数221y x x =--+化成()2y a x h k =-+的形式是.2.抛物线2y ax bx c =++的顶点是()2,1A ,且经过点()1,0B ,则抛物线的函数关系式为.3.函数243y x x =-+,当x =时,y 有最小值是;当x时,y 随x 的增大而减小.4.如图,在平面直角坐标系中,抛物线所表示的函数解析式为()22y x h k =--+,则下列结论正确的是( ) A .0h >,0k > B .0h <,0k > C .0h <,0k <D .0h >,0k <5.抛物线24y x x =-的对称轴是直线( ). A .2x =-B .4x =C .2x =D .4x =-6.抛物线2221y x ax a a =-+++的顶点在第二象限,则常数a 的取值范围是( ) A .10a -<<B .1a >C .12a -<<D .1a <-或2a >7.二次函数2y ax bx c =++的图象如图所示,则一次函数y bx a =+的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限8.用二次函数的顶点坐标公式求下列函数的顶点坐标. (1)221y x x =--; (2)2243y x x =-++.9.先将下列函数解析式化为()2y a x h k =-+形式,然后在不同坐标系内画出图象. (1)24y x x =-+;(2)2361y x x =++.基础训练(2)二次函数2y ax bx c =-+的图象和性质1.抛物线2253y x x =+-的对称轴是直线 ;顶点坐标是 ,与y 轴的交点坐标是.2.已知函数26y x x m =-+的最小值为1,那么m 的值为 .3.已知抛物线265y x x =-+的图象如图所示,当0y =时,x =.4.二次函数223=--的图象如图所示.当0y x xy<时,自变量x的取值范围是.5.二次函数2=++的图象如图所示,那么关于此二次函数的下列四个结论:y ax bx c①0a<;②0c>;③函数有最大值;④在对称轴左侧,y随x增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个6.在同一平面直角坐标系中,函数2=+与y bx ay ax bx=+的图象可能是()7.将抛物线2=-++先向左平移2个单位,再向上平移1个单位.y x x365(1)求平移后抛物线的解析式;(2)求平移后抛物线的对称轴和抛物线与y轴的交点坐标;(3)在(1)的条件下,求当x 取何值时,y 随x 的增大而减小?8.如图,抛物线()20y ax bx c c =++≠过点()1,0-和点()0,3-,且顶点在第四象限,设P a b c =++,求P 的取值范围.基础训练(3)用待定系数法求二次函数的解析式1.若二次函数2y x bx c =++,当2x =时,0y =;当1x =-时,3y =,则这个二次函数的解析式为.2.已知二次函数2y x bx c =++,当2x =时,0y =;当1x =-时,3y =,则这个二次函数的解析式为.3.抛物线的顶点在原点,且过点()3,27-,则这条抛物线的解析式为.4.已知二次函数的图象如图所示. (1)这个二次函数的解析式是;(2)根据图象回答:当x时,0y >.5.已知二次函数22y x bx =+-的图象与x 轴的一个交点为()1,0,则它与x 轴的另一个交点坐标是( ) A .()1,0B .()2,0C .()2,0-D .()1,0-6.已知二次函数图象经过()1,0,()2,0和()0,2三点,则该函数的解析式是( A .222y x x =++ B .232y x x =-+ C .232y x x =++D .223y x x =-+7.在下列条件下,分别求二次函数的解析式:(1)已知抛物线2y ax bx c =++与23y x =-形状相同,开口方向相反,顶点坐标为()2,4-; (2)当3x =时,最小值5y =,且过点()1,11; (3)对称轴为y 轴,且经过点()2,3,()1,6-.8.如图,抛物线()214y a x =-+与x 轴交于点A ,B ,与y 轴交于点C .过点C 作CD x ∥轴,交抛物线的对称轴于点D ,连接BD .已知点A 的坐标为()1,0-. (1)求该抛物线的解析式; (2)求梯形COBD 的面积.能力提高1.抛物线2251y ax x a =+-+过坐标原点,且开口方向向上,则a 的值是 .2.在二次函数221y x x =-++的图象中,若y 随x 的增大而增大,则x 的取值范围是.3.抛物线经过点()2,6-和()4,6,则抛物线的对称轴是( )4.已知二次函数222y x mx =++,当2x >时,y 随x 值的增大而增大,则实数m 的取值范围是.5.若抛物线22y x x c =-+与y 轴的交点为()0,3-,则下列说法不正确的是( ) A .抛物线开口向上B .抛物线的对称轴是直线1x =C .当1x =时,y 的最大值为4-D .抛物线与x 轴的交点为()1,0-,()3,06.已知0b <,二次函数221y ax bx a =++-的图象为下列四个图象之一,试根据图象分析a 的值应等于( )7.二次函数()223y x =-++在43x -≤≤-范围内的最大值是 . 8.抛物线283y x x 2=-+关于x 轴对称的抛物线的解析式是.9.如图,在平面直角坐标系中,抛物线23y ax =+与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线213y x =于点B ,C ,求BC 的长度.10.在关于,x y 的二元一次方程组2,21x y a x y +=⎧⎨-=⎩中,(1)若3a =,求方程组的解;(2)若()3S a x y =+,当a 为何值时,S 有最小值?是多少?11.如图,抛物线2y ax bx c =++经过原点,与x 轴相交于点()8,0E ,抛物线的顶点A 在第四象限,点A 到x 的距离4AB =,点(),0P m 在线段OB 上,连接PA ,将线段PA 绕点P 逆时针旋转90︒得到线段PC ,过点C 作y 轴的平行线交x 轴于点G ,交抛物线于点D ,连接BC 和AD .(1)求抛物线的解析式;(2)求点C 的坐标(用含m 的代数式表示); (3)当四边形ABCD 是平行四边形时,求点P 的坐标.拓展探究1.在平面直角坐标系xOy 中,抛物线()2210y mx mx m m =-+->与x 轴的交点为A ,B . (1)求抛物线的顶点坐标.(2)横、纵坐标都是整数的点叫做整点. ①当1m =时,求线段AB 上整点的个数;②若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m 的取值范围.2.已知关于x 的一元二次方程()2240x a x a +++=.(1)求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2)抛物线()21:24C y x a x a =+++与x 轴的一个交点的横坐标为2a,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C ,求抛物线2C 的解析式; (3)点(),A m n 和(),B n m 都在(2)中抛物线2C 上,且A ,B 两点不重合,求代数式m n +的值.22.1 参考答案:22.1.1 二次函数 基础训练1.B 2.D 3.D 4.D 5.A 6.2 7.216y a a π=-++ 8.212y x =9.2500(1)y x =+ 10.(1)13m =,21m =-,29y x =+或21y x =-+ (2)3m ≠且1m ≠- 22.1.2 二次函数2y ax =的图象和性质1.向下 y 轴 坐标原点 2.2- 3.22y x = 4.A B > 5.B 6.D 7.A 8.B 9.(1)1a =-,1b =- (2)略(3)当0x >时,y 随x 的增大而减小;当0x <时,y 随x 的增大而增大;当0x =时,函数有最大值,是0.22.1.3 二次函数2()y a x h k =-+的图象与性质 基础训练(1)1.(0,1)- 0< 2.答案不唯一 3.24y x =+ 4.A 5.D 6.C 7.C8.(1)图略,共同的性质有:开口向下;对称轴都是y 轴;在对称轴左边,y 随x 的增大而增大;在对称轴右边,y 随x 的增大而减小等.(2)开口对称轴相同,抛物线2y ax k =+由2y ax =向上平称k 个单位得到 基础训练(2)1.直线1x = (1,0) 2.左 1=- 0 3.21(2)2y x =- 4.C 5.D 6.C7.(1)略 (2)抛物线2y ax =向右平移h 个单位得到2()y a x h =+ 基础训练(3)1.直线3x =- (3,4)-- 2.2- 5 2<- 3.24(2)1y x =--- 4.C 5.略 6.略 7.(1)1a =- (2)12y y < 8.(1)(0,10)C (2)9.6米 22.1.4 二次函数2y ax bx c =++的图象和性质 基础训练(1)1.2(1)2y x =-++ 2.2(2)1y x =--+ 3.2 1- 2< 4.A 5.C 6.A 7.D 8.(1)(1,2)- (2)(1,5) 9.(1)2(2)4y x =--+ (2)23(1)2y x =+- 图略 基础训练(2)1.54x =- 549,48⎛⎫-- ⎪⎝⎭ (0,3)- 2.10 3.1或5 4.13x -<< 5.D 6.C7.(1)23(1)9y x =-++ (2)对称轴为直线1x =-,与y 轴交点坐标为(0,6) (3)1x >-时,y 随x 增大而减小8.抛物线2(0)y ax bx c c =++≠过点(1,0)-和点(0,3)-,0a b c ∴=-+,3c -=,3b a ∴=-. 当1x =时,2y ax bx c a b c =++=++,3326P a b c a a a ∴=++=+--=-.顶点在第四象限,0a >,30b a ∴=-<,3a ∴<,03a ∴<<,6260a ∴-<-<,即60P -<<. 基础训练(3)1.3 4- 2.22y x x =- 3.23y x =- 4.(1)22y x x =- (2)2x >或0x < 5.C 6.B7.(1)23(2)4y x =++ (2)23(3)52y x =-+ (3)27y x =-+8.(1)2(1)4y x =--+ (2)8 能力提高1.1 2.1x < 3.直线1x = 4.2m ≥- 5.C 6.C 7.2 8.22(2)5y x =--+ 9.6BC = 10.(1)1,1x y =⎧⎨=⎩ (2)2(1)S a a a a =+=+,当12a =-时,S 有最小值,是14-.11.(1)2124y x x =- (2)(AAS)PCG APB ∆∆≌,4PG AB ∴==,CG PB =. (,0)P m ,4PB m ∴=-,(4,0)G m +,(4,4)C m m ∴+-.(3)当四边形ABCD 是平行四边形时,CD AB =,AB CD ∥.AB x ⊥轴,CD x ∴⊥轴,∴点C ,D 的横坐标相同.把4x m =+代入2124y x =-得2144y m =-,21(4,4)4D m m ∴+-.21(4)(4)4CD m m ∴=---.又4CD AB ==,21(4)(4)=44m m ∴---,化简得24160m m +-=,225m =-+,225m =--(舍去),(225,0)P ∴-+. 拓展探究1.(1)将抛物线表达式变为顶点式2(1)1y m x =--,则抛物线顶点坐标为(1,1)-.(2)①1m =时,抛物线表达式为22y x x =-,因此A ,B 的坐标分别为(0,0)和(2,0),则线段AB 上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,1)-,则由线段AB 之间的部分及线段AB 所围成的区域的整点的纵坐标只能为1-或者0,所以即要求AB 线段上(含AB 两点)必须有5个整点;又令抛物线表达式2210y mx mx m =-+-=,得到A ,B 两点坐标分别为1,0m ⎛⎫-⎪⎝⎭,1,0m ⎛⎫+ ⎪⎝⎭,即5个整点是以(1,0)为中心向两侧分散,进而得到23m≤<,1194m ∴<≤.2.(1)22(4)4216a a a ∆=+-⨯=+,而20a ≥,2160a ∴+>,即0∆>.∴无论a 为任何实数,此方程总有两个不相等的实数根.(2)抛物线1C 与x 轴的一个交点的横坐标为2a ,∴当2a x =时,0y =,22()(4)22a aa ∴⨯++⨯+ 0a =.化简得230a a +=,即(3)0a a +=.0a ≠,3a ∴=-.∴抛物线1C 的解析式为223y x x =+-.又22125232()48y x x x =+-=+-.因此,抛物线1C 的顶点为125(,)48--.由题意得平移后抛物线2C 的顶点为(0,3)-,∴抛物线2C 的解析式223y x =-.(3)点(,)A m n 和(,)B n m 都在抛物线2C 上,223n m ∴=-,且223m n =-.222()n m m n ∴-=-.2()()n m m n m n ∴-=-+.()[2()1]0m n m n ∴-++=.A ,B 两点不重合,即m n ≠,2()10m n ∴++=.12m n ∴+=-.。
九年级数学: 22.1 二次函数的图象和性质 (同步练习题)( 含答案)
22.1二次函数的图象和性质22.1.1二次函数1.设一个正方形的边长为x,则该正方形的面积y=__x2___,其中变量是__x,y___,__y___是__x___的函数.2.一般地,形如y=ax2+bx+c(__a,b,c为常数且a≠0___)的函数,叫做二次函数,其中x是自变量,a,b,c分别为二次项系数、一次项系数、常数项.知识点1:二次函数的定义1.下列函数是二次函数的是( C)A.y=2x+1B.y=-2x+1C.y=x2+2 D.y=0.5x-22.下列说法中,正确的是( B)A.二次函数中,自变量的取值范围是非零实数B.在圆的面积公式S=πr2中,S是r的二次函数C.y=12(x-1)(x+4)不是二次函数D.在y=1-2x2中,一次项系数为13.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a≠-3___.4.已知二次函数y=1-3x+2x2,则二次项系数a=__2___,一次项系数b=__-3___,常数项c=__1___.5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3.(1)当__a≠2___时,x,y之间是二次函数关系;(2)当__a=2且b≠-2___时,x,y之间是一次函数关系.6.已知两个变量x,y之间的关系为y=(m-2)xm2-2+x-1,若x,y之间是二次函数关系,求m的值.解:根据题意,得m2-2=2,且m-2≠0,解得m=-2知识点2:实际问题中的二次函数的解析式7.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么商品所赚钱数y元与售价x元的函数关系式为( B)A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350x+7350D.y=-10x2+350x-73508.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=120x2(x>0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( C)A.40 m/s B.20 m/sC.10 m/s D.5 m/s9.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=__a(1+x)2___.10.多边形的对角线条数d 与边数n 之间的关系式为__d =12n 2-32n___,自变量n 的取值范围是__n ≥3且为整数___;当d =35时,多边形的边数n =__10___.11.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为10米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成面积为45平方米的花圃,AB 的长为多少米?解:(1)S =x(24-3x),即S =-3x 2+24x(2)当S =45时,-3x 2+24x =45,解得x 1=3,x 2=5,当x =3时,24-3x =15>10,不合题意,舍去;当x =5时,24-3x =9<10,符合题意,故AB 的长为5米12.已知二次函数y=x2-2x-2,当x=2时,y=__-2___;当x=__3或-1___时,函数值为1.13.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩余的四方框的面积为y(m2),则y与x之间的函数关系式为__y=16-x2(0<x<4)___,它是__二次___函数.14.设y=y1-y2,y1与x成正比例,y2与x2成正比例,则y与x的函数关系是( C) A.正比例函数B.一次函数C.二次函数D.以上都不正确15.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为( A)A.6厘米B.12厘米C.24厘米D.36厘米16.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.设底面的宽为x,抽屉的体积为y时,求y与x之间的函数关系式.(材质及其厚度等暂忽略不计)解:根据题意得y=20x(90-x),整理得y=-20x2+1800x17.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时,平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x之间的函数关系式,并注明x的取值范围.解:降低x元后,所销售的件数是(500+100x),则y=(13.5-2.5-x)(500+100x),即y=-100x2+600x+5500(0<x≤11)18.一块矩形的草坪,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2.(1)求y与x的函数关系式;(2)若使草坪的面积增加32 m2,求长和宽都增加多少米?解:(1)y=x2+14x(x≥0)(2)当y=32时,x2+14x=32,x1=2,x2=-16(舍去),即长和宽都增加2 m19.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.(1)求y与x之间函数关系式;(2)求自变量x的取值范围;(3)四边形APQC的面积能否等于172 mm2?若能,求出运动的时间;若不能,说明理由.解:(1)由运动可知,AP=2x,BQ=4x,则y=12BC·AB-12BQ·BP=12×24×12-12×4x(12-2x),即y=4x2-24x+144(2)0<x<6(3)当x=172时,4x2-24x+144=172,解得x1=7,x2=-1.又∵0<x<6,∴四边形APQC的面积不能等于172 mm222.1.2 二次函数y =ax 2的图象和性质1.由解析式画函数图象的步骤是__列表___、__描点___、__连线___. 2.一次函数y =kx +b(k ≠0)的图象是__一条直线___.3.二次函数y =ax 2(a ≠0)的图象是一条__抛物线___,其对称轴为__y___轴,顶点坐标为__(0,0)___.4.抛物线y =ax 2与y =-ax 2关于__x___轴对称.抛物线y =ax 2,当a >0时,开口向__上___,顶点是它的最__低___点;当a <0时,开口向__下___,顶点是它的最__高___点,随着|a|的增大,开口越来越__小___.知识点1:二次函数y =ax 2的图象及表达式的确定1.已知二次函数y =x 2,则其图象经过下列点中的( A ) A .(-2,4) B .(-2,-4) C .(2,-4) D .(4,2)2.某同学在画某二次函数y =ax 2的图象时,列出了如下的表格:__y =4x ___(2)将表格中的空格补全.3.已知二次函数y =ax 2的图象经过点A(-1,-13).(1)求这个二次函数的解析式并画出其图象; (2)请说出这个二次函数的顶点坐标、对称轴.解:(1)y =-13x 2,图象略(2)顶点坐标为(0,0),对称轴是y 轴知识点2:二次函数y =ax 2的图象和性质4.对于函数y =4x 2,下列说法正确的是( B ) A .当x >0时,y 随x 的增大而减小 B .当x <0时,y 随x 的增大而减小 C .y 随x 的增大而减小 D .y 随x 的增大而增大5.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y =x 2的图象上,则( A ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 36.已知二次函数y =(m -2)x 2的图象开口向下,则m 的取值范围是__m <2___.7.二次函数y =-12x 2的图象是一条开口向__下___的抛物线,对称轴是__y 轴___,顶点坐标是__(0,0)___;当x__>0___时,y随x的增大而减小;当x=0时,函数y有__最大___(填“最大”或“最小”)值是__0___.8.如图是一个二次函数的图象,则它的解析式为__y=12x2___,当x=__0___时,函数图象的最低点为__(0,0)___.9.已知二次函数y=mxm2-2.(1)求m的值;(2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x取何值时,y随x 的增大而减小;(3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并指出x取何值时,y 随x的增大而增大.解:(1)m=±2(2)m=2,y最小=0;x<0(3)m=-2,最高点(0,0),x<010.二次函数y=15x2和y=5x2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们开口的大小是一样的.其中正确的说法有( C)A.1个B.2个C.3个D.4个11.已知a≠0,同一坐标系中,函数y=ax与y=ax2的图象有可能是( C)12.如图是下列二次函数的图象:①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接为__a>b>d>c___.,第12题图),第14题图) 13.当a=__4___时,抛物线y=ax2与抛物线y=-4x2关于x轴对称;抛物线y=-7x2关于x轴对称所得抛物线的解析式为__y=7x2___;当a=__±2___时,抛物线y=ax2与抛物线y=-2x2的形状相同.14.已知二次函数y=2x2的图象如图所示,将x轴沿y轴向上平移2个单位长度后与抛物线交于A,B两点,则△AOB的面积为__2___.15.已知正方形的周长为C(cm),面积为S(cm2).(1)求S与C之间的函数关系式;(2)画出所示函数的图象;(3)根据函数图象,求出S=1 cm2时正方形的周长;(4)根据列表或图象的性质,求出C取何值时S≥4 cm2?解:(1)S=116C2(C>0)(2)图象略(3)由图象可知,当S=1 cm2时,正方形周长C是4 cm(4)当C≥8 cm时,S≥4 cm216.二次函数y=ax2与直线y=2x-1的图象交于点P(1,m).(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时,y随x的增大而增大;(3)指出抛物线的顶点坐标和对称轴.解:(1)将(1,m)代入y =2x -1得m =2×1-1=1,所以P 点坐标为(1,1).将P 点坐标(1,1)代入y =ax 2得1=a ×12,∴a =1 (2)y =x 2,当x >0时,y 随x 的增大而增大 (3)顶点坐标为(0,0),对称轴为y 轴17.如图,抛物线y =x 2与直线y =2x 在第一象限内有一个交点A. (1)你能求出A 点坐标吗? (2)在x 轴上是否存在一点P ,使△AOP 为等腰三角形?若存在,请你求出点P 的坐标;若不存在,请说明理由.解:(1)由题意得⎩⎨⎧y =x 2,y =2x ,解得⎩⎨⎧x 1=0,y 1=0,⎩⎨⎧x 2=2,y 2=4,∴A(2,4) (2)存在满足条件的点P.当OA =OP 时,∵OA =22+42=25,∴P 1(-25,0),P 2(25,0);当OA =AP 时,过A 作AQ ⊥x 轴于Q ,∴PQ =OQ =2,∴P 3(4,0);当PA =PO 时,设P 点坐标为(x ,0),则x 2=(x -2)2+42,解得x =5,∴P 4(5,0).综上可知,所求P 点的坐标为P 1(-25,0),P 2(25,0),P 3(4,0),P 4(5,0)22.1.3二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.二次函数y=ax2+k的图象是一条__抛物线___.它与抛物线y=ax2的__形状___相同,只是__顶点位置___不同,它的对称轴为__y___轴,顶点坐标为__(0,k)___.2.二次函数y=ax2+k的图象可由抛物线y=ax2__平移___得到,当k>0时,抛物线y=ax2向上平移__k___个单位得y=ax2+k;当k<0时,抛物线y=ax2向__下___平移|k|个单位得y=ax2+k.知识点1:二次函数y=ax2+k的图象和性质1.抛物线y=2x2+2的对称轴是__y轴___,顶点坐标是__(0,2)___,它与抛物线y=2x2的形状__相同___.2.抛物线y=-3x2-2的开口向__下___,对称轴是__y轴___,顶点坐标是__(0,-2)___.3.若点(x1,y1)和(x2,y2)在二次函数y=-12x2+1的图象上,且x1<x2<0,则y1与y2的大小关系为__y1<y2___.4.对于二次函数y=x2+1,当x=__0___时,y最__小___=__1___;当x__>0___时,y随x的增大而减小;当x__<0___时,y随x的增大而增大.5.已知二次函数y=-x2+4.(1)当x为何值时,y随x的增大而减小?(2)当x为何值时,y随x的增大而增大?(3)当x为何值时,y有最大值?最大值是多少?(4)求图象与x轴、y轴的交点坐标.解:(1)x>0(2)x<0(3)x=0时,y最大=4(4)与x轴交于(-2,0),(2,0),与y轴交于(0,4)知识点2:二次函数y=ax2+k与y=ax2之间的平移6.将二次函数y=x2的图象向上平移1个单位,则平移后的抛物线的解析式是__y=x2+1___.7.抛物线y=ax2+c向下平移2个单位得到抛物线y=-3x2+2,则a=__-3___,c =__4___.8.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?解:(1)图象略,y=12x2开口向上,对称轴为y轴,顶点坐标(0,0);y=12x2-1开口向上,对轴轴为y轴,顶点坐标(0,-1)(2)抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位得到知识点3:抛物线y =ax 2+k 的应用9.如图,小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分.若命中篮圈中心,则她与篮底的距离l 是( B )A .3.5 mB .4 mC .4.5 mD .4.6 m10.如果抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式是( C)A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+311.已知y=ax2+k的图象上有三点A(-3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是( A)A.a>0B.a<0C.a≥0D.a≤012.已知抛物线y=-x2+2与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为.y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=__4___,c=__-3___.14.如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于A,过点A作与x轴平行的直线交抛物线y=13x2于点B,C,则BC的长度为__6___.15.直接写出符合下列条件的抛物线y=ax2-1的函数关系式:(1)经过点(-3,2);(2)与y=12x2的开口大小相同,方向相反;(3)当x的值由0增加到2时,函数值减少4.解:(1)y=13x2-1(2)y=-12x2-1(3)-x2-116.把y=-12x2的图象向上平移2个单位.(1)求新图象的解析式、顶点坐标和对称轴;(2)画出平移后的函数图象;(3)求平移后的函数的最大值或最小值,并求对应的x的值.解:(1)y=-12x2+2,顶点坐标是(0,2),对称轴是y轴(2)图象略(3)x=0时,y有最大值,为217.已知抛物线的对称轴是y轴,顶点坐标是(0,2),且经过(1,3),求此抛物线的解析式.解:设抛物线解析式为y=ax2+k,将(0,2),(1,3)代入y=ax2+k,得k=2,a=1,∴y=x2+218.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( D)A.a+c B.a-c C.-c D.c19.廊桥是我国古老的文化遗产,如图所示是一座抛物线形廊桥的示意图.已知抛物线对应的函数关系式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离.(5≈2.24,结果精确到1米)解:由题意得点E,F的纵坐标为8,把y=8代入y=-140x2+10,解得x=45或x=-45,EF=|45-(-45)|=85≈18(米),即这两盏灯的水平距离约为18米第2课时 二次函数y =a(x -h)2的图象和性质1.二次函数y =a(x -h)2的图象是__抛物线___,它与抛物线y =ax 2的__形状___相同,只是__位置___不同;它的对称轴为直线__x =h___,顶点坐标为__(h ,0)___.2.二次函数y =a(x -h)2的图象可由抛物线y =ax 2__平移___得到,当h >0时,抛物线y =ax 2向__右___平移h 个单位得y =a(x -h)2; 当h <0时,抛物线y =ax 2向__左___平移|h|个单位得y =a(x -h)2.知识点1:二次函数y =a (x -h )2的图象1.将抛物线y =-x 2向左平移2个单位后,得到的抛物线的解析式是( A ) A .y =-(x +2)2 B .y =-x 2+2 C .y =-(x -2)2 D .y =-x 2-22.抛物线y =-3(x +1)2不经过的象限是( A ) A .第一、二象限 B .第二、四象限 C .第三、四象限 D .第二、三象限3.已知二次函数y =a(x -h)2的图象是由抛物线y =-2x 2向左平移3个单位长度得到的,则a =__-2___,h =__-3___.4.在同一平面直角坐标系中,画出函数y =x 2,y =(x +2)2,y =(x -2)2的图象,并写出对称轴及顶点坐标.解:图象略,抛物线y =x 2的对称轴是直线x =0,顶点坐标为(0,0);抛物线y =(x +2)2的对称轴是直线x =-2,顶点坐标为(-2,0);抛物线y =(x -2)2的对称轴是直线x =2,顶点坐标为(2,0)知识点2:二次函数y =a (x -h )2的性质 5.二次函数y =15(x -1)2的最小值是( C ) A .-1 B .1C .0D .没有最小值6.如果二次函数y =a(x +3)2有最大值,那么a__<___0,当x =__-3___时,函数的最大值是__0___.7.对于抛物线y =-13(x -5)2,开口方向__向下___,顶点坐标为__(5,0)___,对称轴为__x =5___.8.二次函数y =-5(x +m)2中,当x <-5时,y 随x 的增大而增大,当x >-5时,y 随x 的增大而减小,则m =__5___,此时,二次函数的图象的顶点坐标为__(-5,0)___,当x =__-5___时,y 取最__大___值,为__0___.9.已知A(-4,y 1),B(-3,y 2),C(3,y 3)三点都在二次函数y =-2(x +2)2的图象上,则y 1,y 2,y 3的大小关系为__y 3<y 1<y 2___.10.已知抛物线y =a(x -h)2,当x =2时,有最大值,此抛物线过点(1,-3),求抛物线的解析式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,∴h =2.又∵此抛物线过(1,-3),∴-3=a(1-2)2,解得a =-3,∴此抛物线的解析式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小11.顶点为(-6,0),开口向下,形状与函数y =12x 2的图象相同的抛物线的解析式是( D )A .y =12(x -6)2B .y =12(x +6)2C .y =-12(x -6)2D .y =-12(x +6)212.平行于x 轴的直线与抛物线y =a(x -2)2的一个交点坐标为(-1,2),则另一个交点坐标为( C )A .(1,2)B .(1,-2)C .(5,2)D .(-1,4)13.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为( B )14.已知二次函数y =3(x -a)2的图象上,当x >2时,y 随x 的增大而增大,则a 的取值范围是__a ≤2___.15.已知一条抛物线与抛物线y =-12x 2+3形状相同,开口方向相反,顶点坐标是(-5,0),则该抛物线的解析式是__y =12(x +5)2___.16.已知抛物线y =a(x -h)2的对称轴为x =-2,且过点(1,-3). (1)求抛物线的解析式; (2)画出函数的图象;(3)从图象上观察,当x 取何值时,y 随x 的增大而增大?当x 取何值时,函数有最大值(或最小值)?解:(1)y =-13(x +2)2 (2)图象略 (3)x <-2时,y 随x 的增大而增大;x =-2时,函数有最大值17.已知一条抛物线的开口方向和形状大小与抛物线y =-8x 2都相同,并且它的顶点在抛物线y =2(x +32)2的顶点上.(1)求这条抛物线的解析式;(2)求将(1)中的抛物线向左平移5个单位后得到的抛物线的解析式; (3)将(2)中所求抛物线关于x 轴对称,求所得抛物线的解析式.解:(1)y =-8(x +32)2 (2)y =-8(x +132)2 (3)y =8(x +132)218.如图,在Rt △OAB 中,∠OAB =90°,O 为坐标原点,边OA 在x 轴上,OA =AB =1个单位长度,把Rt △OAB 沿x 轴正方向平移1个单位长度后得△AA 1B 1.(1)求以A 为顶点,且经过点B 1的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D ,C 的坐标.解:(1)由题意得A(1,0),A 1(2,0),B 1(2,1).设抛物线的解析式为y =a(x -1)2,∵抛物线经过点B 1(2,1),∴1=a(2-1)2,解得a =1,∴抛物线解析式为y =(x -1)2(2)令x =0,y =(0-1)2=1,∴D 点坐标为(0,1).∵直线OB 在第一、三象限的角平分线上,∴直线OB 的解析式为y =x ,根据题意联立方程组,得⎩⎨⎧y =x ,y =(x -1)2,解得⎩⎪⎨⎪⎧x 1=3+52,y 1=3+52,⎩⎪⎨⎪⎧x 2=3-52,y 2=3-52.∵x 1=3+52>1(舍去),∴点C 的坐标为(3-52,3-52)第3课时二次函数y=a(x-h)2+k的图象和性质1.抛物线y=a(x-h)2+k与y=ax2形状__相同___,位置__不同___,把抛物线y=ax2向上(下)和向左(右)平移,可以得到抛物线y=a(x-h)2+k,平移的方向、距离要根据__h___,__k___的值来决定.2.抛物线y=a(x-h)2+k有如下特点:①当a>0时,开口向__上___;当a<0时,开口向__下___;②对称轴是直线__x=h___;③顶点坐标是__(h,k)___.知识点1:二次函数y=a(x-h)2+k的图象1.(2014·兰州)抛物线y=(x-1)2-3的对称轴是( C)A.y轴B.直线x=-1C.直线x=1 D.直线x=-32.抛物线y=(x+2)2+1的顶点坐标是( A)A.(-2,1) B.(-2,-1)C.(2,1) D.(2,-1)3.把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( C)A.y=-2(x+1)2+2 B.y=-2(x+1)2-2C.y=-2(x-1)2+2 D.y=-2(x-1)2-24.写出下列抛物线的开口方向、对称轴及顶点坐标:(1)y=3(x-1)2+2;解:开口向上,对称轴x=1, 顶点(1,2)(2)y=-13(x+1)2-5.解:开口向下,对称轴x=-1,顶点(-1,-5)知识点2:二次函数y=a(x-h)2+k的性质5.在函数y=(x+1)2+3中,y随x的增大而减小,则x的取值范围为( A)A.x>-1 B.x>3C.x<-1 D.x<36.如图,在平面直角坐标系中,抛物线的解析式为y=-2(x-h)2+k,则下列结论正确的是( A)A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<0,第6题图),第9题图)7.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=-5(t -1)2+6,则小球距离地面的最大高度是( C)A.1米B.5米C.6米D.7米8.用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系式y=-(x-12)2+144(0<x<24),则该矩形面积的最大值为__144_m2___.9.如图是二次函数y=a(x+1)2+2图象的一部分,该图象在y轴右侧与x轴交点的坐标是__(1,0)___.10.已知抛物线y=a(x-3)2+2经过点(1,-2).(1)求a的值;(2)若点A(m,y1),B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.解:(1)a=-1(2)由题意得抛物线的对称轴为x=3,∵抛物线开口向下,∴当x<3时,y随x的增大而增大,而m<n<3,∴y1<y211.(2014·哈尔滨)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( D )A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+312.已知二次函数y =3(x -2)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-2;③其图象顶点坐标为(2,-1);④当x <2时,y 随x 的增大而减小.则其中说法正确的有( A )A .1个B .2个C .3个D .4个13.二次函数y =a(x +m)2+n 的图象如图,则一次函数y =mx +n 的图象经过( C )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限14.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =-(x +1)2+a 上三点,则y 1,y 2,y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 215.二次函数y =a(x +k)2+k ,无论k 为何实数,其图象的顶点都在( B ) A .直线y =x 上 B .直线y =-x 上 C .x 轴上 D .y 轴上16.把二次函数y =a(x -h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y =12(x +1)2-1的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a(x -h)2+k 的开口方向、对称轴和顶点坐标.解:(1)a =12,h =1,k =-5 (2)它的开口向上,对称轴为x =1,顶点坐标为(1,-5)17.某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时距喷水管的水平距离为12米,求在如图所示的平面直角坐标系中抛物线水柱的解析式.(不要求写出自变量的取值范围)解:∵点(12,3)是抛物线的顶点,∴可设抛物线的解析式为y =a(x -12)2+3.∵抛物线经过点(0,1),∴1=(0-12)2·a +3,解得a =-8,∴抛物线水柱的解析式为y =-8(x -12)2+318.已知抛物线y =-(x -m)2+1与x 轴的交点为A ,B(B 在A 的右边),与y 轴的交点为C.(1)写出m =1时与抛物线有关的三个正确结论; (2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由.解:(1)正确的结论有:①顶点坐标为(1,1);②图象开口向下;③图象的对称轴为x =1;④函数有最大值1;⑤当x <1时,y 随x 的增大而增大;⑥当x >1时,y 随x 的增大而减小等 (2)由题意,若△BOC 为等腰三角形,则只能OB =OC.由-(x -m)2+1=0,解得x =m +1或x =m -1.∵B 在A 的右边,所以B 点的横坐标为x =m +1>0,OB =m +1.又∵当x =0时,y =1-m 2<0.由m +1=m 2-1,解得m =2或m =-1(舍去),∴存在△BOC 为等腰三角形的情形,此时m =222.1.4 二次函数y =ax 2+bx +c 的图象和性质 第1课时 二次函数y =ax 2+bx +c 的图象和性质1.二次函数y =ax 2+bx +c(a ≠0)通过配方可化为y =a(x +b 2a )2+4ac -b 24a的形式,它的对称轴是__x =-b 2a ___,顶点坐标是__(-b 2a ,4ac -b 24a )___.如果a >0,当x <-b2a时,y 随x 的增大而__减小___,当x >-b 2a 时,y 随x 的增大而__增大___;如果a <0,当x <-b2a时,y 随x 的增大而__增大___,当x >-b2a时,y 随x 的增大而__减小___.2.二次函数y =ax 2+bx +c(a ≠0)的图象与y =ax 2的图象__形状完全相同___,只是__位置___不同;y =ax 2+bx +c(a ≠0)的图象可以看成是y =ax 2的图象平移得到的,对于抛物线的平移,要先化成顶点式,再利用“左加右减,上加下减”的规则来平移.知识点1:二次函数y =ax 2+bx +c (a ≠0)的图象和性质1.已知抛物线y =ax 2+bx +c 的开口向下,顶点坐标为(2,-3),那么该二次函数有( B ) A .最小值-3 B .最大值-3 C .最小值2 D .最大值22.(2014·成都)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( D ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4 D .y =(x -1)2+23.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( C ) A .抛物线开口向上B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点为(-1,0),(3,0)4.抛物线y =x 2+4x +5的顶点坐标是__(-2,1)___.5.已知二次函数y =-2x 2-8x -6,当__x <-2___时,y 随x 的增大而增大;当x =__-2___时,y 有最__大___值是__2___.知识点2:二次函数y =ax 2+bx +c (a ≠0)的图象的变换6.抛物线y =-x 2+2x -2经过平移得到y =-x 2,平移方法是( D ) A .向右平移1个单位,再向下平移1个单位 B .向右平移1个单位,再向上平移1个单位 C .向左平移1个单位,再向下平移1个单位 D .向左平移1个单位,再向上平移1个单位7.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( A )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =218.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C(5,4). (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)由抛物线过C(5,4)得25a -25a +4a =4,解得a =1,∴该二次函数的解析式为y =x 2-5x +4.∵y =x 2-5x +4=(x -52)2-94,∴顶点坐标为P(52,-94) (2)(答案不唯一,合理即正确)如:先向左平移3个单位,再向上平移4个单位,得到的二次函数解析式为y =(x -52+3)2-94+4,即y =(x +12)2+74,也即y =x 2+x +29.(2014·河南)已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为__8___.10.二次函数y =2x 2+mx +8的图象如图所示,则m 的值是( B ) A .-8 B .8 C .±8 D .6,第10题图) ,第12题图) 11.已知二次函数y =-12x 2-7x +152.若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( A )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 112.已知二次函数y =ax 2+bx +c(a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是( B )A .有最小值-5,最大值0B .有最小值-3,最大值6C .有最小值0,最大值6D .有最小值2,最大值613.如图,抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象正确的是( D )14.已知二次函数y =x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?解:(1)∵图象过原点,∴k 2+k -2=0,∴k 1=-2,k 2=1 (2)y =x 2-2kx +k 2+k -2=(x -k)2+k -2,其顶点坐标为(k ,k -2).∵顶点在第四象限内,∴⎩⎨⎧k >0,k -2<0,∴0<k <215.当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.解:①当k =1时,函数为y =-4x +4,是一次函数,无最值;②当k =2时,函数为y =x 2-4x +3,为二次函数,此函数图象的开口向上,函数只有最小值而无最大值;③当k=-1时,函数为y =-2x 2-4x +6,为二次函数,此函数图象的开口向下,函数有最大值,因为y =-2x 2-4x +6=-2(x +1)2+8,所以当x =-1时,函数有最大值,为816.已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C ,D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点坐标;若P 点不存在,请说明理由.解:(1)将(0,0)代入二次函数y =x 2-2mx +m 2-1中,得0=m 2-1,解得m =±1,∴二次函数的解析式为y =x 2+2x 或y =x 2-2x (2)当m =2时,二次函数解析式为y =x 2-4x +3,即y =(x -2)2-1,∴C(0,3),顶点坐标为D(2,-1) (3)存在.连接CD ,根据“两点之间,线段最短”可知,当点P 位于CD 与x 轴的交点时,PC +PD 最短.可求经过C ,D 两点的直线解析式为y =-2x +3,令y =0,可得-2x +3=0,解得x =32,∴当P 点坐标为(32,0)时,PC +PD 最短第2课时 用待定系数法求二次函数的解析式用待定系数法求二次函数的解析式的几种常见的形式: (1)三点式:已知图象上的三个点的坐标,可设二次函数的解析式为__y =ax 2+bx +c___. (2)顶点式:已知抛物线的顶点坐标(h ,k)及图象上的一个点的坐标,可设二次函数的解析式为__y =a(x -h)2+k___.以下有三种特殊情况:①当已知抛物线的顶点在原点时,我们可设抛物线的解析式为__y =ax 2___; ②当已知抛物线的顶点在y 轴上或以y 轴为对称轴,但顶点不一定是原点时,可设抛物线的解析式为__y =ax 2+c___;③当已知抛物线的顶点在x 轴上,可设抛物线的解析式为__y =a(x -h)2___,其中(h ,0)为抛物线与x 轴的交点坐标.(3)交点式:已知抛物线与x 轴的两个交点坐标(x 1,0),(x 2,0)及图象上任意一点的坐标,可设抛物线的解析式为__y =a(x -x 1)(x -x 2)___.知识点1:利用“三点式”求二次函数的解析式1.由表格中信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数关系式正确的是( A )A .y =x 2-4x +3 C .y =x 2-3x +3 D .y =x 2-4x +82.已知二次函数y =ax 2+bx +c 的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为__y =x 2-x -2___.3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.解:由题意,得⎩⎨⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎨⎧a =2,b =-3,c =1,∴二次函数的解析式为y =2x 2-3x +1知识点2:利用“顶点式”求二次函数的解析式4.已知某二次函数的图象如图所示,则这个二次函数的解析式为( D )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-85.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.解:由题意,设二次函数的解析式为y =a(x -4)2-1,把(0,3)代入得3=a(0-4)2-1,解得a =14,∴y =14(x -4)2-1知识点3:利用“交点式”求二次函数的解析式 6.如图,抛物线的函数表达式是( D )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +47.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.解:由题意,设二次函数解析式为y =a(x +1)(x -2),把(0,-2)代入得-2=-2a ,∴a =1,∴y =(x +1)(x -2),即y =x 2-x -28.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( D )A .y =x 2-x -2B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +29.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( D ) A .b =2,c =4 B .b =2,c =-4 C .b =-2,c =4 D .b =-2,c =-410.抛物线y 2从上表可知,__①③④___①抛物线与x 轴的一个交点为(3,0); ②函数y =ax 2+bx +c 的最大值为6; ③抛物线的对称轴是x =0.5;④在对称轴左侧,y 随x 增大而增大. 11.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线的解析式为__y =x 2-2x -3___.12.将二次函数y =(x -1)2+2的图象沿x 轴对折后得到的图象的解析式为__y =-(x -1)2-2___.13.(2014·杭州)设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C在直线x =2上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为__y =18x 2-14x +2或y =-18x 2+34x +2___. 14.已知二次函数的图象的对称轴为x =1,函数的最大值为-6,且图象经过点(2,-8),求此二次函数的表达式.解:由题意设y =a(x -1)2-6,∵图象经过点(2,-8),∴-8=a(2-1)2-6,解得a =-2,∴y =-2(x -1)2-6,即y =-2x 2+4x -815.已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x 轴交于A ,B 两点. (1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解:(1)设二次函数的解析式为y =ax 2+bx +c ,∵二次函数的图象经过点(0,3),(-3,。
人教版九年级上册数学二次函数y=ax2+bx+c的图象与性质同步练习
人教版九年级上册数学22.1.4二次函数y=ax ²+bx+c 的图象与性质同步练习一、单选题1.抛物线221y x x =-+的顶点坐标是( )A .(1,0)B .(-1,0)C .(1,2)D .(-1,2) 2.已知抛物线21y x mx =+-经过(1,)n -和(2,)n 两点,则n 的值为( ) A .1- B .1 C .2 D .3 3.若二次函数y =x 2+2x +k 的图象经过点(1,y 1),(﹣2,y 2),则y 1,y 2与的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 4.已知(﹣4,y 1),(2.5,y 2),(5,y 3)是抛物线y =﹣3x 2﹣6x +m 上的点,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 1>y 3 5.如图,抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0)、B (3,0)两点,与y 轴交于点C ,下列结论不正确的是( )A .abc >0B .2a +b =0C .3a +c >0D .4a +2b +c <0 6.若二次函数y =x 2+bx +c 的图像过点(﹣2,﹣1)、(4,﹣1),则该图像的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =﹣2D .直线x =2 7.要由抛物线y =2x 2得到抛物线y =2(x ﹣1)2+3,则抛物线y =2x 2必须( ) A .向左平移1个单位,再向下平移3个单位 B .向右平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向左平移1个单位,再向上平移3个单位8.已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为32x =,且经过点(-1,0).下列结论:①3a +b =0;①若点11,2y ⎛⎫ ⎪⎝⎭,(3,y 2)是抛物线上的两点,则y 1<y 2;①10b -3c =0;①若y ≤c ,则0≤x ≤3.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题 9.将抛物线21y x x =++向下平移1个单位,所得新的抛物线的表达式是________. 10.把抛物线21y x =-+向左平移______个单位长度后,抛物线解析式为243y x x =---.11.函数y =x 2﹣4x +n 图象上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2<2,则y 1、y 2的大小关系是_____.12.抛物线y =(x +2)2上有三点A (-4,y 1),B (-1,y 2),C (1,y 3),则对称轴为 __________;1y ,2y ,3y 的大小关系为__________.13.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t ﹣4=0的两实数根,则(m +3)(n +3)的最小值是 ___.14.将抛物线y =ax 2+bx ﹣1向上平移3个单位长度后,经过点(﹣2,5),则4a ﹣2b ﹣1的值是___.15.抛物线y =ax 2﹣4x ﹣3(其中a ≥0,a 为常数),若当4≤x <5时,对应的函数值y 恰好有3个整数值,则a 的取值范围是__________.16.二次函数224y x x c =++的顶点与原点的距离为6,则C =_____.三、解答题17.如图,抛物线()()22369=++-+y mx m x m 与x 轴交于点A 、B ,与y 轴交于点C ,已知()3,0B .(1)求m的值和直线对应的函数表达式;(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)Q为抛物线上一点,若①ACQ=45°,求点Q的坐标.18.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM①x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)若点P仅在线段AO上运动,如图,求线段MN的最大值.19.已知抛物线2=-++经过点A(3,0),B(﹣1,0).y x bx c(1)求抛物线的解析式;(2)求抛物线的顶点坐标.。
人教版九年级上册数学二次函数y=ax2+bx+c的图象和性质同步训练(含答案)
人教版九年级上册数学22.1.4 二次函数y=ax ²+bx +c 的图象和性质同步训练一、单选题1.二次函数245y x x =-+的最小值是( )A .1B .3C .4D .52.点1P (-1,1y ),2P (3,2y ),3P (5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y =>B .312y y y >=C .123y y y >>D .23y y y << 3.已知二次函数24y x x c =++的图象与x 轴的一个交点为(-1,0),则它与x 轴的另一个交点的坐标是( )A .(-3,0)B .(3,0)C .(1,0)D .(-2,0) 4.关于抛物线y =x 2﹣2x ,下列说法错误的是( )A .该抛物线经过原点B .该抛物线的对称轴是直线x =1C .该二次函数的最小值是0D .当x <0时,y 随x 增大而减小5.已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( ) A .1 B .2 C .3 D .4 6.若二次函数y =x 2+2x +k 的图象经过点(1,y 1),(﹣2,y 2),则y 1,y 2与的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 7.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( )A .0a <B .0c >C .当2x <-时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小 8.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >;①420a b c ++>;①b a c ->;①3a c >-;①()a b m am b +>+(1m ≠,m 为实数),其中正确的结论有( )个.A .2个B .3个C .4个D .5个二、填空题9.已知两条抛物线223y x x =+-和223y x x =+-,请至少写出两条它们的共同特点: ________________.10.已知点(-1,y 1),(2,y 2)在抛物线y =x 2-2x +c 上,则y 1,y 2的大小关系是y 1_______y 2(填“>”,“<”或“=”).11.已知y =x 2+2kx +k ﹣1,当﹣1<x <2时,有最小值﹣1,则k 的值为___. 12.将抛物线()213y x =--+向左平移1个单位长度,再向下平移2个单位长度,则平移后的抛物线解析式为_______.13.二次函数2246y x x =-+-图像的对称轴是直线___________.14.若2230x x y ---=,且03x <<,则y 的取值范围为______.15.将函数24y x =的图象向左平移2个单位再向上平移3个单位后的图象所表示的解析式是______.16.在平面直角坐标系中,二次函数23y x mx =-++过点(4,3),若当0≤x ≤a 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_____.三、解答题17.在平面直角坐标系内,二次函数2y x bx c =++的图象经过点()3,0A 和()2,3B -.(1)求这个二次函数的表达式;(2)求出二次函数的顶点坐标;(3)将该二次函数的图象向右平移几个单位,可使平移后所得的图象经过坐标原点,请在图中直接画出平移后的二次函数的大致图象,并写出平移后的图象与x轴的另一个交点D的坐标.18.已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.19.已知抛物线2y x bx c=-++经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.20.如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(12-,0),B(3,72)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD①x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使①QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案:1.A2.A3.A4.C5.D6.A7.C8.B9.①开口都向上,①与y轴的交点都是(0,-3)10.>11.012.21y x=-13.1x=14.40y-≤<15.()2423y x=++16.2≤a≤4.17.(1)223y x x=--(2)()1,4-(3)()4,018.a的值是1,b的值是﹣2.19.(1)2y x2x3=-++(2)(1,4)20.(1)272 2y x x =-++(2)点P的横坐标为1或2(3)存在,点Q的坐标为2313(,)618或17(,)22。
人教新版九年级数学上册22-1-4-2 用待定系数法求二次函数的解析式 同步练习【含答案】
22.1.4 二次函数y =ax 2+bx +c 的图象和性质*第2课时 用待定系数法求二次函数的解析式一、选择题1.已知二次函数y=ax 2+bx+c 的图象如图所示,则其函数解析式是( )A.y=x 2-4x+5B.y=-x 2-4x+5C.y=x 2+4x+5D.y=-x 2+4x+52.如果二次函数y =ax 2+bx ,当x =1时,y =2;当x =-1时,y =4,则a ,b 的值是( )A.a =3,b =-1B.a =3,b =1C.a =-3,b =1D.a =-3,b =-13.某抛物线的形状、开口方向与抛物线y =3x 2完全相同,顶点坐标是(-2,4),则该抛物线的解析式为( )A.y =-3(x +2)2+4B.y =3(x +2)2+4C.y =-(2x +1)2+4D.y =-3(2x -1)2+44.已知抛物线的对称轴为直线x =3,y 的最大值为-5,且与y =x 2的图象开口大小相同,则这条抛12物线的解析式为( )A.y =-(x +3)2+512B.y =-(x -3)2-512C.y =(x +3)2+512D.y =(x -3)2-5125.已知某抛物线的顶点坐标为M (-2,1),且经过原点,则该抛物线的函数解析式为( )A.y =(x -2)2+1B.y =(x +2)2+114C.y =(x +2)2+1D.y =-(x +2)2+1146.某抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),则它对应的二次函数的解析式为( )A.y =2x 2-2x -4B.y =-2x 2+2x -4C.y =2x 2+2x -4D.y =x 2+x -27.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是( )A.y =-x 2+x +2B.y =-x 2-x +21212C.y =-x 2-x +11212D.y =x 2-x -28.二次函数的部分图象如图所示,对称轴是x =-1,则这个二次函数的解析式为( )A.y =-x 2+2x +3B.y =x 2+2x +3C.y =-x 2-2x -3D.y =-x 2-2x +39.当k 取任意实数时,抛物线y =3(x -k -1)2+k 2+2的顶点所在的函数图象的解析式是( )A.y =x 2+2B.y =x 2-2x +1C.y =x 2-2x +3D.y =x 2+2x -3二、填空题10.已知A (0,3),B (2,3)是抛物线y =-x 2+bx +c 上两点,则该抛物线的解析式是 . 11.已知某二次函数的图象过(0,1),(1,0),(-2,0)三点,则这个二次函数的解析式是 .12.已知抛物线与x 轴交点的横坐标分别为3,1,与y 轴交点的纵坐标为6,则该二次函数的解析式为 .13.已知抛物线y=4x 2+mx-48,当x>-2时,y 随x 的增大而增大;当x<-2时,y 随x 的增大而减小.则当x=3时,y= .14.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:x-1013y -1353下列结论:①ac<0;②当x>1时,y 随x 的增大而减小;③当x=2时,y=5;④3是方程ax 2+(b-1)x+c=0的一个根.其中正确的结论有 .(填写序号)15.如果将二次函数y =-6(x -1)2的图象沿x 轴对折,得到的函数图象的解析式是 ;如果沿y 轴对折,得到的函数图象的解析式是 .16.如图,抛物线的顶点M 在y 轴上,抛物线与直线y =x +1相交于A ,B 两点,且点A 在x 轴上,点B 的横坐标为2,则该抛物线的函数解析式为 .三、解答题17.如图,在平面直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),求该抛物线的解析式和顶点E 的坐标.18.若二次函数y =ax 2+bx +c (a ≠0)中,函数值y 与自变量x 的部分对应值如下表: x…-2-1012…y …0-2-204…求该二次函数的解析式.19.已知抛物线y =a (x -h )2+k 与抛物线y =4x 2-2x +5的形状相同,且抛物线y =a (x -h )2+k 经过点(0,0),其最大值为16,求此抛物线的解析式.20.已知二次函数图象的对称轴是直线x =-3,图象经过点(1,6),且与y 轴的交点坐标为.(0,52)(1)求这个二次函数的解析式.(2)当x 在什么范围内变化时,这个函数的函数值y 随x 的增大而增大?21.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式.(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.22.(陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(-2,-3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的解析式.(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P,D,E为顶点的三角形与△AOC全等,求满足条件的点P、点E的坐标.23.(江西)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…-2-1012…y…m0-3n-3…(1)根据以上信息,可知抛物线开口向________,对称轴为____________.(2)求抛物线的解析式及m,n的值.(3)请在图中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>-2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系:______________.24.(永州)在平面直角坐标系xOy中,等腰直角三角形ABC的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=4,抛物线经过A,B,C三点,如图①所示.(1)求抛物线所表示的二次函数解析式.(2)过原点任作直线l交抛物线于M,N两点,如图②所示.①求△CMN面积的最小值.②已知Q是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称?若存在,求出点P的坐标及直线l的一次函数解析式;若不存在,请说明理由.25.(攀枝花)如图,开口向下的抛物线与x轴交于点A(-1,0),B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.26.(衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(-1,0),(2,0).(1)求这个二次函数的解析式;(2)求当-2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2-m)x+2-m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a 和b,且a<3<b,求m的取值范围.27.如图,在平面直角坐标系xOy中,已知矩形ABCD的顶点坐标A(-1,0),B(3,0),C(3,-2),抛物线经过A,B两点,且顶点在线段CD上.(1)求这条抛物线的解析式;(2)若点E(3,1),将△DCE向上平移直至CD边与AB边重合,在此过程中,线段CD与抛物线的交点为P(x1,y1),Q(x2,y2),线段DE与AB交于点M(x3,y3),求x1+x2+x3的取值范围.答案一、选择题1.已知二次函数y=ax 2+bx+c 的图象如图所示,则其函数解析式是( B )A.y=x 2-4x+5B.y=-x 2-4x+5C.y=x 2+4x+5D.y=-x 2+4x+52.如果二次函数y =ax 2+bx ,当x =1时,y =2;当x =-1时,y =4,则a ,b 的值是(A)A.a =3,b =-1B.a =3,b =1C.a =-3,b =1D.a =-3,b =-13.某抛物线的形状、开口方向与抛物线y =3x 2完全相同,顶点坐标是(-2,4),则该抛物线的解析式为(B)A.y =-3(x +2)2+4B.y =3(x +2)2+4C.y =-(2x +1)2+4D.y =-3(2x -1)2+44.已知抛物线的对称轴为直线x =3,y 的最大值为-5,且与y =x 2的图象开口大小相同,则这条抛12物线的解析式为(B)A.y =-(x +3)2+512B.y =-(x -3)2-512C.y =(x +3)2+512D.y =(x -3)2-5125.已知某抛物线的顶点坐标为M (-2,1),且经过原点,则该抛物线的函数解析式为(D)A.y =(x -2)2+1B.y =(x +2)2+114C.y =(x +2)2+1D.y =-(x +2)2+1146.某抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),则它对应的二次函数的解析式为(C)A.y =2x 2-2x -4B.y =-2x 2+2x -4C.y =2x 2+2x -4D.y =x 2+x -27.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是(A)A.y =-x 2+x +2B.y =-x 2-x +21212C.y =-x 2-x +11212D.y =x 2-x -28.二次函数的部分图象如图所示,对称轴是x =-1,则这个二次函数的解析式为(D)A.y =-x 2+2x +3B.y =x 2+2x +3C.y =-x 2-2x -3D.y =-x 2-2x +39.当k 取任意实数时,抛物线y =3(x -k -1)2+k 2+2的顶点所在的函数图象的解析式是(C)A.y =x 2+2B.y =x 2-2x +1C.y =x 2-2x +3D.y =x 2+2x -3二、填空题10.已知A (0,3),B (2,3)是抛物线y =-x 2+bx +c 上两点,则该抛物线的解析式是 y =-x 2+2x +3 .11.已知某二次函数的图象过(0,1),(1,0),(-2,0)三点,则这个二次函数的解析式是 y =-x +1 . 12x 2-1212.已知抛物线与x 轴交点的横坐标分别为3,1,与y 轴交点的纵坐标为6,则该二次函数的解析式为 y=2x 2-8x+6 .13.已知抛物线y=4x 2+mx-48,当x>-2时,y 随x 的增大而增大;当x<-2时,y 随x 的增大而减小.则当x=3时,y= 36 .14.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:x-1013y -1353下列结论:①ac<0;②当x>1时,y 随x 的增大而减小;③当x=2时,y=5;④3是方程ax 2+(b-1)x+c=0的一个根.其中正确的结论有 ①③④ .(填写序号)15.如果将二次函数y =-6(x -1)2的图象沿x 轴对折,得到的函数图象的解析式是 y =6(x -1)2 ;如果沿y 轴对折,得到的函数图象的解析式是 y =-6(x +1)2 .16.如图,抛物线的顶点M 在y 轴上,抛物线与直线y =x +1相交于A ,B 两点,且点A 在x 轴上,点B 的横坐标为2,则该抛物线的函数解析式为 y =x 2-1 .三、解答题17.如图,在平面直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),求该抛物线的解析式和顶点E 的坐标.解:由题意,设y =a (x -1)(x -5).将点A (0,4)代入,得a =,45∴y =,45(x -1)(x -5)=45(x -3)2-165故顶点E 的坐标为.(3,−165)18.若二次函数y =ax 2+bx +c (a ≠0)中,函数值y 与自变量x 的部分对应值如下表: x…-2-1012…y …0-2-204…求该二次函数的解析式.解:根据表中可知,点(-1,-2)和点(0,-2)关于对称轴对称,∴对称轴是直线x =-.12设二次函数的解析式为y =a +k.(x +12)2把点(-2,0)和点(0,-2)代入,得{a (−2+12)2+k =0,a (0+12)2+k =−2,解得a =1,k =-,94∴该二次函数的解析式为y ==x 2+x -2.(x +12)2-9419.已知抛物线y =a (x -h )2+k 与抛物线y =4x 2-2x +5的形状相同,且抛物线y =a (x -h )2+k 经过点(0,0),其最大值为16,求此抛物线的解析式.解:把点(0,0)代入y =a (x -h )2+k ,得ah 2+k =0.∵抛物线y =a (x -h )2+k 的最大值为16,∴函数图象的开口向下,即a <0,其顶点的纵坐标k =16.∵抛物线y =a (x -h )2+k 的形状与抛物线y =4x 2-2x +5相同,∴a =-4,把a =-4,k =16代入ah 2+k =0中,得h =±2,∴此抛物线的解析式为y =-4(x -2)2+16或y =-4(x +2)2+16.20.已知二次函数图象的对称轴是直线x =-3,图象经过点(1,6),且与y 轴的交点坐标为.(0,52)(1)求这个二次函数的解析式.(2)当x 在什么范围内变化时,这个函数的函数值y 随x 的增大而增大?解:(1)这个二次函数的解析式为y =.12x 2+3x +52(2)∵y =,12x 2+3x +52∴a =>0,开口向上,对称轴是直线x =-3,12∴当x >-3时,这个函数的函数值y 随x 的增大而增大.21.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式.(2)设(1)中的抛物线交y 轴于点C ,在该抛物线的对称轴上是否存在点M ,使得△MAC 的周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)该抛物线的解析式为y =-x 2-2x +3.(2)存在.连接BC 交对称轴于点M ,则此时△MAC 的周长最小.在y =-x 2-2x +3中,令x =0,得y =3,∴点C 的坐标为(0,3).设直线BC 的解析式为y =kx +b ,∴∴直线BC 的解析式为y =x +3.{−3k +b =0,b =3,解得{k =1,b =3,∵抛物线y =-x 2-2x +3的对称轴为直线x =-1,∴当x =-1时,y =2,∴点M 的坐标为(-1,2).22.(陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(-2,-3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的解析式.解:将点(3,12)和(-2,-3)的坐标代入抛物线的解析式,得解得故抛物线的解析式为y=x2+2x-3.(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P,D,E为顶点的三角形与△AOC全等,求满足条件的点P、点E的坐标.解:抛物线的对称轴为直线x=-1.令y=0,则x=-3或x=1;令x=0,则y=-3,故点A,B的坐标分别为(-3,0),(1,0),点C的坐标为(0,-3).∴OA=OC=3.∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P,D,E为顶点的三角形与△AOC全等.设点P(m,n),当点P在抛物线的对称轴右侧时,m-(-1)=3,解得m=2,故n=22+2×2-3=5,故点P(2,5),故点E(-1,2)或(-1,8);当点P在抛物线的对称轴左侧时,由抛物线的对称性可得点P (-4,5),此时点E坐标同上.综上,点P的坐标为(2,5)或(-4,5),点E的坐标为(-1,2)或(-1,8).23.(江西)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…-2-1012…y…m0-3n-3…(1)根据以上信息,可知抛物线开口向__上______,对称轴为_直线x=1___________.(2)求抛物线的解析式及m,n的值.解:把x=-1,y=0;x=0,y=-3;x=2,y=-3分别代入y=ax2+bx+c,得解得∴抛物线的解析式为y=x2-2x-3.当x=-2时,m=4+4-3=5;当x=1时,n=1-2-3=-4.(3)请在图中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?解:如图所示.该曲线是一条抛物线.(4)设直线y=m(m>-2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系:_A3A4-A1A2=1_______.24.(永州)在平面直角坐标系xOy中,等腰直角三角形ABC的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=4,抛物线经过A,B,C三点,如图①所示.(1)求抛物线所表示的二次函数解析式.解:在等腰直角三角形ABC中,OC垂直平分AB,且AB=4,∴OA=OB=OC=2.∴A (-2,0),B (2,0),C (0,-2).∴设二次函数解析式为y =ax 2-2,将点B (2,0)的坐标代入,得4a -2=0,则a =.12∴抛物线所表示的二次函数解析式为y =x 2-2.12(2)过原点任作直线l 交抛物线于M ,N 两点,如图②所示.①求△CMN 面积的最小值.解:设直线l 的解析式为y =kx ,M (x 1,y 1),N (x 2,y 2),由可得x 2-kx -2=0,12∴x 1+x 2=2k ,x 1·x 2=-4.∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4k 2+16.∴|x 1-x 2|=2.k 2+4∴S △CMN =OC ·|x 1-x 2|=2.12k 2+4∴当k =0时,2取最小值4.k 2+4∴△CMN 面积的最小值为4.②已知Q是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l 对称?若存在,求出点P 的坐标及直线l 的一次函数解析式;若不存在,请说明理由.解:抛物线上存在点P ,使得点P 与点Q 关于直线l 对称.设点P 的坐标为,连接OP ,OQ ,PQ ,∴OP =OQ ,即=,解得m 1=,m 2=-,33m 3=1(不合题意,舍去),m 4=-1(不合题意,舍去).当m =时,点P,3则线段PQ 的中点为,∴k =-1,1+32解得k =1-.3∴直线l 的解析式为y =(1-)x .3当m =-时,点P,3则线段PQ 的中点为,∴k =-1,1-32解得k =1+,3∴直线l 的解析式为y =(1+)x .3综上,直线l 的解析式为y =(1-)x 或y =(1+)x .3325.(攀枝花)如图,开口向下的抛物线与x 轴交于点A (-1,0),B (2,0),与y 轴交于点C (0,4),点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;解:由题意可设抛物线所对应的函数解析式为y =a (x +1)(x -2),将C (0,4)的坐标代入,得4=-2a ,解得a =-2.∴该抛物线所对应的函数解析式为y =-2(x +1)(x -2)=-2x 2+2x +4.(2)设四边形CABP 的面积为S ,求S 的最大值.解:如图,连接OP ,设点P 的坐标为(m ,-2m 2+2m +4), m >0.∵A (-1,0),B (2,0),C (0,4),∴OA =1,OC =4,OB =2.∴S =S △OAC +S △OCP +S △OPB =×1×4+×4m +×2×(-2m 2+2m +4)=-2m 2+4m +6=-2(m -1)1212122+8.当m =1时,S 最大,最大值为8.26.(衡阳)在平面直角坐标系xOy 中,关于x 的二次函数y =x 2+px +q 的图象过点(-1,0),(2,0).(1)求这个二次函数的解析式;解:由题意得二次函数的解析式为y =(x +1)(x -2)=x 2-x -2.(2)求当-2≤x ≤1时,y 的最大值与最小值的差;解:∵抛物线开口向上,对称轴为直线x ==,-1+2212∴在-2≤x ≤1范围内,当x =-2时,函数有最大值,y 最大值=4+2-2=4;当x =时,函数有最小值,y 最小值=--2=-(如图).12141294∴y 的最大值与最小值的差为4-=.254(3)一次函数y =(2-m )x +2-m 的图象与二次函数y =x 2+px +q 的图象交点的横坐标分别是a 和b ,且a <3<b ,求m 的取值范围.解:令x 2-x -2=(2-m )x +2-m ,整理得x 2+(m -3)x +m -4=0.解得x 1=-1,x 2=4-m .∵a <3<b ,∴a =-1,b =4-m .由4-m >3,解得m <1.27.如图,在平面直角坐标系xOy 中,已知矩形ABCD 的顶点坐标A (-1,0),B (3,0),C (3,-2),抛物线经过A ,B 两点,且顶点在线段CD 上.(1)求这条抛物线的解析式;(2)若点E (3,1),将△DCE 向上平移直至CD 边与AB 边重合,在此过程中,线段CD 与抛物线的交点为P (x 1,y 1),Q (x 2,y 2),线段DE 与AB 交于点M (x 3,y 3),求x 1+x 2+x 3的取值范围.解:(1)由题意可知抛物线的对称轴为直线x==1,顶点为(1,-2).-1+32设抛物线的解析式为y=a (x-1)2-2,把A (-1,0)代入得4a-2=0,∴a=,12∴这条抛物线的解析式为y=(x-1)2-2.12(2)易知D (-1,-2),E (3,1),可求得直线DE 的解析式为y=x-.3454令y=0,则0=x-,解得x=,∴x 3=;34545353至CD 边与AB 边重合时,线段DE 与AB 交于A (-1,0),∴x 3=-1,∴-1≤x 3≤.53∵对称轴为直线x=1,∴x 1+x 2=2,∴x 1+x 2+x 3的取值范围是-1+2≤x 1+x 2+x 3≤2+,即1≤x 1+x 2+x 3≤.53113。
新人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图象和性质练习
新人教版九年级数学上册22.1.4二次函数y=ax2+bx+c 的图象和性质练习预习要点:1.一般地,二次函数y=ax 2+bx+c 可以通过化成y=a (x-h )2+k 的形式,即y=a(x+b 2a )2+4ac-b 24a .因此,抛物线y=ax 2+bx+c 的对称轴是,顶点是.2.从二次函数y=ax 2+bx+c 的图象可以看出: (1)如果a >0,当x <- b2a时,y 随x 的增大而,当x >-b2a时,y 随x 的增大而;(2)如果a <0,当x <- b2a时,y 随x 的增大而,当x >-b2a时,y 随x 的增大而.3.求二次函数的解析式y=ax 2+bx+c,需求出的值.由已知条件(如二次函数图象上三个点的坐标)列出关于的方程组,求出的值,就可以写出二次函数的解析式.4.(2016•益阳)关于抛物线y=x 2−2x+1,下列说法错误的是( ) A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小5.(2016•怀化)二次函数y=x 2+2x −3的开口方向、顶点坐标分别是( ) A .开口向上,顶点坐标为(−1,−4) B .开口向下,顶点坐标为(1,4) C .开口向上,顶点坐标为(1,4) D .开口向下,顶点坐标为(−1,−4)6.(2016•广州)对于二次函数y=−14 x 2+x −4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值−3C.图象的顶点坐标为(−2,−7)D.图象与x轴有两个交点7.(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=−1,x2=3;③3a+c>0④当y>0时,x的取值范围是−1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个8.已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2 B.y=x2+3x+2 C.y=x2−2x+3 D.y=x2−3x+29.已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2−2x+3 B.y=x2−2x−3 C.y=x2+2x−3 D.y=x2+2x+3 10.(2016•枣庄模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(−3,0),对称轴为x=−1.给出四个结论:①b2>4ac;②2a+b=0;③a−b+c=0;④5a<b.其中正确结论是.11.若二次函数y=ax2+bx+c的图象经过原点,则c的值为.12.抛物线y=−x2+3x−3与y轴的交点坐标为.13.若函数y=2x2−4x+m有最小值是3,则m= .14.抛物线y=ax2+bx+c(a≠0)如图,回答:(1)这个二次函数的表达式是;(2)当x= 时,y=3;(3)根据图象回答:当时,y>0.15.已知抛物线y=ax2+bx+c的形状与抛物线y=x2的形状相同,最高点坐标为(2,−3),则抛物线的解析式是.同步小题12道一.选择题1.二次函数y=−x2−2x+5的顶点坐标、对称轴分别是()A.(1,6),x=1 B.(−1,6),x=1C.(−1,6),x=−1 D.(1,6),x=−12.一次函数y=ax+b(ab≠0)的图象不经过第二象限,则抛物线y=ax2+bx的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.抛物线y=x2−8x+m的顶点在x轴上,则m等于()A.−16 B.−4 C.8 D.164.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A.a>0,c>0 B.a<0,c>0 C.a>0,c<0 D.a<0,c<05.已知函数y=x2+3x+a−2的图象过原点,则a的值为()A.2 B.−2 C.−3 D.06.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=2(x+1)2+8 B.y=18(x+1)2−8 C.y=29(x−1)2+8 D.y=2(x−1)2−8二.填空题7.抛物线y=2x2−6x−1的对称轴为.8.(2016春•重庆校级月考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc>0;②a>b;③a−b+c>0;④4ac−8a>b2,其中正确的是(填序号)9.抛物线y=ax2+bx+c开口向上,对称轴是直线x=1,A(−2,y1),B(0,y2),C(2,y3)在该抛物线上,则y1,y2,y3大小的关系是.10.已知二次函数y=ax2+bx+c的图象经过A(−1,−1)、B(0,2)、C(1,3);则二次函数的解析式.三.解答题11.已知抛物线的解析式为y=x2−2x−3,请确定该抛物线的开口方向,对称轴和顶点坐标.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.12.二次函数y=ax 2+bx+c 的图象如图所示,以下结论,正确的有哪些?并说明理由.(1)3a+b >0;(2)0<b <a+1;(3)b+2a >0;(4)−14 <a <−18 . 答案: 预习要点:1.配方 x=- b 2a (- b 2a ,4ac-b 24a )2.(1)减小 增大(2)增大 减小3.a ,b ,c a ,b ,c a ,b ,c4.【分析】根据抛物线的解析式画出抛物线的图象,根据二次函数的性质结合二次函数的图象,逐项分析四个选项,即可得出结论.【解答】解:画出抛物线y=x 2−2x+1的图象,如图所示.A 、∵a=1,∴抛物线开口向上,A 正确;B 、∵令x 2−2x+1=0,△=(−2)2−4×1×1=0,∴该抛物线与x 轴有两个重合的交点,B 正确;C 、∵−b 2a =−−22×1 =1,∴该抛物线对称轴是直线x=1,C 正确;D 、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x >1时,y 随x 的增大而增大,D 不正确. 故选D5.【分析】根据a >0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.【解答】解:∵二次函数y=x 2+2x −3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x 2+2x −3=(x+1)2−4,∴顶点坐标为(−1,−4).故选A .6.【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=−14 x 2+x −4可化为y=−14 (x −2)2−3,又∵a=−14 <0∴当x=2时,二次函数y=−14 x 2+x −4的最大值为−3. 故选B7.【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=−2a ,然后根据x=−1时函数值为负数可得到3a+c <0,则可对③进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断. 【解答】解:∵抛物线与x 轴有2个交点,∴b 2−4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(−1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=−1,x 2=3,所以②正确;∵x=−b2a =1,即b=−2a ,而x=−1时,y <0,即a −b+c <0,∴a+2a+c <0,所以③错误;∵抛物线与x 轴的两点坐标为(−1,0),(3,0),∴当−1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B8.【分析】本题已知了抛物线上三点的坐标,可直接用待定系数法求解.【解答】解:设这个二次函数的解析式是y=ax 2+bx+c ,把(1,0)、(2,0)和(0,2)代入得:⎩⎪⎨⎪⎧ a +b +c =0 4a +2b +c =0 c =2 ,解之得⎩⎪⎨⎪⎧ a =1b =−3c =2 ;所以该函数的解析式是y=x 2−3x+2. 故选D9.【分析】根据题意,把抛物线经过的三点代入函数的表达式,列出方程组,解出各系数则可.【解答】解:根据题意,图象与y 轴交于负半轴,故c 为负数,又四个选项中,B 、C 的c 为−3,符合题意,故设二次函数的表达式为y=ax 2+bx+c ,抛物线过(−1,0),(0,−3),(3,0),所以⎩⎪⎨⎪⎧a −b +c =0c =−3 9a +3b +c =0,解得a=1,b=−2,c=−3,这个二次函数的表达式为y=x 2−2x −3. 故选B10.【解答】解:①∵图象与x轴有交点,对称轴为x=−b2a=−1,与y轴的交点在y轴的正半轴上,又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2−4ac>0,即b2>4ac,故①正确;②∵抛物线的开口向下,∴a<0,∵与y轴的交点在y轴的正半轴上,∴c>0,∵对称轴为x=−b2a=−1,∴2a=b,∴2a+b=4a,a≠0,故②错误;③∵x=−1时y有最大值,由图象可知y≠0,故③错误;④把x=1,x=−3代入解析式得a+b+c=0,9a−3b+c=0,两边相加整理得5a−b=−c<0,即5a<b,故④正确.答案:①④11.【解答】解:把(0,0)代入得c=0.答案:0.12.【分析】把x=0代入抛物线y=−x2+3x−3,即得抛物线y=−x2+3x−3与y轴的交点.【解答】解:∵当x=0时,抛物线y=−x2+3x−3与y轴相交,∴把x=0代入y=−x2+3x−3,求得y=−3,∴抛物线y=−x2+3x−3与y轴的交点坐标为(0,−3).答案:(0,−3).13.【分析】首先用配方法将一般式化为顶点式,顶点纵坐标即为最小值,列方程求解.【解答】解:∵y=2x2−4x+m=2(x−1)2+m−2,∴m−2=3,解得m=5,答案:5.14.【分析】(1)已知顶点坐标和函数图象经过原点,故设抛物线解析式为y=a(x−1)2−1(a≠0),然后把原点坐标代入来求a的值;(2)把y=3代入(1)中函数关系进行解答相应的x的值;(3)根据图示直接填空.【解答】解:(1)如图,抛物线的顶点坐标是(1,−1).故设抛物线解析式为y=a(x−1)2−1(a≠0),又∵抛物线经过点(0,0),∴0=a(0−1)2−1,解得,a=1.故抛物线的解析式为:y=(x−1)2−1.故填:y=(x−1)2−1;(2)由(1)知,y=(x−1)2−1,当y=3时,3=(x−1)2−1,解得,x=3或x=−1.故填:3或−1;(3)根据图示知,当x<0或x >2时,y>0.故填:x<0或x>2.15.【分析】根据y=ax2+bx+c的形状与y=x2形状相同,且有最高点,可确定函数图象开口向下,且a=−1,由顶点坐标写出其顶点式,再整理成一般式即可.【解答】解:∵y=ax2+bx+c的形状与y=x2形状相同,且有最高点(2,−3),∴抛物线的解析式是y=−(x−2)2−3=−x2+4x−7,答案:y=−x2+4x−7.同步小题12道1.【分析】将二次函数的一般式配方为顶点式,可求顶点坐标及对称轴.【解答】解:∵y=−x2−2x+5=−(x+1)2+6,∴抛物线的顶点坐标为(−1,6),对称轴为x=−1.故选C2.【解答】解:∵一次函数y=ax+b (ab≠0)的图象不经过第二象限,∴a >0,b <0,∴抛物线y=ax 2+bx 的顶点(−b 2a ,−b 24a ),−b 2a >0,−b 24a<0,∴抛物线y=ax 2+bx 的顶点(−b 2a ,−b 24a )在第四象限. 故选D3.【分析】顶点在x 轴上,所以顶点的纵坐标是0.根据顶点公式即可求得m 的值. 【解答】解:抛物线的顶点纵坐标是:4m −644 ,则得到:4m −644 =0,解得m=16. 故选D4.【分析】首先根据开口方向确定a 的符号,再依据与y 轴的交点的纵坐标即可判断c 的正负,由此解决问题.【解答】解:∵图象开口方向向上,∴a >0;∵图象与Y 轴交点在y 轴的负半轴上,∴c <0;∴a >0,c <0.故选:C5.【分析】直接把原点坐标代入二次函数解析式得到关于a 的方程,然后解方程即可. 【解答】解:把(0,0)代入y=x 2+3x+a −2得a −2=0,解得a=2.故选A .6.【分析】顶点式:y=a (x −h )2+k (a ,h ,k 是常数,a≠0),其中(h ,k )为顶点坐标. 【解答】解:由图知道,抛物线的顶点坐标是(1,−8)故二次函数的解析式为y=2(x −1)2−8.故选D7.【分析】利用公式:y=ax 2+bx+c 的顶点坐标公式为(−b 2a ,4ac −b 24a),列出方程求解则可.【解答】解:根据题意得:−b 2a =−−62×2 =32 ,4ac −b 24a =4×2×(−1)−(−6)24×2 =−112 ,则顶点坐标是(32 ,−112 ). 答案:(32 ,−112 )8.【解答】解:∵抛物线的开口朝下,∴a <0;∵抛物线与y 轴交点在y 的正半轴,∴c >0;∵抛物线的对称轴x=−b 2a 在−1到0之间,即−1<−b2a <0,∴0>b >2a ,即②不成立;∵c >0,0>b >a ,∴abc >0,即①成立;∵当x=−1时,抛物线上的点在x 轴上方,∴有a −b+c >0,即③成立;由图可知,抛物线顶点(−b 2a ,4ac −b 24a )的纵坐标大于2,∴4ac −b 24a >2,∵a <0,∴4ac −b 2<8a ,∴4ac −8a <b 2,④不成立.答案:①③.9.【分析】根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越大,由x 取−2、0、2时,x 取−2时所对应的点离对称轴最远,x 取0与2时所对应的点离对称轴一样近,即可得到答案.【解答】解:∵抛物线y=ax 2+bx+c 开口向上,对称轴是直线x=1,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x 取−2时所对应的点离对称轴最远,x 取0与2时所对应的点离对称轴一样近,∴y 1>y 2=y 3.故答案是:y 1>y 2=y 3.10.【分析】根据点A ,B ,C 在二次函数y=ax 2+bx+c 的图象上,点的坐标满足方程的关系,将A (−1,−1)、B (0,2)、C (1,3)代入y=ax 2+bx+c 得a=−1,b=2,c=2.从而得出二次函数的解析式为y=−x 2+2x+2.【解答】解:设二次函数的解析式为y=ax 2+bx+c ,∵点A ,B ,C 在二次函数y=ax 2+bx+c 的图象上,∴将A (−1,−1)、B (0,2)、C (1,3)代入二次函数的解析式为y=ax 2+bx+c ,得⎩⎪⎨⎪⎧ a −b +c =−1c =2 a +b +c =3 ,解得,a=−1,b=2,c=2.∴二次函数的解析式为y=−x 2+2x+2. 答案:y=−x 2+2x+2. 11.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.解:∵y=x 2−2x −3,∴y=(x −1)2−4,∵a=1>0,∴该抛物线的开口方向上,∴对称轴和顶点坐标分别为:x=1,(1,−4)12.【分析】根据图象与坐标轴交点即可确定对称轴的位置以及解析式,进而分别得出答案. 解:(1)当图象经过(−1,0),(4,0)时,抛物线对称轴为:直线x=32 ,∵图象经过−1与−2之间,∴−b 2a <32 ,∴−b >3a ,∴3a+b <0,故此选项错误;(2)当x=−1时,a −b+c >0,∵图象经过(0,1),∴c=1,∴a −b+1>0,∴a+1>b ,∵对称轴在x 轴正半轴,∴a ,b 异号,∵图象开口向下,∴a <0,∴b >0,∴0<b <a+1,此选项正确;(3)∵图象经过−1与−2之间,以及(4,0)点,∴−b 2a >1,∴−b <2a ,∴2a+b >0,故此选项正确;(4)当图象过点(−1,0),(4,0)时,设解析式为:y=ax 2+bx+1,则⎩⎨⎧ a −b +1=016a +4b +1=0,解得:⎩⎨⎧ a =−14b =34,当图象过点(−2,0),(4,0)时,设解析式为:y=ax 2+bx+1,则⎩⎨⎧ 4a −2b +1=0 16a +4b +1=0,解得:⎩⎨⎧ a =−18 b =14,∴−14 <a <−18 ,故此选项正确.。
(人教版数学)初中9年级上册-同步练习-22.1 二次函数的图像与性质 同步练习3 含答案
22.1《二次函数的图像与性质》同步练习3带答案一.选择题1.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y2.抛物线2)3(2--=x y 的顶点坐标和对称轴分别是( )A.3),0,3(-=-x 直线B. 3),0,3(=x 直线C. 3),3,0(-=-x 直线D. 3),3,0(-=x 直线3.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B. 312y y y >>C. 213y y y >>D. 123y y y >>4.把抛物线2)1(6+=x y 的图象平移后得到抛物线26x y =的图象,则平移的方法可以是( )A.沿y 轴向上平移1个单位长度B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度5.若二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是( )A. 2B. 2-C.0D. 2±6.对称轴是直线2-=x 的抛物线是( )A.22+-=x yB.22+=x yC.2)2(21+=x y D.2)2(3-=x y 7.对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小8.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当0>x 时,它们的函数值y 都是随着x 的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个B.2个C.3个D.4个二.填空题1.抛物线2)1(3--=x y 的开口向 ,对称轴是 ,顶点坐标是 。
人教版2019-2020学年度人教版九年级上册数学 22.1 二次函数的图象和性质 同步练习(有答案)
22.1 二次函数的图象和性质同步练习一、选择题1、抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)2、已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=03、已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0 B.1 C.2 D.34、若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3/25、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<16、如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C. D.7、如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A. B.C. D.8、对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为()①抛物线的开口向下;②对称轴是直线x=﹣2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A.4 B.3 C.2 D.1二、填空题9、将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.10、将抛物线y=3x2﹣6x+4先向右平移3个单位,再向上平移2个单位后得到新的抛物线,则新抛物线的顶点坐标是.11、将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:12、写出一个二次函数解析式,使它的图象的顶点在y轴上:.13、若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.14、点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是.15、将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三、简答题16、将抛物线y=﹣x2﹣2x﹣3向右平移三个单位,再绕原点O旋转180°,求所得抛物线的解析式?17、二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题:(1)点B的坐标为;(2)方程ax2+bx+c=0的两个根为;(3)不等式ax2+bx+c<0的解集为;(4)y随x的增大而减小的自变量x的取值范围为;(5)若方程ax2+bx+c=k﹣1有两个不等的实数根,则k的取值范围为.18、在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19、已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.20、在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.参考答案一、选择题1、C【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).2、A解:∵点(0,m)、(4,m)为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即﹣=2,∴b+4a=0,∵x=1,y=n,且n<m,∴抛物线的开口向上,即a>0.3、D解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.4、D【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.【点评】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.5、D【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.6、A【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB 是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x 函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠A=∠C=∠ABC=60°,∵DE∥AC,∴∠EDF=∠A=60°,∠DEB=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠EDB=∠DEB=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选:A.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,特殊角的三角函数、三角形的面积等.7、D【分析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【解答】解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y==x﹣,(x>5),故选项D正确,故选:D.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,写出各段的函数解析式,明确函数的图象,利用数形结合的思想解答.8、A【分析】根据抛物线的解析式可求得其开口方向、对称轴,则可判断①、②,由解析式可求得抛物线的顶点坐标及与x轴的交点坐标,则可判断③;利用抛物线的对称轴及开口方向可判断④;则可求得答案.【解答】解:∵y=﹣(x+2)2+3,∴抛物线开口向下、对称轴为直线x=﹣2,顶点坐标为(﹣2,3),故①、②都正确;在y=﹣(x+2)2+3中,令y=0可求得x=﹣2+<0,或x=﹣2﹣<0,∴抛物线图象不经过第一象限,故③正确;∵抛物线开口向下,对称轴为x=﹣2,∴当x>﹣2时,y随x的增大而减小,∴当x>2时,y随x的增大而减小,故④正确;综上可知正确的结论有4个,故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).二、填空题9、:y=x2+2.【分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10、(4,3)..【分析】先把y=3x2﹣6x+4配方得到y=3(x﹣1)2+1,则抛物线y=3x2﹣6x+4的顶点坐标为(1,1),然后把点(1,1)先向右平移3个单位,再向上平移2个单位即可得到新抛物线的顶点坐标.【解答】解:∵y=3x2﹣6x+4=3(x﹣1)2+1,∴抛物线y=3x2﹣6x+4的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位,再向上平移2个单位得到点的坐标为(4,3),即新抛物线的顶点坐标为(4,3).故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11、y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,12、y=x2(答案不唯一).【考点】H3:二次函数的性质.【分析】根据二次函数的图象的顶点在y轴上,则b=0,进而得出答案.【解答】解:由题意可得:y=x2(答案不唯一).13、﹣1.解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.【点评】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac=0时,抛物线与x轴有1个交点”是解题的关键.14、y2<y3<y1;15、y=(x+3)2﹣4;三、简答题16、解:y=﹣x2﹣2x﹣3,=﹣(x2+2x+1)+1﹣3,=﹣(x+1)2﹣2,所以,抛物线的顶点坐标为(﹣1,﹣2),∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,﹣2),∵再绕原点O旋转180°,∴旋转后的抛物线的顶点坐标为(﹣2,2),∴所得抛物线解析式为y=(x+2)2+2.17、:k<2解:(1)由图可得:A、B到直线x=1的距离相等,∵A(﹣1,0)∴B点坐标为:(3,0)故答案为:(3,0)(2)方程ax2+bx+c=0的两个根是:x1=0,x2=2;故答案为:x1=0,x2=2;(3)不等式ax2+bx+c<0的解集是:x<0或x>2;故答案为:x<0或x>2;(4)y随x的增大而减小的自变量x的取值范围是:x>1;故答案为:x>1;(5)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.18、解:(1)当h=﹣1时,y=x2+2x﹣1=(x+1)2﹣2,则顶点D的坐标为(﹣1,﹣2);(2)∵y=x2﹣2hx+h=(x﹣h)2+h﹣h2,∴x=h时,函数有最小值h﹣h2.①如果h≤﹣1,那么x=﹣1时,函数有最小值,此时m=(﹣1)2﹣2h×(﹣1)+h=1+3h;②如果﹣1<h<1,那么x=h时,函数有最小值,此时m=h﹣h2;③如果h≥1,那么x=1时,函数有最小值,此时m=12﹣2h×1+h=1﹣h.19、解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为x=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;【20、解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.。
2019九年级数学上册 22.1 二次函数的图象和性质同步练习 (新版)新人教版
22.1 二次函数的图象和性质一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)2.(2018•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下 B.对称轴是y轴C.经过原点 D.在对称轴右侧部分是下降的3.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25 4.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=05.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或66.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x 的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.17.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.8.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个9.(2017•泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B 停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm210.(2017•资阳)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.111.(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下 B.对称轴是x=m C.最大值为0 D.与y轴不相交12.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<013.(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣414.(2016•株洲)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m≥C.n≤2 D.b<115.(2016•绵阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b >0;③b>a>c;④b2+2ac<3ab.其中正确结论的个数是()A.1 B.2 C.3 D.416.(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.二.填空题(共10小题)17.(2018•哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为.18.(2018•广州)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).19.(2018•新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).20.(2017•河北)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}= ;若min{(x﹣1)2,x2}=1,则x= .21.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)22.(2017•广州)当x= 时,二次函数y=x2﹣2x+6有最小值.23.(2017•黔西南州)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.24.(2016•营口)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,对称轴是直线x=﹣1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2﹣4ac>0;③ab<0;④a﹣b+c<0,其中正确的结论是(填写序号).25.(2016•大庆)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA ⊥OB时,直线AB恒过一个定点,该定点坐标为.26.(2016•南充)已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a﹣1)x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是(填写序号)三.解答题(共8小题)27.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.28.(2018•宁夏)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.29.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.30.(2017•广州)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.31.(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.32.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.33.(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.34.(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.参考答案一.选择题(共16小题)1.A.2.C.3.B.4.D.5.B.6.D.7.C.8.C.9.C.10.A.11.D.12.C.13.D.14.B.15.C.16.A.二.填空题(共10小题)17.(﹣2,4).18.增大.19.②③.20.;2或﹣1.21.1、5.23.①③④.24.①②④.25.(0,4).26.①③④.三.解答题(共8小题)27.解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.28.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=29.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).30.解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1, =1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.31.解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,m)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.32.解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).33.解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p取得最小值,最小值是﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或或,解得,﹣2≤m≤0或2≤m≤4.34.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.1.4 二次函数 )0(2≠++=a c bx ax y 的图象和性质知识点:1、二次函数c bx ax y ++=2的对称轴为 ,顶点坐标为 ,它的最高(低)点在 点,当=x 时,它有最大(小)值,值为 。
2、在抛物线c bx ax y ++=2中,c 为抛物线与 交点的纵坐标。
当0>a 时,图象开口 ,有最 点,且x 时,y 随x 的增大而增大,x 时,y 随x 的增大而减小;当0<a 时,图象开口 ,有最 点,且x 时,y 随x 的增大而增大,x 时,y 随x 的增大而减小;3、抛物线c bx ax y ++=2可由抛物线2ax y =进行左(右)、上(下)平移得到。
一、选择题:1、抛物线742++-=x x y 的顶点坐标为( )A 、(-2,3)B 、(2,11)C 、(-2,7)D 、(2,-3) 2、若抛物线c x x y +-=22与y 轴交于点(0,-3),则下列说法不正确的是( ) A 、抛物线开口方向向上 B 、抛物线的对称轴是直线1=xC 、当1=x 时,y 的最大值为-4D 、抛物线与x 轴的交点为(-1,0),(3,0) 3、要得到二次函数222-+-=x x y 的图象,需将2x y -=的图象( )A 、向左平移2个单位,再向下平移2个单位B 、向右平移2个单位,再向上平移2个单位C 、向左平移1个单位,再向上平移1个单位D 、向右平移1个单位,再向下平移1个单位 4、在平面直角坐标系中,若将抛物线3422+-=x x y 先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后,所得到的抛物线的顶点坐标为( ) A 、(-2,3) B 、(-1,4) C 、(1,4) D 、(4,3) 5、抛物线c bx x y ++=2的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为( )A 、2,2==c bB 、0,2==c bC 、1,2-=-=c bD 、2,3=-=c b6、二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <1 7、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+ 8、二次函数c bx ax y ++=2的图像如图所示,反比列函数xay =与正比列函数bx y =在同一坐标系内的大致图像是( )二、填空题:1、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
2、抛物线121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅= 。
3、抛物线c bx x y ++-=2的最高点为(-1,-3),则=+c b 。
4、若二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是 。
5、把抛物线c bx ax y ++=2先向右平移3个单位,再向下平移2个单位,所得抛物线解析式为532--=x x y ,则c b a ++= 。
6、在平面直角坐标系中,若将抛物线y=2x 2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是 。
7、抛物线c bx ax y ++=2(0>a )的对称轴为直线1=x ,且经过点(—1,1y ),(2,2y )则试比较1y 与2y 的大小:1y 2y (填“>”“<”或“=”)。
8、已知二次函数y=12-x 2-7x+152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是 (用“<”连接)。
9、二次函数322--=x x y 的图象关于原点O (0, 0)对称的图象的解析式是_________________。
10、已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc <0;③a-2b+4c <0;④8a+c >0.其中正确的有 。
三、解答题:1、已知抛物线c bx ax y ++=2的对称轴为2=x ,且经过点(1,4)和(5,0),试求该抛物线的表达式。
ABDC2、如图,抛物线c bx x y ++-=2与x 轴交于点A 、B ,与y 轴交于点C ,点O 为坐标原点,点D 为抛物线顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF=2,EF=3(1)求抛物线所对应的函数解析式; (2)求ABD ∆的面积。
3、如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C . (1)求m 的值;(2)求点B 的坐标; (3)该二次函数图象上有一点D (x ,y )(其中x >0,y >0),使S △ABD =S △ABC ,求点D 的坐标.4、如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.5、如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.ABC22.1.4二次函数)0()(2≠+-=a k h x a y 的图像和性质一、理解新知1、直线x=h (h ,k )2、相同 不同 向右平移h 个单位,再向上平移k 个单位; 向右平移h 个单位,再向下平移|k|个单位;向左平移|h|个单位,再向上平移k 个单位; 向左平移|h|个单位,再向下平移|k|个单位。
3、上 减 增 低;下 增 减 高 二、知识巩固练习: (一)选择:1、B2、C3、B4、D5、C6、C7、C8、C (二)填空:1、直线x=-3 (-3,-1) <-3 >-3 大 -12、>0 <03、>4、2≥x5、186、右 3 上 17、2)2(2-+-=x y 8、1)1(22++=x y1)1(22--=x y 9、31-3 -2 10、①(三)解答:5)1(434325)11(215)1(511222++-=∴-==++∴++=∴-x y a a x a y ),图象过点(又设二次函数的解析式为),(二次函数的图象顶点为、解:3)2(2213)21(113)2(322222+--=∴-==+-∴+-=∴=x y a a x a y y x ),抛物线过点(又设抛物线解析式为取得最大值时函数、解:494349430349,:)0,3(Q 490P 1PQ 0103Q 490P 01031,3031430493430331)2(11311111110212min -=∴⎪⎩⎪⎨⎧-==⎪⎩⎪⎨⎧=+-=+=-----===--=-=-==-===x y b k b k b b x k y l x x x x y y x y x y x PQ 解得则设),,(若可分两种情况:),所以直线,)或(,(),,(则),)或(,轴得交点为(即与解得)(得令得)令(时,有最小值,当对称轴为直线)抛物线的开口向上,、解:(49494943PQ 49494949049,:01Q 490P 222222220--=-=--=∴⎪⎩⎪⎨⎧-=-=⎪⎩⎪⎨⎧=+--=+=--x y x y x y b k b k b b x k y l PQ或的解析式为综上所述,直线解得则设),(),,(若顶点为原点个单位即可实现抛物线个单位,再向上平移向左平移)将抛物线(的增大而增大随时,的增大而减小,当随时,当开口向上抛物线对称轴为直线解得),(二次函数图象过点又设二次函数的解析式为),(二次函数的图象顶点为)、解:(414)1(33113,1)2()41(104)13(03B 4)1(41A 142222--=<≤<<-∴=--=∴==--∴--=∴-x y x y x x y x x x y a a x a y ),)或(,,坐标为(存在合适的点,解得则的图象上在点又即同底,且与解得得令),(的顶点为抛物线解析式为)、解:(5254P 2,454)1(,544)1(P 5544545S 45S )2()0,3(),0,1(1,304)1(04)1(41M )(152122MAB PAB 21222-∴-===--=∴-≥∴--=±==⨯==∴=∆∆-∴-===--=--=∴-++=∆∆x x x y y x y y y y MAB PAB B A x x x y x y k m x y P P P M P22.1.4二次函数)0(2≠++=a c bx ax y 的图象和性质一、理解新知1、直线a b x 2-= (a b ac a b 4422--,) 顶 a b 2-a b ac 442- 2、y 轴向上 低a b 2-> a b 2-<;向下 高 a b 2-< a b2->二、知识巩固练习:(一)选择:1、B2、C3、D4、D5、B6、B7、D8、B (二)填空:1、下 x=1 (1,1) 12、-903、-64、21>x 5、16、(4,3)7、>8、123y y y <<9、322+--=x x y 10、④ (三)解答:2522125221052542212++-=⎪⎪⎩⎪⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧=++=++=-x x y c b a c b a c b a a b 则抛物线的解析式为解得、解:由已知得8244S 03B 01A 3,1032041D 43211D )2(32323121),3,0()3,2(12ABD 2122=⨯=∴-=-==++-==++-==∴++-=⎩⎨⎧==⎪⎩⎪⎨⎧===∆),(),(即解得得令),(即抛物线的顶点为点则抛物线的解析式为解得则线则抛物线的对称轴为直、)由已知得、解:(x x x x y y x x x y c b c b x C E D D),(即解得即得由得由),(即得令解得得令时,当解得上)在抛物线,(点)、解:(32D 2,0332303||S S 30C ,3,0)3()0,1(1,3,0320323)2(3069203A 13212ABC ABD 21222===++-=>=====-∴-===++-=++-====++-∴++-=∆∆x x x x y y y y y x B x x x x y x x y m m m m x x y C ),(得令对称轴为解得则设),(即得代入令与对称轴的交点为点最小最小,则最小,则使若使的长度固定而又关于对称轴对称、点),(),,(轴交于点与抛物线、解:21Q 211331303:30C 3320BC Q QC QB QC QA C AC AC QC QA C QB QA B A )2(32)3)(1(03B 01A )1(411111112QAC QAC 22-∴=-=∴-=+=∴⎩⎨⎧⎩⎨⎧====+-+==+--==∴++∴++==∴+--=+--=∴-++-=∆∆y x x x y b k b b k b x k y l y x x y x x x x x y x c bx x y BCxx y b a b a a b aaa b x a b a b x x x y bx ax y y x x x y C B 42422221B AOBC 202C 222,12,112B 21A 2112A 15222A A 2+-=∴⎩⎨⎧⎩⎨⎧=-==+-==--=-=∴-==-=∴--=+=--==∴--=解得则),(点角线互相垂直平分可知为菱形时,由菱形的对)当四边形(),(即则的对称轴上在抛物线的顶点抛物线),(即,的顶点为抛物线点)、解:(22.1.4二次函数)0(2≠++=a c bx ax y 的图象和性质一、理解新知1、直线a b x 2-= (a b ac a b 4422--,) 顶 a b 2-a b ac 442- 2、y 轴向上 低a b 2-> a b 2-<;向下 高 a b 2-< a b2->二、知识巩固练习:(一)选择:1、B2、C3、D4、D5、B6、B7、D8、B (二)填空:1、下 x=1 (1,1) 12、-903、-64、21>x 5、16、(4,3)7、>8、123y y y <<9、322+--=x x y 10、④ (三)解答:2522125221052542212++-=⎪⎪⎩⎪⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧=++=++=-x x y c b a c b a c b a a b 则抛物线的解析式为解得、解:由已知得8244S 03B 01A 3,1032041D 43211D )2(32323121),3,0()3,2(12ABD 2122=⨯=∴-=-==++-==++-==∴++-=⎩⎨⎧==⎪⎩⎪⎨⎧===∆),(),(即解得得令),(即抛物线的顶点为点则抛物线的解析式为解得则线则抛物线的对称轴为直、)由已知得、解:(x x x x y y x x x y c b c b x C E D D),(即解得即得由得由),(即得令解得得令时,当解得上)在抛物线,(点)、解:(32D 2,0332303||S S 30C ,3,0)3()0,1(1,3,0320323)2(3069203A 13212ABC ABD 21222===++-=>=====-∴-===++-=++-====++-∴++-=∆∆x x x x y y y y y x B x x x x y x x y m m m m x x y C ),(得令对称轴为解得则设),(即得代入令与对称轴的交点为点最小最小,则最小,则使若使的长度固定而又关于对称轴对称、点),(),,(轴交于点与抛物线、解:21Q 211331303:30C 3320BC Q QC QB QC QA C AC AC QC QA C QB QA B A )2(32)3)(1(03B 01A )1(411111112QAC QAC 22-∴=-=∴-=+=∴⎩⎨⎧⎩⎨⎧====+-+==+--==∴++∴++==∴+--=+--=∴-++-=∆∆y x x x y b k b b k b x k y l y x x y x x x x x y x c bx x y BCxx y b a b a a b aaa b x a b a b x x x y bx ax y y x x x y C B 42422221B AOBC 202C 222,12,112B 21A 2112A 15222A A 2+-=∴⎩⎨⎧⎩⎨⎧=-==+-==--=-=∴-==-=∴--=+=--==∴--=解得则),(点角线互相垂直平分可知为菱形时,由菱形的对)当四边形(),(即则的对称轴上在抛物线的顶点抛物线),(即,的顶点为抛物线点)、解:(。