2018最新湘教版八年级下数学教案完整版

合集下载

最新湘教版八年级下数学教案完整版

最新湘教版八年级下数学教案完整版

第一章直角三角形课题第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师教学目的1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、巩固利用添辅助线证明有关几何问题的方法。

教学重点直角三角形斜边上的中线性质定理的应用。

教学难点直角三角形斜边上的中线性质定理的证明思想方法。

教学方法观察、比较、合作、交流、探索.教学课时一个课时教学过程个性化设计一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:练习1、(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。

(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度。

(2)找到斜边的中点,用字母D 表示。

(3)画出斜边上的中线。

(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

湘教版数学八年级下册第二章《四边形》教学设计

湘教版数学八年级下册第二章《四边形》教学设计

湘教版数学八年级下册第二章《四边形》教学设计一. 教材分析湘教版数学八年级下册第二章《四边形》是学生在学习了平面几何基本概念和图形的基础上,进一步研究四边形的基本性质和判定。

本章内容包括四边形的定义、分类、性质、判定以及四边形的不稳定性等。

通过本章的学习,使学生掌握四边形的基本知识,提高他们的空间想象能力和逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。

但学生在学习过程中,可能会对四边形的判定和性质理解不够深入,需要教师在教学过程中进行引导和启发。

同时,学生对于实际生活中的四边形实例认识较少,需要教师通过举例和操作使学生更好地理解四边形的应用。

三. 教学目标1.了解四边形的定义、分类和性质,掌握四边形的判定方法。

2.培养学生的空间想象能力和逻辑思维能力。

3.能够运用四边形的知识解决实际问题,提高学生的应用能力。

四. 教学重难点1.四边形的定义和分类。

2.四边形的性质和判定。

3.四边形在实际生活中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究四边形的性质和判定。

2.利用多媒体和实物模型,直观展示四边形的形状和特点。

3.采用合作学习法,让学生在小组内讨论和分享学习心得。

4.结合实际生活中的实例,让学生感受四边形在生活中的应用。

六. 教学准备1.多媒体教学设备。

2.四边形实物模型和图片。

3.教学课件和教案。

4.练习题和测试题。

七. 教学过程1.导入(5分钟)教师通过多媒体展示四边形的实物图片,引导学生回顾平面几何的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师讲解四边形的定义、分类和性质,让学生初步了解四边形的基本知识。

3.操练(15分钟)教师提出问题,让学生结合教材示例,独立或小组合作探究四边形的判定方法。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师布置练习题,让学生运用所学知识解决问题。

教师选取部分学生的作业进行讲评,指出错误并提出改进意见。

湘教版数学八年级下册《1.3 直角三角形全等的判定》教学设计

湘教版数学八年级下册《1.3 直角三角形全等的判定》教学设计

湘教版数学八年级下册《1.3 直角三角形全等的判定》教学设计一. 教材分析《1.3 直角三角形全等的判定》是湘教版数学八年级下册的教学内容。

本节内容主要介绍了直角三角形全等的判定方法,包括HL,ASA,AAS,SAS四种判定方法。

通过学习,学生能够熟练掌握直角三角形全等的判定方法,并能够运用到实际问题中。

二. 学情分析学生在学习本节内容前,已经学习了全等图形的概念,并掌握了全等三角形的判定方法。

但是,对于直角三角形全等的判定,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要引导学生将全等的判定方法与直角三角形的特点相结合,帮助学生理解和掌握直角三角形全等的判定方法。

三. 教学目标1.了解直角三角形全等的判定方法,能够熟练运用到实际问题中。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生对数学的兴趣,提高学生的学习积极性。

四. 教学重难点1.教学重点:直角三角形全等的判定方法。

2.教学难点:如何将全等的判定方法与直角三角形的特点相结合。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的判定方法。

2.利用几何画板等教学工具,直观展示直角三角形全等的判定过程。

3.学生进行小组讨论,培养学生的合作能力和沟通能力。

4.通过举例和练习,巩固学生对直角三角形全等判定方法的掌握。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备几何画板等教学工具。

3.准备练习题和拓展题。

七. 教学过程1.导入(5分钟)利用几何画板展示一个直角三角形,引导学生观察和思考直角三角形全等的特点。

2.呈现(10分钟)介绍直角三角形全等的四种判定方法:HL,ASA,AAS,SAS。

并通过几何画板展示判定过程,让学生直观地理解直角三角形全等的判定方法。

3.操练(10分钟)学生进行小组讨论,让学生结合直角三角形的特点,运用所学的判定方法判断两个直角三角形是否全等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一组练习题,让学生独立完成。

湘教版八年级下册数学教案

湘教版八年级下册数学教案

湘教版八年级下册数学教案教学目标:1. 教学目标确定的科目范围应与学生研究情况密切相关,符合年级水平要求和教育部门颁布的教学标准。

本教案按照《数学课程标准》及考试要求编写,力求达到以下目标:2. 知识目标:学生能够掌握本学期重点内容,对数学知识有一定的了解和掌握。

3. 能力目标:发展学生的计算能力、逻辑思维能力、创新能力和研究能力等,提高数学应用能力与解决实际生活问题的能力。

4. 情感目标:培养学生的兴趣和信心,使他们能够主动积极地参与数学研究。

同时,通过探究和创新,优化教学方法和手段,提高教学质量。

教学重点:1. 知识重点:重点讲解本学期各章节中的重点知识,如初中数学常用基本图形的性质,线性函数及其绘图方法等。

2. 能力重点:通过展示典型问题、实例探究等方式,引导学生利用数学方法解决问题,提高运用数学知识解决实际问题的能力。

教学难点:1. 难点一:线性方程组及其解法。

通过理论知识、例题演示、练,逐步解决学生难以掌握的问题,提高数学研究效果。

2. 难点二:函数的概念和性质。

通过表格、图形展示等方式引导学生深入理解函数,逐步形成基本的数学思维方式。

教学方法:本教案重视知识点之间的联系和整体把握,强调教师的导入与思路表达,通过多种教学方法,如讲授、演示、练、探究等,提高学生对数学知识的理解和掌握。

教学内容:本教案重点围绕初中数学中的基础知识和重点难点展开教学,旨在打好基础、加强训练、提高能力。

整个教学过程分为以下几个阶段:1. 数学基础训练1.1 “整式的加减乘除”讲解1.2 “算术基本定理和质因数分解”讲解2. 几何图形的认识和性质2.1 “初中数学常用基本图形的性质”讲解2.2 “平面直角坐标系”讲解3. 等式、等式方程、异中方程和一元一次方程的初步研究3.1 “初中数学中的等式和等式方程”讲解3.2 “初中数学中的一元一次方程及其解的判定”讲解4. 线性函数4.1 “初中数学中的函数”讲解4.2 “线性函数的概念、性质及其解法”讲解5. 解直角三角形实例实施方案:本课程计划实施10周,每周安排8个课时。

湘教版数学八年级下册教案

湘教版数学八年级下册教案

湘教版数学八年级下册教案教案标题:湘教版数学八年级下册教案教案目标:1. 熟悉湘教版数学八年级下册的教学内容和要求。

2. 设计符合教学目标和学生特点的教学活动和评估方式。

3. 提供教师在教学过程中的指导和建议。

教学内容概述:湘教版数学八年级下册的教学内容主要包括:直线与角、平行线与相交线、三角形、相似三角形、勾股定理、平面镶嵌、统计与概率等。

教学建议和指导:1. 教学活动设计:a. 引入新知识:可以通过提问、展示实物或图片等方式激发学生的兴趣,引起他们对新知识的好奇心。

b. 概念讲解:在讲解概念时,要注重与学生的实际生活联系,给予具体的例子,帮助学生更好地理解和记忆。

c. 练习与巩固:在讲解完概念后,设计一些练习题,让学生进行巩固和运用,可以分小组合作完成,激发学生的积极性。

d. 拓展与应用:在学生掌握基本知识后,可以设计一些拓展性的问题或应用题,让学生运用所学知识解决实际问题,培养他们的思维能力和创新意识。

2. 教学评估方式:a. 成绩评估:可以通过课堂练习、小测验、作业等方式对学生的学习情况进行评估,及时发现问题并给予指导。

b. 参与评估:可以评估学生在课堂上的积极参与程度,包括回答问题、合作学习、展示作品等。

c. 思维评估:可以通过设计一些思维性的问题或开放性的任务,评估学生的思维能力和解决问题的能力。

3. 教学指导:a. 理解学生特点:充分了解学生的认知水平、学习兴趣和学习习惯,因材施教,帮助学生更好地理解和掌握知识。

b. 引导学生思考:在教学过程中,引导学生思考问题,培养他们的分析和解决问题的能力,激发他们的学习兴趣。

c. 多样化教学方法:根据不同的教学内容和学生特点,采用多种教学方法,如讲解、示范、讨论、实验等,提高教学效果。

d. 反馈与调整:及时了解学生的学习情况,根据学生的反馈和表现,调整教学方法和策略,帮助学生更好地学习。

通过以上的教案建议和指导,希望能够帮助您设计出符合教学目标和学生特点的湘教版数学八年级下册的教案,提高教学效果,促进学生的学习进步。

2018年最新湘教版八年级下数学全册教案

2018年最新湘教版八年级下数学全册教案
(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边 所对的角为 30° . 难点:
1. 性质定理的证明方法 . 2. 性质定理及其推论在解题中的应用 . 讲一讲 例 1:已知,Rt△ ABC中,∠ ACB=90°,AB=8cm,D 为 AB中点,DE⊥AC于 E, ∠A=30°,求 BC, CD和 DE的长 分析:由 30°的锐角所对的直角边为斜边的一半, BC可求,由直角三角形 斜边中线的性质可求 CD. 在 Rt△ADE中,有∠ A=30°,则 DE可求 . 解:在 Rt△ ABC中
1
BC AB
∵∠ ACB=90∠A=30°∴
2
∵AB=8 ∴ BC=4 ∵D为 AB中点, CD为中线
1
CD AB 4

2
∵DE⊥AC,∴∠ AED=90°
1
1
DE AD AD AB
在 Rt△ADE中,
2,
2
1
DE AB 2

4
例 2:已知:△ ABC中,AB=AC=BC(△ ABC为等边三角形) D为 BC边上的中 点,
数学思维与交流活动。
教学重点:直角三角形斜边上的中线性质定理的推导与应用。
教学难点:?操作—探究—讨论—交流—讲评 ?得出直角三角形斜边上的中线性
质定理。




一、教学引入 1、三角形的内角和是多少度。学生回答。 2、 什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举
例说明。 3、 等腰三角形有哪些性质?
之间的关系,故可求题目中的角度,利用角度相等得证 . 证明:作 DF⊥BC于 F,AE⊥BC于 E ∵△ BDC中,∠ BDC=9°0 , BD=CD

湘教版八年级数学下册教案及反思

湘教版八年级数学下册教案及反思

湘教版八年级数学下册教案及反思全文共5篇示例,供读者参考湘教版八年级数学下册教案及反思篇1一、指导思想坚持教育科学的发展观,积极贯彻执行教育局和学校提出的具体目标和要求,全面贯彻落实教育方针,以学生为本,以学生的终身发展为目标,全面深入贯彻和落实素质教育,构建高效课堂。

配合学校达成“安全校园”和“家长满意学校”的办学愿望。

积极深入探索“分组合作”学习方式,关爱学生,平等对待学生,放眼于学生终身能力培养,把学生培养成适应未来社会发展的有用的栋梁之材。

通过数学课的教学,使学生学习现代科技所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,合作探究能力,以及分析问题和解决问题的能力。

二、教材分析本学期的教学内容共计五章:第十二章数的开方由平方根和立方根开始,进而学习实数的相关知识。

第十三章整式的整除主要介绍了幂运算、整式的乘法和除法、乘法公式、因式分解几个基本的运算,主要培养和提高学生的运算能力。

第十四章勾股定理主要探索勾股定理及其应用,以培养学生的形象思维、模型的建立为主。

第十五章平移与旋转主要介绍了图形的基本变换,让学生在实际操作中探索总结规律。

第十六章平行四边形的认识介绍了平行四边形的性质特征以及几类特殊的平行四边形,使学生对几何学有了初步的认识。

三、教学目标落实通过三维目标(知识与技能目标、过程与方法(数学思考与解决问题)目标、情感与态度目标)的落实最终实现能力的培养。

钻研教材,突破重点、难点,抓住关键,深入了解学生,激发学生积极性,因人而宜,制定课堂上有效的辅导、教学方案,使课堂教学更生动有趣,使学生参与到数学活动中来。

四、教学常规落实严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习,团结协作。

精心备课,备教材备学生,密切生活实际和学生实际,整合教学资源,运用好多媒体教学,利用一切可以利用的有利因素,为教学服务。

上好每一节课,根据学生实际合理利用教学资源,上好每一节课。

湘教版八年级数学下册全册教案

湘教版八年级数学下册全册教案

湘教版八年级数学下全教案
第1章因式分解
一、背景介绍
因式分解的教学是在整式四那么运算的基础上进行的,因式分解方式的理论依据确实是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解关于代数知识的后续学习,具有相当重要的意义。

二、教学目标
认知目标
一、了解因式分解的意义;
二、明白得因式分解与多项式乘法的彼此关系;
3、初步了解,运用因式分解的提取公因式法和运用公式法。

能力目标
1、通过对因式分解与多项式乘法的关系的明白得,克服学生的思维定势,培育学生的
观看、发觉、对比、化归、归纳和他们的逆向思维能力;
2、在彼此交流的进程中,养成学生表述、抽象、类比、总结的思维适应,初步培育学
生在探讨和归纳新知识的进程中进行合情推理的能力.
情感目标
一、让学生体验数学学习活动中的成功与欢乐,增强他们的求知欲和学好数学的自信心;
2、感受多项式乘法与因式分解之间的对立统一观点,从而向学生渗透辩证唯物主义的
熟悉论的思想,引导学生树立科学的人一辈子观和价值观;
三、教学重点与难点
重点是因式分解的概念及提取公因式法、公式法的运用,难点是明白得因式分解与多项式乘法的彼此关系,并运用它们之间的彼此关系寻求因式分解的方式。

●课时安排
7课时
第一课时
●课题。

【新湘教】初二数学下册【全册教案】

【新湘教】初二数学下册【全册教案】

1.1直角三角形的性质(一)编写时间:年月日执行时间:年月日总序第个教案【教学目标】:1、掌握“直角三角形的两个锐角互余”定理。

2、巩固利用添辅助线证明有关几何问题的方法。

【教学重点】:直角三角形斜边上的中线性质定理的应用。

【教学难点】:直角三角形斜边上的中线性质定理的证明思想方法。

【教学方法】观察、比较、合作、交流、探索.【教学过程】:引入复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 如图,在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?三、巩固训练:练习3 :在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习4:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB (2)∠EBD=∠EDB (3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。

如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理?1、直角三角形的两个锐角互余?五、课后反思:3.5直角三角形的性质(二)编写时间: 年 月 日 执行时间: 年 月 日 总序第 个教案 一、【教学目标】:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

湘教版八年级数学下册教案(全套)

湘教版八年级数学下册教案(全套)
3.第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式.直到每个多项式因式都不能分解为止.
Ⅴ.课后作业
八年级下册数学教案
教学课题
1.3公式法(第课时)




知识与技能:
过程与方法:
情感与价值观:
用完全平方公式分解因式
1.理解完全平方公式的特点.
2.能较熟悉地运用完全平方公式分解因式.
[师]能不能用语言叙述呢?
[生]能.两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.
问题2其实就是完全平方公式的符号表示.即:a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.
[师]今天我们就来研究用完全平方公式分解因式.
Ⅱ.导入新课
出示投影片
下列各式是不是完全平方式?
出示投影片
[做下列填空题的作用在于训练学生迅速地把一个单项式写成平方的形式. 也可以对积的乘方、幂的乘方运算法则给予一定时间的复习,避免出现4a2=(4a)2这一类错误]
填空:
(1)4a2=()2;
(2) b2=()2;
(3)0.16a4=()2;
(4)1.21a2b2=()2;
(5)2 x4=()2;
3.会用提公因式、完全平方公式分解因式,并能说出提公因式在这类因式分解中的作用.
4.能灵活应用提公因式法、公式法分解因式.
通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.
教学重点难点
用完全平方公式分解因式.
灵活应用公式分解因式.
教 学 程 序
a2-b2=(a+b)(a-b).

2018湘教版八年级数学(下册)教学计划

2018湘教版八年级数学(下册)教学计划

2018湘教版八年级数学(下册)教学计划 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2018年八年级数学教学计划一、基本情况分析我现担任的是八年级的数学,该班学生的成绩中下较多,但真正拔尖的基本没有,学生非常活跃,有个别学生不求上进,思维不紧跟老师。

有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。

要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析本学期的教学内容共计5章,第1章直角三角形,第2章四边形,第3章图形与坐标,第4章一次函数,第5章数据的频数分布。

本册内容以几何为主,即使是最后一章一次函数也是与几何结合在一起的,前两章以上学期学过的三角形全等为基础,这些内容都是初中代数、几何的重要内容,起作承上启下的作用,它既是对已学过的知识的巩固和加深,又是为今后学习奠定基础。

第1章直角三角形:本章的重点是会利用直角三角形的性质判定全等的相关知识来解决简单问题;以及联系角平分线解决实际生活中的问题。

第2章四边形:本章重点是平行四边形的概念、性质和判定,因为掌握平行四边形的概念、性质和判定,并能熟练运用这些知识是学好本章的关键。

如矩形、菱形和正方形都是特殊的平行四边形,它们的性质都是以平行四边形的概念为基础推出来的。

梯形的性质,三角形中位线定理和梯形的中位线定理都是以平行四边形的有关定理为依据推导出来的,这实际上也是平行四边形性质的综合运用。

平行四边形的有关定理还常用来作为证线段相等、两角相等、两直线平行和两线段互相平分的依据。

所以平行四边形的知识是本章重点。

本章难点是平行四边形与各种特殊的平行四边形之间的联系与区别。

因为各种特殊的平行四边形的概念交错,内容混淆,常会出现把相互之间的性质搞错,或者出现用错或多用或少用条件的错误。

中心对称也是本章的难点,它渗透了图形旋转变换的概念,学生也不容易掌握。

湘教版八年级下册数学教学计划(精选5篇)

湘教版八年级下册数学教学计划(精选5篇)

湘教版八年级下册数学教学方案〔精选5篇〕湘教版八年级下册数学教学方案〔精选5篇〕八年级下册数学教学方案篇1一、指导思想全面贯彻党的教育方针,以进步民族素质为宗旨,以培养创新精神和理论才能为重点,努力施行新课改。

学习“杜郎口”经历,深化课堂教学改革理论,进步学生的数学素养,让所有的学生学到有价值的富有挑战的数学,让所有的学生学会数学的考虑问题,并能积极的参与数学活动,进展自主探究。

二、学情分析^p本期我继续担任八年级130班数学教学工作。

通过上学期的学习,学生的自学理解才能,自主探究才能得到开展与培养,逻辑思维与逻辑推理才能得到开展与培养,学生由形象思维向抽象思维转变,抽象思维得到较好的开展,但局部学生没有到达应有程度,学生课外自主拓展知识的才能几乎没有,没有形成对数学学习的浓重兴趣,不能自行拓展与加深自己的知识面;通过教育与培养,绝大不分学生可以认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进展学习与考虑,学生的学习兴趣得到了激发和进一步的开展,课堂整体表现较为活泼,积极开动脑筋,乐于合作学习和蔼于分享交流在学习中的发现与体会,喜欢动手理论。

上期末数学平均分58分,最高分81分,及格20人。

本学期将继续促进学生自主学习,让学生亲身参与活动,进展探究与发现,以自身的体验获取知识与技能;表达现代信息社会的开展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。

三、教材分析^p1、教学内容的引入,采取从实际问题情境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过解决问题的过程,获取数学概念,掌握解决问题的技能与方法。

2、教材内容的呈现,创设学生自主探究的学习情境和时机,适当编排探究性和开放性的问题,发挥学生的主动性,给学生留有充分的时间与空间,自主探究理论,促进学生思维才能、创造才能的培养与进步,为学生的终身可持续开展奠定良好的根底。

3、教材内容的编写坚持把握《课程标准》,同时又具有弹性,以满足高程度学生的需要,使得不同程度的学生都得到开展。

2018湘教版八年级数学教学计划.docx

2018湘教版八年级数学教学计划.docx

2018 年八年级数学教学计划一、基本情况分析我现担任的是八年级的数学,该班学生的成绩中下较多,但真正拔尖的基本没有,学生非常活跃,有个别学生不求上进,思维不紧跟老师。

有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。

要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析本学期的教学内容共计 5 章,第 1 章直角三角形,第 2 章四边形,第 3 章图形与坐标,第 4 章一次函数,第 5 章数据的频数分布。

本册内容以几何为主,即使是最后一章一次函数也是与几何结合在一起的,前两章以上学期学过的三角形全等为基础,这些内容都是初中代数、几何的重要内容,起作承上启下的作用,它既是对已学过的知识的巩固和加深,又是为今后学习奠定基础。

第 1 章直角三角形:本章的重点是会利用直角三角形的性质判定全等的相关知识来解决简单问题;以及联系角平分线解决实际生活中的问题。

第2 章四边形:本章重点是平行四边形的概念、性质和判定,因为掌握平行四边形的概念、性质和判定,并能熟练运用这些知识是学好本章的关键。

如矩形、菱形和正方形都是特殊的平行四边形,它们的性质都是以平行四边形的概念为基础推出来的。

梯形的性质,三角形中位线定理和梯形的中位线定理都是以平行四边形的有关定理为依据推导出来的,这实际上也是平行四边形性质的综合运用。

平行四边形的有关定理还常用来作为证线段相等、两角相等、两直线平行和两线段互相平分的依据。

所以平行四边形的知识是本章重点。

本章难点是平行四边形与各种特殊的平行四边形之间的联系与区别。

因为各种特殊的平行四边形的概念交错,内容混淆,常会出现把相互之间的性质搞错,或者出现用错或多用或少用条件的错误。

中心对称也是本章的难点,它渗透了图形旋转变换的概念,学生也不容易掌握。

第3 章图形与坐标:本章以丰富多彩的现实生活中的经验、题材,说明在日常生活中,在生产实践军事上常常需要确定物体的坐标,学习平面直角坐标系是主要内容,同时也是数形结合的基础、本章还学习图形在直角坐标系中的平移,从运动的观点来体现直角坐标系的实际运用。

湘教版数学八年级下册第三章《图形与坐标》教学设计

湘教版数学八年级下册第三章《图形与坐标》教学设计

湘教版数学八年级下册第三章《图形与坐标》教学设计一. 教材分析湘教版数学八年级下册第三章《图形与坐标》主要内容包括坐标系的建立、坐标轴上的点的坐标、坐标平面内的点的坐标、用坐标表示直线上的点、用坐标表示多边形等。

本章内容是学生进一步理解数学与现实生活的联系,培养学生的空间观念和几何思维的重要章节。

二. 学情分析学生在学习本章内容之前,已经学习了平面几何的基本概念和性质,对几何图形的认知有了一定的基础。

但部分学生对坐标系的理解和运用可能还存在困难,因此,在教学过程中,需要关注学生的学习差异,针对性地进行教学。

三. 教学目标1.理解坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的概念。

2.学会用坐标表示直线上的点和多边形,培养学生的空间观念和几何思维。

3.培养学生运用坐标解决实际问题的能力。

四. 教学重难点1.坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的理解。

2.用坐标表示直线上的点和多边形的运用。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、思考、实践等方式掌握坐标系的相关知识和运用。

六. 教学准备1.教学PPT、教学案例、练习题等教学资源。

2.坐标系模型、几何图形等教具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入坐标系的概念,如:“如何在平面直角坐标系中表示两个城市A和B的位置?”引发学生对坐标系的思考。

2.呈现(10分钟)呈现坐标系的建立过程,引导学生观察坐标轴上的点的坐标、坐标平面内的点的坐标,让学生通过观察、思考,理解坐标系的含义。

3.操练(10分钟)让学生分组讨论,用坐标表示直线上的点和多边形,并选取部分学生进行解答展示,教师点评并指导。

4.巩固(10分钟)针对本节课的重点知识,设计一些练习题,让学生独立完成,教师及时批改并讲解。

5.拓展(10分钟)让学生运用坐标解决实际问题,如:“某商品的原价为100元,现在进行打折促销,打折后的价格是多少?”教师引导学生思考,并给予解答指导。

2018-2019学年湘教版八年级数学第二学期全册教案(含教学反思)

2018-2019学年湘教版八年级数学第二学期全册教案(含教学反思)

2018-2019学年湘教版八年级数学第二学期全册教案(含教学
反思)
第1章直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第1课时直角三角形的性质和判定
1.掌握“直角三角形两个锐角互余”,并能利用“两锐角互余”判断三角
形是直角三角形;(重点)
2.探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质.(重点、难点)
一、情境导入
在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三
角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质.
二、合作探究
探究点一:直角三角形两锐角互余
如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF 等于( )
A.110° B.100° C.80° D.70°
解析:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF =180°,即∠CEF。

2018最新湘教版八年级下数学教案完整版

2018最新湘教版八年级下数学教案完整版

新化十五中学数学教案八年级下册肖志光第一章直角三角形课题第1章直角三角形§1.1直角三角形的性质和判定〔Ⅰ〕主备教师使用教师教学目的1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、稳固利用添辅助线证明有关几何问题的方法。

教学重点直角三角形斜边上的中线性质定理的应用。

教学难点直角三角形斜边上的中线性质定理的证明思想方法。

观察、比较、合作、交流、探索.教学方法教学课时一个课时教学过程个性化设计一、复习提问:〔1〕什么叫直角三角形?〔2〕直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授〔一〕直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。

3、稳固练习:练习1、〔1〕在直角三角形中,有一个锐角为520,那么另一个锐角度数〔2〕在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,〔1〕与∠B互余的角有〔2〕与∠A相等的角有。

〔3〕与∠B相等的角有。

〔二〕直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:假设∠A= 600,∠B =300,那么△ABC是三角形。

〔三〕直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片〔l〕量一量斜边AB的长度。

〔2〕找到斜边的中点,用字母D 表示。

〔3〕画出斜边上的中线。

〔4〕量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。

三、稳固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,假设∠A=35°,那么∠ECB= _________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新化十五中学数学教案八年级下册肖志光第一章直角三角形课题第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师教学目的1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、巩固利用添辅助线证明有关几何问题的方法。

教学重点直角三角形斜边上的中线性质定理的应用。

教学难点直角三角形斜边上的中线性质定理的证明思想方法。

观察、比较、合作、交流、探索.教学方法教学课时一个课时教学过程个性化设计一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:练习1、(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。

(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度。

(2)找到斜边的中点,用字母D 表示。

(3)画出斜边上的中线。

(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB。

(2)∠EBD=∠EDB。

(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M 是BC的中点。

如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?1、2、3、布置作业板书设计§1.1直角三角形的性质和判定(Ⅰ)定理1:直角三角形的两个锐角互余。

有两个锐角互余的三角形是直角三角形直角三角形斜边上的中线等于斜边的一半。

教学反思课题§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师教学目的1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

2、巩固利用添辅助线证明有关几何问题的方法。

3、通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。

培养学生的创新精神和创造能力。

4、从生活的实际问题出发,引发学生学习数学的兴趣。

从而培养学生发现问题和解决问题能力。

直角三角形斜边上的中线性质定理的应用。

教学重点直角三角形斜边上的中线性质定理的证明思想方法。

教学难点观察、比较、合作、交流、探索.教学方法教学课时教学过程个性化设计(一)引入:如果你是设计师:(提出问题)2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。

而这三个公交站点的位置正好构成一个直角三角形。

如果你是设计师你会把地铁站的出口建造在哪里?(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。

)动一动想一想猜一猜(实验操作)请同学们分小组在模型上找出那个点,并说出它的位置。

请同学们测量一下这个点到这三个顶点的距离是否符合要求。

通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。

)(二)新授:EDCBA提出命题:直角三角形斜边上的中线等于斜边的一半 证明命题:(教师引导,学生讨论,共同完成证明过程) 推理证明思路: ①作点D 1②证明所作点D 1具有的性质 ③ 证明点D 1与点D 重合应用定理:例1、已知:如图,在△ABC 中,∠B=∠C ,AD 是∠BAC 的平分线,E 、F 分别AB 、AC 的中点。

求证:DE=DF分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。

(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?) 练习变式:1、 已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高,F 是BC的中点。

求证:FD=FE练习引申:(1)若连接DE ,能得出什么结论?(2)若O 是DE 的中点,则MO 与DE 存在什么结论吗?上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。

如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论?2、已知:∠ABC=∠ADC=90º,E 是AC 中点。

你能得到什么结论?例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。

P4 练习P4 2FEDCBAFCB(三)、小结:通过今天的学习有哪些收获?布置作业P7 习题A组 1、2板书设计§1.1直角三角形的性质和判定(Ⅰ)直角三角形斜边上的中线等于斜边的一半一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。

教学反思课题§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师教学目的1、掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”;2、掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度”;3、能利用直角三角形的性质解决一些实际问题。

教学重点 直角三角形的性质教学难点 直角三角形性质的应用教学方法教学课时教学过程个性化设计一、 创设情境,导入新课 1 直角三角形有哪些性质?(1)两锐角互余;(2)斜边上的中线等于斜边的一半 2 按要求画图:(1)画∠MON ,使∠MON=30°,(2)在OM 上任意取点P ,过P 作ON 的垂线PK ,垂足为K ,量一量PO,PK 的长度,PO,PK 有什么关系?(3) 在OM 上再取点Q,R ,分别过Q,R 作ON 的垂线QD,RE,垂足分别为D,E ,量一量QD ,OQ ,它们有什么关系?量一量RE,OR ,它们有什么关系? 由此你发现了什么规律?直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

为什么会有这个规律呢?这节课我们来研究这个问题. 二、 合作交流,探究新知CBAKM1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。

如图,Rr △ABC 中,∠A=30°,BC 为什么会等于12AB 分析:要判断BC=12AB,可以考虑取AB 的中点,如果如果BD=BC ,那么BC=12AB ,由于∠A=30°,所以∠B=60°, 如果BD=BC,则△BDC 一定是等边三角形,所以考虑判断△BDC 是等边三角形,你会判断吗?由学生完成归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

这个定理的得出除了上面的方法外,你还有没有别的方法呢? 先让学生交流,得出把△ABC 沿着AC 翻折,利用等边三角形的性质证明。

2 上面定理的逆定理上面问题中,把条件“∠A=30°”与结论“BC=12AB ”交换,结论还成立吗? 学生交流方法(1)取AB 的中点,连接CD ,判断△BCD 是等边三角形,得出∠B=60°,从而∠A=30°(2)沿着AC 翻折,利用等边三角形性质得出。

(3)你能把上面问题用文字语言表达吗?归纳:直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。

三、 应用迁移,巩固提高 1、定理应用例1、 在△ABC 中,△C=90°,∠B=15°,CBAE DC ABDE垂直平分AB,垂足为点E,交BC边于点D,BD=16cm,则AC的长为______例2、如图在△ABC中,若∠BAC=120°,AB=AC,AD⊥AC于点A,BD=3,则BC=______.2 实际应用例3、(P5)在A岛周围20海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°的方向,且与轮船相距海里,该轮船如果不改变航向,有触礁的危险吗?四、课堂练习,巩固提高P 6练习 1、2五、反思小结,拓展提高直角三角形有哪些性质?怎样判断一个三角形是直角三角形?第二课时布置作业P7习题A组 3、4板书设计§1.1直角三角形的性质和判定(Ⅰ)D CAB东教学反思课题§1.2直角三角形的性质和判定(Ⅱ)勾股定理主备教师使用教师教学目的(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图(3)了解有关勾股定理的历史.(4)在定理的证明中培养学生的拼图能力;(5)通过问题的解决,提高学生的运算能力(6)通过自主学习的发展体验获取数学知识的感受;(7)通过有关勾股定理的历史讲解,对学生进行德育教育.教学重点勾股定理及其应用教学难点通过有关勾股定理的历史讲解,对学生进行德育教育教学方法观察、比较、合作、交流、探索.教学课时一个课时教学过程个性化设计1、新课背景知识复习(1)三角形的三边关系(2)问题:直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边(2)学生根据上述学习,提出自己的问题(待定)3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明4、定理的应用练习P11例题1、已知:如图,在△ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有∴又∠2=∠C∴CD的长是2.4cm例题2、如图,△ABC中,AB=AC,∠BAC=900,D是BC上任一点,求证:BD2+CD2=2AD2证法一:过点A作AE⊥BC于E则在Rt△ADE中,DE2+AE2=AD2又∵AB=AC,∠BAC=900∵BD2+CD2=(BE-DE)2+(CE+DE)2=BE2+CE2+2DE2=2AE2+2DE2=2AD2∴即BD2+CD2=2AD2证法二:过点D作DE⊥AB于E, DF⊥AC于F 则DE∥AC,DF∥AB又∵AB=AC,∠BAC=900∴EB=ED,FD=FC=AE在Rt△EBD和Rt△FDC中BD2=BE2+DE2 ,CD2=FD2+FC2在Rt△AED中,DE2+AE2=AD2∴BD2+CD2=2AD25、课堂小结:(1)勾股定理的内容(2)勾股定理的作用已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系布置作业P16 习题A组 1、2、3板书设计§1.2直角三角形的性质和判定(Ⅱ)勾股定理勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方教学反思课题§1.2直角三角形的性质和判定(Ⅱ)勾股定理的逆定理主备教师使用教师教学目的(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数(4)通过勾股定理与其逆定理的比较,提高学生的辨析能力;(5)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识能力.(6)通过自主学习的发展体验获取数学知识的感受;(7)通过知识的纵横迁移感受数学的辩证特征.教学重点勾股定理的逆定理及其应用教学难点勾股定理的逆定理及其应用教学方法观察、比较、合作、交流、探索.教学课时一个课时教学过程个性化设计1、新课背景知识复习:勾股定理的内容、文字叙述、符号表述、图形2、逆定理的获得(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长a、b、c 有下面关系:a2+b2=c2,那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.(2)判定直角三角形的方法:①角为900②垂直③勾股定理的逆定理2、定理的应用P15 例题3 判定由线段a,b,c组成的三角形是不是直角三角形。

相关文档
最新文档