上海七年级数学下期末试卷

合集下载

上海七年级第二学期数学期末数学考试试卷(答案)

上海七年级第二学期数学期末数学考试试卷(答案)

第二学期初中七年级数学期末质量调研1参考答案与评分意见一、填空题(本大题共有14题,每题2分,满分28分)1.4±;2.34;3.0.79;4.>;5.20;6.235-;7.50 ;8.70 ;9.()5,3-;10.10>c >6;11.54 ;12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ;13.130 ;14.60 或120 ;二、单项选择题(本大题共有4题,每题3分,满分共12分)15.B;16.D;17.B;18.A.三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分)19.解:原式(25255⎡=-⎢⎣……………………………………………………1分2555⎡⎤=-⨯⎢⎥⎣⎦…………………………………………………1分25555=……………………………………………1分52=-…………………………………………………………………2分【说明】没有过程,直接得结论扣2分.20.解法一:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分4562⎛⎫= ⎪⎝⎭……………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分3102不扣分.解法二:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分42322=⨯…………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分;(2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分(2)()5,3-,等腰直角三角形;…………………………………………(1+1)分(3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分)23.解:根据题意:设A ∠、B ∠、C ∠的度数分别为3x 、4x 、5x .……1分因为A ∠、B ∠、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠= (三角形的内角和等于180 ),……………1分即345180x x x ++=.…………………………………………………1分解得15x =.……………………………………………………………2分所以45A ∠= ,60B ∠= ,75C ∠= .………………………………1分24.解:(1)因为AB AC =(已知),所以△ABC 是等腰三角形.由AD BC ⊥(已知),得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分由110BAC ∠= (已知),得11110552∠=⨯= .……………………………………………………2分(2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解:两直线平行,内错角相等…………………………………………………1分EBA FCD ∠=∠…………………………………………………………1分等角的补角相等……………………………………………………………1分AB CD =.………………………………………………………………1分在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△ABE ≌△DCF (S.A.S ),……………………………………1分得A D ∠=∠(全等三角形的对应角相等), (1)分所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△BFD ≌△CDE (A.A.S ),………………………………………1分(2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠= (等边三角形的每个内角等于60 ).因为FDE B ∠=∠(已知),所以60FDE ∠= (等量代换).……………………………………………1分所以△DEF 是等边三角形(有一个内角等于60 的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分.2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1P AB 的面积为a;()22,0P a -,△2P AB 的面积为a ;()32,0P ,△3P AB 的面积为4;()40,0P ,△4P AB 的面积为2.(每个结论各1分)。

上海市(沪教版)七年级数学下学期期末测试卷

上海市(沪教版)七年级数学下学期期末测试卷

上海市七下期末数学测试卷一、单项选择题(本大题共有6题,每题2分,满分12分)1.下列计算中正确的是()=1 D.√125÷√5=5A.√+√=3B.4√5−2√5=2C.√5+√52.关于√2,下列说法中不正确的是()A.√2是无理数:B.√2的平方是2C.2的平方根是√D.面积为2的正为形的边长可表示为√3.如图1,在下列条件中,能判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠ABC=∠ADCD.∠ABC+∠BCD=180°4.如图2 ,已知∠1=∠2,AC=AD,从○1AB=AE,○2BC=ED,○3∠B=∠E,○4∠C=∠D这四个条件中再选一个,能使△ABC≌△AED,这样的条件有()A.1个B.2个C.3个D.4个图1 图2 图35.在平面直角出标系中,如果A(a,b)在第二象,那么点B(-b,-a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图3.已如△ABC中、BD,CE分别是AC,AB上的高,BD与CE交于点O,如果使∠BAC=n°,那么用含n 的代数式表示∠BOC的度数是()A..45°+n°B.90°-n°C.90°+n°D.180°-n°二、填空题(本大题共有12题,每题3分,满分36分)7、-8的立方根=__________8、比较大小:−3√2__________−2√5(填“>“,“小于”或”=”)4=________________9、用幂的形式表示:√7310.近似数0.0730的有效数字有__________个11、如图4,在△ABC中,AD⊥BC,垂足为点D,那么点B到直线AD的距离是线段__________的长度12.如图5,直线l1∥l2,把三角板的直角顶点放在l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=____________度图4 图5 图613、如图6,用两根钢条AB 、CD 、在中点O 处以小转轴连在一起做成工具(卡钳)。

上海市七年级下册数学期末试卷(含答案)

上海市七年级下册数学期末试卷(含答案)

下海市七年级下册数学期末试卷(含答案)一、选择题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .2.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 3.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 34.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +b C .b ﹣a D .﹣a ﹣b6.若(x-2y)2 =(x+2y)2+M,则M= ( ) A .4xyB .- 4xyC .8xyD .-8xy 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .728.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩ 9.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .610.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.多项式2412xy xyz +的公因式是______.12.一个五边形所有内角都相等,它的每一个内角等于_______.13.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.14.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .15.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.16.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 17.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.如图,根据长方形中的数据,计算阴影部分的面积为______ .20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .三、解答题21.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).22.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.24.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定; (4)请对你在第(3)小题中所作的判断说明理由.25.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .26.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.27.如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.28.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x-⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x。

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017七下·如皋期中) 在平面直角坐标系中,点P(2,﹣3)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2017七下·简阳期中) 已知a>b,则下列不等式中不正确的是()A . 4a>4bB . ﹣a+4>﹣b+4C . ﹣4a<﹣4bD . a﹣4>b﹣43. (2分)技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要知道这些麦苗高的()A . 平均数B . 方差C . 中位数D . 众数4. (2分) (2019七下·兰州期中) 如图,下列能判定∥ 的条件有几个()( 1 )(2)(3)(4) .A . 4B . 3C . 2D . 15. (2分)父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.4米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组()A .B .C .D .6. (2分) (2016九上·衢江月考) 某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A . 8折B . 8.5折C . 7折D . 6折二、填空题 (共6题;共10分)7. (1分) (2020九下·江夏期中) 计算:的结果是________.8. (1分) (2016八上·海门期末) 若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.9. (1分) (2019七下·河池期中) 将命题“同角的补角相等”改写成“如果……,那么……”的形式为________.10. (1分)(2018·菏泽) 据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是________度.11. (5分)一张桌子可坐6人,按下列方式将桌子拼在一起.①2张桌子拼在一起可坐________人,4张桌子拼在一起可坐________人,张桌子拼在一起可坐(________)人.②一家餐厅有40张这样的长方形桌子,按照上图方式每5张拼成一张大桌子,则40张桌子可拼成8张大桌子,共可坐________人.③若在②中,改成8张桌子拼成一张大桌子,则共可坐________人.12. (1分)在平面直角坐标系中,点(﹣2,2015)在第________象限.三、解答题 (共11题;共83分)13. (10分) (2019七下·东台月考) 计算(1)(2)14. (5分)先化简,再求值:,其中x是满足不等式﹣(x﹣1)≥ 的非负整数解.15. (10分) (2020七下·九台期中) 解方程组:(1)(2) .16. (6分)如图,EF∥AD,∠1=∠2,∠BAC=87°,将求∠AGD的过程填写完整.解:∵EF∥AD(已知)∴∠2=(________)又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴AB∥________(________)∴∠BAC+________=180°(________)又∵∠BAC=87°(已知)∴∠AGD=________(等式的性质)17. (9分) (2017七下·金乡期中) 在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,2).(1)将△ABC向右平移6个单位长度,再向下平移4个单位长度,得到△A'B′C′.请画出平移后的△A′B′C′,并写出点的坐标A′________、B________、C′________;(2)求出△A′B′C′的面积;(3)若连接AA′、CC′,则这两条线段之间的关系是________.18. (5分)(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:19. (10分)(2019·海州模拟) 如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.(1)若AB=4,BC=6,求EC的长;(2)若∠EAD=50°,求∠BAE和∠D的度数.20. (3分)(2017·龙华模拟) 现在,共享单车已遍布深圳街头,其中较为常见的共享单车有“A.摩拜单车”、“B.小蓝单车”、“C.OFO单车”、“D.小鸣单车”、“E.凡骑绿畅”等五种类型.为了解市民使用这些共享单车的情况,某数学兴趣小组随机统计部分正在使用这些单车的市民,并将所得数据绘制出了如下两幅不完整的统计图表(图1、图2):根据所给信息解答下列问题:(1)此次统计的人数为________人;根据已知信息补全条形统计图;(2)在使用单车的类型扇形统计图中,使用E 型共享单车所在的扇形的圆心角为________度;(3)据报道,深圳每天有约200余万人次使用共享单车,则其中使用E型共享单车的约有________万人次.21. (10分) (2019八下·水城期末) 端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.(1)求该超市粽子与咸鸭蛋的价格各是多少元?(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?22. (5分)(2017·滨海模拟) 若关于x,y的二元一次方程组的解满足x+y>﹣.求出满足条件的所有正整数m的值.23. (10分)(2019·石家庄模拟) 我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系。

最新上海市沪教版七年级第二学期数学期末考试卷

最新上海市沪教版七年级第二学期数学期末考试卷

一、填空题(2×14=28分)1、100的平方根是______.【答案与解析】:100的平方根是10±.【易错点】:一个正数的平方根有两个,它们互为相反数.2、近似数0.730的有效数字有______个.【答案与解析】:近似数0.730的有效数字有3个,分别是7,3,0.【易错点】:有效数字是指从第一个不是零的数字开始到结尾数字3、平面内经过一点且垂直于已知直线的直线共有___条.【答案与解析】:平面内经过一点且垂直于已知直线的直线有且只有1条.4、如图,直线a//b,点A 、B 位于直线a 上,点C 、D 位于直线b 上,且AB:CD=1:2,若∆ABC 的面积为5,则梯形ABCD 的面积为______.【答案与解析】:由a//b ,得∆ABC 与∆DBC 的高相等,又AB:CD=1:2,所以:1:2ABC BCD S S ∆∆=故梯形ABCD 的面积为5×(1+2)=15.【易错点】:平行线间的高处处相等,等高的两个三角形面积之比等于底边长之比.5、如图,C 是直线AD 上的点,若AD//BE,AB=BC,∠ABC=30°,则∠CBE=____度.【答案与解析】://,AD BE ACB CBE ∴∠=∠1,(18030)75,752AB BC A ACB CBE =∴∠=∠=︒-︒=︒∴∠=︒ 【易错点】:本题考查了平行线的性质及等腰三角形的性质,属于基础题.6、一个三角形有两边长分别为1与2,若它的第三边的长为整数,则它的第三边长为___.【答案与解析】:设第三边长为x,则2121,13x x -<<+<<,又第三边的长为整数,则它的第三边长为2.【易错点】:本题考查了三角形两边之和大于第三边,两边之差小于第三边.7、对于同一平面内的三条不同直线a 、b 、c,若a//b,b//c,则直线a 、c 的位置关系是___.【答案与解析】:同一平面内的三条不同直线a 、b 、c,若a//b,b//c,则直线a//c.【易错点】:本题考查了平行的传递性.8、如图,在∆ABC 中,AB=AC,BD ⊥AC,CE ⊥AB,D 、E 为垂足,BD 与CE 交于点O,则图中全等三角形共有_______对.【答案与解析】:有3对.理由是:,,AB AC ABC ACB =∴∠=∠DC A B EBD⊥AC,CE⊥AB,90∴∠=∠=︒,BDC BEC=∴∆≅∆,BE=CD,BC BC BEC CDB∠=∠∠=∠=∴∆≅∆,ADB AEC A A AB AC ADB AEC,,,EOB DOC BEC BDC BE CD BEO CDO∠=∠∠=∠=∴∆≅∆,,,故答案为:3.9、如图,在等边ABC中,D、E是边AB、BC上的两点,且AD=CE,AE与CD 交于点0,若∠DOE=140°则∠OAC=_____度.【答案与解析】:60为等边三角形,∆∴∠=∠=︒ABC BAC BCA==∴∆≅∆∴∠=∠,,,AD CE AC AC ADC CEA ACD EACOAC∴∠=︒AOC DOE∠=∠=︒,2014010、平面直角坐标系中点P(3,-2)关于x轴对称的点的坐标是____.【答案与解析】:平面直角坐标系中点P(3,-2)关于x轴对称的点的坐标是(3,2).11、已知平面直角坐标系中点A(4,0),B(0,3),C(4,4),则ABC的面积为______.【答案与解析】:根据题意,将点A(4,0),B(0,3),C(4,4)置于平面直角坐标系中,如图所示:(4,0),(4,4)//,A C AC OD ∴的横坐标相同,AC=4又CD ⊥OB ,,CD AC ∴⊥CD=4,11448.22ABC S AC CD ∆∴=⋅=⨯⨯= 【易错点】本题难点在于作图,得到AC//OD 是解题的关键.12、已知平面直角坐标系中点P(3,-2),将它沿y 轴方向向上平移3个单位所得点的坐标为__.【答案与解析】:(3,1).13、等腰三角形是轴对称图形,它的对称轴是________________.【答案与解析】:顶角的角平分线所在的直线,或底边上的中线所在的直线,底边上的高所在的直线.【易错点】:顶角的角平分线,底边上的中线或高都是线段,对称轴是直线.14、已知∠AOB=30°点P 在∠AOB 的内部,点P 1与点P 关于0B 对称,点P 2与点P 关于0A 对称,若OP=5,则P 1P 2=_____.【答案与解析】:如图,联结OP121212121212,,,,,2()260,P P OB P P OA OP OP OP OP BOP BOP AOP AOP OP OP POP BOP BOP AOP AOP BOP AOP AOB ∴==∠=∠∠=∠∴=∠=∠+∠+∠+∠=∠+∠=∠=︒与关于对称,与关于对称,1212=5POP PP OP ∴∆∴=是等边三角形,【易错点】:本题考查了对称的性质,等边三角形的性质.二、选择题(3×4=12分)15、等边三角形是轴对称图形,它的对称轴共有( )A、1条B、2条C、3条D、无数条【答案与解析】:等边三角形是轴对称图形,它的对称轴共有3条,为三边中线所在的直线.故答案选:C.16、若一个三角形的三条高所在直线的交点在此三角形外,则此三角形是( )(A)锐角三角形;(B)钝角三角形;(C)直角三角形;(D)都有可能. 【答案与解析】:B【易错点】:若一个三角形的三条高所在直线的交点在此三角形外,则此三角形是钝角三角形,若一个三角形的三条高所在直线的交点在此三角形外,则此三角形是钝角三角形,若一个三角形的三条高所在直线的交点在此三角形的顶点处,则此三角形是直角三角形,17、性质“等腰三角形的三线合一”,其中所指的“线”之一是——()(A)等腰三角形底角的平分线;(B)等腰三角形腰上的高;(C)等腰三角形腰上的中线;(D)等腰三角形顶角的平分线.【答案与解析】:D.“等腰三角形的三线合一”,其中所指的“线”之一是等腰三角形顶角的平分线.18、若点P(a,b)到x 轴的距离为2,则( )A 、a=2B 、a=±2C 、b=2D 、b=±2.【答案与解析】:D.若点P(a,b)到x 轴的距离为2,则2b =,b=±2. 三.简答题(4×6=24分) 19、计算:(5085)25-÷【答案与解析】:原式=4555215852150-=⨯-⨯. 20、计算:13324116()(0.5)16---- 【答案与解析】:原式=87118814)21()21(23434214=+-=----⨯⨯ 21、计算:133324(525)-⨯ 【答案与解析】:原式=1)55(312323=⨯-22、在直角坐标平面内,已知点(1,3),(3,1)A B ---,将点B 向右平移5个单位得到点C(1)描出点,,A B C 的位置,并求ABC ∆的面积.(2)若在x 轴下方有一点D ,使5BCD S ∆=,写出一个满足条件的点D 的坐标.并指出满足条件的点D 有什么特征.【答案】(1)10;(2)(0,3)D -,这些点在x 轴下方,与x 轴平行且与x 轴距离为3的一条直线上【解析】解:(1)∵点(3,1)B --向右平移5个单位得到点C ,∴点C 的坐标为()2,1-,,,A B C 的位置如图所示∵(3,1)B --,C ()2,1-,∴|32|5BC =--=,∵(1,3)A -, ∴154102ABC S ∆=⨯⨯=(2)设三角形BCD 的高为h ,∵5BC =,5BCD S ∆=∴1552ABC S h ∆=⨯= ∴h=2∵点D 在x 轴下方,∴(0,3)D -;∵同底等高的三角形的面积相等;∴这些点D 在x 轴下方,与x 轴平行且与x 轴距离为3的一条直线上【易错点】(1)根据已知点的坐标得出A ,B 的位置,再利用点B 向右平移5个单位得到点C ,即可得出C 点坐标;再根据B 、C 两点的坐标得出BC 的长,从而求出ABC ∆的面积(2)根据5BCD S ∆=和BC 的长得出高的长,从而求出D 点坐标,再根据同底等高的三角形的面积相等得出点D 的特征,本题主要考查了坐标与图形变化-平移,关于x 轴对称的点的坐标,平面直角坐标系,以及三角形的面积,关键是掌握点的坐标的变化规律.四、解答题(23题12分,24题12分,25题12分)23、如图,∠BAC=∠ABD=90°,AC=BD,点0是AD 与BC 的交点,点E 是AB 的中点。

上海市黄浦区2020-2021学年七年级下学期期末数学试题(解析版)

上海市黄浦区2020-2021学年七年级下学期期末数学试题(解析版)
= ,
=
=20.
【点睛】本题考查了二次根式的乘除,解题关键是熟练运用二次根式乘除法则,进行准确计算.
二、填空题(本大题共14题,每题2分,满分28分)
7. 的平方根是.
【答案】±2
【解析】
详解】解:∵
∴ 的平方根是±2.
故答案为±2.
8.比较大小:﹣5___﹣2 (填“>”,“=”或“<”).
【答案】<
【解析】
【分析】比较两个数的平方大小,再比较平方根大小即可.
【详解】解:∵25>24,
∴ ,即 ,
∴ +x=180°-2x,
解得:x=36°,∴∠BAC=180°-2x=180°-2×36°=108°,
故答案为:90°或108°.
【点睛】本题主要考查了等腰三角形的性质,根据题意画出图形分类讨论,利用三角形的内角和定理是解答此题的关键.
20.如图,在△ABC中,∠A=42°,点D是边A上的一点,将△BCD沿直线CD翻折斜到△B′CD,B′C交AB于点E,如果B′D∥AC,那么∠BDC=___度.
C. D. =a+b
【答案】D
【解析】
【分析】根据二次根式的性质和运算法则逐项判断即可.
【详解】解:A. ,被开方数不同,不能合并,选项错误,不符合题意;
B. ,选项错误,不符合题意;
C. ,选项错误,不符合题意;
D. =a+b,选项正确,符合题意;故选:D.
【点睛】本题考查了二次根式的性质和二次根式的运算,解题关键是熟记二次根式的性质,会运用法则进行计算.
【15
【答案】70°
【解析】
【分析】本题考查的是平行线的判定与性质,根据∠C+∠D=180°可知AD∥BC,从而可知∠A+∠B=180°,再根据∠A-∠B=40°,解答即可

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】精锐教育学科教师辅导讲义ABCD的对称中心为坐标原点,建立平面直角坐标系,AD=,求其他各点坐标.6、下列关于平面直角坐标系的说法中,正确的是(A.平面直角坐标系是由两条相互垂直的直线构成;B.平面直角坐标系是由两条数轴任意相交构成的;C.平面直角坐标系中的点的坐标是唯一确定的;D.平面上的一点的坐标在不同的平面直角坐标系内是相同的.x轴上方,距xC.(105)-, D.(105)-,30、下列说法中,错误的是( )A.如果一个点的横,纵坐标都为零,则这个点是原点; B.如果一个点在x 轴上,那它一定不属于任何象限; C.纵轴上的点的横坐标均相等,且都等于零; D.纵坐标相同的点,分布在平行于y 轴的某条直线上.专题:期末考试专题测试一、填空题(本大题共有14题,每题2分,满分28分)1.827-的立方根等于 .2.求值:4625= . 3.7的整数部分是 .4.截至今年3月31日,上海市共有5117000多户居民符合“世博大礼包” 的发放要求,5117000可用科学记数法表示为 (保留两位有效数字).5.如果已知数轴上的两点A 、B 所对应的数分别是10、310,那么A 与B 两点之间的距离是 .6.在△ABC 中,如果30B ∠=︒,45C ∠=︒,那么按角分类,△ABC 是 三角形. 7.点()2,53P -在第 象限.8.经过点(2,1)P 且垂直于x 轴的直线可以表示为直线 .9.如图1,将一直角三角板与两边平行的纸条如图所示放置,请任意选择两角写出一个有关的正确的结论: .10.如图2,两条直线AB 、CD 相交于点O ,OE 平分BOC ∠,如果:AOC COE ∠∠4:3=,那么BOD ∠ = 度.11.将一副三角板如图3所示放置(其中含30角的三角板的一条较短直角边与另一块三角板的斜边放置在一直线上),那么图中1∠= 度.图1 图2 图3 图4 12.如图4,已知△ABC ,ACB ∠的平分线CD 交AB 于点D ,//DE BC ,且DE =5cm ,如果点E 是边AC 的中点,那么AC 的长为 cm . 13.如果等腰三角形的一边长为2cm ,另一边长为23cm ,那么这个三角形的周长为 cm . 14.如图5,在△ABC 中,高AD 与高BE 相交于点H ,且BH =AC ,那么ABC ∠= 度.二、单项选择题(本大题共有4题,每题3分,满分12分)15.下列说法中错误的个数有( ) (1)3415用幂的形式表示的结果是435-; (2)3π是无理数;(3)实数与数轴上的点一一对应; (4)两个无理数的和、差、积、商一定是无理数;(A )1个; (B ) 2个; (C ) 3个; (D )4个. 16. 如果三角形的两边长分别为4厘米、6厘米,那么第三边的长不可能是( )(A )2厘米; (B ) 3厘米; (C )4厘米; (D )9厘OE DC B A 1EC B AD EH CBA D 图5360;角的两个直角三角形全等.直角坐标平面内,有标记为甲、乙、丙、丁的四个三角形,如图)丙和乙关于原点对称;)甲通过翻折可以与丙重合;∠;60,30CD;的长度表示点B6分,第题8分,第180,,在四边形CDEF共有多少对面积相等的三角形?请分别写出.(不需说明理由)180(已知),((已知),试说明BD =CE 的理由. 解:25.如图10,等边△ABC 中,点D 在边AC 上,CE ∥AB , 且CE =AD ,(1)△DBE 是什么特殊三角形,请说明理由.(2)如果点D 在边AC 的中点处,那么线段BC 与DE 有怎样的位置关系,请说明理由.解: (1)△DBE 是 三角形.说理如下:记1ABD ∠=∠,2CBE ∠=∠, 3DBC ∠=∠ 因为△ABC 是等边三角形(已知), 所以AB =BC (等边三角形的三边都相等), 60A ABC ∠=∠=( ).因为AB ∥CE (已知),所以ABC BCE ∠=∠(两直线平行,内错角相等). 所以A BCE ∠=∠(等量代换). (完成以下说理过程) 五、(本大题满分12分)26.如图11,在平面直角坐标系中,点A 的坐标为(2a ,-a ) ()0a >(1) 先画出点A 关于x 轴的对称的点B ,再写出点B 的坐标(用字母a 表示);(2) 将点A 向左平移2a 个单位到达点C 的位置,写出点C 的坐标(用字母a 表示); (3) y 轴上有一点D ,且3CD a =,求出点D 的坐标(用字母a 表示);(4) 如果y 轴上有一点D ,且3CD a =,且四边形ABCD 的面积为10,求a 的值并写出这个四边形的顶点D 的坐标. 解 :提高:期末考试提高练习一、选择题(本大题共6题,每题2分,满分12分) 1.下列说法中正确的是(A )无限小数都是无理数; (B )无理数都是无限小数; (C )实数可以分为正实数和负实数; (D )两个无理数的和一定是无理数.2.下列运算一定正确的是 (A )235+=; (B )2232312-=⨯=; (C )2a a =;(D )3223-=-.3.已知面积为10的正方形的边长为x ,那么x 的取值范围是 (A )13x <<; (B )23x <<; (C )34x <<; (D )45x <<.4.如图,下列说法中错误的是(A )∠GBD 和∠HCE 是同位角; (B )∠ABD 和∠ACH 是同位角; (C )∠FBC 和∠ACE 是内错角;(D )∠GBC 和∠BCE 是同旁内角. 321EC B AD图10图11(第27题图)。

2019-2020学年上海市松江区七年级(下)期末数学试卷(解析版)

2019-2020学年上海市松江区七年级(下)期末数学试卷(解析版)

2019-2020学年上海市松江区七年级(下)期末数学试卷一.填空题(共14小题)1.16的平方根是.2.=.3.比较大小:2(填“>”或“<”或“=”)4.请写出一个大于1且小于2的无理数.5.截止2020年6月5日,全世界感染新冠肺炎的人数约为6650000人,数字6650000用科学记数法表示,并保留2个有效数字,应记为.6.一个实数在数轴上对应的点在负半轴上,且到原点距离等于,则这个数为.7.在平面直角坐标系中,将点A(﹣3,﹣1)向右平移3个单位后得到的点的坐标是8.在平面直角坐标系中,点P(m+3,m+1)在y轴上,则m=.9.已知:如图,直线a∥b,直线c与a,b相交,若∠2=115°,则∠1=度.10.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=°.11.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于厘米.12.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB:CD=1:2,如果△ABC的面积为10,那么△BCD的面积为.13.如图,在△ABC中,两个内角∠BAC与∠BCA的角平分线交于点D,若∠B=70°,则∠D=度.14.如图,在△ABC中,∠A=100度,如果过点B画一条直线l能把△ABC分割成两个等腰三角形,那么∠C度.二.选择题(共4小题)15.下列等式中,正确的有()A.B.C.D.16.如图,在下列条件中,能说明AC∥DE的是()A.∠A=∠CFD B.∠BED=∠EDFC.∠BED=∠A D.∠A+∠AFD=180°17.利用尺规作∠AOB的角平分线OC的作图痕迹如图所示,说明∠AOC=∠BOC用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS18.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组三.解答题19.计算:3÷﹣27+()﹣1﹣(+2)0.20.利用幂的性质进行计算:4×8÷2.21.在△ABC中,已知∠A:∠B:∠C=2:3:5,求∠A、∠B、∠C的度数.22.如图,已知AD∥BC,点E是AD的中点,EB=EC.试说明AB与CD相等的理由.23.如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知)所以∠DEF=∠CFE()因为(已知)所以∠DEF=∠CFE(角平分线的意义)所以∠=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=()所以EF∥BC()24.在平面直角坐标系中,已知点A的坐标为(3,2).设点A关于y轴的对称点为B,点A关于原点O的对称点为C,点A绕点O顺时针旋转90°得点D.(1)点B的坐标是;点C的坐标是;点D的坐标是;(2)顺次联结点A、B、C、D,那么四边形ABCD的面积是.25.如图,已知在△ABC中,点D为AC边上一点,DE∥AB交边BC于点E,点F在DE的延长线上,且∠FBE=∠ABD,若∠DEC=∠BDA.(1)试说明∠BDA=∠ABC的理由;(2)试说明BF∥AC的理由.26.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在边BC上(不与点B、C重合),BE⊥AD,重足为E,过点C作CF⊥CE,交线段AD于点F.(1)试说明△CAF≌△CBE的理由;(2)数学老师在课堂上提出一个问题,如果EF=2AF,试说明CD=BD的理由.班级同学随后进行了热烈讨论,小明同学提出了自己的想法,可以取EF的中点H,联结CH,就能得出结论,你能否能根据小明同学的想法,写出CD=BD的理由.27.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.2019-2020学年上海市松江区七年级(下)期末数学试卷参考答案与试题解析一.填空题(共14小题)1.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.2.=﹣2.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.3.比较大小:>2(填“>”或“<”或“=”)【分析】根据2=<即可得出答案.【解答】解:∵2=<,∴>2,故答案为:>.4.请写出一个大于1且小于2的无理数.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【解答】解:大于1且小于2的无理数是,答案不唯一.故答案为:.5.截止2020年6月5日,全世界感染新冠肺炎的人数约为6650000人,数字6650000用科学记数法表示,并保留2个有效数字,应记为 6.7×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将6650000用科学记数法表示为:6.7×106.故答案为:6.7×106.6.一个实数在数轴上对应的点在负半轴上,且到原点距离等于,则这个数为﹣.【分析】直接利用数轴的特点得出到原点距离等于的数字.【解答】解:∵一个实数在数轴上对应的点在负半轴上,且到原点距离等于,∴这个数为:﹣.故答案为:﹣.7.在平面直角坐标系中,将点A(﹣3,﹣1)向右平移3个单位后得到的点的坐标是(0,﹣1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:将点A(﹣3,﹣1)向右平移3个单位长度,得到对应点B,则点B的坐标是(﹣3+3,﹣1),即(0,﹣1),故答案为(0,﹣1).8.在平面直角坐标系中,点P(m+3,m+1)在y轴上,则m=﹣3.【分析】直接利用y轴上点的坐标特点进而得出答案.【解答】解:∵点P(m+3,m+1)在y轴上,∴m+3=0,解得:m=﹣3.故答案为:﹣3.9.已知:如图,直线a∥b,直线c与a,b相交,若∠2=115°,则∠1=65度.【分析】利用平行线的性质及邻补角互补即可求出.【解答】解:∵a∥b,∴∠1=∠3,∵∠2=115°,∴∠3=180°﹣115°=65°(邻补角定义),∴∠1=∠3=65°.故填65.10.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=35°.【分析】根据平行线的性质先求得∠ABC的度数,再根据角平分线的性质及平行线的性质求得∠D的度数.【解答】解:∵AD∥BC,∠A=110°,∴∠ABC=180﹣∠A=70°;又∵BD平分∠ABC,∴∠DBC=35°;∵AD∥BC,∴∠D=∠DBC=35°.故答案为:35.11.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于17厘米.【分析】分两种情况讨论:当3厘米是腰时或当7厘米是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.【解答】解:当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故答案为:17.12.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB:CD=1:2,如果△ABC的面积为10,那么△BCD的面积为20.【分析】根据两平行线间的距离处处相等,结合三角形的面积公式,知△BCD和△ABC 的面积比等于CD:AB,从而进行计算.【解答】解:∵a∥b,∴△ABC的面积:△BCD的面积=AB:CD=1:2,∴△BCD的面积=10×2=20.故答案为:20.13.如图,在△ABC中,两个内角∠BAC与∠BCA的角平分线交于点D,若∠B=70°,则∠D=125度.【分析】根据三角形内角和以及∠B的度数,先求出(∠BAC+∠BCA),然后根据角平分线的性质求出(∠DAC+∠ACD),从而再次利用三角形内角和求出∠ADC.【解答】解:∵AD、CD是∠BAC与∠BCA的平分线,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠BAC+∠BCA)=180°﹣(180°﹣∠B)=90°+∠B=125°,故答案为:125.14.如图,在△ABC中,∠A=100度,如果过点B画一条直线l能把△ABC分割成两个等腰三角形,那么∠C=20度.【分析】设过点B的直线与AC交于点D,则△ABD与△BCD都是等腰三角形,根据等腰三角形的性质,得出∠ADB=∠ABD=40°,∠C=∠DBC,根据三角形外角的性质即可求得∠C=20°.【解答】解:如图,设过点B的直线与AC交于点D,则△ABD与△BCD都是等腰三角形,∵∠A=100度,∴∠ADB=∠ABD=40°,∵CD=BD,∴∠C=∠DBC,∵∠ADB=∠C+∠DBC=2∠C,∴2∠C=40°,∴∠C=20°,故答案为=20.二.选择题(共4小题)15.下列等式中,正确的有()A.B.C.D.【分析】根据二次根式的运算法则依次计算即可求解.【解答】解:A、无意义,故错误;B、,故正确;C、﹣=﹣5,故错误;D、,故错误;故选:B.16.如图,在下列条件中,能说明AC∥DE的是()A.∠A=∠CFD B.∠BED=∠EDFC.∠BED=∠A D.∠A+∠AFD=180°【分析】直接利用平行线的判定方法分析得出答案.【解答】解:A、当∠A=∠CFD时,则AB∥DF,不合题意;B、当∠BED=∠EDF时,则AB∥DF,不合题意;C、当∠BED=∠A时,则AC∥DE,符合题意;D、当∠A+∠AFD=180°时,则AB∥DF,不合题意;故选:C.17.利用尺规作∠AOB的角平分线OC的作图痕迹如图所示,说明∠AOC=∠BOC用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】由全等三角形的判定定理即可得出结论.【解答】解:如图,连接CD,CE,由作法可知OE=OD,CE=CD,OC=OC,故可得出△OCE≌△OCD(SSS),所以∠AOC=∠BOC,所以OC就是∠AOB的平分线.故选:A.18.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组【分析】根据等腰三角形的判定定理逐个判断即可.【解答】解:①、∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②、∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④、∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.三.解答题19.计算:3÷﹣27+()﹣1﹣(+2)0.【分析】直接利用零指数幂的性质和二次根式的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣3+﹣1=1﹣.20.利用幂的性质进行计算:4×8÷2.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则计算得出答案.【解答】解:4×8÷2=2×2÷2=2=22=4.21.在△ABC中,已知∠A:∠B:∠C=2:3:5,求∠A、∠B、∠C的度数.【分析】设∠A=2x,则∠B=3x,∠C=5x,再根据三角形的内角和是180°列出关于x 的方程,求出x的值,即可得出各角的度数.【解答】解:∵在△ABC中∠A:∠B:∠C=2:3:5,∴设∠A=2x,则∠B=3x,∠C=5x,∵∠A+∠B+∠C=180°,即2x+3x+5x=180°,解得x=18°,∴∠A=2×18°=36°,∠B=3×18°=54°,∠C=5×18°=90°.答:∠A、∠B、∠C的度数分别为:36°,54°,90°.22.如图,已知AD∥BC,点E是AD的中点,EB=EC.试说明AB与CD相等的理由.【分析】由于AD∥BC,利用平行线的性质可得∠AEB=∠1,∠DEC=∠2,而EB=EC,根据等边对等角可得∠EBC=∠ECB,等量代换可证∠AEB=∠DEC,再结合AE=DE,EB=EC,利用AAS可证△AEB≌△EDC,从而有AB=CD.【解答】解:∵AD∥BC,∴∠AEB=∠1,∠DEC=∠2,∵EB=EC,∴∠EBC=∠ECB,∴∠AEB=∠DEC,在△AEB与△EDC中,,∴△AEB≌△EDC,∴AB=CD.23.如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知)所以∠DEF=∠CFE(两直线平行,内错角相等)因为EF平分∠CED(已知)所以∠DEF=∠CFE(角平分线的意义)所以∠CFE=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=∠CEF(等量代换)所以EF∥BC(同位角相等,两直线平行)【分析】先根据两直线平行,内错角相等,得到∠DEF=∠CFE,再根据角平分线得出∠DEF=∠CEF,进而得到∠CFE=∠CEF,再根据∠A=∠CFE,即可得出∠A=∠CEF,进而根据同位角相等,两直线平行,判定EF∥BC.【解答】解:因为DE∥BC(已知)所以∠DEF=∠CFE(两直线平行,内错角相等)因为EF平分∠CED(已知)所以∠DEF=∠CEF(角平分线的意义)所以∠CFE=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=∠CEF(等量代换)所以EF∥BC(同位角相等,两直线平行)故答案为:两直线平行,内错角相等,EF平分∠CED,CFE,∠CEF,等量代换,同位角相等,两直线平行.24.在平面直角坐标系中,已知点A的坐标为(3,2).设点A关于y轴的对称点为B,点A关于原点O的对称点为C,点A绕点O顺时针旋转90°得点D.(1)点B的坐标是(﹣3,2);点C的坐标是(﹣3,﹣2);点D的坐标是(2,﹣3);(2)顺次联结点A、B、C、D,那么四边形ABCD的面积是25.【分析】(1)根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,以及利用旋转的性质即可解答本题.(2)利用矩形面积减去两个三角形求出即可.【解答】解:(1)∵点A的坐标为(3,2),点A关于y轴对称点为B,∴B点坐标为:(﹣3,2),∵点A关于原点的对称点为C,∴C点坐标为:(﹣3,﹣2),∵点A绕点O顺时针旋转90°得点D,∴D点坐标为:(2,﹣3),故答案为:(﹣3,2),(﹣3,﹣2),(2,﹣3);(2)顺次连接点A、B、C、D,那么四边形ABCD的面积是:5×6﹣×1×5﹣×1×5=25.故答案为:25.25.如图,已知在△ABC中,点D为AC边上一点,DE∥AB交边BC于点E,点F在DE的延长线上,且∠FBE=∠ABD,若∠DEC=∠BDA.(1)试说明∠BDA=∠ABC的理由;(2)试说明BF∥AC的理由.【分析】(1)根据平行线的性质得出∠DEC=∠ABC,根据∠DEC=∠BDA求出∠BDA =∠ABC即可;(2)求出∠BAC=∠FBD,根据∠BDA=∠BAC得出∠BDA=∠FBD,根据平行线的判定得出即可.【解答】解:(1)理由是:∵DE∥AB,∴∠DEC=∠ABC,∵∠DEC=∠BDA,∴∠BDA=∠ABC;(2)∵∠ABD=∠FBE,∴∠ABD+∠DBE=∠FBE+∠DBE,即∠BAC=∠FBD,∵∠BDA=∠BAC,∴∠BDA=∠FBD,∴BF∥AC.26.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在边BC上(不与点B、C重合),BE⊥AD,重足为E,过点C作CF⊥CE,交线段AD于点F.(1)试说明△CAF≌△CBE的理由;(2)数学老师在课堂上提出一个问题,如果EF=2AF,试说明CD=BD的理由.班级同学随后进行了热烈讨论,小明同学提出了自己的想法,可以取EF的中点H,联结CH,就能得出结论,你能否能根据小明同学的想法,写出CD=BD的理由.【分析】(1)由三角形内角和定理和余角的性质可得∠CAF=∠CBE,∠ACF=∠BCE,由“ASA”可证△CAF≌△CBE;(2)取EF的中点H,联结CH,由全等三角形的性质可得CF=CE,AF=BE,可证△CEF是等腰直角三角形,由等腰直角三角形的性质可得CH=FH=EH=EF,CH⊥EF,由“AAS”可证△CHD≌△BED,可得CD=BD.【解答】解:(1)∵BE⊥AD,∴∠ACB=∠BED=90°,又∵∠ADC=∠BDE,∴∠CAF=∠CBE,∵CE⊥CF,∴∠ECF=∠ACB=90°,∴∠ACF=∠BCE,又∵AC=BC,∴△CAF≌△CBE(ASA);(2)如图,取EF的中点H,联结CH,∵△CAF≌△CBE,∴CF=CE,AF=BE,∴△CEF是等腰直角三角形,∵点H是EF中点,∴CH=FH=EH=EF,CH⊥EF,∵EF=2AF,∴CH=AF=FH=EH,∴CH=BE,又∵∠CDH=∠BDE,∠CHD=∠BED=90°,∴△CHD≌△BED(AAS),∴CD=BD.27.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【分析】(1)根据等边三角形的性质得到∠BCE=30°,BE=AE,等腰三角形的判定和性质;(2)如图1,如图2,过A作AM⊥BC于M,过E作EN⊥BC于N,根据等边三角形的性质和平行线分线段成比例定理即可得到结论.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,过A作AM⊥BC于M,过E作EN⊥BC于N,∵AB=AC,DE=CE,∴BM=BC=3,CD=2CN,∵AM⊥BC,EN⊥BC,∴AM∥EN,∴=,∴=,∴BN=,∴CN=BC﹣BN=,∴CD=1,综上所述,CD的长为1或3.。

2022-2023年上海七年级下期数学上海七年级下期末真题精选(常考60题25个考点专练)(解析版)

2022-2023年上海七年级下期数学上海七年级下期末真题精选(常考60题25个考点专练)(解析版)

上海七年级下期末真题精选(常考60题25个考点专练)一.近似数和有效数字(共1小题)1.(2021秋•普陀区期末)神舟十三号飞船在太空中绕地球飞行,飞行时离地面高度约400千米,每秒钟约飞行7.9千米,求飞船绕地球飞行一周大约需要多少小时.(地球半径约为6400千米,π取3.14,结果保留两位小数)【分析】用飞船在太空中绕地球飞行一周的周长除以速度得到飞行的时间.【解答】解:2×π×(6400+400)÷7.9×≈1.50(小时),所以飞船绕地球飞行一周大约需要1.50小时.【点评】本题考查了近似数:“精确到第几位”是精确度的两种的表示形式.二.平方根(共2小题)2.(2022春•上海期末)一个正数x的平方根是2a﹣3与5﹣a,则a=﹣2.【分析】根据正数的两个平方根互为相反数列式计算即可得解.【解答】解:∵正数x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2.故答案为:﹣2.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2022春•普陀区校级期末)的平方根为±3.【分析】根据平方根的定义即可得出答案.【解答】解:∵=9∴的平方根为±3.故答案为:±3.【点评】此题考查了平方根,算术平方根等知识,属于基础题,掌握定义是关键.三.算术平方根(共3小题)4.(2022春•闵行区校级期末)的算术平方根是()A.B.C.D.【分析】直接根据算术平方根的定义即可求出结果.【解答】解:∵()2=∴=.故选:A.【点评】此题主要考查了算术平方根的定义,解题的关键是算术平方根必须是正数,注意平方根和算术平方根的区别.5.(2021秋•嘉定区期末)=4.【分析】根据二次根式的性质,可得答案.【解答】解:原式==4,故答案为:4.【点评】本题好查了算术平方根,=|a|=a(a≥0)是解题关键.6.(2021秋•宝山区期末)化简:=.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,而的平方根为±,所以算术平方根为.【解答】解:==.故答案为:.【点评】他主要考查了算术平方根的定义,注意算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.四.非负数的性质:算术平方根(共1小题)7.(2022春•上海期末)若与|b+2|互为相反数,则(a﹣b)2=9.【分析】根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵与|b+2|互为相反数,∴+|b+2|=0,∴2a﹣2=0,b+2=0,解得a=1,b=﹣2,∴(a﹣b)2=[1﹣(﹣2)]2=9.故答案为:9.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.五.实数的性质(共1小题)8.(2022春•嘉定区校级期末)化简:||=.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.六.实数大小比较(共3小题)9.(2022春•上海期末)4、、15三个数的大小关系是()A.4<15<B.<15<4C.4<<15D.<4<15【分析】把第一个数根号外的数移到根号内,第3个数用根式表示出来,然后比较被开方数,被开方数大的数,它本身就大.【解答】解:∵4=,15=,224<225<226,∴4<15<.故选:A.【点评】考查实数的比较的知识;比较被开方数.是常用的比较实数大小的方法.10.(2022春•普陀区校级期末)比较大小:4<7.(填“>”、“=”、“<”)【分析】根据平方的幂越大底数越大,可得答案.【解答】解:(4)2=48,72=49,∴,故答案为:<.【点评】本题考查了实数比较大小,先算平方,再比较底数的大小.11.(2022春•嘉定区校级期末)比较大小:﹣3>(用“>”“=”“<”号填空).【分析】要比较的两个数为负数,则先比较它们绝对值的大小,在比较3和的大小时,先比较它们平方值的大小.【解答】解:∵32=9<=10,∴3,则﹣3.故填空答案:>.【点评】此题主要考查了实数的大小的比较,如果比较的两个数为负数,则应先比较两数的绝对值,如果比较的两数带有根号,则先比较两数的平方值.本题先取两数的绝对值,在比较两数绝对值大小时比较它们的平方值大小,最终得到这两个数的大小关系.七.实数的运算(共2小题)12.(2022春•上海期末)若xy=﹣,x﹣y=5﹣1,则(x+1)(y﹣1)=.【分析】先把所求的代数式化为和已知相关的形式,再把已知条件代入计算即可.【解答】解:原式=xy﹣x+y﹣1=xy﹣(x﹣y)﹣1,∵xy=﹣,x﹣y=5﹣1,∴原式=﹣﹣5+1﹣1=﹣6.故答案为:﹣6.【点评】此题主要考查了实数的运算,解答此题的关键是把已知xy=﹣,x﹣y=5﹣1当做一个整体,代入代数式求值.13.(2022春•上海期末)(2002•(2003=.【分析】首先把(2002•(2003变为(﹣)2002•(+)2002•(+),然后利用平方差公式计算即可求解.【解答】解:原式=(﹣)2002•(+)2002•(+)=(2﹣3)2002•(+)=1×(+)=+.故答案为:+.【点评】此题主要考查了实数的运算,解答此题关键是要理解﹣1的偶次幂是1,﹣1的奇次幂是﹣1.八.点的坐标(共1小题)14.(2022春•上海期末)点N(a+5,a﹣2)在y轴上,则点N的坐标为(0,﹣7).【分析】点N(a+5,a﹣2)在y轴上,则横坐标是0,求出a的值后即可得到N的坐标.【解答】解:∵点N(a+5,a﹣2)在y轴上,∴a+5=0,解得:a=﹣5,∴a﹣2=﹣7,∴N点的坐标为(0,﹣7).故答案为:(0,﹣7).【点评】本题主要考查了点在y轴上时横坐标的特点.解决本题的关键是掌握好坐标轴上的点的坐标的特征:点在y轴上,点的横坐标为0.九.平行线(共1小题)15.(2022春•上海期末)在同一平面内,两条直线有两种位置关系,它们是相交和平行.【分析】在同一平面内,两条直线有两种位置关系,它们是相交和平行,其中垂直是相交的一种特殊情况.【解答】解:在同一平面内,两条不重合直线有两种位置关系,它们是相交和平行,故答案为:两,相交和平行.【点评】本题考查了在同一平面内两条直线之间的位置关系,较简单,要注意垂直只是属于相交的一种特殊情况.一十.平行线的判定(共1小题)16.(2022春•上海期末)如图所示,由已知条件推出结论正确的是()A.由∠1=∠5,可以推出AB∥CDB.由∠3=∠7,可以推出AD∥BCC.由∠2=∠6,可以推出AD∥BCD.由∠4=∠8,可以推出AD∥BC【分析】根据平行线的判定方法对各选项分析判断即可利用排除法求解.【解答】解:A、由∠1=∠5,可以推出AD∥BC,故本选项错误;B、由∠3=∠7,可以推出AB∥CD,故本选项错误;C、由∠2=∠6,可以推出AB∥CD,故本选项错误;D、由∠4=∠8,可以推出AD∥BC,故本选项正确.故选:D.【点评】本题主要考查了平行线的判定,找准构成内错角的截线与被截线是解题的关键,本题容易出错.一十一.平行线的性质(共1小题)17.(2022春•闵行区校级期末)如图,直线AB∥CD,∠C=45°,AE⊥CE,则∠1=135°.【分析】根据平行线的性质,可以得到∠AFC的度数,再根据三角形的外角和内角的关系,即可得到∠1的度数.【解答】解:延长CE交AB于点F,如图所示:∵AB∥CD,∠C=45°,∴∠AFC=∠C=45°,∵AE⊥CE,∴∠AEF=90°,∴∠1=∠AEF+∠AFC=90°+45°=135°.故答案为:135°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,运用平行线的性质,利用数形结合的思想解答.一十二.平行线的判定与性质(共1小题)18.(2022春•上海期末)学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3(等量代换)∴AD平分∠BAC(角平分线定义)【分析】根据垂直的定义及平行线的性质与判定定理即可证明本题.【解答】解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3(等量代换)∴AD平分∠BAC(角平分线定义).【点评】本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.一十三.三角形的面积(共1小题)19.(2021春•静安区校级期末)如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P 运动的时间是t秒,那么当t= 1.5s或5s或9s,△APE的面积等于6.【分析】分为3种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.【解答】解:如图1,当点P在AC上,∵△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵△APE的面积等于6,=AP•CE=×2t×4=6,∴S△APE∴t=1.5;如图2,当点P在线段CE上,∵E是DC的中点,∴BE=CE=4.∴PE=4﹣(t﹣3)=7﹣t,∴S=EP•AC=•(7﹣t)×6=6,∴t=5,如图3,当P在线段BE上,同理:PE=t﹣3﹣4=t﹣7,∴S=EP•AC=•(t﹣7)×6=6,∴t=9,综上所述,t的值为1.5或5或9;故答案为:1.5或5或9.【点评】本题考查了直角三角形的性质的运用及动点运动问题,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.一十四.三角形三边关系(共3小题)20.(2022春•上海期末)下列几组线段能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,4cm,8cm【分析】利用三角形的三边关系:三角形的任意两边之和>第三边即可判断.【解答】解:A、3+5=8,不能组成三角形;B、8+8=16<18,不能组成三角形;C、是等边三角形;D、3+4=7<8,不能组成三角形;故选:C.【点评】此题考查了三角形的三边关系.解题时一般检验两个小边的和与大边的大小,若两个小边的和比大边还大,则可组成三角形,否则不能组成三角形.21.(2022春•闵行区校级期末)如果三角形的两边分别为3和5,那么这个三角形的周长可能是()A.15B.16C.8D.7【分析】三角形的两边分别为3和5,可以确定第三边的范围,就可以确定三角形的周长的范围.【解答】解:设三角形的第三边为x,则2<x<8,所以周长在10和16之间.故选A.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.22.(2022春•徐汇区校级期末)周长为30,各边互不相等且都是整数的三角形共有12个.【分析】不妨设三角形三边为a、b、c,且a<b<c,由三角形三边关系定理及题设条件可确定c的取值范围,以此作为解题的突破口.【解答】解:设三角形三边为a、b、c,且a<b<c.∵a+b+c=30,a+b>c∴10<c<15∵c为整数∴c为11,12,13,14∵①当c为14时,有5个三角形,分别是:14,13,3;14,12,4;14,11,5;14,10,6;14,9,7;②当c为13时,有4个三角形,分别是:13,12,5;13,11,6;13,10,7;13,9,8;③当c为12时,有2个三角形,分别是:12,11,7;12,10,8;④当c为11时,有1个三角形,分别是:11,10,9;故答案为:12个.【点评】此题主要考查学生对三角形三边关系的理解及运用能力.一十五.三角形内角和定理(共5小题)23.(2022春•上海期末)直角三角形中两锐角平分线所交成的角的度数是()A.45°B.135°C.45°或135°D.都不对【分析】利用三角形的内角和定理以及角平分线的定义计算.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:C.【点评】①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;③三角形的外角通常情况下是转化为内角来解决.24.(2022春•闵行区校级期末)一个三角形三个内角度数的比是2:3:4,那么这个三角形是锐角三角形.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,4k°.则2k°+3k°+4k°=180°,解得k°=20°,∴2k°=40°,3k°=60°,4k°=80°,所以这个三角形是锐角三角形.故答案是:锐角.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.25.(2022春•杨浦区校级期末)一等腰三角形的一腰上的高与另一腰成30°,则此等腰三角形的顶角的度数是60°或120°.【分析】根据已知利用三角形内角和定理及三角形外角的性质进行分析求解,注意分情况进行讨论.【解答】解:①∵AB=AC,∠ABD=30°,BD⊥AC,∴∠A=60°.②∵AB=AC,∠ABD=30°,BD⊥AC,∴∠BAC=30°+90°=120°.故答案为:60°或120°.【点评】此题主要考查三角形内角和定理及三角形外角的性质的综合运用.26.(2021秋•徐汇区校级期末)如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB 上的高和中线,那么∠DCE=50度.【分析】根据直角三角形中线的性质及互为余角的性质计算.【解答】解:∠A=20°,CD为AB边上的高,∴∠ACD=70°,∵∠ACB=90°,CE是斜边AB上的中线,∴CE=AE,∴∠ACE=∠A=20°,∴∠DCE的度数为70°﹣20°=50°.故答案为:50.【点评】此题主要考查了直角三角形中线的性质及互为余角的性质.27.(2022春•上海期末)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为100°.【分析】设三角形三个角的度数分别为x,3x,5x,根据三角形内角和定理得x+3x+5x=180°,解得x =20°,然后计算5x即可.【解答】解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.【点评】本题考查了三角形内角和定理:三角形内角和为180°.一十六.全等图形(共1小题)28.(2022春•徐汇区校级期末)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=∠1+∠3=90°,可得∠1+∠2+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定,以及全等三角形对应角相等.一十七.全等三角形的性质(共5小题)29.(2022春•徐汇区校级期末)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.【点评】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.30.(2022春•徐汇区校级期末)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形的性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.31.(2022春•徐汇区校级期末)如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB =3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:4【分析】利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN 的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10设∠A=3x°,则∠ABC=5x°,∠ACB=10x°3x+5x+10x=180解得x=10则∠A=30°,∠ABC=50°,∠ACB=100°∴∠BCN=180°﹣100°=80°又△MNC≌△ABC∴∠ACB=∠MCN=100°∴∠BCM=∠NCM﹣∠BCN=100°﹣80°=20°∴∠BCM:∠BCN=20°:80°=1:4故选:D.【点评】本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.32.(2022春•徐汇区校级期末)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.【分析】先求出AB的长度,再根据全等三角形对应边相等解答即可.【解答】解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.【点评】本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.33.(2022春•徐汇区校级期末)△ABC≌△DEF,且△ABC的周长为18,若AB=5,AC=6,则EF=7.【分析】求出BC长,根据全等三角形的性质得出EF=BC,即可得出答案.【解答】解:∵△ABC的周长为18,AB=5,AC=6,∴BC=18﹣5﹣6=7,∵△ABC≌△DEF,∴EF=BC=7,故答案为:7.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.一十八.全等三角形的判定(共2小题)34.(2022春•普陀区校级期末)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.35.(2022春•徐汇区校级期末)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出7个.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.【点评】本题考查了全等三角形的作法;做三角形时要根据全等的判断方法的要求,正确对每种情况进行讨论是解决本题的关键.一十九.全等三角形的判定与性质(共11小题)36.(2022春•徐汇区校级期末)如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定【分析】在BA的延长线上取点E,使AE=AC,连接EP,证明△ACP和△AEP全等,推出PE=PC,根据三角形任意两边之和大于第三边即可得到m+n>b+c.【解答】解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠BAC的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选:A.【点评】本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以m、n、b、c的长度为边的三角形是解题的关键,也是解本题的难点.37.(2022春•闵行区校级期末)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF ∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE【分析】从已知条件思考,利用角平分线的性质,结合平行线的性质,可得很多结论,然后与选项进行逐个比对,答案可得.【解答】解:∵∠BAD+∠ABD=90°,∠ABD+∠C=90°,∴∠BAD=∠C(同角的余角相等).又∵EF∥AC,∴∠BFE=∠C,∴∠BAD=∠BFE.又∵BE平分∠ABC,∴∠ABE=∠FBE,∴∠BEF=∠AEB,在△ABE与△FBE中,∵,∴△ABE≌△FBE(AAS),∴AB=BF.故选:A.【点评】此题考查角平分线的定义,平行线的性质,同角的余角相等,三角形全等的判定等知识点.38.(2022春•徐汇区校级期末)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【分析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD ≌△CAE.39.(2022春•徐汇区校级期末)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=0.8cm.【分析】求出∠E=∠ADC=∠BCA=90°,求出∠BCE=∠CAD,根据AAS证△ACD≌△CBE,推出CE=AD=2.5cm,BE=CD,即可得出答案.【解答】解:∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠E=∠ADC=∠BCA=90°,∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,∴∠BCE=∠CAD,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=2.5cm,BE=CD,∵DE=1.7cm,∴BE=CD=2.5cm﹣1.7cm=0.8cm,故答案为:0.8cm.【点评】本题考查了三角形的内角和定理,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.40.(2022春•徐汇区校级期末)如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.【分析】先证明△BDC≌△AEC,进而得到角的关系,再由∠EBD的度数进行转化,最后利用三角形的内角和即可得到答案.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.【点评】考查了全等三角形的判定和性质,关键是充分利用角的和差的转化关系进行求解.41.(2021秋•静安区校级期末)如图,在△ABC中,PE垂直平分边BC,交BC于点E,AP平分∠BAC的外角∠BAD,PG⊥AD,垂足为点G,PH⊥AB,垂足为点H.(1)求证:∠PBH=∠PCG;(2)如果∠BAC=90°,求证:点E在AP的垂直平分线上.【分析】(1)根据角平分线的性质得到PH=PG,根据线段垂直平分线的性质得到PB=PC,根据全等三角形的判定和性质定理即可得到结论;(2)根据三角形的内角和定理得到∠BPC=90°,根据直角三角形的性质和线段垂直平分线的性质即可得到结论.【解答】(1)证明:∵AP平分∠BAC的外角∠BAD,PG⊥AD,PH⊥AB,∴PH=PG,∵PE垂直平分边BC,∴PB=PC,在Rt△PBH和Rt△PCG中,,∴Rt△PBH≌Rt△PCG(HL),∴∠PBH=∠PCG;(2)证明:∵∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠PBH=∠PCG,∴∠PBH+∠ABC+∠PCB=∠PBC+∠PCB=90°,∴∠BPC=90°,∵PE垂直平分边BC,∴BE=CE,∴PE=AE=BC,∴点E在AP的垂直平分线上.【点评】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,角平分线的性质,是熟练正确全等三角形的判定和性质定理是解题的关键.42.(2021秋•奉贤区校级期末)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD 至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.43.(2022春•徐汇区校级期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.44.(2021秋•奉贤区校级期末)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系式QE =QF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【分析】(1)证△BFQ≌△AEQ即可;(2)延长FQ交AE于D,证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;(3)延长EQ、FB交于D,证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可.【解答】解:(1)AE∥BF,QE=QF,理由是:如图1,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∠BFQ=∠AEQ=90°,在△BFQ和△AEQ中∴△BFQ≌△AEQ(AAS),∴QE=QF,故答案为:AE∥BF;QE=QF.(2)QE=QF,证明:如图2,延长FQ交AE于D,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠QAD=∠FBQ,在△FBQ和△DAQ中∴△FBQ≌△DAQ(ASA),∴QF=QD,∵AE⊥CP,∴EQ是直角三角形DEF斜边上的中线,∴QE=QF=QD,即QE=QF.(3)(2)中的结论仍然成立,证明:如图3所示,延长EQ、FB交于D,∵BF⊥CP,AE⊥CP,∴DF∥AE,∴∠1=∠D,在△DBQ和△EAQ中,,∴△DBQ≌△EAQ(AAS),∴QE=QD,∵∠EFD=90°∴FQ是Rt△EFD斜边DE上的中线,∴QE=QF.【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性质是:全等三角形的对应边相等,对应角相等.45.(2021春•黄浦区期末)如图在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠1=∠2.(1)说明△ADE≌△BFE的理由;(2)连接EG,那么EG与DF的位置关系是EG⊥DF,请说明理由.【分析】(1)由AD∥BC,得出∠1=∠F,因为E是AB的中点,得AE=BE,即可证明△ADE≌△BFE;(2)可证∠2=∠F,从而有DG=FG,再通过(1)中全等知DE=EF,由等腰三角形三线合一即可证出EG⊥DF.【解答】解:(1)∵AD∥BC,∴∠1=∠F,∵E是AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),(2)如图,EG⊥DF,∵∠1=∠F,∠1=∠2,∴∠2=∠F,∴DG=FG,由(1)知:△ADE≌△BFE,∴DE=EF,∴EG⊥DF.【点评】本题主要考查了全等三角形的判定与性质,以及等腰三角形的三线合一等知识,找出全等所需的条件是解题的关键.46.(2021春•浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.【分析】(1)延长BD交CE于F,易证△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠AEC+∠ACE=90°,可得∠ABD+∠AEC=90°,即可解题;(2)延长BD交CE于F,易证∠BAD=∠EAC,即可证明△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠ABC+∠ACB=90°,可以求得∠CBF+∠BCF=90°,即可解题.【解答】证明:(1)延长BD交CE于F,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△EAC≌△DAB是解题的关键.二十.全等三角形的应用(共2小题)47.(2022春•徐汇区校级期末)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第2块.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.48.(2021春•金山区期末)如图,有两根钢条AB、CD,在中点O处以小转轴连在一起做成工具(卡钳),可测量工件内槽的宽.如果测量AC=2cm,那么工件内槽的宽BD=2cm.【分析】利用SAS可判定△AOC≌△BOD,根据全等三角形的性质可得BD=AC=2厘米.【解答】解:∵有两根钢条AB、CD,在中点O处以小转轴连在一起做成工具,∴OA=OB,OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS).∴BD=AC=2厘米,故答案为:2.【点评】本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.二十一.等腰三角形的性质(共6小题)。

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七下·巩义期末) 如图,在的长方形网格中,动点从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点第2020次碰到矩形的边时,点的坐标为()A .B .C .D .2. (2分) (2019七下·崇明期末) 下列运算一定正确的是()A .B .C .D .3. (2分) 3的平方根是()A . 3B . -3C .D . ±4. (2分)要反映温州市一天内气温的变化情况宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可5. (2分) (2017七下·萧山期中) 已知是方程mx+3y=5的解,则m的值是()A . 1B . ﹣1C . ﹣2D . 26. (2分)若a<b,则下列不等式成立的是()A . a2<b2B . <1C . >D . -3a>-3b7. (2分)在Rt△ABC中,∠C=90°,D为边CA延长线上一点,DE//AB,∠ADE=42°,则∠B的大小为A . 42°B . 45°C . 48°D . 58°8. (2分)(2013·河池) 把不等式组的解集表示在数轴上,正确的是()A .B .C .D .9. (2分)下列命题是真命题的是()A . 相等的角是对顶角B . 三角形的一个外角大于任何一个内角C . 一组邻边对应成比例的两个矩形相似D . 若AB被点C黄金分割,则AC=AB10. (2分)下列各组数据中,组中值不是10的是()A . 7≤x<13B . 8≤x<12C . 3≤x<7D . 0≤x<20二、填空题 (共7题;共25分)11. (1分) (2017七下·柳州期末) 已知方程2x+y﹣5=0,用含x的代数式表示y=________.12. (10分) (2016七下·重庆期中) 完成下面推理过程.如图:在四边形ABCD中,∠A=106°﹣α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2证明:∵∠A=106°﹣α,∠ABC=74°+α(已知)∴∠A+∠ABC=180°∴AD∥________(________)∴∠1=________(________)∵BD⊥DC,EF⊥DC(已知)∴∠BDF=∠EFC=90°(________)∴BD∥________(________)∴∠2=________(________)∴∠1=∠2(________)13. (1分) (2020七下·扬州期中) 若关于x,y的方程组的解是,则方程组的解是________.14. (5分)在一次考试中,考生有2万多名,如果为了得到这些考生的数学成绩的平均水平,若将他们的成绩全部相加再除以考生的总数,那将是十分麻烦的,那么怎样才能了解这些考生的数学,平均成绩呢?通常,在考生很多的情况下,我们是从中抽取部分考生(比如500名)的成绩,用他们的平均成绩去估计所有考生的平均成绩.在上述文字表述中,提到了调查的两种方式是________和________;反映了用样本估计总体的数学思想.其中,总体是________,样本是________,请用较简洁的语言,举一个在实际生活中,运用同种思想解决问题的例子,写在下面:________.15. (2分)计算:=________,分解因式:9x2﹣6x+1=________.16. (1分) (2019七下·青山月考) 如图,将△ABC沿BC方向平移2cm 得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为________.17. (5分) (2019七下·大通期中) 完成下面的证明(1)如图,FG∥CD ,∠1=∠3,∠B=50°,求∠BDE的度数.解:∵FG∥CD(已知)∴∠2=________又∵∠1=∠3,∴∠3=∠2(等量代换)∴BC∥________∴∠B+________=180°________又∵∠B=50°∴∠BDE=________.三、解答题 (共8题;共73分)18. (10分) (2016七下·洪山期中) 已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=80°,求∠C的度数.19. (5分) (2019九上·苏州开学考) 计算:(﹣)2+ ﹣()0+|1﹣2|20. (10分) (2019七下·定襄期末)(1)解方程组(2)解不等式组21. (5分) (2020七下·思明月考) 已知都是关于的二元一次方程的解,且求的值.22. (5分)(2017·东城模拟) 解不等式组,并把解集在数轴上表示出来.23. (15分)(2016·凉山) 如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.24. (13分)(2019·百色模拟) 为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%(1) x=________,a=________,b=________;(2)补全上面的条形统计图;(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.25. (10分) (2017八下·佛冈期中) 为支援云南普洱灾区,学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型号学习用品的单价为20元,B型号学习用品的单价为30元。

上海市七年级下学期数学期末试卷

上海市七年级下学期数学期末试卷

上海市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·西吉期末) 下列各式中正确的是()A . =±2B . =-3C . =2D . =32. (2分) (2019九上·南岸期末) 如图,数轴上表示的解集是()A .B .C .D .3. (2分) (2020七下·新乡期中) 若关于,的二元一次方程组的解也是二元一次方程的解,则的值为A .B .C .D .4. (2分)(2020·上海) 我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A . 条形图B . 扇形图C . 折线图D . 频数分布直方图5. (2分) (2016八上·六盘水期末) 在给出的一组数0,,, 3.14,,中,无理数有()A . 5个B . 3个C . 1个D . 4个6. (2分)(2018·遵义) 已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A . 35°B . 55°C . 56°D . 65°7. (2分) (2016七上·长兴期末) 如图,已知数轴上的点A,B,C,D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A . AO上B . OB上C . BC上D . CD上8. (2分)下列语句中,是真命题的是()A . 任何实数都有相反数、倒数B . 过一点有且只有一条直线与已知直线平行C . 在同一平面内不相交的两条直线叫做平行线D . 两条直线被第三条直线所截,同位角相等9. (2分)点P(x+1,x-1)不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)在频率分布直方图中,以下说法错误的是()A . 每个小长方形的面积等于频数B . 每个小长方形的面积等于频率C . 频率=D . 各个小长方形面积和等于1二、填空题 (共8题;共8分)11. (1分)由3x﹣2y=5,得到用x表示y的式子为:y=________.12. (1分) (2019八上·深圳开学考) 的算术平方根是________,的立方根是________。

上海市七年级下册数学期末试卷

上海市七年级下册数学期末试卷
27.分解因式:
(1) ;
(2) ;
(3) .
28.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.
(1)请用代数式表示A,B两园区的面积之和并化简.
(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.
24.计算:
(1)2a(a﹣2a2);
(2)a7+a﹣(a2)3;
(3)(3a+2b)(2b﹣3a);
(4)(m﹣n)2﹣2m(m﹣n).
25.已知 , .
(1)填空: =; =__________.
19.若等式 成立,则 的取值范围是_________.
20.如图,两块三角板形状、大小完全相同,边 的依据是_______________.
三、解答题
21.解二元一次方程组:
(1) (2)
22.若规定 =a﹣b+c﹣3d,计算: 的值,其中x=2,y=﹣1.
23.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
详解:A.不等式两边同时减去7,不等号方向不变,故A选项正确;
B.不等式两边同时加3,不等号方向不变,故B选项正确;
C.不等式两边同时除以5,不等号方向不变,故C选项正确;
D.不等式两边同时乘以-3,不等号方向改变,﹣3a<﹣3b,故D选项错误.
故选D.

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)的值等于()A . 4B .C .D . 22. (2分) (2019七下·交城期中) 下列说法正确是()A . 无限小数都是无理数B . 带根号的数都是无理数C . 无理数是无限不循环小数D . 实数包括正实数、负实数3. (2分)下列生活中的现象,属于平移的是()A . 抽屉的拉开B . 汽车刮雨器的运动C . 坐在秋千上人的运动D . 投影片的文字经投影变换到屏幕4. (2分)(2019·朝阳) 下列调查中,调查方式最适合普查(全面调查)的是()A . 对全国初中学生视力情况的调查B . 对2019年央视春节联欢晚会收视率的调查C . 对一批飞机零部件的合格情况的调查D . 对我市居民节水意识的调查5. (2分)实数a、b在数轴上的位置如图,化简为()A . ﹣2bB . 0C . ﹣2aD . ﹣2a﹣2b6. (2分)(2017·邹平模拟) 不等式组的解在数轴上表示为()A .B .C .D .7. (2分)(2018·娄底模拟) 下列结论中错误的是()A . 四边形的内角和等于它的外角和B . 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0)C . 方程x2+x-2=0的两根之积是-2D . 函数y= 的自变量x的取值范围是x>38. (2分) (2017七下·昭通期末) 方程x+2y=5的非负整数解有()A . 无数个B . 3个C . 4个D . 5个9. (2分) (2017七下·宝安期中) 如图,∠D=∠DCG,则下列结论正确的是()A . EF∥BCB . AB∥CDC . AD∥EFD . AD∥BC10. (2分) (2017七下·荔湾期末) 小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A . (﹣250,﹣100)B . (100,250)C . (﹣100,﹣250)D . (250,100)二、填空题 (共6题;共6分)11. (1分)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为________ ;为了不让白方获胜,此时黑方应该下在坐标为________ 的位置处.12. (1分) (2019七下·嘉兴期末) 如图,若,,则 ________.13. (1分)(2016·十堰) 计算:| ﹣4|﹣()﹣2=________.14. (1分) k的值大于-1且不大于3,则用不等式表示 k的取值范围是________.(使用形如a≤x≤b的类似式子填空.)15. (1分)已知关于x的不等式(3a﹣b)x<a+b的解集为x>,则关于x的不等式ax+b<0的解集为________.16. (1分)(2017·曹县模拟) 在Rt△ABC中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为________.三、解答题 (共7题;共47分)17. (10分) (2019七下·蔡甸月考) 求下列各式中x的值.(1) 4 (x-1) 2=25(2) (x+2) 2=718. (5分) (2019七下·宜宾期中)(1)解方程组(2)19. (5分)(2016·大兴模拟) 解不等式﹣≥1,并把它的解集在数轴上表示出来.20. (10分) (2018八上·嵊州期末) 在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC (顶点是网格线交点的三角形)的顶点A,B的坐标分别是(﹣6,7),(﹣4,3).(1)请你根据题意在图中的网格平面内作出平面直角坐标系.(2)请画出△ABC关于y轴对称的△A1B1C121. (5分) (2019七下·厦门期中) 某山是某市民周末休闲爬山的好去处,但总有些市民随手丢垃圾的情况出现.为了美化环境,提高市民的环保意识,某外国语学校某附属学校青年志愿者协会组织50人的青年志愿者团队,在周末前往临某森林公园捡垃圾.已知平均每分钟男生可以捡3件垃圾,女生可以捡2件垃圾,且该团队平均每分钟可以捡130件垃圾.请问该团队的男生和女生各多少人?22. (2分)(2014·衢州) 学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.23. (10分)(2017·建昌模拟) 我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共47分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、。

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷

上海市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题,每小题2分,共24分) (共12题;共24分)1. (2分) (2018八上·确山期末) 下列计算正确的是()A .B . a3•a2=a6C . a7÷a=a6D . (﹣2a2)3=862. (2分) (2019七下·浦城期中) 下列命题正确是()A . 三条直线两两相交有三个交点B . 在平面内,过一点有且只有一条直线与已知直线平行C . 同旁内角互补D . 直线外一点与直线上所有点的连线段中,垂线段最短3. (2分)(2019·南山模拟) 在下列四个银行标志中,既是轴对称图形,又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)(2019·益阳) 已知一组数据5,8,8,9,10,以下说法错误的是()A . 平均数是8B . 众数是8C . 中位数是8D . 方差是85. (2分)如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是()A . ∠2=70°B . ∠2=100°C . ∠2=110°D . ∠3=110°6. (2分)计算:22014﹣(﹣2)2015的结果是()A .B .C . ﹣D . 3×7. (2分) (2018七下·长春月考) 若x+y=1,xy=-2,则(2-x)(2-y)的值为()A . -2B . 0C . 2D . 48. (2分)下列多项式中能用公式法分解因式的是()A . x2+4B . x2+2xy+4y2C . x2﹣x+D . x2﹣4y9. (2分)下列计算正确的是()A . 22•20=8B . (23)2=32C . (-2)(-2)2=-8D . 23÷23=010. (2分)(2016·广元) 如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC 的外角,则∠1+∠2+∠3=()A . 90°B . 180°C . 120°D . 270°11. (2分)如果a、b互为倒数,x、y互为相反数,则5(x+y)﹣ab=()A . 4B . 5C . -1D . 012. (2分) (2017七下·东营期末) 如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A .B .C .D .二、填空题(共6小题,每小题3分,共18分) (共6题;共18分)13. (3分)计算:b(2b2﹣b﹣3)=________;2x•(3x2+4x+1)=________;•(4xy﹣6y2)=________.14. (3分)已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标________ (写出一个即可),此时△ABO的面积为________ .15. (3分) (2018七下·浦东期中) 已知,直线AB和直线CD交与点O,∠BOD是它的邻补角的3倍,则直线AB与直线CD的夹角是________度.16. (3分)(2017·重庆模拟) 某数学小组进行数学速算,比赛成绩如下:得100分的有2人,96分的有4人,90分的2人,那么这个数学小组速算比赛是平均成绩为________分.17. (3分)如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AC=8,则EF=________.18. (3分) (2019七下·桂林期末) 二元一次方程x+2y=2019的正整数解有________ 组。

2023-2024学年上海市杨浦区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市杨浦区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市杨浦区七年级(下)期末数学试卷一、填空题(本大题共14题,每小题2分,满分28分)1.(2分)16的平方根是.2.(2分)计算:=.3.(2分)写出在与之间的一个有理数,这个数可以是(只需填写一个).4.(2分)在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)5.(2分)今年春节黄金周上海共接待游客约16750000人,将16750000这个数保留三个有效数字并用科学记数法表示是.6.(2分)经过点P(﹣2,5)且垂直于x轴的直线可以表示为直线.7.(2分)在平面直角坐标系中,点M(a+2,a﹣2)在x轴上,那么点M的坐标是.8.(2分)已知直线AB和直线CD相交于点O,∠AOC=2∠AOD,那么这两条直线的夹角等于度.9.(2分)如图,将一块直角三角板的直角顶点放在一个长方形纸片的一边上,那么∠1+∠2=度.10.(2分)如果一个三角形的两条边长分别为3和8,且第三边的长为整数,那么第三边的长的最小值是.11.(2分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、点E,AD与BE交于点F,要使△BDF≌△ADC,还需添加一个条件,这个条件可以是(只需填写一个).12.(2分)如图,在△ABC中,AB=AC,∠A=50°,点D、E、F分别在边BC、AB、AC上,如果BD =CF,BE=CD,那么∠EDF=度.13.(2分)如图,已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P 关于OA对称,联结P1P2、OP1、OP2,如果△OP1P2的周长是18,那么OP=.14.(2分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,点O在直线AD上,且OA=OB=OC,如果点B绕点O旋转60°后恰好与点C重合,那么∠BAC=度.二、选择题(本大题共6题,每小题2分,满分12分)15.(2分)下列实数中,是无理数的是()A.B.0.C.0.010010001D.16.(2分)下列计算正确的是()A.B.C.D.17.(2分)如图,下列说法中,错误的是()A.∠EAD与∠EBD是同位角B.∠EAD与∠DBC是同位角C.∠EAD与∠ADC是内错角D.∠EAD与∠ADB是内错角18.(2分)只给定三角形的两个元素,画出的三角形的形状和大小是不确定的.在下列给定的两个条件的基础上,增加一个AB=4cm的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A.∠A=60°,∠B=30°B.BC=6cm,∠B=30°C.BC=3cm,∠A=30°D.BC=5cm,AC=6cm19.(2分)从1、﹣3、4这三个数中,随意取两个数组成一个点的坐标,这个点恰好落在第二象限的可能性大小是()A.B.C.D.20.(2分)如图,在△ABC中,D是边BC的中点,将△ABD沿AD翻折,点B落在点E处,AE交CD 于点F,△ADF的面积恰好是△ABC面积的.小丽在研究这个图形时得到以下两个结论:①∠B=∠CAE;②AC=CD.那么下列说法中,正确的是()A.①正确②错误B.①错误②正确C.①、②皆正确D.①、②皆错误三、简答题(本大题共5题,每小题6分,满分30分)21.(6分)计算:.22.(6分)计算:.23.(6分)用幂的运算性质计算:(结果表示为含幂的形式).24.(6分)如图,已知∠1+∠2=180°,∠3=∠B,请填写理由,说明AD∥BC.解:因为∠1+∠2=180°(已知),∠1+∠AED=180°(),所以∠2=∠AED().所以AB∥DE().所以∠3+=180°().又因为∠3=∠B(已知).所以∠B+=180°(等量代换).所以AD∥BC().25.(6分)如图,在△ABC中,E是AD上一点,AB=AC,∠ABE=∠ACE,请填写理由,说明AD⊥BC.解:因为AB=AC(已知),所以∠ABC=∠ACB().又因为∠ABE=∠ACE(已知),所以∠ABC﹣∠ABE=∠ACB﹣∠ACE(等式性质).即∠EBC=∠ECB.所以EB=EC().在△ABE与△ACE中,,所以△ABE≌△ACE().所以∠BAE=().又因为AB=AC(已知),所以AD⊥BC().四、解答题(本大题共3小题,第1题6分,第2题6分,第3题8分,满分20分)26.(6分)对于如图给定的图形(不再添线),从①∠1=∠2;②∠3=∠4;③AD∥BC;④AB∥CD 中选取两个作为已知条件,通过说理能得到AE∥CF.(1)你选择的两个条件是(填序号);(2)根据你选择的两个条件,说明AE∥CF的理由.27.(6分)在平面直角坐标系中,点A(﹣3,0),将点A先向右平移1个单位,再向下平移2个单位得点B,点B关于原点对称的点记为点C.(1)分别写出点B、C的坐标:B()、C();(2)△ABC的面积是;(3)点D是直线x=3上的一点,如果△OAD的面积等于△ABC的面积,那么点D的坐标是.28.(8分)如图,已知等腰△ABC,AB=AC,D是边AB上一点(不与点A、B重合),E是线段CD延长线上一点,∠BEC=∠BAC.(1)说明∠EBA=∠DCA的理由;(2)小华在研究这个问题时,提出了一个新的猜想:点D在运动的过程中(不与点A、B重合),∠AEC 与∠ABC是否会相等?,小丽思考片刻后,提出了自己的想法:可以在线段CE上取一点H,使得CH =BE,联结AH,然后通过学过的知识就能得到∠AEC与∠ABC相等.你能否根据小丽同学的想法,说明∠AEC=∠ABC的理由.五、探究题(本大题共1小题,第1小题2分,第2小题4分,第3小题4分,满分10分)29.(10分)上海教育出版社七年级第二学期《练习部分》第60页习题14.6(2)第5题及参考答案.5.过下面三角形的一个顶点画一条直线,把这个三角形分割成两个等腰三角形:参考答案:小华在完成了以上解答后,对分割三角形的问题产生了兴趣,并提出了以下三个问题,请你解答:【问题1】如图1,△ABC中,∠A=120°,∠B=40°,∠C=20°,请设计一个方案把△ABC分割成两个小三角形,其中一个小三角形三个内角的度数与原三角形的三个内角的度数分别相等,另一个小三角形是等腰三角形.请直接画出示意图并标出等腰三角形顶角的度数(示意图画在答题卡上);【问题2】如果有一个内角为26°的三角形被分割成两个小三角形,其中一个小三角形三个内角的度数与原三角形三个内角的度数分别相等,另一个小三角形是等腰三角形,那么原三角形最大内角的度数所有可能的值为;【问题3】如图2,在△ABC中,∠A=60°,∠B=70°,∠C=50°,在△DEF中,∠D=60°,∠E =85°,∠F=35°,分别用一条直线分割这两个三角形,使△ABC分割成的两个小三角形三个内角的度数与△DEF分割成的两个小三角形三个内角的度数分别相等,请设计两种不同的分割方案,直接画出示意图并标出相应的角的度数(示意图画在答题卡上).2023-2024学年上海市杨浦区七年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14题,每小题2分,满分28分)1.【分析】一个数x的平方等于a,则这个数x即为a的平方根,据此即可得出答案.【解答】解:∵42=16,(﹣4)2=16,∴16的平方根为±4,故答案为:±4.【点评】本题考查平方根的定义,此为基础且重要知识点,必须熟练掌握.2.【分析】合并同类二次根式即可.【解答】解:=(2﹣3+4)=,故答案为:.【点评】本题考查了二次根式的加减,熟练掌握其运算法则是解题的关键.3.【分析】运用算术平方根知识进行估算、求解.【解答】解:∵<<,∴在与之间的一个有理数可以是3,故答案为:3(答案不唯一).【点评】此题考查了对无理数大小的估算能力,关键是能准确理解并运用算术平方根知识.4.【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左【点评】本题考查实数与数轴上点的对应关系,掌握了实数与数轴上的点的一一对应关系,很容易得出正确答案.5.【分析】运用科学记数法和有效数字的定义进行求解.【解答】解:16750000≈16800000,16800000=1.68×107,∴16750000≈1.68×107,故答案为:1.68×107.【点评】此题考查了运用科学记数法表示较小数字的能力,关键是能准确理解并运用该知识.6.【分析】根据点的坐标特点解答即可.【解答】解:经过点P(﹣2,5)且垂直于x轴的直线可以表示为直线x=﹣2.故答案为:x=﹣2.【点评】本题考查的是点的坐标,熟知坐标系内点的坐标特点是解题的关键.7.【分析】根据x轴上点的坐标特点解答即可.【解答】解:∵点M(a+2,a﹣2)在x轴上,∴a﹣2=0,解得a=2,∴a+2=2+2=4,∴M(4,0),故答案为:(4,0).【点评】本题考查的是点的坐标,熟知x轴上点的纵坐标为0是解题的关键.8.【分析】由两条直线相交得出∠AOC+∠AOD=180°,再根据已知∠AOC=2∠AOD,即可求出这两个角的度数,从而得出这两条直线的夹角的度数.【解答】解:由题意得∠AOC+∠AOD=180°,又∵∠AOC=2∠AOD,∴2∠AOD+∠AOD=180°,∴∠AOD=60°,∴∠AOC=120°,∴这两条直线的夹角等于60°或120°,故答案为:60或120.【点评】本题考查了对顶角、邻补角,熟知邻补角的定义是解题的关键.9.【分析】根据平行线的性质求出∠1=∠3,再结合平角的定义求解即可.【解答】解:如图,∵m∥n,∴∠1=∠3,∵∠3+90°+∠2=180°,∴∠1+90°+∠2=180°,∴∠1+∠2=90°,故答案为:90.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.10.【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析求解.【解答】解:设第三边的长为x,满足8﹣3<x<8+3,即5<x<11.而第三边的长为整数,所以符合条件的x值为:6、7、8、9、10,所以第三边的长的最小值是6.故答案为:6.【点评】本题主要考查三角形三边关系,要注意三角形“任意两边之和>第三边”这一定理.11.【分析】根据全等三角形的判定定理求解即可.【解答】解:添加AD=BD,理由如下:∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=∠BEC=90°,∴∠CBE+∠BFD=90°,∠C+∠CBE=90°,∴∠BFD=∠C,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),故答案为:AD=BD(答案不唯一).【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.12.【分析】由AB=AC,得∠B=∠C,由∠B+∠C=2∠B=180°﹣∠A=130°,求得∠B=65°,再证明△EBD≌△DCF,得∠BED=∠CDF,可推导出∠EDF=∠B=65°,于是得到问题的答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B+∠C=2∠B=180°﹣∠A=130°,∴∠B=65°,在△EBD和△DCF中,∴△EBD≌△DCF(SAS),∴∠BED=∠CDF,∴∠EDF=180°﹣∠BDE﹣∠CDF=180°﹣∠BDE﹣∠BED=∠B=65°,故答案为:65.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理等知识,证明△EBD≌△DCF是解题的关键.13.【分析】根据轴对称的性质得出△OP1P2为等边三角形,据此可解决问题.【解答】解:如图所示,∵点P1与点P关于OB对称,点P2与点P关于OA对称,∴OP=OP1,OP=OP2,∠POA=∠P2OA,∠POB=∠P1OB,∴∠P1OP2=2(∠POA+∠POB)=2∠AOB=60°,∴△OP1P2是等边三角形.∵△OP1P2的周长是18,∴OP1=18÷3=6,∴OP=6.故答案为:6.【点评】本题主要考查了轴对称的性质,熟知图形对称的性质是解题的关键.14.【分析】点O的位置有两种可能①O在△ABC内部.②O在△ABC外部.分别求出∠BAC的度数即可.【解答】解:点O的位置有两种可能:①如图①O在△ABC内部.∵点B绕点O旋转60°后恰好与点C重合,∴∠BOC=60°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=30°,∵OA=OB,∴∠OAB=∠OBA=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠BAC=30°.②∵点B绕点O旋转60°后恰好与点C重合,∴∠BOC=60°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=30°,∵OA=OB,∴∠OAB=∠OBA=75°,∵OA=OC,∴∠OAC=∠OCA=75°,∴∠BAC=150°.∴∠BAC=30或150度.故答案为:30或150.【点评】本题考查了图形的旋转,等腰三角形的性质.关键是分类讨论点O的位置有两种可能.二、选择题(本大题共6题,每小题2分,满分12分)15.【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【解答】解:A.,是整数,属于有理数,不符合题意;B.0.是循环小数,属于有理数,不符合题意;C.0.010010001是有限小数,属于有理数,不符合题意;D.,是无理数,符合题意.故选:D.【点评】此题主要考查了无理数的定义,熟知其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解题的关键.16.【分析】AB选项均根据二次根式的性质进行计算,然后判断即可;C.根据算术平方根的定义进行计算,然后判断即可;D.先把带分数化成假分数,然后进行化简判断即可.【解答】解:A.∵,∴此选项的计算正确,故此选项符合题意;B.∵,∴此选项的计算错误,故此选项不符合题意;C.∵,∴此选项的计算错误,故此选项不符合题意;D.∵,∴此选项的计算错误,故此选项不符合题意;故选:A.【点评】本题主要考查了二次根式的计算和化简,解题关键是熟练掌握二次根式的性质和如何把二次根式化成最简二次根式.17.【分析】根据同位角和内错角的定义解答即可.【解答】解:∠EAD与∠EBD是同位角,故正确,A不符合题意;∠EAD与∠DBC不是同位角,故错误,B符合题意;∠EAD与∠ADC是内错角,故正确,C不符合题意;∠EAD与∠ADB是内错角,故正确,不符合题意.故选:B.【点评】本题考查了同位角和内错角的定义,关键是同位角和内错角定义的熟练掌握.18.【分析】根据选项中所给条件,结合题中的AB=4cm,依次进行判断三角形的形状和大小是否确定即可解决问题.【解答】解:∵∠A=60°,∠B=30°,∴∠C=90°,则三角形的形状确定.再根据∠A的正弦值和余弦值,可求出BC及AC的长,所以三角形的大小也确定.故A选项不符合题意.因为AB=6cm,AB=4cm,且它们的夹角为∠B=30°,所以依据全等三角形的判定定理“SAS”可知,此三角形的形状和大小都确定.故B选项不符合题意.因为∠A=30°,BC=3cm,AB=4cm,所以此时△ABC的两边和一边的对角确定,则△ABC的形状和大小都不确定.故C选项符合题意.因为AB=4cm,BC=5cm,AC=6cm,所以依据全等三角形的判定定理“SSS”可知,此三角形的形状和大小都确定.故D选项不符合题意.故选:C.【点评】本题主要考查了解直角三角形及全等三角形的判定,熟知全等三角形的判定定理是解题的关键.19.【分析】列举出所有点的坐标,找出第二象限内点的坐标,利用概率公式解答即可.【解答】解:∵1、﹣3、4这三个数随意取两个数组成一个点的坐标为(1,﹣3),(﹣3,1),(1,4),(4,1),(﹣3,4),(4,﹣3)共6种,第二象限内的点为(﹣3,1),(﹣3,4),∴这个点恰好落在第二象限的可能性为=.故选:C.【点评】本题考查的是点的坐标和可能性的大小,熟知第二象限内点的横坐标小于0,纵坐标大于0是解题的关键.20.【分析】根据折叠的性质、三角形的面积公式、中线的性质求解.【解答】解:∵D是边CB的中点,∴BD=CD,=S△ACD=S△ADE=S△ABC,∴S△ABD=S△ABC,∵S△ADF=S△EDF=S△ABC,∴S△ACF∴DF=CF,AF=EF,∴四边形ACED为平行四边形,∴AC∥DE,AC=DE,∴∠E=∠EAC,∵∠E=∠B,∴∠EAC=∠B,故①是正确的;由折叠的性质得:BD=DE,∴AC=CD,故②谁正确的,故选:C.【点评】本题考查了翻折变换,掌握折叠的性质、三角形的面积公式、中线的性质是解题的关键.三、简答题(本大题共5题,每小题6分,满分30分)21.【分析】根据分数指数幂法则、实数的运算法则、零指数幂法则、负整数指数幂法则进行解题即可.【解答】解:原式=﹣2+2﹣1+=﹣.【点评】本题考查分数指数幂、实数的运算、零指数幂、负整数指数幂,熟练掌握相关的运算法则是解题的关键.22.【分析】先算括号内的和完全平方,再算除法,最后算加减.【解答】解:原式=2﹣2+1+(﹣2)÷=2﹣2+1+﹣2=1﹣.【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关运算的法则.23.【分析】先将该算式变形为同底数幂乘除混合运算,再运用同底数幂相乘除运算法则进行求解.【解答】解:=÷×=÷×==.【点评】此题考查了分数指数幂的运算能力,关键是能准确理解并运用该知识进行正确地计算.24.【分析】根据平行线的判定与性质求解即可.【解答】解:因为∠1+∠2=180°(已知),∠1+∠AED=180°(邻补角定义),所以∠2=∠AED(同角的补角相等).所以AB∥DE(内错角相等,两直线平行).所以∠3+∠BAD=180°(两直线平行,同旁内角互补).又因为∠3=∠B(已知).所以∠B+=180°(等量代换).所以AD∥BC(同旁内角互补,两直线平行).故答案为:邻补角定义;同角的补角相等;内错角相等,两直线平行;∠BAD;两直线平行,同旁内角互补;∠BAD;同旁内角互补,两直线平行.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.25.【分析】由AB=AC,根据“等边对等角”得∠ABC=∠ACB,所以∠ABC﹣∠ABE=∠ACB﹣∠ACE,则∠EBC=∠ECB,由“等角对等边”证明EB=EC,进而根据“SSS“证明△ABE≌△ACE,再根据全等三角形的对应角相等推导出∠BAE=∠CAE,即可根据等腰三角形的“三线合一”证明AD⊥BC,于是得到问题的答案.【解答】解:因为AB=AC(已知),所以∠ABC=∠ACB(“等边对等角”),又因为∠ABE=∠ACE(已知),所以∠ABC﹣∠ABE=∠ACB﹣∠ACE(等式性质),即∠EBC=∠ECB,所以EB=EC(“等角对等边”),在△ABE与△ACE中,,所以△ABE≌△ACE(SSS),所以∠BAE=∠CAE(全等三角形的对应角相等),又因为AB=AC(已知),所以AD⊥BC(等腰三角形的“三线合一”).故答案为:“等边对等角”,“等角对等边”,SSS,∠CAE,全等三角形的对应角相等,等腰三角形的“三线合一”.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质等知识,适当选择全等三角形的判定定理证明△ABE≌△ACE是解题的关键.四、解答题(本大题共3小题,第1题6分,第2题6分,第3题8分,满分20分)26.【分析】(1)选择的两个条件是①④,根据平行线的性质求出∠ABD=∠CDB,根据三角形外角性质求出∠AED=∠CFB,再根据“内错角相等,两直线平行”即可得解;(2)结合三角形外角性质、平行线的判定与性质求解即可.【解答】解:(1)选择的两个条件是①④,理由如下:∵AB∥CD,∴∠ABD=∠CDB,∵∠1=∠2,∠AED=∠1+∠ABD,∠CFB=∠2+∠CDB,∴∠AED=∠CFB,∴AE∥CF,故答案为:①④(答案不唯一);(2)∵AB∥CD,∴∠ABD=∠CDB,∵∠1=∠2,∠AED=∠1+∠ABD,∠CFB=∠2+∠CDB,∴∠AED=∠CFB,∴AE∥CF.【点评】此题考查了平行线的判定与性质,熟记平行线的判定与性质是解题的关键.27.【分析】(1)根据关于原点对称的点的坐标特点和平移的规律即可得出答案;(2)根据三角形的面积公式计算即可;(3)根据三角形的面积公式计算即可.【解答】解:(1)∵点A(﹣3,0),将点A先向右平移1个单位,再向下平移2个单位得点B,∴点B的坐标是(﹣3+1,0﹣2),即(﹣2,﹣2),∵点B关于原点对称的点记为点C,∴点C的坐标是(2,2);故答案为:(﹣2,﹣2),(2,2);(2)△ABC的面积等于×3×2+×3×2=6;故答案为:6;(3)∵△OAD的面积等于△ABC的面积,OA=3,∴点D到x的距离为4,∵点D是直线x=3上,∴点D的坐标是:(3,4)或(3,﹣4).故答案为:(3,4)或(3,﹣4).【点评】本题考查关于坐标与图形变化﹣平移,坐标与图形变化﹣对称和三角形的面积等知识,解题的关键是掌握关于原点对称的点的坐标特点和平移的规律.28.【分析】(1)由三角形的内角和定理得∠BEC+∠BDE+∠EBA=180°,∠BAC+∠ADC+∠DCA=180°,则∠BEC+∠BDE+∠EBA=∠BAC+∠ADC+∠DCA,再根据∠BEC=∠BAC,∠BDE=∠ADC即可得出结论;(2)在线段CE上取一点H,使得CH=BE,连接AH,根据AB=AC及三角形内角和定理得∠ABC=∠ACB=(180°﹣∠BAC),再依据“SAS”判定△ABE和△ACH全等得AE=AH,∠BAE=∠CAH,进而得∠EAH=∠BAC,然后根据AE=AH及三角形内角和定理得∠AEC=∠AHD=(180°﹣∠EAH)=(180°﹣∠BAC),由此即可得出结论.【解答】(1)证明:∵∠BEC+∠BDE+∠EBA=180°,∠BAC+∠ADC+∠DCA=180°,∴∠BEC+∠BDE+∠EBA=∠BAC+∠ADC+∠DCA,又∵∠BEC=∠BAC,∠BDE=∠ADC,∴∠EBA=∠DCA;(2)解:在线段CE上取一点H,使得CH=BE,连接AH,如图所示:∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC),由(1)可知:∠EBA=∠DCA,在△ABE和△ACH中,,∴△ABE≌△ACH(SAS),∴AE=AH,∠BAE=∠CAH,∴∠BAE+∠DAH=∠CAH+∠DAH,即∠EAH=∠BAC,∵AE=AH,∴∠AEC=∠AHD=(180°﹣∠EAH)=(180°﹣∠BAC),∴∠AEC=∠ABC.【点评】此题主要考查了等腰三角形的性质,熟练掌握等腰三角形的性质,三角形的内角和定理,全等三角形的判定和性质是解决问题的关键.五、探究题(本大题共1小题,第1小题2分,第2小题4分,第3小题4分,满分10分)29.【分析】(1)依据题意,作∠ABC的平分线,交AC于点D,故∠ABD=∠CBD=∠C=20°,∠ADB =40°.则DB=DC.进而可以计算得解;(2)依据题意,根据(1)作较大内角的平分线,交AC于点D,从而∠ABD=∠CBD=∠C,则DB=DC,从而△DBC是等腰三角形,进而可以得解;(3)依据题意,分别进行设计画图可以得解.【解答】解:(1)如图,作∠ABC的平分线,交AC于点D,∴∠ABD=∠CBD=∠C=20°,∠ADB=40°.∴DB=DC.∴△DBC是等腰三角形.∴∠BDC=140°.(2)由题意,根据(1)作较大内角的平分线,交AC于点D,∴∠ABD=∠CBD=∠C.∴DB=DC.∴△DBC是等腰三角形.∴当,最大180﹣(26°+13°)=141°.故答案为:141°.(3)由题意,设计如下:方案1:作∠ABC的平分线,交AC于点M,根据题意,得∠A=60°,,∠C=50°,∠AMB=85°,∠BMC=95°;作∠DEN=35°,交DF于点N,根据题意,得∠D=60°.∠DNE=85°,∠NEF=50°,∠F=35°,∠ENF=95°.方案2:作∠ACQ=15°交AB于点Q,根据题意,得∠A=60°,∠AQC=105°,∠BCQ=35°,∠BQC=75°,∠B=70°;作∠DEO=15°,交DF于点O,根据题意,得∠D=60°,∠DOE=105°,∠EOF=75°,∠F=35°,∠OEF=70°.【点评】本题主要考查了等腰三角形的判定和性质,角的平分线的作图,作一个角等于定角,三角形内角和定理,熟练掌握等腰三角形的判定和性质,角的平分线的作图,作一个角等于定角是关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档