九年级下册数学教案2.5 第1课时 二次函数与一元二次方程1教案北师大版

合集下载

二次函数与一元二次方程教案

二次函数与一元二次方程教案

二次函数与一元二次方程教案公开示范二次函数与一元二次方程》一、研究目标根据新课标的要求及九年级学生的认知水平,特制定本节课的教学目标如下:知识与技能:1.掌握二次函数与一元二次方程的联系。

2.掌握利用二次函数的图像求一元二次方程的近似根。

过程与方法:1.通过探索二次函数与一元二次方程的关系,体会方程与函数之间的联系。

2.通过使用二次函数图像求一元二次方程近似解,获得用图像法求方程近似解的体验。

情感、态度与价值观:1.经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力。

2.培养学生合作研究的良好意识和积极进取的精神。

3.培养学生用联系的观点看问题。

二、教学重点、难点根据新课标的要求及九年级学生的认知和发展水平,结合学情,我制定本节课的研究重、难点如下:教学重点:把握二次函数图像与x轴(或y=h)交点的个数与一元二次方程的根的关系。

关键是理解其实质就是把函数值换成常数求一元二次方程的解。

教学难点:利用函数的性质,用逐步逼近去试探求出近似解。

较难理解,培养学生的数形结合的意识和学会用数形结合的方法解决问题。

三、教学过程设计一)研究准备1.解方程:x2-2x-3=02.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。

当△>0时,方程有两个根;当△=0时,方程有一个根;当△<0时,方程无实根。

3.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像是一条抛物线,它与x轴的交点有几种可能的情况?4.回顾一次函数与一元一次方程的关系:一次函数y=-x+5与x轴的交点坐标是(5,0),一元一次方程-x+5=0的解是x=5.你发现了什么?5.回顾一次函数与二元一次方程组的关系:一次函数y=-x+5与y=2x-1的图像的交点坐标与方程组x+y=52x-y=1的解有什么关系?利用类比的方法让学生在自学的基础上进行小组合作交流研究)二)创设情境引入新课我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+vt+h0表示,其中h0(m)是抛出时的高度,v(m/s)是抛出时的速度。

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版数学九年级下册2.5《二次函数与一元二次方程》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行讲解的。

本节课的主要内容是一元二次方程的求解方法和应用,通过引导学生利用二次函数的性质来解决实际问题,培养学生的解决问题的能力。

教材中首先介绍了二次函数与一元二次方程的关系,引导学生理解二次函数的图像与一元二次方程的解的关系。

接着,教材通过具体的例子,讲解了一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。

最后,教材又通过实际问题,让学生应用所学的知识,解决实际问题。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,对于一元二次方程的求解方法和应用,可能还不是很熟悉。

因此,在教学过程中,需要引导学生利用已学的二次函数知识,来理解和掌握一元二次方程的知识。

三. 说教学目标1.让学生理解二次函数与一元二次方程的关系,理解一元二次方程的解的性质。

2.让学生掌握一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。

3.培养学生利用二次函数和一元二次方程解决实际问题的能力。

四. 说教学重难点1.教学重点:让学生理解二次函数与一元二次方程的关系,掌握一元二次方程的求解方法。

2.教学难点:引导学生理解一元二次方程的根的判别式,以及如何应用一元二次方程解决实际问题。

五. 说教学方法与手段在教学过程中,我会采用讲授法、引导法、讨论法等教学方法,通过多媒体课件、教学实物等教学手段,引导学生理解二次函数与一元二次方程的关系,掌握一元二次方程的求解方法。

六. 说教学过程1.导入:通过复习二次函数的图像和性质,引导学生理解二次函数与一元二次方程的关系。

2.讲解:讲解一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。

3.应用:通过实际问题,让学生应用所学的知识,解决实际问题。

2024北师大版数学九年级下册2.5.1《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.1《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.1《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版数学九年级下册第2.5.1节的内容。

本节内容是在学生已经掌握了二次函数的图像和性质的基础上,引出一元二次方程,并通过解决实际问题,让学生了解一元二次方程的解法及其应用。

教材通过生活中的实例,引导学生探究一元二次方程的解法,培养学生的数学思维能力和解决问题的能力。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识和图像,对于一元二次方程也有了一定的了解。

但是,学生在解决实际问题时,往往会因为对概念理解不深而产生困惑。

因此,在教学过程中,教师需要帮助学生深化对二次函数和一元二次方程的理解,提高他们解决实际问题的能力。

三. 教学目标1.知识与技能:使学生掌握一元二次方程的解法,并能应用于实际问题。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:一元二次方程的解法及其应用。

2.难点:如何将实际问题转化为数学模型,并运用一元二次方程解决。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生自主探究,合作解决实际问题,从而提高学生的数学素养。

六. 教学准备1.教材、教案、课件。

2.相关实际问题素材。

3.投影仪、白板等教学设备。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,例如:“某商品打8折后的售价为120元,请问原价是多少?”让学生思考并尝试解决。

2.呈现(10分钟)教师引导学生将实际问题转化为数学模型,呈现出一元二次方程的形式。

例如,设商品原价为x元,则打8折后的售价为0.8x,根据题意可得方程0.8x = 120。

3.操练(10分钟)教师引导学生运用一元二次方程的解法求解问题。

首先,让学生回忆二次函数的图像和性质,然后引导学生利用“开平方法”求解方程。

九年级数学下册 2.5 二次函数与一元二次方程课时教案 北师大版(2021学年)

九年级数学下册 2.5 二次函数与一元二次方程课时教案 北师大版(2021学年)

九年级数学下册2.5 二次函数与一元二次方程课时教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册 2.5 二次函数与一元二次方程课时教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册2.5 二次函数与一元二次方程课时教案(新版)北师大版的全部内容。

2.5二次函数与一元二次方程一、教学目标1。

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实数根、两个相等的实数根和没有实数根。

3.理解一元二次方程的根就是二次函数与x轴交点的横坐标。

二、课时安排1课时三、教学重点理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实数根、两个相等的实数根和没有实数根.四、教学难点理解一元二次方程的根就是二次函数与x轴交点的横坐标.五、教学过程(一)导入新课1。

一元二次方程ax2+bx+c=0 的求根公式是什么?2.解下列一元二次方程:(1)x2+2x=0(2)x2-2x+1=0 (3)x2-2x+2=0.(二)讲授新课活动1:小组合作探究1:我们已经知道,竖直上抛物体的高度h (m)与运动时间t(s)的关系可以用公式h=-5t 2+v 0t +h 0 表示,其中h 0 (m)是抛出点距地面的高度,v 0 (m/s)是抛出时的速度.一个小球从地面被以40 m/s 的速度竖直向上抛起,小球的高度h (m)与运动时间t(s)的关系如图所示,那么(1)h与t 的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴交流。

初中数学《二次函数与一元二次方程》教案

初中数学《二次函数与一元二次方程》教案

教学设计如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x 轴交点情况判断下列函数的图象与x 只有一个交点的是( )A .y =x 2+2x -3B .y =x 2+2x +3C .y =x 2-2x +3D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点,故选D.【类型二】利用二次函数图象与x 轴交点坐标确定抛物线的对称轴如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x 轴交点情况确定字母取值范围若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-2解析:若m ≠0,二次函数与x 轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m =0,原函数是一次函数,图象与x 轴也有一个交点.由(m +2)2-4m (12m +1)=0,解得m =2或-2,当m =0时原函数是一次函数,图象与x 轴有一个交点,所以当m =0,2或-2时,图象与x 轴只有一个交点.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.。

九年级数学北师大版初三下册--第二单元2.5《二次函数与一元二次方程(第一课时)》课件

九年级数学北师大版初三下册--第二单元2.5《二次函数与一元二次方程(第一课时)》课件
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元
二次方程ax2+bx+h=15时,20t-5t2=15, t2-4t+3=0,
t1=1,t2=3. 当球飞行1s和3s时,它的高度为15m. (2)当h=20时,20t-5t2=20,
t2-4t+4=0, t1=t2=2. 当球飞行2s时,它的高度为20m. (3)当h=20.5时,20t-5t2=20.5, t2-4t+4.1=0, 因为(-4)2-4×4.1<0,所以方程无实根. 故球的飞行高度达不到20.5m.
(来自《教材》)
解:(1)函数h=-4.9t2+19.6t 的图象如图. (2)当t=1时,h=-4.9+19.6=14.7; 当t=2时,h=-4.9×4+19.6×2=19.6.
知1-练
(来自《教材》)
知1-练
(3)方程-4.9t2+19.6t=0的根的实际意义是当足球距
地面的高度为0 m时经过的时间;
的部分对应值如下表: x -1 0 1 3 y -3 1 3 1
下列结论:①抛物线的开口向下;②其图象的对
称轴为直线x=1;③当x<1时,函数值y随x的增
大而增大;④方程ax2+bx+c=0有一个根大于4,
其中正确的结论有( B )
A.1个 B.2个 C.3个
D.4个
1 知识小结

九年级数学下册 2.5.2 二次函数与一元二次方程教案 北师大版(2021学年)

九年级数学下册 2.5.2 二次函数与一元二次方程教案 北师大版(2021学年)

九年级数学下册2.5.2 二次函数与一元二次方程教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册2.5.2 二次函数与一元二次方程教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册2.5.2 二次函数与一元二次方程教案(新版)北师大版的全部内容。

课题:2。

5.2二次函数与一元二次方程教学目标:1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.让学生体验一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c与直线y=h (h是实数)图象交点的横坐标的探索过程,掌握用图象交点的方法求一元二次方程ax2+bx+c =h的近似根.3.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

教学重点与难点:重点:1。

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.经历用图象法求一元二次方程的近似根的过程。

难点:利用二次函数的图象求一元二次方程的近似根并且估算。

教学过程:一、复习回顾,开辟道路二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?1.若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数y=ax2+bx+c的图象与x轴交点坐标是.2.抛物线y=0。

5x2—x+3与x轴的交点情况是()A 、两个交点B 、一个交点 C、没有交点 D 、画出图象后才能说明3.不画图象,求抛物线y =x 2—x -6与x 轴交点坐标.处理方式:以问题的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.设计意图:这一环节属于课前热身训练准备利用5分钟时间让学生尽快进入到学习新知识的准备中来.问题(1)(2)是对上节课知识内容的复习,考察学生对二次函数与一元二次方程关系的理解是否准确。

二次函数与一元二次方程教案

二次函数与一元二次方程教案

二次函数与一元二次方程教案一、教学目标1.了解二次函数的概念及其图像特征;2.掌握求解一元二次方程的方法;3.培养学生的数学思维能力和解决实际问题的能力。

二、教学重点1.二次函数的概念及其图像特征;2.一元二次方程的求解方法。

三、教学难点1.理解二次函数的图像特征;2.掌握一元二次方程的求解方法。

四、教学过程1.导入新课通过例子引入二次函数的概念。

例如,以小明向上抛掷物体为例,让学生思考物体的运动轨迹是什么样的。

引导学生发现物体的运动轨迹是抛物线形状的,然后向学生提问:你们认为这个抛物线的形状可以用数学函数来表示吗?2.学习二次函数的概念及其图像特征(1)引导学生观察二次函数的图像特征,即开口方向、顶点坐标、对称轴等。

(2)通过给出一元二次方程的一些实例让学生归纳和总结出二次函数的一般形式y=ax^2+bx+c,并解释其中的含义。

(3)通过练习题巩固学生对二次函数的了解。

3.一元二次方程的求解(1)介绍一元二次方程的一般形式:ax^2+bx+c=0,其中a、b、c是已知的实数,且a≠0。

(2)通过实例引导学生掌握用配方法求解一元二次方程的方法。

(3)再通过实例引导学生掌握用公式法求解一元二次方程的方法。

(4)通过练习题巩固学生对一元二次方程求解的方法。

4.拓展应用通过一些实际问题,例如求抛物线与坐标轴的交点、求最值等问题,让学生应用所学的知识解决问题。

五、课堂小结总结本节课学到的知识要点,强调二次函数与一元二次方程的联系与应用。

六、作业布置布置课后作业,巩固所学知识。

七、板书设计二次函数与一元二次方程教学大纲八、教学反思本节课通过引入实际问题,让学生从直观上感受到二次函数的概念及其图像特征。

通过实例让学生掌握一元二次方程的求解方法,并拓展了应用环节,培养了学生的应用能力。

但在课堂上需要更多的时间让学生思考和发现,提高他们的参与度。

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版数学九年级下册第2.5.2节的内容。

本节课的内容包括:了解二次函数与一元二次方程的关系,掌握一元二次方程的解法,以及运用二次函数的性质解决实际问题。

教材通过实例引导学生探究二次函数与一元二次方程之间的联系,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图象与性质,以及一元二次方程的基本知识。

但部分学生对于如何运用二次函数的性质解决实际问题还不够熟练。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们通过自主学习、合作探讨,提高解决问题的能力。

三. 教学目标1.知识与技能:理解二次函数与一元二次方程的关系,掌握一元二次方程的解法,能运用二次函数的性质解决实际问题。

2.过程与方法:通过探究、合作、交流,培养学生的抽象思维能力和问题解决能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 教学重难点1.重点:二次函数与一元二次方程的关系,一元二次方程的解法。

2.难点:如何运用二次函数的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引入,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究,发现规律。

3.合作学习法:鼓励学生相互讨论,共同解决问题。

4.实践教学法:让学生在实际问题中运用所学知识,提高解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示二次函数与一元二次方程的关系及解法。

2.实例:准备一些实际问题,用于引导学生运用二次函数的性质解决实际问题。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一个实际问题:某商场举行打折活动,某商品原价为800元,打八折后售价为多少?引导学生思考如何用数学知识解决这个问题。

2.呈现(10分钟)展示商品打折问题,引导学生列出相应的二次函数和一元二次方程。

北师大版数学九年级下册 二次函数与一元二次方程的关系教案与反思

北师大版数学九年级下册 二次函数与一元二次方程的关系教案与反思

5 二次函数与一元二次方程知己知彼,百战不殆。

《孙子兵法·谋攻》原创不容易,【关注】店铺,不迷路!第1课时二次函数与一元二次方程的关系【知识与技能】1.体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法.2.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图象特征.【过程与方法】经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想.【情感态度】培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质.【教学重点】经历“类比—观察—发现—归纳”而得出二次函数与一元二次方程的关系的探索过程.【教学难点】准确理解二次函数与一元二次方程的关系.一、情景导入,初步认知我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数Y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.【教学说明】让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生形成解决一类问题的通用方法的思维品质.二、思考探究,获取新知探究:画出y=x2+2x、y=x2-2x+1、y=x2-2x+2的图象,观察并解答:1.每个图象与x轴有几个交点?2.一元二次方程x2+2x=0、x2-2x+1=0、x2-2+2=有几个根?用判别式验证.3.函数y=ax2+bx+c的图象与x轴交点坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】引起学生的认知冲突,激发学生的求知欲望,大胆猜想,通过交流寻求解决类似问题的方法.【归纳结论】二次函数y=ax2+bx+c的图象与x轴交点有三种情况:有两个交点、一个交点、没有交点.当二次函数y=ax2+x+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、运用新知,深化理解1.知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=-1,x2=3C.2a-b=0D.当x>0时,y随x的增大而减小解析:根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断:A.∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故选项错误;B.∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C.∵抛物线对称轴为x=1,∴2a+b=0,故本选项错误;D.∵抛物线对称轴为x=1,开口向下,∴当x>1时y随x的增大而减小,故本选项错误.答案:B.2.如图,已知二次函数y=ax2+bx+c的部分图象,由象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=()A.-1.6B.3.2C.4.4D.以上都不对解析:根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图形和已知条件即可求出x2:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图形,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的个根分别是x1,x2那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.答案:C.3.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.8<x<9B.9<x<10C.10<x<11D.11<x<12解析:根据表格知道8<x<12,y随x的增大而增大,而-0.38<0<1.2,由此即可推方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围:依题意得当8<x<12,y随x的增大而增大,而-0.38<0<1.2,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是10<x<11.答案:C.【教学说明】学生独立完成3个小题,小组交流所做结果,练习巩固,加深理解.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表迸行总结,教师作以补充.1.布置作业:教材“习题2.10”中第2、3、4题.2.完成练习册中本课时的练习.本节课主要是向学生渗透两种思想:函数与方程互相转化的思想;数形结合思想.三种题型:函数图象与x轴交点的横坐标、方程根的个数、函数图象的交点坐标.【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。

北师大版九年级下册2.5二次函数与一元二次方程(教案)

北师大版九年级下册2.5二次函数与一元二次方程(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数与一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:抛物线形状的物体运动轨迹问题,通过建立二次函数模型,利用顶点式确定物体的最高点或最低点。
2.教学难点
-理解二次函数图像与一元二次方程根的对应关系:对于初学者来说,图像与方程之间的抽象关系较难理解。
-突破方法:通过图形演示和实际操作,如绘制函数图像,让学生观察和总结图像与方程根的关系。
-二次函数顶点式的推导和运用:顶点式的推导涉及代数变换,学生可能会在此过程中感到困惑。
5.激发数学探究精神:引导学生主动探究二次函数与一元二次方程的内在联系,培养学生勇于探索、积极创新的数学精神。
三、教学难点与重点
1.教学重点
-理解二次函数与一元二次方程之间的关系:重点讲解二次函数图像上点的坐标特征与一元二次方程根之间的联系,强调图像的几何意义。
-举例:通过具体函数y = ax^2 + bx + c的图像,说明当y = 0时,方程ax^2 + bx + c = 0的解即为图像与x轴交点的横坐标。
-掌握二次函数顶点式的形式及其推导过程:让学生掌握二次函数y = a(x - h)^2 + k的顶点坐标(h, k)和开口方向与系数a的关系。
-举例:通过变换一般式y = ax^2 + bx + c到顶点式,展示顶点的求解方法,并解释顶点在图像上的位置和意义。

北师版九年级数学下册2.5 第1课时 二次函数与一元二次方程2教案与反思

北师版九年级数学下册2.5 第1课时 二次函数与一元二次方程2教案与反思

2.5 二次函数与一元二次方程原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!古之学者必严其师,师严然后道尊。

欧阳修
第1课时二次函数与一元二次方程
说明由.
; 322++=x x y ; 432
1
2-+-=x x y
2、证明:抛物线y=x2-(2p-1)x+p2-p 与x 轴必有两个不同的交点。

3.如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、点B (3,0)和点C (0,-3),一次函数的图象抛物线交于B 、C 两点.⑴求一次函数与二次函数的解析式
(2)根据图象:当自变量x 时,一次函数值大于二次函数值.
【素材积累】
你可以选择这样的 三心二意 :信心、恒心、决心;创意、乐意。

摘一个崇高的目的支持下,不停地工作,即使慢,也一定会获得成功。

大部分人往往对已经失去的机遇捶胸顿足,却对眼前的机遇熟视无睹。

这个世界不符合所有人的梦想、只是有人学会遗忘,有人却一直坚持。

如果你盼望明天,那必须先脚踏现实;如
1 -1 -3 3
x
y
O A
B
C
果你希望辉煌,那么你须脚不停步。

北师大版九年级数学下册:2.5《二次函数与一元二次方程》教学设计

北师大版九年级数学下册:2.5《二次函数与一元二次方程》教学设计

北师大版九年级数学下册:2.5《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版九年级数学下册第2.5节的内容。

这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生了解二次函数与一元二次方程之间的关系,以及如何利用二次函数的性质来解决一元二次方程的问题。

教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的图像和性质有一定的了解。

但是,对于如何将二次函数与一元二次方程联系起来,以及如何运用二次函数的性质来解决实际问题,部分学生可能还存在一定的困惑。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。

三. 教学目标1.理解二次函数与一元二次方程之间的关系。

2.学会利用二次函数的性质来解决一元二次方程的问题。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二次函数与一元二次方程之间的关系。

2.如何利用二次函数的性质来解决一元二次方程的问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数与一元二次方程之间的关系。

2.通过例题和练习题,让学生在实践中掌握利用二次函数的性质解决一元二次方程的方法。

3.采用分组讨论和合作交流的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备相关的练习题和答案。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“某商品的原价为200元,商家进行打折促销,折扣率为x(0≤x≤1),求打折后的价格。

”让学生思考如何用数学模型来表示这个问题。

2.呈现(10分钟)呈现二次函数的一般形式:y=ax^2+bx+c(a≠0),并引导学生回顾二次函数的图像和性质。

3.操练(10分钟)让学生尝试将实际问题转化为二次函数模型,并利用二次函数的性质来解决问题。

2.1 二次函数(教案)-北师大版数九年级下册

2.1 二次函数(教案)-北师大版数九年级下册

第1节二次函数1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.【重点】1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.【难点】列二次函数关系式表示简单变量之间的关系,并能利用尝试求值的方法解决实际问题.【教师准备】多媒体课件.【学生准备】复习正比例函数、一次函数、反比例函数等函数的相关概念.导入一:课件出示:观察下面的函数关系式:(1)y=2x+5;(2)y=x2+5.这两个函数关系式有什么相同点和不同点?【师生活动】复习正比例函数、一次函数、反比例函数等函数的相关概念.【学生活动】学生独立思考后小组交流,观察新函数的特征,尝试给新函数下定义.[设计意图]通过与一次函数的对比,让学生初步感知二次函数的特征,让学生类比一次函数的概念构建出二次函数的概念.导入二:课件出示:赵州桥,又称大石桥、安济桥,是位于河北省赵县城南五里洨河上的一座石拱桥,是我国古代石拱桥的杰出代表,其设计者是隋代杰出的工匠李春,建造于公元605年.赵州桥的设计构思和工艺的精巧,在我国古桥中是首屈一指的,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中期才出现,比我国晚了一千二百多年,赵州桥的雕刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品.问题请同学们观察赵州桥的桥拱的形状,它的形状可以近似地看成一种函数图象,这和我们之前所学的函数图象一样吗?[设计意图]通过视频,让学生再次了解赵州桥,在对学生进行爱国主义教育的同时,引出本节课的课题,激发了学生的好奇心和探求新知的欲望.结合课本给出的引例、做一做和想一想中的问题,设出未知数,列出关于x的函数关系式.课件出示:【引例】某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.师要求同学们认真分析题目,回答以下问题:(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.【学生活动】独立思考,代表回答:(1)自变量:橙子树的棵数、橙子树之间的距离、橙子树接受阳光的多少等;因变量:橙子的个数、橙子的质量等.(2)如果设果园增种x棵橙子树,那么果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.(3)果园橙子的总产量y与x之间的关系式为y=(x+100)(600-5x)=-5x2+100x+60000.【师生活动】观察关系式y=-5x2+100x+60000中的y是不是x的函数,并对比所学的函数,感受它们的相同点和不同点:根据函数的定义,y是x的函数,自变量x的最高次数是2,所以通过类比,猜想此函数为二次函数.[设计意图]利用学生熟悉的身边情境,小梯度地设计问题,逐步引导学生分析题目,列出关系式,提高学生分析问题的能力,同时培养学生的建模能力.设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y (元)的表达式.【师生活动】师生共同回忆与存款有关的知识:1.银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.2.利息=本金×利率×期数(时间).3.本息和=本金+利息.【学生活动】根据上面的提示,独立完成后,小组交流,得出关系式,代表展示.解:y =100(x +1)2=100x 2+200x +100.观察y =100x 2+200x +100与y =-5x 2+100x +60000的相同点.【学生活动】通过观察,寻找它们的相同点,并与同伴相互交流,统一答案.【教师点评】自变量的最高次数都是2.[设计意图]通过对生活中熟悉情境的分析,让学生初步感知函数的模型思想,尝试归纳二次函问题1已知矩形的周长为40cm ,它的面积可能是100cm 2吗?可能是75cm 2吗?还可能是多少?你能表示这个矩形的面积与其一边长的关系吗?【师生活动】师生先复习一元二次方程及其解法,然后由学生先独立解决,再小组交流,最后代表展示.解:(1)设其中一边长为x cm ,则x =-x 2+20x =100,解得x 1=x 2=10.x =-x 2+20x =75,解得x 1=5,x 2=15.这个矩形的面积与其一边长的关系为S =x =-x 2+20x.【教师点评】只要和为20的两数都可以作为该矩形的长和宽,所以其面积还可以为64,51,36,….问题2两数的和是20,设其中一个数是x ,你能写出这两数之积y 的表达式吗?【学生活动】学生独立解答,同伴交流.解:y =x (20-x )=-x 2+20x.[设计意图]在几何和代数的背景中再次体会函数的模型,为下一步归纳总结二次函数的定义奠定良好的基础.二、二次函数的定义【对比观察】让学生再一次观察三个式子的共同点:(1)y=-5x2+100x+60000;(2)y=100x2+200x+100;(3)y=-x2+20x.【学生活动】观察思考后,小组交流想法,组长发言:共同特点是:①这些式子都是最高次数为2的函数;②表达式右边都是关于x的整式.【教师引导】类比一次函数与反比例函数的表达式,归纳出二次函数的定义及一般形式.【师生总结】二次函数的定义.一般地,若两个变量x,y之间的对应关系可以表示成y=ax2+bx+c(a,b,c是常数,a≠0)的形式,则称y是x的二次函数.【师生活动】探讨a≠0的原因.[设计意图]让学生通过观察、思考、分析等数学活动,从不同实际背景的实例中抽象出二次函数的概念,使之经历概念的形成过程,培养其抽象思维和归纳概括的能力,感受从特殊到一般的数学思想方法,从而突破本节课的难点.[知识拓展]理解二次函数概念的注意事项:①常数a≠0;②自变量x的最高次数为2;③等号的右边是整式;④要确定二次函数的关系式,只要确定a,b,c的值就可以了.【思考】二次函数的表达式y=ax2+bx+c中的a≠0,系数b,c可以等于0吗?【学生活动】学生思考并交流,得出结论:系数b,c可以等于0.【教师点评】1.二次函数的一般形式:y=ax2+bx+c(a≠0,b≠0,c≠0).2.系数a≠0,但是b,c都可以为0.3.二次函数的几种不同表示形式:(1)y=ax2(a≠0,b=0,c=0).(2)y=ax2+c(a≠0,b=0,c≠0).(3)y=ax2+bx(a≠0,b≠0,c=0).(4)一般形式:y=ax2+bx+c(a≠0,b≠0,c≠0).(二)二次函数自变量的取值范围【议一议】本节课的上述问题中,自变量能取哪些值?学生讨论各题的取值范围.【教师点评】自变量的取值范围是函数的一个有机组成部分,今后除了解决最值问题外,一般不刻意讨论自变量的取值范围.[设计意图]通过对二次函数一般形式的了解,进一步加深了学生对二次函数概念的理解,是对数学符号语言应用能力的提升,同时强调了易错点.1.二次函数的概念:形如y=ax2+bx+c(其中a,b,c都是常数,a≠0)的函数.2.理解二次函数概念的注意事项:(1)常数a≠0;(2)自变量x的最高次数为2;(3)等号的右边是整式;(4)要确定二次函数的关系式,只要确定a,b,c的值就可以了.1.(2014·兰州中考)下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+解析:A,y=3x-1是一次函数,故A错误;B,y=ax2+bx+c(a≠0)是二次函数,故B错误;C,s=2t2-2t+1是二次函数,故C正确;D,y=x2+不是二次函数,故D错误.故选C.2.已知二次函数y=1-3x+5x2,则其二次项系数a,一次项系数b,常数项c分别是()A.a=1,b=-3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1D.a=5,b=-3,c=1解析:∵函数y=1-3x+5x2是二次函数,∴a=5,b=-3,c=1.故选D.3.已知二次函数y=x2+3x-5,当x=2时,y=.解析:当x=2时,y=22+3×2-5=4+6-5=10-5=5.故填5.4.(2014·安徽中考)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.解析:∵一月份新产品的研发资金为a元,二月份起,每月新产品的研发资金与上月相比增长率都是x,∴二月份研发资金为a×(1+x),∴三月份的研发资金y=a×(1+x)×(1+x)=a(1+x)2.故填a(1+x)2.1二次函数二次函数的定义:一般地,若两个变量x,y之间的对应关系可以表示成y=ax2+bx+c(a,b,c是常数,a ≠0)的形式,则称y是x的二次函数.一、教材作业【必做题】1.教材第30页随堂练习第1,2题.2.教材第30页习题2.1第1,2题.【选做题】教材第31页习题2.1第3,4题.二、课后作业【基础巩固】1.已知函数:①y=3x-1;②y=3x2-1;③y=3x3+2x2;④y=2x2-2x+1.其中二次函数的个数为()A.1B.2C.3D.42.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3B.5C.-3或5D.3或-53.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.4.一个边长为2cm的正方形,将它的边长增加x cm后,增加的面积为y cm2,写出y与x的函数关系式:.5.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,增加赢利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利y元,每件衬衫降价x元,请你写出y与x之间的关系式.【能力提升】6.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品的年产量y 与x的函数关系是()A.y=20(1-x)2B.y=20+2xC.y=20(1+x)2D.y=20+20x2+20x7.已知y=(m-1)是关于x的二次函数,则m的值是.8.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?【拓展探究】9.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y 元,镜子的宽度是x m .(边框厚度忽略不计)(1)求y 与x 之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.【答案与解析】1.B (解析:①y =3x -1为一次函数;②y =3x 2-1为二次函数;③y =3x 3+2x 2自变量最高次数为3,不是二次函数;④y =2x 2-2x +1为二次函数.故是二次函数的有2个.)2.D (解析:根据题意,得x 2+2x -7=8,即x 2+2x -15=0,解得x =3或x =-5.)3.a ≠-1(解析:根据二次函数的定义可得a +1≠0,即a ≠-1.)4.y =x 2+4x (解析:原边长为2cm 的正方形面积为2×2=4(cm 2),边长增加x cm 后边长变为(x +2)cm ,则面积变为(x +2)2cm 2,故y =(x +2)2-4=x 2+4x.)5.解:降价x 元后的销量为(20+2x )件,单件的利润为(40-x )元,故可得利润y =(40-x )(20+2x )=2(40-x )(10+x )=-2x 2+60x +800(0<x <40).6.C (解析:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x 倍,∴一年后产品的年产量是20(1+x ),∴两年后产品的年产量y 与x 的函数关系是y =20(1+x )2.)7.-3(解析:∵y =(m -1)是关于x 的二次函数,∴m 2+2m -1=2,解得m =1或m =-3.∵m -1≠0,∴m ≠1,∴m =-3.故填-3.)8.解:(1)根据一次函数的定义,得m 2-m =0,解得m =0或m =1.又∵m -1≠0,即m ≠1,∴当m =0时,这个函数是一次函数.(2)根据二次函数的定义,得m 2-m ≠0,解得m 1≠0,m 2≠1,∴当m ≠0且m ≠1时,这个函数是二次函数.9.解:(1)y =(2x +2x +x +x )×30+45+2x 2×120=240x 2+180x +45,所以y 与x 之间的关系式为y =240x 2+180x +45.(2)由题意可列方程为240x 2+180x +45=195,整理得8x 2+6x -5=0,即(2x -1)(4x +5)=0,解得x 1=0.5,x 2=-1.25(舍去).∴x =0.5,2x =1.答:镜子的长和宽分别是1m 和0.5m .本节课是二次函数概念的基本认识,知识比较简单,所以学生接受起来比较容易,学生通过自主探究基本上可以掌握本节课的重点知识.本节课的难点是通过实际应用问题认识二次函数的概念,所以在教学时,始终坚持以应用意识为主线,强调观察与思考,分析与归纳.在课堂上,从实际出发提出问题,引导学生从不同的角度分析问题,提出解决方案,并且互相交流,在学习数学的同时培养合作交流的意识.对于少部分基础不太好的学生,进行分层教学,多多引导他们运用类比的思想方法探究二次函数的概念,收到了非常好的效果.对于少部分基础不太好的学生估计不足,对他们的学习状况过于乐观,他们对于函数概念的理解比原来想象的要差,所以在复习回顾这个环节上还应加大力度.要在课前布置复习作业,要求学生复习函数的概念以及正比例函数、一次函数和反比例函数的相关内容,为新课学习做好知识储备.随堂练习(教材第30页)1.解:y=-+3x2与s=1+t+5t2是二次函数.2.解:(1)y=π(1+x)2-π·12=πx2+2πx.(2)当x=1时,y=π·12+2π·1=3π(cm2).当x=时,y=π·()2+2π·=2π(1+)(cm2).当x=2时,y=π·22+2π·2=8π(cm2).习题2.1(教材第30页)1.从左到右依次填:4.9,19.6,44.1,78.4,122.5.2.答案不唯一,如:篮球运动员投篮时,篮球出手后的高度与运行的时间之间是二次函数关系.3.解:(1)根据题意列式为S=2x2+4x(x+0.5)=6x2+2x.(2)y=5(6x2+2x)=30x2+10x.4.解:y=(x-20)t=(x-20)(-3x+70)=-3x2+130x-1400.1.对于本节课知识的学习,学生可以采用自主探究加合作交流的方法,利用“由一般到特殊”的方法去探究新知.2.利用类比一次函数、反比例函数概念的方法得出二次函数的概念及关系式,要重点把握二次函数概念的几个注意事项.在运用二次函数关系式表示数量关系时,要找出题目中的等量关系,这是解决问题的关键.已知函数y=(m2+m).(1)当函数是二次函数时,求m的值;(2)当函数是一次函数时,求m的值.〔解析〕(1)这个函数是二次函数的条件是m2-2m+2=2并且m2+m≠0.(2)这个函数是一次函数的条件是m2-2m+2=1并且m2+m≠0.解:(1)依题意,得m2-2m+2=2,解得m=2或m=0.又m2+m≠0,解得m≠0且m≠-1,因此m=2.(2)依题意,得m2-2m+2=1,解得m1=m2=1.又m2+m≠0,解得m≠0且m≠-1.因此m=1.[解题策略]本题主要考查一次函数与二次函数的定义与一般形式.。

北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1

北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1

北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版九年级数学下册2.5《二次函数与一元二次方程》这一节主要介绍了二次函数与一元二次方程之间的关系。

通过学习,学生能够理解二次函数的图像与一元二次方程的解法,以及如何将一元二次方程转化为二次函数的问题。

教材通过具体的例子和练习题,帮助学生掌握这一知识点。

二. 学情分析九年级的学生已经学习过一次函数和二次函数的基本概念,对函数的图像和解法有一定的了解。

然而,对于二次函数与一元二次方程之间的联系,他们可能还不太清楚。

因此,在教学过程中,我需要通过具体的例子和练习题,帮助学生理解和掌握这一知识点。

三. 说教学目标1.知识与技能目标:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。

2.过程与方法目标:通过观察、分析和解决实际问题,学生能够培养自己的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂讨论,培养自己的合作意识和团队精神,增强对数学学习的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。

2.教学难点:学生能够理解二次函数的图像与一元二次方程的解法之间的联系,能够运用二次函数的知识解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、讨论法和练习法等教学方法。

同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个实际问题,引出二次函数与一元二次方程之间的关系,激发学生的兴趣和好奇心。

2.讲解:通过讲解和示例,引导学生理解和掌握二次函数与一元二次方程之间的关系,以及如何将一元二次方程转化为二次函数的问题。

3.练习:通过课堂练习和小组讨论,巩固学生对二次函数与一元二次方程之间关系的理解,培养学生的思考能力和解决问题的能力。

《二次函数与一元二次方程》第1课时教案

《二次函数与一元二次方程》第1课时教案

《二次函数与一元二次方程》第1课时教案一、学生知识状况分析学生的知识技能基础:学生对一般式和顶点式做了大量的训练,因而从“数”的方面对二次函数有了比较全面的认识,但对交点式仍然停留在感性认识层面,特别是对于从数形结合的这一数学思想来认识二次函数,还没有真正完整的形成。

学生活动经验基础:在以前的数学学习中学生已经经历了一次函数图象应用的学习,对于一次函数和一元一次方程的关系有了较多的认识,因此教学中多采取联想、类比的启发式教学,相信他们会有能力完成好本节新课的学习任务。

二、教学任务分析本节课的教学目标是:知识与技能:1.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及满足什么条件时方程有两个不等的实根,有两个相等的实根和没有实根;过程与方法:1.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.2.理解一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c 与直线y=h(h是实数)图象交点的横坐标。

情感态度与价值观:1.经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系;2.通过探索二次函数与一元二次方程的关系,使学生体会数学的严谨性以及数学结论的确定性。

教学重点:理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及满足什么条件时方程有两个不等的实根,有两个相等的实根和没有实根教学难点:理解一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c 与直线y=h(h是实数)图象交点的横坐标三、教学过程分析第一环节课前热身、耐心填一填活动内容:1. y=ax 2+bx+c (a,b,c 是常数,a ≠0),y 叫做x 的__________。

它的图象是一条抛物线。

它的对称轴是直线x=_____, 顶点坐标是( , )。

2. 二次函数的解析式中的一般式是: y = ax 2 + bx +c (a ≠0)顶点式:y = a(x-h)2 + k 交点式:y =a(x-x 1)(x-x 2)3. 抛物线y = x 2+2x- 4的对称轴是_______, 开口方向是______, 顶点坐标是___________.4. 抛物线y=2(x-2)(x-3) 与x 轴的交点为__________,与y 轴的交点为___________.5. 已知抛物线与轴交于A(-1, 0) 和(1, 0) ,并经过点M(0,1), 则此抛物线的解析式为____________ 。

二次函数与一元二次方程说课稿课件

二次函数与一元二次方程说课稿课件
布置作业:习题2.9 1、2、3
设计思想
• 根据本节内容,采用问题启迪,互动交流的方法来引导学 生探索研究,归纳总结,形成认知结构,培养思维能力。 为此,我以简短的具体问题导入对每一环节都针对性地设 计一些问题,并注意设问的技巧,以便促进学生对概念的 理解和学习能力的提高,同时在设计过程中加强归纳总结, 拓展推广,体现从特殊到一般的哲学思想是研究问题的常 规方法之一,不断地引导学生发现新问题,提出新问题, 激发学生的学习兴趣和求知欲。
为充分发挥学生的主体性和教师的主导辅助作用,教学 过程中设计了六个教学环节:1、创设问题情境,引入新课;2、
活动探究; 3、课堂点睛;4、课堂练习;5、小结思考;6、
作业布置。
教学程序
一、创设问题情境,引入新课
我们学习了一元一次方程kx+b=0(k≠0)和一次 函数y=kx+b(k≠0)后,讨论了它们之间的关 系.当一次函数中的函数值y=0时,一次函数y= kx+b就转化成了一元一次方程kx+b=0,且一次 函数y=kx+b(k≠0)的图象与x轴交点的横坐标即 为一元一次方程kx+b=0的解.
2 抛物线y=0.5x2-x+3与x轴的交点情况是( c )
A 两个交点 B 一个交点 C 没有交点 D 画出图象后才能说明 3 抛物线y=x2-4x+4与轴有 一 个交点,坐标是 (2,0) 。
4 不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。 解:∵解方程x2-3x-4=0得: x1=-1,x2=4 ∴抛物线y=x2-3x-4与x轴的交点坐标是: (-1,0)和(4,0)
北师大版九年级数学下册
一、教材与目标 二、学情与教法 三、教学程序与评价
教材分析
第一课时是在学生对二次函数图象、性质以及一元 二次方程的学习后进行的综合学习。学生已具备了相应 的学习经验,如画二次函数图象、求抛物线与轴的交点、 判别一元二次方程根的情况等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5 二次函数与一元二次方程
第1课时二次函数与一元二次方程
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系;(重点)
2.理解二次函数与x轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根;(重点)
3.通过观察二次函数与x轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.(难点)
一、情境导入
一个涵洞成抛物线形,它的截面如图所示.现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离OC=2.4m.当水位上升一定高度到达点F时,这时,离水面距离CF=1.5m,则涵洞宽ED是多少?是否会超过1m?
根据已知条件,要求ED宽,只要求出FD的长度.在如图所示的直角坐标系中,只要求出点D的横坐标即可.
由已知条件可得到点D的纵坐标,又因为点D在涵洞所成的抛物线上,所以利用抛物线的函数关系式可以进一步算出点D的横坐标.你会求吗?
二、合作探究
探究点一:二次函数与一元二次方程
【类型一】求抛物线与x 轴的交点坐标
已知二次函数y=2x2-4x-6,它的图象与x轴交点的坐标是________________.
解析:y=2x2-4x-6=2(x2-2x-3)=2(x-3)(x+1),设2(x-3)(x+1)=0,解得x1=3,x2=-1,∴它的图象与x轴交点的坐标是(3,0),(-1,0).故答案为(3,0),(-1,0).
方法总结:抛物线与x轴的交点的横坐标,就是二次函数为0时,一元二次方程的解.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型二】判断抛物线与x轴交点的个数
已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有两个交点;
(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.
解析:(1)只需证明Δ=(m+2)2-4m×2≥0即可;(2)利用因式分解法求得抛物线与x轴交点的横坐标,然后根据x的值来求正整数m的值.
(1)证明:∵m≠0,∴Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;
(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,
x2=2
m.当m为正整数1或2时,x2为整数,
即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.
方法总结:解答本题的关键是明确当根的判别式Δ≥0抛物线与x轴有两个交点.变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型三】已知抛物线与x轴的交点个数,求字母系数的取值范围
已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.
解析:应分k-3=0和k-3≠0两种情况进行讨论,(1)当k-3=0即k=3时,此函数是一次函数;(2)当k-3≠0,即k≠3时,此函数是二次函数,根据函数图象与x 轴有交点可知Δ=b2-4ac≥0,求出k的取值范围即可.
解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;
当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.
综上所述,k的取值范围是k≤4.
方法总结:由于k 的取值范围不能确定,所以解决本题的关键是要注意分类讨论,不要漏解.
变式训练:见《学练优》本课时练习“课后巩固提升”第5题
【类型四】二次函数与一元二次方程的判别式、根与系数的关系的综合
已知:抛物线y=x2+ax+a-2.
(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;
(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.
解析:(1)利用关于x的一元二次方程x2+ax+a-2=0的根的判别式的符号进行证明;(2)利用根与系数的关系写出x1、x2的平方和是x21+x22=(x1+x2)2-2x1x2=a2-2a+4=3,由此可以求得a的值.
(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;
(2)解:∵x1+x2=-a,x1·x2=a-2,∴x21+x22=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.
方法总结:判断一元二次方程与x轴的交点,只要看根的判别式的符号即可,而要判断一元二次方程根的情况,要利用根与系数关系.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
探究点二:利用二次函数解决运动中的抛物线问题
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A 在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式;
(2)足球第一次落地点C距守门员多少米(取43=7)?
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米(取26=5)?
解析:要求足球开始飞出到第一次落地时,抛物线的表达式,则需要根据已知条件确定点A和顶点M的坐标,因为OA=1,OB=6,BM=4,所以点A的坐标为(0,1),顶点M的坐标是(6,4).根据顶点式可求得抛物线关系式.因为点C在x轴上,所以要求OC的长,只要把点C的纵坐标y=0代入函数关系式,通过解方程求得OC的长.要计算运动员乙要抢到第二个落点D,他应再向前跑多少米,实际就是求DB的长.求解的方法有多种.
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,
由已知:当x=0时,y=1,即1=36a
+4,所以a=-1
12.
所以函数表达式为y=-1
12(x-6)
2+4
或y=-1
12x
2+x+1;
(2)令y=0,则-1
12(x-6)
2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).
所以足球第一次落地距守门员约13米;
(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).
所以2=-
1
12(x-6)
2+4,解得x1=6-26,x2=6+26,
所以CD=|x1-x2|=46≈10.
所以BD=13-6+10=17(米).
方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
三、板书设计
二次函数与一元二次方程
1.二次函数与一元二次方程
2.利用二次函数解决运动中的抛物线问题
本节课注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得一定的教学效果,再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题.。

相关文档
最新文档