第九章 高考专题突破五 第1课时

合集下载

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

专题五 第1讲1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .3πB .4πC .2π+4D .3π+4解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×12×π×12+π×1×2+2×2=3π+4.故选D.2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )A .163-16π3B.163-16π3C .83-8π3D.83-8π3解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V三棱柱=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连接分三角形为3个全等的小三角形,由三角形面积可得12×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =233.故V 圆柱=πr 2h =π×⎝⎛⎭⎫2332×4=16π3.∴几何体的体积V =V 三棱柱-V 圆柱=163-16π3.故选A.3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )A.18 B.17 C.16 D.15解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )A .1+ 3B .2+3C .1+2 2D .2 2解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,球的体积V =4π3r 3=4π3.故选D.6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( D )A .963B .163C .24 3D .48 3解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2,所以a =43, 所以V =34×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )A .66B .68C .70D .72解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1DBC 的体积为66.8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定理得2CM =BC sin ∠CAB =5,则CM =52.所以R =OC =OM 2+CM 2=412,则外接球的表面积为S =4πR 2=41π.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 83π m 3.解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×13π×12×1+π×12×2=83π (m 3).10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =163.(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =13×22×2,即V =23-13×22×2=163.。

【2022高考数学一轮复习(步步高)】目录

【2022高考数学一轮复习(步步高)】目录

第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。

高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)

高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)

(2)已知直线l经过直线l1:x+y=2与l2:2x-y=1的交点,且直线l的斜率为-
2 3

则直线l的方程是
A.-3x+2y+1=0
√C.2x+3y-5=0
B.3x-2y+1=0 D.2x-3y+1=0
解析 解方程组2x+x-y=y=21,, 得yx==11,,
所以两直线的交点为(1,1). 因为直线 l 的斜率为-23, 所以直线 l 的方程为 y-1=-23(x-1),即 2x+3y-5=0.
(2)(2019·河北省级示范性高中联合体联考)已知A,B分别是双曲线C: xm2-y22 =1的 左、右顶点,P(3,4)为C上一点,则△PAB的外接圆的标准方程为_x_2_+__(_y-__3_)_2_=__1_0_.
解析 ∵P(3,4)为 C 上一点,m9 -126=1, 解得 m=1,则 B(1,0),∴kPB=42=2, PB 的中垂线方程为 y=-12(x-2)+2, 令x=0,则y=3, 设外接圆圆心为M(0,t),
△FPM为等边三角形⇒△FPM外接圆圆心与重心重合,
∴外接圆圆心坐标为-2
3-2 3
3+0,3-13+1,即-4
3
3,1,
外接圆半径为 r=
பைடு நூலகம்
-4
3
3+2
32+1+12=4
3
3,
同理可得当 x=2
3时,圆心坐标为4
3
3,1,半径为4
3
3,
∴外接圆方程为x±4
3
32+(y-1)2=136.
跟踪演练2 (1)(2019·黄冈调研)已知圆x2+y2+2k2x+2y+4k=0关于y=x对称,则
的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的

第九章专题九 高考语文(人教版)一轮复习讲义(含答案)

第九章专题九 高考语文(人教版)一轮复习讲义(含答案)

专题九精巧构思(记叙类)(2017·全国Ⅱ)题目见专题一“精审真题”部分。

满分佳作源·圆·缘黑龙江一考生中国文化博大精深,无数名句化育后世。

——题记与名句相识,源自一次偶然。

念五年级时,爸爸在一次车祸中丧生,妈妈撇下我远嫁他乡。

那段时间,我感觉天就像塌了一样,不但生活过得一团糟,还因为没人管束,染上了偷盗恶习。

有一次,我刚从窗户爬进一户人家,就被人发现了,一位坐轮椅的老奶奶正慈祥地看着我:“孩子,你一定是饿了吧,我给你拿蛋糕……”我似乎忘记了自己的身份,既没有阻止她,也没有趁机逃跑。

看我狼吞虎咽地吃着蛋糕,她又给我打开一瓶饮料:“喝吧……奶奶这里还有一些钱,一会儿都给你。

”“我不要……我……”我一边啜泣着,一边讲述了我这些天的经历。

老奶奶也泪湿衣襟:“你年纪还小,得好好读书呀!以后我资助你……”离开时,老奶奶摇着轮椅把我送到门口,还送我一个日记本,扉页上写着一句话——天行健,君子以自强不息。

尽管当时还不能完全理解那句话,但我坚信那句话有着很不一般的意义。

有名句相助,圆我歌唱美梦。

在那位老奶奶和许多好心人的教导与帮助下,我痛改前非,顺利完成小学和初中学业,并以优异成绩考入省级示范高中。

但我心中始终有一股登台歌唱的冲动,而且越来越强烈。

同桌说:“算了吧,以你的成绩,考个名牌大学没问题,何必再自讨苦吃。

”好友说:“省省吧,学艺术就等于烧钱呀。

”班主任说:“想法不错,但听老师劝,人要知道自己的长处在哪儿,你的优势在理化生方面。

”难道就这样算了?实在是不甘心!一日翻书,忽见李清照咏桂名句:“何须浅碧深红色,自是花中第一流。

”不管了,什么也不管了,我就是要争一流,就是要追寻音乐世界那动人心魄、流芳千古的美!半年后,当我在校园艺术节上一展歌喉的时候,大家惊诧了。

就在前几天,当我把沈阳艺术学院“艺考合格证”拿到手的时候,我收到了他们的祝贺与祝福。

携名句之手,永结美好情缘。

我不是个“随缘”的人,因为我不想混,不想随波逐流;但我相信“缘”的客观存在,不是吗?我与中华名言之间不就存在着一种既美好又珍贵的情缘吗?我愿携手名句,直面生活,直面人生,成为一个敢想敢说、敢作敢当的人;我愿携手名句,先忧后乐,坦荡无私,成为一个懂得感恩、懂得分享的人;我愿携手名句,脚踏实地,砥砺前行,成为一个自信满满、朝气满满的人!亮点点评妙的是巧用三句名言为线索,串起两个人生片段,使文章条理清晰、层次分明。

高考复习课件规范答题·必考大题突破课(五).pptx

高考复习课件规范答题·必考大题突破课(五).pptx
42
(2)当直线AB斜率存在时,设直线AB的方程为y=kx+1,
A,B的坐标分别为(x1,y1),(x2,y2),
联立
x2 4
y22得 1(,2k2+1)x2+4kx-2=0,
y kx 1,
其判别式Δ=(4k)2+8(2k2+1)>0,
所以x1+x2=
4k 2k2
x,1x2=
1
2……,2分 得分点④
bx+cy-bc=0,……………………………1分 得分点①
则原点O到直线的距离d= bc bc,
b2 c2 a
……………………………………………2分 得分点②
由d=1 c,得a=2b=2 a2 c解2,得离心率 c 3 .
2
a2
……………………………………………2分 得分点③
(2)由(1)知,椭圆E的方程为x2+4y2=4b2. 依题意,圆心M(-2,1)是线段AB的中点, 且|AB|= 10.………………………2分 得分点④ 易知,AB不与x轴垂直,设其直线方程为y=k(x+2)+1, 代入椭圆E的方程得 (1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0,
故存在常数λ=1,使得
uuur uuur OAgOB
为PuuAu定r gPu值uBr -3.
……………………………………………2分 得分点⑥
【得分细则·答题规则】 第(1)问踩点说明(针对得分点①②③): ①得分点有三处:一是由向量的数量积为-1,得出一个 方程可得1分; 二是由离心率得出一个方程再得1分; 三是写出a,b,c之间的关系再得1分.

2024届高考地理一轮总复习第5章地貌与地表形态的塑造专题突破五特殊地貌的成因分析

2024届高考地理一轮总复习第5章地貌与地表形态的塑造专题突破五特殊地貌的成因分析

解题思路:第(1)题,河流阶地是河流下切侵蚀,使原先的河谷底部(河漫滩或 河床)超出一般洪水位,呈阶梯状分布在谷坡的地形。属于河流侵蚀地貌, 形成的主要外力作用是流水作用。第(2)题,读材料二可知,河流阶地的形 成,主要是因为河流在以侧向侵蚀为主扩展谷底的基础上,转为以下切侵蚀 为主加深河谷。a阶段以侧蚀为主,b阶段以下切侵蚀为主,c阶段再转为以 侧蚀为主。 尝试解答:(1)河流地貌(河谷地貌、流水侵蚀地貌)。流水作用。 (2)a阶段,河流以侧蚀为主;b阶段,河流以下切侵蚀为主;c阶段,河流再转为 以侧蚀为主。
典型例题 下图为雅鲁藏布江中游宽谷的爬升沙丘。读图,完成下列各题。 (1)该沙丘位于( ) A.冲积扇 B.洪积平原 C.三角洲 D.河漫滩 (2)正确示意沙丘剖面及其外力作用 主要方向的是( ) A.① B.② C.③ D.④
解题思路:第(1)题,一般冲积扇位于山前开阔地段,洪积平原发育在山前,多 位于河流下游,三角洲位于河口地区。而题干明确告知为雅鲁藏布江中游 宽谷,再结合图可确定爬升沙丘位于河漫滩。第(2)题,爬升沙丘是指沙丘 移动受山地阻挡时,沙在风力作用下沿坡面爬升形成的沙丘,沙丘迎风坡面 较缓,背风坡面较陡,再结合景观图可确定C项正确。 尝试解答:(1)D (2)C
解析:第1题,读图可知,河流有东南岸和西北岸,所以河流流向为自东北向西 南或者自西南向东北,河流中的堆积物在东南岸,说明该岸为堆积岸,西北 岸为侵蚀岸,北半球河流受地转偏向力影响,右岸侵蚀,左岸堆积,所以河流 由东北流向西南。第2题,M处出现丰水期水位下降,堆积物减少的趋势,说 明流量减少,河流挟带泥沙量减少。上游拆除水电站,会导致丰水期流量增 加,泥沙在水库附近堆积减少,下游泥沙量增大;上游城镇化进程加快,水土 流失会加剧,泥沙含量增加;下游整治河道,排水能力增强,泥沙堆积减少;下 游修建跨河大桥,与上游沉积物堆积量无关。

2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-, ∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-. 作出()f x 的函数图象如图所示:25()()()f x mf x m Re -=∈,25()()0f x mf x e∴--=,△2200m e=+>, 令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e<<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e-=有三个不同的实数解. 故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1) B.(0 C .1(1,1)e+D.,1)【解析】解:化简可得0()0x f x x =<,当0x >时,()0f x,12()x x e x f x e '===, 当102x <<时,()0f x'>,当12x>时,()0fx '<, 故当12x=时,函数()f x有极大值21()2f e====; 当0x <时,2()0x xxe x e x xf x x e --'==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f ;设()t f x =, 当t >()tf x =有1个解, 当t =()t f x =有2个解, 当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根, 则1t m =-∈,即01m <-<11m <<+,则m的取值范围是1)+ 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩. 故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =,当1a >时,1a >,(0,1)a .满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2-,11e + )B .(2-,0 )(⋃ 0,11e + )C .2321(,)2e e e+-+D .( 32-,0 )(⋃ 0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+, 令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=, △240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <, 关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C .6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4 B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -=,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解. 6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是() A .21(1,2]e + B .221[2,2]e e +-C .2221[2,]e e e-+ D .221(2,]e e+ 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++, 可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a , 由切线与直线610x y ++=垂直,可得36a =, 解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-, 导数为222(1)(1)()2x x f x x x x -+'=-=, 当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减. 即有1x =处()f x 取得最小值1. 则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1) 可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解, 设为1t ,2t ,12t t b +=, 可得11t =,22112t e<+, 即21112b e <-+, 解得2123b e <+,① 又212122t e e+<-, 22112t e <+, 则21222113t t b e e e+<+=+,② 由①②求并可得2212b e e <+, 故选:D .9.已知函数()1xf x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2-,0)B .3(2-,4)3-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根, ①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时, 设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e-C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e-'=, 当02x <<时,()0f x '>,()f x 递增; 当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象, 设()t f x =,关于x 的方程2()()10f x mf x m ++-=, 即为210t mt m ++-=, 解得1t =-或1t m =-, 当1t =-时,()1f x =-无实根; 由题意可得当241(0,)t m e=-∈, 解得241m e-=或1m =, 所以24(1m e ∈-,1) 故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是( )A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x xf x e-'==,解得1x =; 且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=. 假设2m =,则2210t t ++=.解得1t =-,即()1f x =-. 根据()f x 图象,很明显此时只有一个解, 故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-. 即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解, 故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e =-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根, 故12m e=-不符合题意,由此排除D故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e<<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根 【解析】解:当0x 时,||||()111x x x x xf x xe e e--=+=+=-+, 因为g (1)0=, 所以120a -+=, 所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立, ()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的, 故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的. 令()m g x t =-,则()10g m -=, 解得:0m =或2m =, 当0m =即()0g x t -=时, ()g x t =,当2t <-时,()2g x <-,无解, 当2m =即()2g x t -=时, ()2g x t =+,当2t <-时,()0g x <,无解, 故方程(())10g g x t --=没有相异实根, 故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =, 当110t e -+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =-时取得极大值为1(1)1g e-=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点, 故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点, 若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根, 故C 错误; 当111t e -<<-+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根, 当01t <时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 故此时方程(())10g g x t --=共有9个不等实根, 故D 错误. 故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+, 当1x <时,1112x -+>,则(()1)(2)2xf f x ln +=-. (1),1()(()1)(2),12ln lnx x g x f f x xln x +⎧⎪∴=+=⎨-<⎪⎩, 令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x xln <⎧⎪⎨-=⎪⎩, 解得1x =.故函数()(()1)g x f f x =+的零点是1; 由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则 2lnx t =,2t x e =,112x t -=,122x t =-, ∴1222t x x e t +=+-,12t >, 设()22t t e t ϕ=+-,12t >, 则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>, 则()t ϕ的最小值为(2)422ln ln ϕ=-. 12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞ .【解析】解:当1x 时,()0f x lnx =,则()11f x +, (()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-, ∴121(22),2t x x e t t =->, 设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25xexx e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为 12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =, 所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减, 当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=, ()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e >⎧⎪⎨<⎪⎩,解得245a e <, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意. 综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是 (2,0)- .【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩, 若()()0f x f x +-=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231ay x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310alnx x x x-+-+=有两个解, 即23263a xlnx x x x =-++,0x >, 可设23()263g x xlnx x x x =-++,0x >, 2()32129g x lnx x x '=+-+, 22()1812218120g x x x x x''=+-=,可得()g x '在(0,)+∞递增, 由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增, 即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310alnx x x x-+-+=有两个解, 故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =; ()0f x =有两个不同的解,故()f x a =有三个不同的解, 故(0,1)a ∈; 故答案为:(0,1).18.已知函数()|1|33f x x x x =--+. (1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍); ②当1x 时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8); 解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos 3sin()4684646442443f x x x x x x x x ππππππππππππ=--+=----⋯(3分) ∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分) 11442t t t +=当且仅当时取等号,4m ∴,⋯(8分) 故实数m 的取值范围是[4,)+∞.⋯(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅰ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅰ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅰ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立, 综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为: 2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解, ∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >, 或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。

2022年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

2022年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

专题突破练(5) 立体几何的综合问题 一、选择题1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 D解析 “a ∥b ”不能得出“α∥β”,反之由“α∥β”也得不出“a ∥b ”.故选D.2.如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )A.455B .2 5C .4D .2答案 A解析 在△ABC 中,AC 2=AB 2+BC 2=5,∴AB ⊥BC .作BD ⊥AC 于D ,则BD 为侧视图的宽,且BD =2×15=255,∴侧视图的面积为S =2×255=455.3.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6答案 C解析 如图,既与AB 共面也与CC 1共面的棱有CD 、BC 、BB 1、AA 1、C 1D 1,共5条.4.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四周体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四周体A ′BCD 的体积为13答案 B解析 ∵AB =AD =1,BD =2,∴AB ⊥AD . ∴A ′B ⊥A ′D .∵平面A ′BD ⊥平面BCD ,CD ⊥BD , ∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,∴A ′B ⊥平面A ′CD , ∴A ′B ⊥A ′C ,即∠BA ′C =90°.5. 如图,在三棱锥P -ABC 中,不能证明AP ⊥BC 的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC答案 B解析由AP⊥PB,AP⊥PC可推出AP⊥平面PBC,∴AP⊥BC,故排解A;由平面BPC⊥平面APC,BC⊥PC 可推出BC⊥平面APC,∴AP⊥BC,故排解C;由AP⊥平面PBC可推出AP⊥BC,故排解D,选B.6.如图所示,已知在多面体ABC-DEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为( )A.2 B.4C.6 D.8答案 B解析如图所示,将多面体补成棱长为2的正方体,那么明显所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.7.设A,B,C,D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD 的最大值是( )A.6 B.7C.8 D.9答案 C解析由题意知42=AB2+AC2+AD2,S△ABC+S△ACD+S△ABD=12(AB·AC+AC·AD+AD·AB)≤12⎣⎢⎡12AB2+AC2+12AC2+AD2+⎦⎥⎤12AD2+AB2=12(AB2+AC2+AD2)=8.8.已知圆锥的底面半径为R,高为3R,在它的全部内接圆柱中,表面积的最大值是( )A.22πR2 B.94πR2C.83πR2 D.52πR2答案 B解析如图所示,为组合体的轴截面,记BO1的长度为x,由相像三角形的比例关系,得PO13R=xR,则PO1=3x,圆柱的高为3R-3x,所以圆柱的表面积为S=2πx2+2πx·(3R-3x)=-4πx2+6πRx,则当x=34R 时,S取最大值,S max=94πR2.9.在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N 分别为AB,BC边的中点,点Q为平面ABCD内一点,线段D1Q与OP相互平分,则满足MQ→=λMN→的实数λ的值有( )A .0个B .1个C .2个D .3个 答案 C解析 本题可以转化为在MN 上找点Q 使OQ 綊PD 1,可知只有Q 点与M ,N 重合时满足条件,所以选C. 10.四棱锥M -ABCD 的底面ABCD 是边长为6的正方形,若|MA |+|MB |=10,则三棱锥A -BCM 的体积的最大值是( )A .16B .20C .24D .28答案 C解析 ∵三棱锥A -BCM 体积=三棱锥M -ABC 的体积,又正方形ABCD 的边长为6,S △ABC =12×6×6=18,又空间一动点M 满足|MA |+|MB |=10,M 点的轨迹是椭球,当|MA |=|MB |时,M 点到AB 距离最大,h =52-32=4,∴三棱锥M -ABC 的体积的最大值为V =13S △ABC h =13×18×4=24,∴三棱锥A -BCM 体积的最大值为24,故答案为C.11.在一个棱长为4的正方体内,最多能放入的直径为1的球的个数( ) A .64 B .66 C .68 D .70答案 B解析 依据球体的特点,最多应当是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层连续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个),故答案为B.12.如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线E ,F 的平面分别与棱BB ′、DD ′交于M ,N ,设BM =x ,x ∈,给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x =12时,四边形MENF 的面积最小;③四边形MENF 周长L =f (x ),x ∈是单调函数; ④四棱锥C ′-MENF 的体积V =h (x )为常函数.以上命题中假命题的序号为( ) A .①④ B .② C .③ D .③④答案 C解析 ①连接BD ,B ′D ′,则由正方体的性质可知EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连接MN ,由于EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x =12时,此时MN 长度最小,对应四边形MENF 的面积最小,所以②正确.③由于EF ⊥MN ,所以四边形MENF 是菱形.当x ∈⎣⎢⎡⎦⎥⎤0,12时,EM 的长度由大变小,当x ∈⎣⎢⎡⎦⎥⎤12,1时,EM 的长度由小变大,所以函数L =f (x )不单调,所以③错误.④连接C ′E ,C ′M ,C ′N ,则四棱锥分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.由于三角形C′EF的面积是常数.M,N到平面C′EF的距离是常数,所以四棱锥C′-MENF的体积V=h(x)为常函数,所以④正确.所以四个命题中③假命题,选C.二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.答案10 5解析连接AD1,AP,则∠AD1P就是所求的角.设AB=2,则AP=D1P=5,AD1=22,∴cos∠AD1P=10 5.14.如图,已知球O的面上有四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以|CD|=22+22+22=2R,所以R=62,故球O的体积V=4πR33=6π.15. 如图,有一圆柱开口容器(下表面封闭),其轴截面是边长为2的正方形,P是BC的中点,现有一只蚂蚁位于外壁A处,内壁P处有一粒米,则这只蚂蚁取得米粒的所经过的最短路程是________.答案π2+9解析由于圆柱的侧面开放图为矩形(如图所示),则这只蚂蚁取得米粒所经过的最短路程应为AQ+PQ,设点E与点A关于直线CD对称,由于两点之间线段最短,所以Q为PE与CD的交点时有最小值,即最小值为EP=π2+9.16.棱长为a的正方体ABCD-A1B1C1D1中,若与D1B平行的平面截正方体所得的截面面积为S,则S的取值范围是________.答案⎝⎛⎭⎪⎫0,6a22解析 如图,过D 1B 的平面为BMD 1N ,其中M ,N 分别是AA 1,CC 1的中点,由于BD 1=3a ,MN =AC =2a ,AC ⊥BD 1,即MN ⊥D 1B ,所以过D 1B 与M ,N 的截面的面积为S =12AC ·BD =62a 2,因此S 的取值范围是⎝⎛⎭⎪⎫0,6a 22.三、解答题17.在边长为4的菱形ABCD 中,∠DCB =60°,点E ,F 分别是边CD 和CB 的中点,AC 交BD 于点H ,AC 交EF 于点O ,沿EF 将△CEF 翻折到△PEF 的位置,使平面PEF ⊥平面ABD ,得到如图所示的五棱锥P -ABFED .(1)求证:BD ⊥PA ;(2)求点D 到平面PBF 的距离.解 (1)证明:由于四边形ABCD 为菱形,所以AC ⊥BD . 由于EF 为△BCD 的中位线,所以EF ∥BD , 故AC ⊥EF ,即翻折后PO ⊥EF .由于平面PEF ⊥平面ABD ,平面PEF ∩平面ABD =EF ,PO ⊂平面PEF ,所以PO ⊥平面ABD . 由于BD ⊂平面ABD ,所以PO ⊥BD .又AO ⊥BD ,AO ∩PO =O ,AO ⊂平面APO ,PO ⊂平面APO ,所以BD ⊥平面APO . 由于AP ⊂平面APO ,所以BD ⊥PA .(2)连接PC ,由于四边形ABCD 为菱形,且∠DCB =60°,故∠ADC =120°,AD =4,AC =43,BD =4, S △BDF =12S △BDC =12×12×4×23=23,OP =14AC = 3.由于PF =BF =FC ,故△BPC 为直角三角形,∠BPC =90°,PC =OC 2+OP 2=6,PB =BC 2-PC 2=10,S △PBF =12S △BPC =12×12PB ·PC =152. 由于V D -PBF =V P -BDF ,所以13h D ·S △PBF =13OP ·S △BDF ,所以h D =OP ·S △BDF S △PBF =3×23152=4155. 故点D 到平面PBF 的距离为4155.18.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若PA =AD ,且平面PAD ⊥平面ABCD ,试证明:AF ⊥平面PCD ;(3)在(2)的条件下,线段PB 上是否存在点M ,使得EM ⊥平面PCD ?(直接给出结论,不需要说明理由) 解 (1)证明:由于底面ABCD 是正方形,所以AB ∥CD . 又由于AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ∥平面PCD .又由于A ,B ,E ,F 四点共面,且平面ABEF ∩平面PCD =EF ,所以AB ∥EF . (2)证明:在正方形ABCD 中,CD ⊥AD .又由于平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,所以CD ⊥平面PAD . 又由于AF ⊂平面PAD ,所以CD ⊥AF .由(1)知AB ∥EF ,又由于AB ∥CD ,所以CD ∥EF . 由点E 是棱PC 的中点,可知点F 是棱PD 的中点.在△PAD 中,由于PA =AD ,所以AF ⊥PD ,又由于PD ∩CD =D ,所以AF ⊥平面PCD . (3)不存在.19.一个多面体的直观图和三视图如下:(其中M ,N 分别是AF ,BC 中点) (1)求证:MN ∥平面CDEF ; (2)求多面体A -CDEF 的体积.解 (1)证明:由三视图知该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∠CBF =90°.取BF 中点G ,连接MG ,NG ,由于M ,N 分别是AF ,BC 中点,则NG ∥CF ,∵MG ∥AB ,又∵AB ∥EF ,∴MG ∥EF ,∴面MNG ∥面CDEF ,∴MN ∥面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE -BCF 为直三棱柱,∴AH ⊥面DCEF ,且AH =2, ∴V A -CDEF =13S CDEF ·AH =13×2×22×2=83.20. 如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,AB ∥DC ,AB ⊥AD ,AB =3,CD =2,PD =AD =5,E 是PD 上一点.(1)若PB ∥平面ACE ,求PE ED的值;(2)若E 是PD 中点,过点E 作平面α∥平面PBC ,平面α与棱PA 交于F ,求三棱锥P -CEF 的体积. 解 (1)连接BD 交AC 于O ,在△PBD 中,过O 作OE ∥BP 交PD 于E ,∵OE ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE ,∵AB =3,CD =2,∴AB CD =BO DO =PE ED =32.(2)过E 作EM ∥PC 交CD 于M ,过M 作MN ∥BC 交AB 于N , 则平面EMN 即为平面α,则平面α与平面PAB 的交线与PB 平行,即过N 作NF ∥PB 交PA 于F , ∵E 是PD 的中点,CD =2,∴CM =1,则BN =CM =1, 又AB =3,∴AN NB =2,则FA FP=2,∵PD =AD =5,∴F 到平面PCE 的距离为53,则V P -CEF =V F -PCE =2518.。

63第九章 平面解析几何 高考专题突破五 第1课时 范围、最值问题

63第九章 平面解析几何 高考专题突破五 第1课时 范围、最值问题
第九章 高考专题突破五 高考中的圆锥曲线问题
第1课时 范围、最值问题
内容索引
NEIRONGSUOYIN
题型分类 深度剖析 课时作业
1 题型分类 深度剖析
PART ONE
师生共研
题型一 范围问题
例 1 (2016·天津)设椭圆ax22+y32=1(a> 3)的右焦点为 F,右顶点为 A.已知|O1F|+ |O1A|=|F3Ae|,其中 O 为原点,e 为椭圆的离心率.
3
2 4
y02 4x0
3
2.
因为 x20+y420=1(-1≤x0<0),
所以 y20-4x0=-4x20-4x0+4∈[4,5],
所以△PAB 面积的取值范围是6 2,15410.
多维探究
题型二 最值问题
命题点1 利用三角函数有界性求最值
例2 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,
A.[4,5]
√B.[7,8]
C.[6,7]
D.[5,6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16.已知椭圆 C1: mx+2 4-yn2=1 与双曲线 C2:xm2+yn2=1 有相同的焦点, 求椭圆 C1 的离心率 e1 的取值范围.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
跟踪训练1 (2018·浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C: y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上. (1)设AB中点为M,证明:PM垂直于y轴;
证明 设 P(x0,y0),A41y21,y1,B41y22,y2. 因为PA,PB的中点在抛物线上, 所以 y1,y2 为方程y+2y02=4·14y22+x0, 即 y2-2y0y+8x0-y20=0 的两个不同的实根. 所以y1+y2=2y0,所以PM垂直于y轴.

2020版高考理科数学(人教版)一轮复习讲义:第九章+第九节+解析几何压轴大题突破策略+第一课时 破

2020版高考理科数学(人教版)一轮复习讲义:第九章+第九节+解析几何压轴大题突破策略+第一课时 破

第九节解析几何压轴大题突破策略第一课时破题上——着眼4点找到解题突破口(阅读课——供学有余力的考生自主观摩)解析几何研究的问题是几何问题,研究的手法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化.如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,即解析几何问题中的条件转化是如何实现的,是突破解析几何问题难点的关键所在.为此,从以下几个途径,结合数学思想在解析几何中的切入为视角,分析解析几何的“双管齐下”,突破思维难点.利用向量转化几何条件[典例]如图所示,已知圆C:x2+y2-2x+4y-4=0,问:是否存在斜率为1的直线l,使l与圆C交于A,B两点,且以AB为直径的圆过原点?若存在,写出直线l的方程;若不存在,请说明理由.[解题观摩]假设存在斜率为1的直线l,使l与圆C交于A,B两点,且以AB为直径的圆过原点.设直线l的方程为y=x+b,点A(x1,y1),B(x2,y2).联立⎩⎪⎨⎪⎧y =x +b ,x 2+y 2-2x +4y -4=0,消去y 并整理得2x 2+2(b +1)x +b 2+4b -4=0, 所以x 1+x 2=-(b +1),x 1x 2=b 2+4b -42.①因为以AB 为直径的圆过原点,所以OA ⊥OB , 即x 1x 2+y 1y 2=0.又y 1=x 1+b ,y 2=x 2+b ,则x 1x 2+y 1y 2=x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0. 由①知,b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,解得b =-4或b =1. 当b =-4或b =1时,均有Δ=4(b +1)2-8(b 2+4b -4)=-4b 2-24b +36>0, 即直线l 与圆C 有两个交点.所以存在直线l ,其方程为x -y +1=0或x -y -4=0. [关键点拨]以AB 为直径的圆过原点等价于OA ⊥OB ,而OA ⊥OB 又可以“直译”为x 1x 2+y 1y 2=0,可以看出,解此类解析几何问题的总体思路为“直译”,然后对个别难以“直译”的条件先进行“转化”,将“困难、难翻译”的条件通过平面几何知识“转化”为“简单、易翻译”的条件后再进行“直译”,最后联立“直译”的结果解决问题.[典例] (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PB Q 的角平分线,求证:直线l 过定点.[解题观摩] (1)设动圆圆心为点P (x ,y ),则由勾股定理得x 2+42=(x -4)2+y 2,化简即得圆心的轨迹C 的方程为y 2=8x .(2)证明:法一:由题意可设直线l 的方程为y =kx +b (k ≠0).联立⎩⎪⎨⎪⎧y =kx +b ,y 2=8x ,得k 2x 2+2(kb -4)x +b 2=0.由Δ=4(kb -4)2-4k 2b 2>0,得kb <2. 设点P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-2(kb -4)k 2,x 1x 2=b 2k2.因为x 轴是∠PB Q 的角平分线,所以k PB +k Q B =0,即k PB +k Q B =y 1x 1+1+y 2x 2+1=2kx 1x 2+(k +b )(x 1+x 2)+2b (x 1+1)(x 2+1)=8(k +b )(x 1+1)(x 2+1)k 2=0,所以k +b =0,即b =-k ,所以l 的方程为y =k (x -1). 故直线l 恒过定点(1,0).法二:设直线PB 的方程为x =my -1,它与抛物线C 的另一个交点为Q ′,设点P (x 1,y 1),Q ′(x 2,y 2),由条件可得,Q 与Q ′关于x 轴对称,故Q (x 2,-y 2).联立⎩⎪⎨⎪⎧x =my -1,y 2=8x ,消去x 得y 2-8my +8=0,其中Δ=64m 2-32>0,y 1+y 2=8m ,y 1y 2=8. 所以k P Q =y 1+y 2x 1-x 2=8y 1-y 2,因而直线P Q 的方程为y -y 1=8y 1-y 2(x -x 1). 又y 1y 2=8,y 21=8x 1,将P Q 的方程化简得(y 1-y 2)y =8(x -1), 故直线l 过定点(1,0).法三:由抛物线的对称性可知,如果定点存在,则它一定在x 轴上,所以设定点坐标为(a,0),直线P Q 的方程为x =my +a .联立⎩⎪⎨⎪⎧x =my +a ,y 2=8x消去x ,整理得y 2-8my -8a =0,Δ>0.设点P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=8m ,y 1y 2=-8a .由条件可知k PB +k Q B =0, 即k PB +k Q B =y 1x 1+1+y 2x 2+1=(my 1+a )y 2+(my 2+a )y 1+y 1+y 2(x 1+1)(x 2+1)=2my 1y 2+(a +1)(y 1+y 2)(x 1+1)(x 2+1)=0,所以-8ma +8m =0.由m 的任意性可知a =1,所以直线l 恒过定点(1,0). 法四:设P ⎝⎛⎭⎫y 218,y 1,Q ⎝⎛⎭⎫y 228,y 2, 因为x 轴是∠PB Q 的角平分线, 所以k PB +k Q B =y 1y 218+1+y 2y 228+1=0, 整理得(y 1+y 2)⎝⎛⎭⎫y 1y 28+1=0. 因为直线l 不垂直于x 轴, 所以y 1+y 2≠0,可得y 1y 2=-8. 因为k P Q =y 1-y 2y 218-y 228=8y 1+y 2,所以直线P Q 的方程为y -y 1=8y 1+y 2⎝⎛⎭⎫x -y 218,即y =8y 1+y 2(x -1). 故直线l 恒过定点(1,0). [关键点拨]本题前面的三种解法属于比较常规的解法,主要是设点,设直线方程,联立方程,并借助判别式、根与系数的关系等知识解题,计算量较大.解法四巧妙地运用了抛物线的参数方程进行设点,避免了联立方程组,计算相对简单,但是解法二和解法四中含有两个参数y 1,y 2,因此判定直线过定点时,要注意将直线的方程变为特殊的形式.弦长条件的转化[典例] 如图所示,已知椭圆G :x 2+y 2=1,与x 轴不重合的直线l 经过左焦点F 1,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点.(1)若直线l 的斜率为1,求直线OM 的斜率.(2)是否存在直线l ,使得|AM |2=|CM ||DM |成立?若存在,求出直线l 的方程;若不存在,请说明理由.[解题观摩] (1)由题意可知点F 1(-1,0), 又直线l 的斜率为1, 故直线l 的方程为y =x +1. 设点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1,消去y 并整理得3x 2+4x =0, 则x 1+x 2=-43,y 1+y 2=23,因此中点M 的坐标为⎝⎛⎭⎫-23,13.故直线OM 的斜率为13-23=-12.(2)假设存在直线l ,使得|AM |2=|CM ||DM |成立. 由题意,直线l 不与x 轴重合, 设直线l 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1,消去x 并整理得(m 2+2)y 2-2my -1=0. 设点A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2,可得|AB |=1+m 2|y 1-y 2| =1+m 2⎝⎛⎭⎫2m m 2+22+4m 2+2=22(m 2+1)m 2+2, x 1+x 2=m (y 1+y 2)-2=2m 2m 2+2-2=-4m 2+2,所以弦AB 的中点M 的坐标为⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线CD 的方程为y =-m2x .联立⎩⎨⎧y =-m 2x ,x22+y 2=1,消去y 并整理得2x 2+m 2x 2-4=0,解得x 2=4m 2+2. 由对称性,设C (x 0,y 0),D (-x 0,-y 0),则x 20=4m 2+2, 可得|CD |=1+m 24·|2x 0|=(m 2+4)·4m 2+2=2 m 2+4m 2+2. 因为|AM |2=|CM ||DM |=(|OC |-|OM |)(|OD |+|OM |),且|OC |=|OD |, 所以|AM |2=|OC |2-|OM |2,故|AB |24=|CD |24-|OM |2,即|AB |2=|CD |2-4|OM |2,则8(m 2+1)2(m 2+2)2=4(m 2+4)m 2+2-4⎣⎡⎦⎤4(m 2+2)2+m 2(m 2+2)2,解得m 2=2,故m =±2.所以直线l 的方程为x -2y +1=0或x +2y +1=0. [关键点拨]本题(2)的核心在于转化|AM |2=|CM |·|DM |中弦长的关系.由|CM |=|OC |-|OM |,|DM |=|OD |+|OM |,又|OC |=|OD |,得|AM |2=|OC |2-|OM |2.又|AM |=12|AB |,|OC |=12|CD |,因此|AB |2=|CD |2-4|OM |2,转化为弦长|AB |,|CD |和|OM |三者之间的数量关系,易计算.面积条件的转化[典例] 设椭圆的中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与椭圆交于E ,F 两点,求四边形AEBF 的面积的最大值.[解题观摩] 法一:如图所示,依题意得椭圆的方程为x 24+y2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0). 设点E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 且x 1,x 2满足方程(1+4k 2)x 2=4, 故x 2=-x 1=21+4k 2.①根据点到直线的距离公式和①,得点E ,F 到直线AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2).又|AB |=22+12=5,所以四边形AEBF 的面积为S =12|AB |·(h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k 1+4k 2=21+4k 1+4k 2=21+41k +4k ≤22,当且仅当1k =4k ,即k =12时取等号. 因此四边形AEBF 的面积的最大值为2 2. 法二:依题意得椭圆的方程为x 24+y 2=1.直线EF 的方程为y =kx (k >0).设点E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2.联立⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1消去y ,得(1+4k 2)x 2=4.故x 1=-21+4k 2,x 2=21+4k 2,|EF |=1+k 2·|x 1-x 2|=41+k 21+4k2. 根据点到直线的距离公式,得点A ,B 到直线EF 的距离分别为d 1=|2k |1+k 2=2k1+k 2,d 2=11+k 2.因此四边形AEBF 的面积为S =12|EF |·(d 1+d 2)=12·41+k 21+4k 2·1+2k1+k 2=2(1+2k )1+4k2=24k 2+4k +11+4k 2=21+4k 1+4k 2=21+41k+4k ≤22,当且仅当1k =4k ,即k =12时取等号.因此四边形AEBF的面积的最大值为2 2.[关键点拨]如果利用常规方法理解为S四边形AEBF=S△AEF+S△BEF=12|EF|·(d1+d2)(其中d1,d2分别表示点A,B到直线EF的距离),则需要通过联立直线与椭圆的方程,先由根与系数的关系求出EF的弦长,再表示出两个点线距,其过程很复杂.而通过分析,若把四边形AEBF的面积拆成两个小三角形——△ABE和△ABF的面积之和,则更为简单.因为直线AB的方程及其长度易求出,故只需表示出点E与点F到直线AB的距离即可.[总结规律·快速转化]做数学,就是要学会翻译,把文字语言、符号语言、图形语言、表格语言相互转换,我们要学会对解析几何问题中涉及的所有对象逐个理解、表示、整理,在理解题意的同时,牢记解析几何的核心方法是“用代数方法研究几何问题”,核心思想是“数形结合”,牢固树立“转化”意识,那么就能顺利破解解析几何的有关问题.附几种几何条件的转化,以供参考1.平行四边形条件的转化2.3.等腰三角形条件的转化4.菱形条件的转化5.圆条件的转化6.角条件的转化。

高中数学高考58第九章 平面解析几何 高考专题突破5 第2课时 定点与定值问题

高中数学高考58第九章 平面解析几何 高考专题突破5  第2课时 定点与定值问题
123456
技能提升练
5.(2018·保定模拟)设椭圆 C:ax22+by22=1(a>b>0)的离心率 e= 23,左顶点 M 到 直线ax+by=1 的距离 d=455,O 为坐标原点. (1)求椭圆 C 的方程;
123456
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明: 点O到直线AB的距离为定值.
思维升华
圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究 变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点 与变量无关.
跟踪训练 1 已知焦距为 2 2的椭圆 C:ax22+by22=1(a>b>0)的右顶点为 A,直 线 y=43与椭圆 C 交于 P,Q 两点(P 在 Q 的左边),Q 在 x 轴上的射影为 B,且 四边形 ABPQ 是平行四边形. (1)求椭圆 C 的方程;
(1)求C的方程;
解 由椭圆定义得|MF1|+|MF2|=4,

由垂直得|MF1|2+|MF2|2=|F1F2|2=4(4-b2),

由题意得 S△MF1 F2 =12|MF1|·|MF2|=1,

由①②③,可得 b2=1,C 的方程为x42+y2=1.
123456
(2)设C的上顶点为H,过点(2,-1)的直线与椭圆交于R,S两点(异于H),求 证:直线HR和HS的斜率之和为定值,并求出这个定值.
123456
2.(2018·威海模拟)已知抛物线C:y2=2px(p>0)的焦点F,直线y=4与y轴的交 点为P,与抛物线C的交点为Q,且|QF|=2|PQ|. (1)求p的值; 解 设 Q(x0,4),由抛物线定义,|QF|=x0+2p, 又|QF|=2|PQ|,即 2x0=x0+p2,解得 x0=p2, 将点 Qp2,4代入抛物线方程,解得 p=4.

第九章 高考专题突破五(1)

第九章 高考专题突破五(1)

焦点,A
为右顶点,P 3
是椭圆上一点,PF⊥x
轴.若
PF=14AF,则该椭圆
的离心率是___4__.
解析 由题意得,A(a,0),F(-c,0). ∵PF⊥x 轴,∴PF=ba2. ∵PF=14AF,∴ba2=14(a+c),即(3a-4c)(a+c)=0, ∵a,c>0,∴3a-4c=0,∴e=ac=34.
跟踪训练 5 已知椭圆 E:ax22+by22=1(a>b>0)以抛物线 y2=8x 的焦点为顶点, 且离心率为21. (1)求椭圆E的方程; 解 抛物线y2=8x的焦点为椭圆E的顶点,即a=2. 又ca=12,故 c=1,b= 3. ∴椭圆 E 的方程为x42+y32=1.
解答
(2)若直线 l:y=kx+m 与椭圆 E 相交于 A,B 两点,与直线 x=-4 相交于 点 Q,P 是椭圆 E 上一点且满足O→P=O→A+O→B(其中 O 为坐标原点),试问
(1)求椭圆C的方程;
解答
(2)求证:AP⊥OM;
证明
(3)试问:O→P·O→M 是否为定值?若是定值,请求出该定值;若不是定值, 请说明理由. 解 因为O→P·O→M=42kk22- +21,2-k2+4k1·(-2,-4k)
-8k2+4+16k2 8k2+4 = 2k2+1 =2k2+1=4, 所以O→P·O→M为定值 4.
(1)求椭圆C的方程;
解答
(2)过点M作两条直线与椭圆C分别交于相异两点A,B,若∠AMB的平分 线与y轴平行,探究直线AB的斜率是否为定值.若是,请给予证明;若不 是,请说明理由.
解答
思维升华
求定点及定值问题常见的方法有两种 (1)从特殊入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

高考数学一轮总复习 第九章 高考专题突破五 第3课时

高考数学一轮总复习 第九章 高考专题突破五 第3课时

跟踪训练 1 已知椭圆 T:ax22+by22=1(a>b>0)的一个顶点 A(0,1
圆 C:x2+y2=4,从圆 C 上任意一点 P 向椭圆 T 引两条切线
(1)求椭圆 T 的方程; 解 由题意可知 b=1,ac= 36,即 2a2=3c2, 又a2=b2+c2,联立解得a2=3,b2=1. ∴椭圆方程为x32+y2=1.
师生共研
题型一 证明问题
例 1 (2017·全国Ⅱ)设 O 为坐标原点,动点 M 在椭圆 C:x22
作 x 轴的垂线,垂足为 N,点 P 满足N→P=
→ 2NM.
(1)求点 P 的轨迹方程;
(2)设点Q在直线x=-3上,且
→→ OP·PQ
=1.证明:过点P且垂直
的左焦点F.
思维升华 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等 些否定性命题,证明方法一般是采用直接法或反证法.
(2)判断是否存在直线 l,满足 2O→C=O→M+O→D,2O→D=O→N+ 求出直线 l 的方程;若不存在,请说明理由.
2 课时作业
PART TWO
基础保分练
1.(2018·聊城模拟)已知椭圆 C:ax22+by22=1(a>b>0)的离心率为 椭圆的左、右焦点,点 P 为椭圆上一点,△F1PF2 面积的最大 (1)求椭圆 C 的方程;
思维升华
解决探索性问题的注意事项 探索性问题,先假设存在,推证满足条件的结论,若结论 若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论; (2)当给出结论而要推导出存在的条件时,先假设成立,再推 (3)当条件和结论都不知,按常规方法解题很难时,要开放 外合适的方法.
跟踪训练 2 (2018·广州模拟)已知椭圆 E:ax22+by22=1(a>b>0 且离心率 e= 22,直线 l 与 E 相交于 M,N 两点,l 与 x 轴、 D 两点,O 为坐标原点. (1)求椭圆 E 的方程;

2020高考数学理人教通用版新增分一轮课件:第九章 高考专题突破五 第3课时

2020高考数学理人教通用版新增分一轮课件:第九章 高考专题突破五 第3课时

思维升华 解决探索性问题的注意事项
探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,
若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论; (2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件; (3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另 外合适的方法.
x2 y2 6 跟踪训练 1 已知椭圆 T: 离心率 e= 3 , a2+b2=1(a>b>0)的一个顶点 A(0,1), 圆 C:x2+y2=4,从圆 C 上任意一点 P 向椭圆 T 引两条切线 PM,PN. (1)求椭圆 T 的方程;
6 c 解 由题意可知 b=1,a= 3 ,即 2a2=3c2,
3
4
5
6
3.(2018· 三明质检)已知顶点是坐标原点的抛物线Γ的焦点F在y轴正半轴上,圆 1 心在直线y= x上的圆E与x轴相切,且E,F关于点M(-1,0)对称. 2 (1)求E和Γ的标准方程;
1
2
3
4
5
6
(2)过点M的直线l与E交于A,B,与Γ交于C,D,求证:|CD|> 2|AB|.
1
2
3
4
5
6
x2 y2 4.(2018· 锦州模拟)已知椭圆 2+ 2=1 (a>b>0)的长轴与短轴之和为6,椭圆上 a b 任一点到两焦点F1,F2的距离之和为4.
(1)求椭圆的标准方程; 解 由题意,2a=4,2a+2b=6,
∴a=2,b=1.
x2 2 ∴椭圆的标准方程为 4 +y =1.
1
2
3
1
2
3
4
5
6
(2) 过点 A(4,0) 作关于 x 轴对称的两条不同直线 l1 , l2 分别交椭圆于 M(x1 , y1) 与 N(x2,y2),且x1≠x2,证明直线MN过定点,并求△AMN的面积S的取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以△PAB的面积
S△PAB=12|PM|·|y1-y2|=3
4
2(y20-4x0)
3 2
.
因为 x20+y420=1(-1≤x0<0),
所以 y20-4x0=-4x20-4x0+4∈[4,5],
所以△PAB 面积的取值范围是6 2,15410.
思维升华
SI WEI SHENG HUA
解决圆锥曲线中的取值范围问题应考虑的五个方面 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值 范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个 参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域, 从而确定参数的取值范围.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6.已知F1,F2分别是双曲线 ax22-by22 =1(a>0,b>0)的左、右焦点,双曲线左支 上存在一点P使|PF2|2=8a|PF1|(a为实半轴长)成立,则此双曲线的离心率e的
大一轮复习讲义
高考专题突破五 高考中的圆锥曲线问题
第1课时 范围与最值问题
题型一 师生共研 范围问题
例1 (2018·浙江)如图,已知点P是y轴左侧(不含y轴)一点, 抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点 均在C上. (1)设AB的中点为M,证明:PM垂直于y轴; 证明 设 P(x0,y0),A41y21,y1,B41y22,y2. 因为PA,PB的中点在抛物线上, 所以 y1,y2 为方程y+2y02=4·14y22+x0, 即 y2-2y0y+8x0-y20=0 的两个不同的实根.
命题点2 数形结合利用几何性质求最值
例3 在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点 2
P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为__2__.
解析 双曲线x2-y2=1的渐近线为x±y=0,直线x-y+1=0与渐近线x-y= 0平行, 故两平行线间的距离 d= 12|1+--0| 12= 22. 由点 P 到直线 x-y+1=0 的距离大于 c 恒成立,得 c≤ 22,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.已知直线l1:x=2,l2:3x+5y-30=0,点P为抛物线y2=-8x上的任一点,
则P到直线l1,l2的距离之和的最小值为
A.2
B.2 34
√C.1187 34
D.1165 34
解析 ∵抛物线y2=-8x的焦点为F(-2,0),准线为l1:x=2, ∴P到l1的距离等于|PF|, 又易知l2与抛物线无交点, ∴P到直线l1,l2的距离之和的最小值为F(-2,0)到直线l2的距离 d=|-6+9+0-2530|=1187 34.
所以y +y =2y ,所以PM垂直于y轴.
(2)若P是半椭圆x2+ y42=1(x<0)上的动点,求△PAB面积的取值范围.
解 由(1)可知yy11+ y2=y2= 8x02-y0, y20, 所以|PM|=18(y21+y22)-x0=34y20-3x0, |y1-y2|=2 2y02-4x0.
解 由抛物线的定义可得 |FA|=xA+p2=1+p2=2,所以 p=2, 所以抛物线的方程为y2=4x.
(2)求△APQ面积的取值范围.
解 设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2), 联立yy= 2=k4xx-1, 得 k2x2-(2k2+4)x+k2=0, Δ>0恒成立, 由根与系数的关系得 x1+x2=2k2k+2 4,x1x2=1, 因为 AF⊥x 轴,则 S△APQ=12×|AF|×|x1-x2| =|x1-x2|= x1+x22-4x1x2
=4 k2k+4 1=4 k12+k14,
因为21≤k≤2,令 t=k12, 所以 S△APQ=4 t2+t14≤t≤4, 所以 5≤S△APQ≤8 5, 所以△APQ 的面积的取值范围为[ 5,8 5].
素养提升
SU YANG TI SHENG
典例的解题过程体现了数学运算素养,其中设出P,Q点的坐标而不求解又 体现了数学运算素养中的一个运算技巧——设而不求,从而简化了运算过程.
=14+|AF|cos θ+41=21+|AF|cos θ,
|AF|(1-cos θ)=12,|AF|=21-1cos θ.
由π4≤θ<π 得-1<cos θ≤ 22,2- 2≤2(1-cos θ)<4,
1
1
4<21-cos
θ≤2-1
2=1+ 22,
即|AF|的取值范围是14,1+ 22.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
故 c 的最大值为 22.
命题点3 转化为函数利用基本不等式或二次函数求最值 例 4 椭圆 C:ax22+by22=1(a>b>0)的离心率为 36,短轴一个端点到右焦点的距
离为 3. (1)求椭圆C的方程;
解 设椭圆的半焦距为 c,依题意知ac= 36, a= 3,
∴c= 2,b=1, ∴所求椭圆方程为x32+y2=1.
跟踪训练1 (2020·昆明诊断)过点E(-1,0)的直线l与抛物线C:y2=4x交于A, B两点,F是C的焦点. (1)若线段AB中点的横坐标为3,求|AF|+|BF|的值;
解 设A(x1,y1),B(x2,y2), 由题知x1+x2=6, 由抛物线的定义知|AF|=x1+1,|BF|=x2+1, 则|AF|+|BF|=x1+x2+2=8.
=12k2+13k23+k21+21-m2=3k2+3k12+91k22+1
=3+9k4+126kk22+1=3+9k2+12k12+6(k≠0) ≤3+2×132+6=4.
当且仅当 9k2=k12,即 k=± 33时等号成立.
当 k=0 时,|AB|= 3,综上所述|AB|max=2.
∴当|AB|最大时,△AOB
=21-kk21-k3=21-k2k12+k+k2 =2k+1k-2k+1k+1, 令 t=k+1k(t≤-2). 则 S△PMN=2(t-2)(t+1)=2t-212-29(t≤-2), 当t=-2,即k=-1时,S△PMN取得最小值,最小值为8. 即当过原点的直线方程为y=-x时, △PMN的面积取得最小值8.
跟踪训练2 已知抛物线C1:y2=4x和C2:x2=2py(p>0)的焦点分别为F1,F2, 点P(-1,-1)且F1F2⊥OP(O为坐标原点). (1)求抛物线C2的方程; 解 ∵F1(1,0),F20,2p,∴— F1→F2=-1,p2, — F1→F2·O→P=-1,p2·(-1,-1)=1-p2=0, ∴p=2, ∴抛物线C2的方程为x2=4y.
(2)求|AF|·|BF|的取值范围.
解 设A(x1,y1),B(x2,y2),直线l的方程为x=my-1. 由xy= 2=m4yx-,1, 得 y2-4my+4=0. 即y1+y2=4m,y1y2=4. 由Δ=16m2-16>0,得m2>1. 由抛物线的定义知|AF|=x1+1,|BF|=x2+1. 则|AF|·|BF|=(x1+1)(x2+1)=m2y1y2=4m2. 因为m2>1,所以|AF|·|BF|>4. 故|AF|·|BF|的取值范围是(4,+∞).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2020·绵阳诊断)若点 O 和点 F 分别为椭圆x42+y32=1 的中心和左焦点,点 P 为椭圆上的任意一点,则O→P·F→P的最大值为
21 A. 4
√B.6
C.8
D.12
解析 由题意得F(-1,0),设P(x,y), 则O→P·F→P=(x,y)·(x+1,y)=x2+x+y2,
课时精练
基础保分练
1.已知抛物线C:y2=4x,点A(m,0)在x轴正半轴上,O为坐标原点,若抛物线
上存在点P,使得∠OPA=90°,则m的取值范围是
√ A.(0,4)
B.(4,+∞)
C.(0,2)
D.(2,+∞)
解析 设点 Pb42,b,由∠OPA=90°,
得O→P·P→A=0,∴b42,b·m-b42,-b=0. 即 m=4+b42,∴m>4.
又点 P 在椭圆上,故x42+y32=1, 所以O→P·F→P=x2+x+3-43x2=41x2+x+3=14(x+2)2+2, 又-2≤x≤2,所以当 x=2 时,O→P·F→P取得最大值,即O→P·F→P的最大值为 6.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知椭圆ax22+by22=1(a>b>0)的中心为 O,一个焦点为 F,若以 O 为圆心,|OF|
为半径的圆与椭圆恒有公共点,则椭圆的离心率的取值范围是
√A. 22,1
B.0,
3 2
C. 23,1
D.0,
2 2
解析 由于以O为圆心,以b为半径的圆内切于椭圆,所以要使以O为圆心, 以c为半径的圆与椭圆恒有公共点,需满足c≥b, 则 c2≥b2=a2-c2,所以 2c2≥a2,所以 22≤e<1,故选 A.
核心素养之数学运算 “设而不求,整体代换”解圆锥曲线问题
数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的 过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方 法,设计运算程序,求得运算结果等.
例 已知抛物线C:y2=2px(p>0),点F为抛物线C的焦点,点A(1,m)(m>0) 在抛物线C上,且|FA|=2,过点F作斜率为k12≤k≤2的直线l与抛物线C交于P, Q两点. (1)求抛物线C的方程;
相关文档
最新文档