平面直角坐标系测试卷

合集下载

《平面直角坐标系》同步测试卷4

《平面直角坐标系》同步测试卷4

6.1平面直角坐标系(时间45分钟 满分100分)班级 姓名 得分一、选择题(每题3分,共24分)1.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的位置简记为(12,12),则小明与小菲应坐在 的位置上. ( )A .同一排B .前后同一条直线上C .中间隔六个人D .前后隔六排2.已知点A 的坐标是(a ,b ),若a +b <0、ab >0.则点A 在第 象限. ( ) A .一B .二C .三D .四3.以点A (3,0)为圆心,以5为半径画圆,则OA 与x 轴的交点坐标为 ( ) A .(0,-2),(0,8) B .(-2,0),(8,0) C .(0,-8),(0,2)D .(-8,0),(2,0)4.若点P (x ,y )在第一、三象限两坐标轴夹角平分线上,则x 与y 的关系是 ( )A .y x =B .y x -=C .y x =D .y x =5.点P (x ,y )是第四象限内的点,且3=x ,2=y .则点P 的坐标是 ( ) A .(3,2)B .(一3,2)C .(3,一2)D .(一3,一2) 6.点M (一3,2)到y 轴的距离是( )A .3B .2C .3或2D .一37.A 1(一3,3),A 2(一3,2),A 3(3,3),A 4(3,4)四个点中由( )确定的直线与x 轴平行. A .A 1、A 2B .A 1、A 3C .A 1、A 4D .A 3、A 48.已知x 轴上的点P 到y 轴的距离为3.则点P 的坐标为 ( )A .(3,0)B .(0,3)C .(0,3)或(0,-3)D .(3,0)或(-3,0)二、填空题(每题2分,共16分)9.t 为任意有理数,有点(-t 2-3,t 2+1)总在第 象限.10.如果有序数对(3a -1,2b +5)与(8,9)所示的位置相同.则a = ,b = . 11.当x = 时,点P (6,4x -6)在x 轴上,12.若P (a ,-b )是第二象限内的点,则Q (-a ,ab )是第 象限内的点. 13.已知坐标平面内的两点A (7,m -2),B (m ,-3).若直线AB ∥x 轴,则m = . 14.点P 是第三象限角平分线上一点,写出一个符合要求的点P 的坐标 . 15.若一个长方形的三个顶点的坐标分别是A (-2,-1),B (1,-1),C (1,3),则第四个顶点D 的坐标为 .16.线段AB =3,且AB ∥x 轴,若点A 的坐标为(-4、2),则B 点的坐标是 三、解答题(共60分)17.(8分)如图,如果用(0,0)表示点A ,用(1,2)表示点B .那么:(1)图C 、D 、E 分别如何表示;(2)在图中标出点F (2,1),G (一1,2).18.(8分)在直角坐标系中描述下列一组点,并用线段依次将它们连接起来观察图形像什么(0,0)(1,0)(1,2)(2,2)(2,0)(3,0)(3,5)(2,5)(2,3)(1,3)(1,5)(0,5)(0,0)19.(6分)有序数对(m ,n )中的整数m ,n 满足m -n =-6,且点P (m ,n ) 在第二象限,写出所有符合条件的数对.20.(8分)已知点A 的坐标是(3,0).⑴试写出在x 轴上与A 点距离为2的点的坐标;⑵在坐标轴上与A 点距离为3的点共有几个?坐在标轴上与A 点距离为7的点共有几个?(都不必写出点的坐标).21.(6分)将边长为1的正方形ABCD 放在直角坐标系中,使C 的坐标为(21,21).请建立直角坐标系,并求其余各点的坐标.22.(8分)如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,图中点A 记作(30°,50),北偏西45°记作-45°,沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).问:(1)(-75°,-15),(10°,-25)分别表示什么意义? (2)在图中标出点(60°,-30)和(-30°,40).23.(8分)平面上有点P ,P 到坐标轴的距离均为正整数,若点P 到x 轴、y 轴的距离之积为10,试写出符合条件的点的坐标.24.(8分)如图表示某城市街道的平面图,图中线段表示道路.(1)若A 点表示2街3大道的交叉路口的位置,记作(2,3),那么B 点如何表示? (2)找出一条从A 到B 的最近路线,并用适当的方式表示; (3)从A 到B 的最近路线共有几条?。

人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

第7章平面直角坐标系期末考好题精选训练一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2) C.2,(3,0) D.1,(4,2)3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为() A.(3,3)B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.37.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.D.(99,34)10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.511.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.第12题图第13题图13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a ﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足+|b﹣3|=0.(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出三角形OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;②若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为.22.在平面直角坐标系xOy中,对于点P(x,y),我们把P'(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点.(1)当点A1的坐标为(2,1),则点A3的坐标为,点A2016的坐标为;(2)若A2016的坐标为(﹣3,2),则设A1(x,y),求x+y的值;(3)设点A1的坐标为(a,b ),若A1,A2,A3,…A n,点A n均在y轴左侧,求a、b的取值范围.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底"a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底"a=5,“铅垂高"h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积"为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.【解答】解:∵点P(2a﹣5,a+2)在第二象限,∴解得:符合条件的a的所有整数为﹣1,0,1,2,∴﹣1+0+1+2=2,∴2的立方根为:,故选:D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0) D.1,(4,2)【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为()A.(3,3) B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)【解答】解:∵点P(2﹣a,3a+6)到两坐标轴距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,当a=﹣1时,2﹣a=2﹣(﹣1)=3,3a+6=3×(﹣1)+6=3,当a=﹣4时,2﹣a=2﹣(﹣4)=6,3a+6=3×(﹣4)+6=﹣6,∴点P的坐标为(3,3)或(6,﹣6).故选C.4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D 符合.故选:D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3【解答】解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(2,4),(﹣6,4),所以④错误.故选A.7.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限【解答】解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A(2,3)与点B(2,﹣3)的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.D.(99,34)【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是.故选:C.10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),∴△ABC的平移规律为:向右平移个单位,向下平移3个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+2=c,b﹣3=d,∴a﹣c=﹣2,b﹣d=3,∴a+b﹣c﹣d=﹣2+3=1,故选C.11.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米【解答】解:根据题意建立平面直角坐标系如图所示,小文能从M超市走到游乐园门口的路线是:向北直走700米,再向西直走300米.故选A.二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.【解答】解:∵点A的坐标是(2,2),BC∥x轴,且AB=1,∴点B坐标为(2,1),又BC=1,∴点C的坐标为(3,1),故答案为:(3,1).13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).【解答】解:由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,则OA20=10,∴A20(10,0);根据以上可得:OA4n=4n÷2=2n,∴点A4n的坐标(2n,0).故答案为:10,0;2n,0.15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB +S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点"时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离".已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.【解答】解:由题意可得,,解得,﹣1≤k≤1,故答案为:﹣1≤k≤1.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.【解答】解:(1)如图所示:(2)如图所示:市场(4,3)、超市(2,﹣3);(3)如图所示,△A1B1C1的面积是:3×6﹣×1×6﹣×2×2﹣×3×4=7.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵a ,b 满足|a ﹣2|+(b ﹣3)2=0, ∴a ﹣2=0,b ﹣3=0,解得a=2,b=3.故a 的值是2,b 的值是3;(2)过点M 作MN 丄y 轴于点N .四边形AMOB 面积=S △AMO +S △AOB =MN•OA +OA•OB =×(﹣m )×2+×2×3=﹣m +3;(3)当m=﹣时,四边形ABOM 的面积=4。

(易错题)初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(含答案解析)

(易错题)初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(含答案解析)

一、选择题1.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( ) A .()3,4B .()3,4--C .()4,3-D .()3,4-4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,6.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( )A .(0,﹣2)B .(3,0)C .(0,3)D .(﹣2,0)8.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π9.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求. A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .4912.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题13.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.14.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.15.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.16.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.17.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______. 18.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __19.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)20.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________. (2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.三、解答题21.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 . 22.如图,在平面直角坐标系中有一个△ABC .(1)将△ABC 向右平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1. (2)写出△A 1B 1C 1,三个顶点的坐标.23.若点(1m -,32m -)在第二象限内,求m 的取值范围24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A 点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B 点和D 点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系; (2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标. 26.已知()4,0A ,点B 在x 轴上,且5AB =. (1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABDS=,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以画出相应的图形,然后即可发现点所在的位置变化特点,即可得到小球第2020次碰到球桌边时,小球的位置. 【详解】如图,小球第一次碰到球桌边时,小球的位置是(0,1) 小球第二次碰到球桌边时,小球的位置是(3,4) 小球第三次碰到球桌边时,小球的位置是(7,0) 小球第四次碰到球桌边时,小球的位置是(8,1) 小球第五次碰到球桌边时,小球的位置是(5,4) 小球第六次碰到球桌边时,小球的位置是(1,0) ……∵2020÷6=336 (4)∴小球第2020次碰到球桌边时,小球的位置是(8,1) 故选D【点睛】本题考查坐标位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.2.B解析:B 【分析】根据点A 、B 的坐标建立平面直角坐标系,由此即可得. 【详解】因为(2,1),(2,3)A B ---,所以将A 向右移2个单位,向下移动1个单位即为坐标原点, 建立平面直角坐标系如图所示:由图可知,点C 距x 轴1个单位,距离y 轴2个单位, 则(2,1)C -, 故选:B . 【点睛】本题考查了点坐标,根据已知点的坐标正确建立平面直角坐标系是解题关键.3.C解析:C 【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答. 【详解】 解:设(),P a bP 在第二象限, 0,0a b ∴<>P 到x 轴距离为3,则3b = P 到y 轴距离为4,则4a =-()4,3P ∴-故选C 【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.4.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a+>,a+,3-)在第四象限.点A(21故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C解析:C【分析】应先判断出点所在的象限,进而利用这个点横纵坐标的绝对值求解.【详解】解:根据题意,则∵点A位于x轴上方,且位于y轴的左边,∴点A在第二象限,∵点A距x轴5个单位长,距y轴10个单位长,-,;∴点A的坐标为(105)故选:C.【点睛】本题主要考查了点在第二象限时坐标的特点,注意到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.6.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,故选B.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.7.C解析:C【分析】直接利用点的坐标特点进而画出图形得出答案. 【详解】 解:如图所示:,过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,故点B 的坐标为:(0,3). 故选C . 【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.8.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而得到点的坐标; 【详解】半径为1个单位长度的半圆的周长为12, ∵点P 从原点O 出发,沿着这条曲线向右运动, 每秒2π个单位长度, ∴点1P 秒走12个半圆, 当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为1秒时,点P 的坐标为()1,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为2秒时,点P 的坐标为()2,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为3秒时,点P 的坐标为()3,1-,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为4秒时,点P 的坐标为()4,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为5秒时,点P 的坐标为()5,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为6秒时,点P 的坐标为()6,0,,∵20164=504÷, ∴2016A 的坐标为()2016,0; 故答案选B . 【点睛】本题主要考查了点的坐标规律,准确计算是解题的关键.9.D解析:D 【分析】先根据点P 和P′的坐标得出坐标的变化规律,再根据规律逐一判断即可得答案. 【详解】∵点()1,2P 平移后的坐标是,3()3P '﹣, ∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1, A.()3,24(,2)→-,横坐标加1,纵坐标减4,故该选项不符合题意,B.()(104),5,--→-,横坐标减4,纵坐标减4,故该选项不符合题意,C.(1.2,5)→(-3.2,6),横坐标减4.8,纵坐标减1,故该选项不符合题意,D.122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭,横坐标减4,纵坐标加1,故该选项符合题意, 故选:D . 【点睛】本题考查了坐标与图形变化-平移,根据点P 与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.10.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环 ∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.11.B解析:B【分析】设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数,根据题意可得规律求解.【详解】解:设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数.则﹣5<x <5,﹣5<y <5,故x 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x ,y )的数目为9×9=81(个).故选:B .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.12.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.二、填空题13.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.14.(8-4)【分析】直接利用平移中点的变化规律求解即可【详解】解:原来点的横坐标是5纵坐标是-2向右平移3个单位再向下平移2个单位得到新点的横坐标是5+3=8纵坐标为-2-2=-4则点B 的坐标为(8-解析:(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4.则点B 的坐标为(8,-4).故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.15.(1-2)【分析】根据题意写出各个点的坐标找出点的坐标的变化规律进而即可得到答案【详解】∵∴直线OA 是第二四象限的角平分线∵∴(-21)(-2-1)(2-1)(1-2)(12)(-12)(-21)∴解析:(1,-2)【分析】根据题意,写出各个点的坐标,找出点的坐标的变化规律,进而即可得到答案.【详解】∵()3,3A -,∴直线OA 是第二、四象限的角平分线,∵()1,2P -,∴1P (-2,1),2P (-2,-1),3P (2,-1),4P (1,-2),5P (1,2),6P (-1,2),7P (-2,1),∴6个点一次循环,∵2020÷6=336…4,∴2020P 的坐标是(1,-2),故答案是:(1,-2)【点睛】本题主要考查坐标系中点的坐标的变化规律,根据点的坐标,找出规律,是解题的关键. 16.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.【点睛】本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 17.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M 的纵坐标与点P 的纵坐标相同是﹣2再根据MP =6即可求出点M 的坐标【详解】解:∵点P(3−2)MP//x 轴∴点M 的横坐标与点P 的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M 的纵坐标与点P 的纵坐标相同,是﹣2,再根据MP =6,即可求出点M 的坐标.【详解】解:∵点P(3,−2), MP//x 轴,∴点M 的横坐标与点P 的横坐标相同,是﹣2,又∵MP =6,∴点M 的横坐标为为3+6=9,或3−6=−3,∴点M 的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键. 18.1【分析】先根据点坐标关于y 轴对称的变换规律求出ab 的值再代入计算有理数的乘方即可得【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数纵坐标不变则因此故答案为:1【点睛】本题考查了点坐标关于y 轴 解析:1【分析】先根据点坐标关于y 轴对称的变换规律求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数,纵坐标不变,则5,4b a =-=,因此()()()2020202020204511a b =+=--=, 故答案为:1.【点睛】本题考查了点坐标关于y 轴对称的变换规律、有理数的乘方,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 19.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1, ∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.20.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.三、解答题21.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.22.(1)见解析;(2)A 1(1,3),B 1(-1,0),C 1(2,1).(1)直接根据平移的性质确定A 1、B 1、C 1点即可画图;(2)原三角形中点A 、B 、C 的坐标已知,将△ABC 向右平移3个单位后,横坐标变为x+3,而纵坐标不变,所以点A 1、B 1、C 1的坐标可知.【详解】解:(1)(2)∵A (-2,3),B (-4,0),C (-1,1)∴A 1(1,3),B 1(-1,0),C 1(2,1).【点睛】此题主要考查根据图形平移的性质画图,熟练利用平移的性质确定点的坐标是解题关键. 23.m <1【分析】根据点在第二象限的条件是:横坐标是负数,纵坐标是正数,得出不等式组,即可解答.【详解】∵点(1m -,32m -)在第二象限,∴10320m m -<⎧⎨->⎩, ∴132m m <⎧⎪⎨<⎪⎩, 解得:1m <,∴m 的取值范围是:1m <.【点睛】本题考查了点所在的象限,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限()++,,第二象限()-+,,第三象限()--,,第四象限()+-,. 24.(1)如图所示,△A 1B 1C 1 即为所求见解析;(2)如图所示见解析,△A 2B 2C 2 即为所求,其中 B 2 点坐标为(3,﹣2),C 2 点坐标为(3,﹣4).根据旋转作图的步骤:①定点一一旋转中心;②旋转方向;③旋转角度.再根据旋转的性质进行操作即可画出旋转之后的图形;接下来再根据平移作图的一般步骤,作出平移之后的图形,相信你能画出来.【详解】(1)如图所示,△A1B1C1 即为所求.(2)如图所示,△A2B2C2 即为所求,其中B2点坐标为(3,﹣2),C2 点坐标为(3,﹣4).【点睛】本题主要考查旋转和平移的知识点,解题的关键是要注意坐标的平移方法,25.(1)见解析;(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2)【分析】(1)根据B,D两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【详解】解:(1)平面直角坐标系如图所示.(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2).【点睛】本题考查点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D --【分析】 (1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标; (2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-,∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。

【数学】人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)

【数学】人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)

人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)一、选择题(每小题3分,共30分)1. 若有序数对(3a-1,2b+5)与(8,9)表示的位置相同,则a+b的值为( )A. 2B. 3C. 4D. 52. 如图,小手盖住的点的坐标可能为( )A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)第2题第3题3. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为B(4,150°).用这种方法表示目标C的位置,正确的是( )A. (-3,300°)B. (3,60°)C. (3,300°)D. (-3,60°)4. 把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B 的坐标是( )A. (-5,3)B. (1,3)C. (1,-3)D. (-5,-1)5. 在平面直角坐标系中,点P(2,x2)在( )A. 第一象限B. 第四象限C. 第一或者第四象限D. 以上说法都不对6. 如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A. 炎陵位于株洲市区南偏东约35°的方向上B. 醴陵位于攸县的北偏东约16°的方向上C. 株洲县位于茶陵的南偏东约40°的方向上D. 株洲市区位于攸县的北偏西约21°的方向上第6题第7题7. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A. (-2,1)B. (2,-2)C. (-2,2)D. (2,2)8. 点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是( )A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3)9. 已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A. 3B. 4C. 5D. 610. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是( )A. (2019,0)B. (2019,1)C. (2019,2)D.(2018,0)二、填空题(每小题3分,共24分)11. 若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.12. 平面直角坐标系内有一点P(x,y),若点P在横轴上,则y ;若点P在纵轴上,则x ;若点P为坐标原点,则x 且y .13. 已知A(-1,4),B(-4,4),则线段AB的长为.14. 若点(m-4,1-2m)在第三象限内,则m的取值范围是.15. 如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.第15题第16题16. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN.若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是.17. 已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是,点B坐标是,点C坐标是.第17题第18题18. 如图,在平面直角坐标系中,A,B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为.三、解答题(共66分)19. (8分)如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?20. (8分)如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.21. (9分)某次海战中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?22. (9分)在平面直角坐标系中,描出点A(-1,3),B(-3,1),C(-1,-1),D(3,1),E(7,3),F(7,-1),并连接AB,BC,CD,DA,DE,DF,形成一个图案.(1)每个点的横坐标保持不变,纵坐标变为原来的一半,再按原来的要求连接各点,观察所得图案与原来的图案,发现有什么变化?(2)纵坐标保持不变,横坐标分别增加3呢?23. (10分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大5;(3)点P到x轴的距离为2,且在第四象限.24. (10分)如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.25. (10分)如图,A (-1,0),C (1,4),点B 在x 轴上,且AB =3.(1)求点B 的坐标;(2)求三角形ABC 的面积;(3)在y 轴上是否存在点P ,使以A ,人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)2. 如图,、、这三个点中,在第二象限内的有( )A .、、B .、C .、D .3.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)4.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与小华小军小刚1P 2P 3P 1P 2P 3P 1P 2P 1P 3P 1P原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.()6.点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上7.如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为( )A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.如图,在方格纸中每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1个平方单位,则点C 的个数为( )A.3个B.4个C.5个D.6个10. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图 中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据 这个规律,则第 2016 个x y x y 3,23,2--2,3-2,3-点的横坐标为( )A. 44B. 45C. 46D. 47二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.12.在平面直角坐标系中,点(3,-5)在第___象限.13.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___.14.把面积为10cm 2的三角形向右平移5cm 后其面积为 .15.如图所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.16.如图,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x 轴与边AB 平行,y 轴与边BC 平行),则“卒”的坐标为 .17.如图,矩形ABCD 的边AB=6,BC=8,则图中五个小矩形的周长之和为 .18. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点 的坐标为 __________.(3)ABCD A AB x C三、认真答一答:(本大题共6小题,共66分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19.(10分)如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(-2,2),(2,0).(1)请根据题意在图中建立平面直角坐标系;(2)写出图中其他地点的坐标;(3)在图中标出体育馆(-5,4)的位置.20.(10分)如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→A(-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.21. (10分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上他经过的地方.22.(10分)某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?23. (12分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.24.(14分)在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n 为正整数).参考答案1.D;2.D;3.D;4.D;5.C;6.A;7.A;8.B;9.D;10.B;11.(0,0);12.四;13.(-3,2);14.10cm215.(-2,3)、(0,2)、(2,1)、(-2,1).16.(3,2)17. 2818.(3,5)19.(1)略.(2)行政楼(3,3),实验楼(-3,0),综合楼(-4,-3),信息楼(2,-2).(3)略.20.(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.(1)汽车站(1,1),消防站(2,-2)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家22.(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.23.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,则C(0,3),D(3,3),E(3,0).又因为O(0,0),A(1,3),B(3,1),所以OC=3,AC=1,OE=3,BE=1.AD=DC-AC=3-1=2,BD=DE-BE=3-1=2.则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为×3×1=, △ABD 的面积为×2×2=2, 所以△ABO 的面积为9-2×-2=4. 24.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个. (2)第n 个正方形边上的整点个数为4n 个,所以第20•个正方形的边上整点个数为4×20=80(个).(3)第7个正方形边上,第4n 个正方形边上.(│-2n│+│2n│=4n ).人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3) 2. 如图,、、这三个点中,在第二象限内的有( )12321232小华小军小刚1P 2P 3PA .、、B .、C .、D .3.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)4.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.() 6.点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上7.如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为( )A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)1P 2P 3P 1P 2P 1P 3P 1P x y x y 3,23,2--2,3-2,3-8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.如图,在方格纸中每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,点C也在小方格的顶点上,且以A、B、C为顶点的三角形的面积为1个平方单位,则点C 的个数为()A.3个B.4个C.5个D.6个10. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A. 44B. 45C. 46D. 47二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.12.在平面直角坐标系中,点(3,-5)在第___象限.13.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为___.14.把面积为10cm2的三角形向右平移5cm后其面积为.15.如图所示,如果点A的位置为(-1,0),那么点B的位置为___,点C 的位置为___,点D和点E的位置分别为___、___.(3)16.如图,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x 轴与边AB 平行,y 轴与边BC 平行),则“卒”的坐标为 .17.如图,矩形ABCD 的边AB=6,BC=8,则图中五个小矩形的周长之和为 .18. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点 的坐标为 __________.三、认真答一答:(本大题共6小题,共66分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19. (10分)如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(-2,2),(2,0). (1)请根据题意在图中建立平面直角坐标系; (2)写出图中其他地点的坐标;(3)在图中标出体育馆(-5,4)的位置.20. (10分)如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4).请根据图中所给信息解决下列问题: (1)A →C ( +3 , +4 );B →C ( +2 , 0 );C → A (-3,-4); (2)如果贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程;(3)如果贝贝从A 处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E 点.ABCD A AB xC21. (10分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上他经过的地方.22.(10分)某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?23. (12分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.24.(14分)在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n 为正整数).参考答案1.D;2.D;3.D;4.D;5.C;6.A;7.A;8.B;9.D;10.B;11.(0,0);12.四;13.(-3,2);14.10cm215.(-2,3)、(0,2)、(2,1)、(-2,1).16.(3,2)17. 2818.(3,5) 19.(1)略.(2)行政楼(3,3),实验楼(-3,0),综合楼(-4,-3),信息楼(2,-2). (3)略.20.(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m . (3)略.21.(1)汽车站(1,1),消防站(2,-2)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家22.(1)北偏东40°的方向上有两个目标:敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道敌方战舰B 距我方潜艇的距离. (2)敌方战舰A 和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.23.解:如答图所示,过A ,B 分别作y 轴,x 轴的垂线,垂足为C ,E ,两线交于点D , 则C (0,3),D (3,3),E (3,0).又因为O (0,0),A (1,3),B (3,1), 所以OC=3,AC=1,OE=3,BE=1. AD=DC-AC=3-1=2, BD=DE-BE=3-1=2.则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为×3×1=, △ABD 的面积为×2×2=2, 所以△ABO 的面积为9-2×-2=4. 24.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个. (2)第n 个正方形边上的整点个数为4n 个,所以第20•个正方形的边上整点个数为123212324×20=80(个).(3)第7个正方形边上,第4n 个正方形边上.(│-2n│+│2n│=4n ).人教版初中数学七年级下册第八章《二元一次方程组》检测卷一、选择题(每小题3分,共30分)1. 若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则m 的取值范围是( ) A. m ≠0 B. m ≠3 C. m ≠-3 D. m ≠22. 方程5x +2y =-9与下列方程构成的方程组的解为⎪⎩⎪⎨⎧=-=212y x 的是( )A. x +2y =1B. 5x +4y =-3C. 3x -4y =-8D. 3x +2y =-83. 用代入法解方程组238,355x y x y ì+=ïïíï-=ïî①②有以下过程,其中错误的一步是( ) (1)由①,得x =8-3y2③;(2)把③代入②,得3×832y--5y =5; (3)去分母,得24-9y -10y =5; (4)解得y =1,再由③,得x =2.5.A. (1)B. (2)C. (3)D. (4)4. 方程组⎪⎩⎪⎨⎧=++=+=+71342z y x z x y x 的解是( )A. 2,2,1x y z ì=ïïï=íïï=ïïî B.2,1,1x y z ì=ïïï=íïï=ïïî C. 2,8,1x y z ì=-ïïï=íïï=ïïî D. 2,2,2x y z ì=ïïï=íïï=ïïî 5. 已知a ,b 满足方程组512,34,a b a b ì+=ïïíï-=ïî则a +b 的值为( )A. -4B. 4C.-2D. 26. 若|m -n -3|+(m +n +1)2=0,则m +2n 的值为( )A. -1B. -3C. 0D. 37. 关于x ,y 的方程组0,3x py x y ì+=ïïíï+=ïî的解是1,,x y ì=ïïíï=ïîV 其中y 的值被“△”盖住了,不过仍能求出p ,则p 的值是( )A. -12B. 12C. -14D. 148. A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A. 6,336x y x y ì+=ïïíï+=ïîB. 6,36x y x y ì+=ïïíï-=ïîC. 6,336x y x y ì-=ïïíï+=ïîD. 6,336x y x y ì+=ïïíï-=ïî9. 某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10. 已知方程组53,54x y ax y ì+=ïïíï+=ïî和25,51x y x by ì-=ïïíï+=ïî有相同的解,则a ,b 的值为( ) A. 14,2a b ì=ïïíï=ïî B. 4,6a b ì=ïïíï=-ïî C. 6,2a b ì=-ïïíï=ïîD. 1,2a b ì=ïïíï=ïî二、填空题(每小题3分,共24分)11. 解二元一次方程组的基本思想方法是“消元”,那么解方程组422,325x y x y ì-=ïïíï+=ïî宜用法;解方程组2,23x yx yì=ïïíï-=ïî宜用法.12. 已知-a x+y-z b5c x+z-y与a11b y+z-x c是同类项,则x=,y=,z=.13. 已知1,2xyì=ïïíï=-ïî是方程2x-ay=3的一个解,则a的值是.14. 如图是一正方体的展开图,若正方体相对面所表示的数相等,则x=,y =.15. 小刚解出了方程组33,2,x yx yì-=ïïíï+=ïîV解为4,,xyì=ïïíï=ïîW因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则V=,W=.16. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.17. 一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为.18. 某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩.请你帮他计算一下,需准备元钱买门票.三、解答题(共66分)19. (8分)解方程组:(1)325, 257;x yx yì+=ïïíï+=ïî①②(2)()() 41312,2.23x y yx yìï--=--ïïíï+=ïïïî20. (8分)3月24日上午8时,2019徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.21. (9分)已知关于x,y的二元一次方程组1,2 4. x yx yì+=ïïíï+=ïî(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b-4a的值.22. (9分)已知方程组4,6ax byax byì-=ïïíï+=ïî与方程组35,471x yx yì-=ïïíï-=ïî的解相同,求a,b的值.23. (10分)甲、乙两人共同解方程组515,42,ax yx byì+=ïïíï-=-ïî①②由于甲看错了方程①中的a,得到方程组的解为3,1;xyì=-ïïíï=-ïî乙看错了方程②中的b,得到方程组的解为5,4.xyì=ïïíï=ïî试计算a2 019+(-110b)2 018的值.24. (10分)某景点的门票价格如下表:。

第七章 平面直角坐标系单元测试卷(含答案)

第七章 平面直角坐标系单元测试卷(含答案)

第七章平面直角坐标系单元测试卷一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-42.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为任意实数;B.m=0,n<0C.m为任意实数,n=0;D.m<0,n=03.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,-2)4.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位长度得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)5.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7)B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(4,3),(1,7)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()8.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a -10)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2 015,2)B.(-2 015,-2)C.(-2 016,-2)D.(-2 016,2)二、填空题(每题3分,共30分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为_________.12.在平面直角坐标系中,将点A(4,1)向左平移_________个单位长度得到点B(-1,1).13.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O'A',则点A的对应点A'的坐标为_________.14.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.已知点A的坐标(x,y)满足+(y+3)2=0,则点A的坐标是________.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的格点上,在第四象限内坐标为________.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50米记作50,图中点A记作(30°,50);北偏西45°记作-45°,从O点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).22.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l'与直线l垂直,求垂足C点的坐标.24.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.25.如图,长阳公园有四棵古树A,B,C,D(单位:米).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来,划为保护区,请你计算保护区的面积.参考答案一、1.【答案】C2.【答案】D解:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.因为点A位于原点的左侧,所以横坐标小于0,即m<0.所以m<0,n=0,故选D.3.【答案】C解:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C.4.【答案】D解:点P(-2,3)沿x轴方向向右平移3个单位长度,即横坐标加上3,纵坐标不变,则Q点的坐标为(1,3),选D.5.【答案】C解:三角形向右平移2个单位长度,再向上平移3个单位长度,即(-4,-1),(1,1),(-1,4)的横坐标分别加上2,纵坐标分别加上3,得(-2,2),(3,4),(1,7).故选C.6.【答案】D解:由长为3,可知A点的横坐标为6-3=3,纵坐标与D点相同,即坐标为(3,3).故选D.7.【答案】D解:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,高为3,所以三角形ABO的面积=×2×3=3.8.【答案】D解:由P,Q在图中的位置可知a<7,b<5,所以6-b>0,a-10<0,故点(6-b,a-10)在第四象限.9.【答案】D解:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4,当a=-1时,P点坐标为(3,3),当a=-4时,P点坐标为(6,-6).10.【答案】B二、11.【答案】(5,2)12.【答案】513.【答案】(-1,3)14.【答案】(2,-2)解:将点A(-1,2)向右平移3个单位长度得到点B的坐标为(-1+3,2),即(2,2),则点B关于x轴15.【答案】二16.【答案】(2,-3)17.【答案】4或-4解:由三角形的面积=底×高×得,5|a|·=10,解得|a|=4,所以a=4或a=-4.此处学生容易只考虑一种情况.18.【答案】3;(1,-1)(答案不唯一)19.【答案】(2,1)解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).20.【答案】(2n,1)解:由图可知n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),…,所以点A4n+1(2n,1).三、21.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)如图.22.解:(1)如图.(2)体育场、市场、超市的坐标分别为(-2,4),(6,4),(4,-2).23.解:(1)∵l∥x轴,点A,B都在l上,∴m+1=-4,∴m=-5,∴A(2,-4),B(-2,-4),∴A,B两点间的距离为4.(2)∵l∥x轴,PC⊥l,x轴⊥y轴,∴PC∥y轴,∴C点横坐标为-1.又点C在l上,∴C(-1,-4).24.解:(1)C1(4,-2).(2)△A1B1C1如图所示.(3)如图,△AOA1的面积=6×3-×3×3-×3×1-×6×2=18---6=6.25.解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)如图,E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则S=S-S△OEH-S△FMG-S△HGN=50×60-×10×60-×20×50-×10×50=1 950(平方米),所以保护OMNH区的面积为1 950平方米.。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。

A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。

人教版数学《平面直角坐标系》单元测试A卷(含答案 )

人教版数学《平面直角坐标系》单元测试A卷(含答案 )

人教版数学《平面直角坐标系》单元测试A 卷一、单选题1.在平面直角坐标系中,点()A 3,3-在A .第一象限B .第二象限C .第三象限D .第四象限 2.在平面直角坐标系中,点(–1,–2)在第( )象限.A .一B .二C .三D .四3.如图,手掌盖住的点的坐标可能是( )A .( 3, 4 )B .(-4,3 )C .(-4,-3 )D .(3,-4 )4.若点P (m ,3)与点Q (1,n )关于y 轴对称,则( )A .1,3m n =-=-B .1,3m n ==C .1,3m n =-=D .1,3m n ==-5.小李在平面直角坐标系中画了一张示意图,分别标出了学校、电影院、体育馆、超市的大致位置.如果张大妈从体育馆向南走150米,再向东走400米,再向南走250米,再向西走50米,最终到达的地点是( )A .学校B .电影院C .体育馆D .超市6.如图,下列各点在阴影区域内的是( )A .()4,3-B .()4,3C .()4,3-D .()4,3--7.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)8.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A .(1,1)B .(2,1)C .(2,2)D .(3,1)9.如图所示,点A 的坐标是 ( )A .(3,2)B .(3,3)C .(3,-3)D .(-3,-3)10.若点A (a +1,b –2)在第二象限,则点B (1–b ,–a )在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.点A 的坐标为(-3,4),它表示点A 在第____象限,它到x 轴的距离为_____,到y 轴的距离为____________.12.在平面直角坐标系中,点()2331P m ,m +-在第二、四象限的角平分线上,则P 点的坐标为_________.13.点P (5,﹣3)到x 轴距离为_____,到y 轴距离为_____.14.在如图所示的雷达定位系统上,如果约定A 点位置表示为(60°,1),B 点的位置表示为(300°,2),那么C 点的位置可以表示为____________.15.如图,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(8分)(1)把圆片沿数轴向左滚动1周,点B 到达数轴上点C 的位置,点C 表示的数是 数(填“无理”或“有理”),这个数是 .(2)把圆片沿数轴滚动2周,点A 到达数轴上点D 的位置,点D 表示的数是 .(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3①第几次滚动后,A 点距离原点最近?第几次滚动后,A 点距离原点最远?②当圆片结束运动时,A 点运动的路程共有多少?此时点A 所表示的数是多少?16.在平面直角坐标系中,已知点()2,23A a a -+在第四象限.若点A 在两坐标轴夹角平分线上,则a 的值为__________.17.在直角坐标系中,点M(5a-2,a-1)在y 轴上,则a 的值等于_____.18.若(2,1)表示教室里第2列第1排的位置,则教室里第5列第6排的位置表示为________19.剧院里6排3座用(6,3)表示,则8排5号用 表示。

人教版七年级数学下册第七章《平面直角坐标系》测试卷(一)(附答卷)

人教版七年级数学下册第七章《平面直角坐标系》测试卷(一)(附答卷)

人教版七年级数学下册第七章《平面直角坐标系》测试卷1(附答卷)时间:120分钟满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A.(6,3)B.(3,6)C.(-3,-6)D.(-6,-3)2.若点A的坐标为(3,-2),则点A所在的象限是 ( )A第一象限B.第二象限C.第三象限D.第四象限,合3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)4.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A.-1B.1C.5D.-55.若点P(a,b)在第三象限,则点Q(a-3,-b)一定在 ( )A.第一象限B.第二象限C.第三象限D第四象限6.点A的位置如图所示,则关于点A的位置下列说法中正确的是 ( )A.距点05km处B.北偏东60°方向上5km处C.在点O北偏东30°方向上5km处D.在点O北偏东60°方向上5km处7.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为 ( )A.(0,1)B.(1,0)C.(0,1)或(0,-1)D.(1,0)或(-1,0)8.将点P(m+2,2m+1)向左平移1个单位长度到P′,且P′在y轴上,那么P′的坐标是 ( )B.(0,-2)A.(0,-1)C.(0.-D.(1,1)3)9.如图,长方形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将长方形OABC平移后,点B与点O重合,得长方形O1A1OC1,那么点O1的坐标为 ( )A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)10.如图,点A,B的坐标分别为(-5,6),(3,2),则三角形ABO的面积为 ( )A.12B.14C.16D.18二、填空题(每小题3分,共24分)11.点M(2,-1)到x轴的距离是________.12.点P到x轴的距离是2,到y轴的距离是3,且点P在第三象限,则点P的坐标是___________.13.平面直角坐标系中,点A(-3,2),C(x,y),若AC∥x轴,则点C的纵坐标为 _ __________.14.如图,在平面直角坐标系xOy中,点A(a2-4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为___________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A,B的坐标分别为(1,2),(2,0),将△AOB沿x轴向右平移,得到△CDE,若DB=1,则点C的坐标为___________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则点A的坐标为___________.18.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD (1)将点A 向右平移5个单位长度,它将与点_____重合;(2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______;(3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?23.(12分)已知△ABC的三个顶点坐标分别为A(4,3),B(3,1),C(1,2)(1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC沿x轴的负方向平移5个单位长度,纵坐标不变,得到△A1B1C1,请在图中画出△A1B1C1,并写出△A1B1C1三个顶点的坐标;(3)将△ABC作怎样的平移,得到△A2B2C2,使得这个三角形三个顶点的坐标分别为A2(6,-2),B2(5,-4),C2(3,-3)24.(12分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.25.(12分)综合与实践.问题背景:(1)已知A(1,2),B(3,2),C(1,-1),D(-3,-3)在平面直角坐标系中描出这几个点,并分别找到线段AB和CD的中点P1,P2,然后写出它们的坐标,则P1___________, P2____________;探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为____________;拓展应用:(3)利用上述规律解决下列问题:已知三点E(-1,2),F(3,1),G(1,4),第四个点H(x,y)与点E,点F,点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.人教版七年级数学下册第七章《平面直角坐标系》测试卷(答卷)时间:120分钟 满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A .(6,3)B .(3,6)C .(-3,-6)D .(-6,-3) 2.若点A 的坐标为(3,-2),则点A 所在的象限是 ( ) A 第一象限 B .第二象限 C .第三象限 D .第四象限,合 3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0) 表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)4.若点P (x ,y )在第四象限,且|x |=2,|y |=3,则x +y = ( )A .-1B .1C .5D .-55.若点P (a ,b )在第三象限,则点Q (a -3,-b )一定在 ( ) A .第一象限 B .第二象限 C .第三象限 D 第四象限6.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是 ( ) A .距点O 5km 处 B .北偏东60°方向上5km 处C .在点O 北偏东30°方向上5km 处D .在点O 北偏东60°方向上5km 处7.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为 ( ) A .(0,1) B .(1,0) C .(0,1)或(0,-1) D .(1,0)或(-1,0) 8.将点P (m +2,2m +1)向左平移1个单位长度到P ′,且P ′在y 轴上,那么P ′的坐标是 ( )B D D A B D D A D.(1,1)3)-C.(0. B.(0,-2) A.(0,-1)9.如图,长方形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将长方形OABC 平移后,点B 与点O 重合,得长方形O 1A 1OC 1,那么点O 1的坐标为 ( ) A .(2,1) B .(-2,1) C .(-2,-1) D .(2,-1)10.如图,点A ,B 的坐标分别为(-5,6),(3,2),则三角形ABO 的面积为 ( ) A .12 B .14 C .16 D .18 二、填空题(每小题3分,共24分)11.点M (2,-1)到x 轴的距离是________.12.点P 到x 轴的距离是2,到y 轴的距离是3,且点P 在第三象限,则点P 的坐标是___________.13.平面直角坐标系中,点A (-3,2),C (x ,y ),若AC ∥x 轴,则点C 的纵坐标为 ___________.14.如图,在平面直角坐标系xOy 中,点A (a 2-4,3)在y 轴上,点B 在x 轴上,且横坐标为a ,则点B 的坐标为_____________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A ,B 的坐标分别为(1,2),(2,0),将△AOB 沿x 轴向右平移,得到△CDE ,若DB =1,则点C 的坐标为___________.C B 1 (-3,-2) 2 (2,0)或(-2,0) (1,0) (2,2)17.已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则点A 的坐标为_____________________.18.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度 的速度按图中箭头所示方向运动,第1秒运动到点(1,0), 第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P 所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是 (1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M (m -1,2m +3). (1)当点M 到x 轴的距离为1时,求点M 的坐标; (2)当点M 到y 轴的距离为2时,求点M 的坐标.(4,0)或(-4,0) (45,43) xy(1)建立平面直角坐标系如图所示:食堂(-5,5),图书馆(2,5)(2)办公室和教学楼的位置如图所示 (3)宿舍楼到教学楼的实际距离为: 8×30=240(米)教学楼 ·办公楼 ·(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2, ∴点M 的坐标是(-2,1)或(-3,-1)(2)∵|m-1|=2,∴|m-1|=2或|m-1|=-2,解得m=3或m=-1, ∴点M 的坐标是(2,9)或(-2,1)21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD(1)将点A 向右平移5个单位长度,它将与点_____重合; (2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______; (3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?A ·(1)根据题意,A 所以A 是“垂距点”,对于点B 而言,|21|+|-25|=3,所以B 不是“垂距点”,对于点C 而言≠C 不是“垂距点”(2)由题意可知:|23m|+|25m|=4,①当m>0时,则4m=4,解得m=1;②当m<0时,m=-1;∴m=±1平行 B 平行 D · C · B·(3)线段CD 是由线段AB 先向右平移1个单位长度,再向上平移3个单位长度得到的(答案不唯一)23.(12分)已知△ABC 的三个顶点坐标分别为A (4,3),B (3,1),C (1,2) (1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC 沿x 轴的负方向平移5个单位长度,纵坐标不变,得到△A 1B 1C 1,请在图中画出△A 1B 1C 1,并写出△A 1B 1C 1三个顶点的坐标;(3)将△ABC 作怎样的平移,得到△A 2B 2C 2,使得这个三角形三个顶点的坐标分别为A 2(6,-2),B 2(5,-4),C 2(3,-3)24.(12分)如图,在平面直角坐标系中,A (0,1),B (2,0),C (4,3) (1)求△ABC 的面积;(2)设点P 在x 轴上,且△ABP 与 △ABC 的面积相等,求点P 的坐标.(1)点A 、B 、C 三点的位置如图所示 B ·A · C ·(2)△A 1B 1C 1的位置如图所示,A 1(-1,3),B 1(-2,1),C 1(-4,2) (3)将△ABC 先沿x 轴的正方向平移2个单位长度,再沿y 轴的负方向平移5个单位长度可得到△A 2B 2C 2 A 2·C 2· B 2·A 1·C 1· B 1·10或x=-6,∴点P 的坐标为(10,0)或(-6,0))2,2(2121y y x x ++25.(12分)综合与实践. 问题背景:(1)已知A (1,2),B (3,2),C (1,-1),D (-3,-3)在平面直角坐标系中描出这几 个点,并分别找到线段AB 和CD 的中点P 1,P 2,然后写出它们的坐标,则 P 1___________, P 2____________; 探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 ; 拓展应用: ____________________(3)利用上述规律解决下列问题:已知三点E (-1,2),F (3,1),G (1,4),第四个 点H (x ,y )与点E ,点F ,点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.P 1·B · A · P 2·D ·(2, 2) (-1, -2) C ·。

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。

平面直角坐标系全章测试卷共5套含答案

平面直角坐标系全章测试卷共5套含答案

平面直角坐标系全章测试卷一一、精心填一填,你会轻松(每题5分,共30分)1、在平面内,两条_________的数轴组成平面直角坐标系;两条数轴通常分别置于_______位置与________位置,取________与________的方向分别为两条数轴的正方向,水平的数轴叫做_______或_______,竖直的数轴叫做______ 或______,其交点O 称为______;2、平面直角坐标系内有一点P (x ,y ),若点P 在横轴上,则_______,若点P 在纵轴上,则_________,坐标原点O 的坐标是_________;3、点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为_____; 点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为_______; 点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为___。

4、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成____________。

0123412345、(1)写出图中多边形ABCDEF 各顶点坐标_______________________________________ (2)A 与B 和E 与D 的横坐标有什么关系________________________________________ (3)B 与D 、C 与F 坐标的特点是________________________________________________ (4)线段AB 与ED 所在直线的位置关系是________________________________________6、在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴的正方向的夹角为α,则用[ρ,α]表示点P 的极坐标。

显然,点P 的坐标和它的极坐标存在一一对应关系。

七年级数学下册第七章平面直角坐标系测试卷(附答案)

七年级数学下册第七章平面直角坐标系测试卷(附答案)

七年级数学下册第七章平面直角坐标系测试卷(附答案)篇一:七年级数学下册第七章《平面直角坐标系》测七年级数学下册第七章《平面直角坐标系》测试题一、选择题:(每题2.5分,共50分)1、若a?5,b?4,且点M(a,b)在第二象限,则点M的坐标是()A、(5,4)B、(-5,4)C、(-5,-4)D、(5,-4)2、过A(4,-2)和B(-2,-2)两点的直线一定()A、垂直于x轴B、与y轴相交但不平于x轴C、平行于x轴D、与x轴、 y轴平行3、如右图所示的象棋盘上,若帅(1,-2)上,○位于点相○位于点(3,-2)上,则炮○位于点()A、(-1,1)B、(-1,2)C、(-2,1)D、(-2,2)图34、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)5、若x轴上的点P到y轴的距离为3,则点P的坐标为()A、(3,0)B、(3,0)或(–3,0)C、(0,3)D、(0,3)或(0,–3)6、点M(x,y)满足x=0那么点M的可能位置是() yA.x轴上所有的点B.除去原点后x轴上的点的全体C.y轴上所有的点 D.除去原点后y轴上的点的全体7、如果两个点到x轴的距离相等,那么这两个点的坐标必须满足()A横坐标相等 B纵坐标相等C横坐标的绝对值相等 D纵坐标的绝对值相等8、线段CD是由线段AB平移得到的.点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(– 9,– 4)9、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7)B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)10、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位11、在平面直角坐标系中,点?1,m2?1一定在()A.第一象限B.第二象限 C.第三象限 D.第四象限12、若点P?m,n?在第二象限,则点Q??m,?n?在()A.第一象限 B.第二象限 C.第三象限 D.第四象限13、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为?1,?1?,则点B坐标为()A.?1,1? B.??1,?1? C.??1,1?D.无法求出14、已知点A?2,?2?,如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()A.?2,2? B.??2,2? C.??1,?1?D.??2,?2? ??15、在平面直角坐标系中,以点P?1,2?为圆心,1为半径的圆必与x轴有个公共点()A.0 B.1C.2 D.316、已知点A?3a,2b?在x轴上方,y轴的左边,则点A到x轴.y轴的距离分别为()A.3a,?2b B.?3a,2b C.2b,?3a D.?2b,3ab)17、若点P(a,到x轴的距离是2,到y轴的距离是3,则这样的点P有()A.1个B.2个C.3个D.4个18、点(x,x?1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限19、如果点P(?m,3)与点P1(?5,n)关于y轴对称,则m,n的值分别为()A.m??5,n?3 B.m?5,n?3C.m??5,n??3 D.m??3,n?520、一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A A.50,B.(30, D.30) 50)C. (30,二、填空题:(每空2分,共54分)1、按下列条件确定点P(x,y)的位置:⑴x=0,y<0,则点P在____;⑵xy=0,则点P一定在____;⑶|x|+|y|=0,则点P在____第20题图 x_;⑷若xy>0,则点P在____.2、己知点P(x,y)位于第二象限,并且满足y≤x+4,x、y为整数,写出一个符合上述条件的点P的坐标___。

人教版数学七年级下册第7章《平面直角坐标系 》单元质量测试卷(含答案)

人教版数学七年级下册第7章《平面直角坐标系 》单元质量测试卷(含答案)

人教版数学七年级下册第7章《平面直角坐标系》单元质量测试卷一.选择题(共10小题,满分30分)1.在平面直角坐标系中,点P(﹣2020,2019)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)3.点P在第二象限内,那么点P的坐标可能是()A.(4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)4.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴平行,则L也会通过的点为()A.点A B.点B C.点C D.点D5.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)6.已知a是整数,点A(2a﹣1,a﹣2)在第四象限,则a的值是()A.﹣1B.0C.1D.27.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等8.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2B.8C.2或8D.﹣2或89.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)二.填空题(共6小题,满分18分)11.点A(3,﹣4)在第象限.12.点M(3,﹣1)到x轴距离是.13.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(﹣2,0),点B在y轴上,若OA=2OB,则点B的坐标是.14.将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B,则点B的坐标为.15.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于.16.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,……每个正方形四条边上的整点的个数.按此规律推算出正方形A2019B2019C2019D2019四条边上的整点共有.三.解答题(共8小题,满分52分)17.指出下列各点的横坐标和纵坐标,并指出各点所在的象限.A(2,3)、B(﹣2,3)、C(﹣2,﹣3)、D(2,﹣3)18.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.19.如图是天安门广场周围的主要景点分布示意图.在此图中建立平面直角坐标系,表示故宫的点坐标为(0,﹣1),表示美术馆的点的坐标为(2,2),并写出其余各景点的坐标.20.已知点P(2m﹣6,m+2),(1)若点P在y轴上,P点坐标为;(2)若点P和Q都在过点A(2,3)且与x轴平行的直线上,且PQ=3,求Q点坐标.21.(1)在平面直角坐标系中描出下列各点.A(1,2),B(﹣3,3),C(1,3)D(﹣1,3),E(1,﹣4),F(3,3)(小方格的边长为1).由描出的点你发现了什么规律?答:.(2)应用:已知P(m,﹣2),Q(3,m﹣1)且PQ∥x轴,求线段PQ的长.22.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.23.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.24.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,)A8(,)、A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A101到点A102的移动方向.参考答案一.选择题(共10小题)1.【解答】解:点P(﹣2020,2019)所在的象限是第二象限.故选:B.2.【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.3.【解答】解:A、(4,3)在第一象限,故此选项不合题意;B、(﹣3,﹣4)在第三象限,故此选项不合题意;C、(﹣3,4)在第二象限,故此选项符合题意;D、(3,﹣4)在第四象限,故此选项不合题意;故选:C.4.【解答】解:如图所示:有一直线L通过点(﹣3,4)且与y轴平行,故L也会通过A 点.故选:A.5.【解答】解:∵在x轴上的点的纵坐标是0,∴在x轴上的点为:(3,0).故选:B.6.【解答】解:点A(2a﹣1,a﹣2)在第四象限,则,解得:<a<2,a是整数,则符合条件的为C,故选:C.7.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.8.【解答】解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.9.【解答】解:点(﹣2,﹣3)向左平移3个单位后所得点的坐标为(﹣2﹣3,﹣3),即(﹣5,﹣3),故选:C.10.【解答】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D.二.填空题(共6小题)11.【解答】解:∵点(3,﹣4)横坐标为正,纵坐标为负,∴应在第四象限.故答案为:四.12.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:113.【解答】解:∵点A的坐标是(﹣2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,﹣1),故答案为:(0,1)或(0,﹣1).14.【解答】解:将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B的坐标为(2﹣2,5+3),即:(0,8).故答案为:(0,8).15.【解答】解:∵直角坐标平面内两点A(3,﹣1)和B(﹣1,2),∴A、B两点间的距离等于=2,故答案为2.16.【解答】解:∵A1B1C1D1每条边上的整点共有:2×1+1=3个,A2B2C2D2每条边上的整点共有;2×2+1=5个,正方形A3B3C3D3每条边上的整点的个数有:2×3=1=7个,…∵A1B1C1D1四条边上的整点共有8个,即4+4×1=8,A2B2C2D2四条边上的整点共有16个,即4+4×3=16,正方形A3B3C3D3四条边上的整点的个数有4+4×5=24,…∴第n个正方形上的整点个数是:4+4(2n﹣1)=8n,∴正方形A2019B2019C2019D2019四条边上的整点的个数=2019×8=16152,故答案为:16152.三.解答题(共8小题)17.【解答】解:A(2,3)横坐标是2,纵坐标是3,在第一象限;B(﹣2,3)横坐标是﹣2,纵坐标是3,在第二象限;C(﹣2,﹣3)横坐标是﹣2,纵坐标是﹣3,在第三象限;D(2,﹣3)横坐标是2,纵坐标是﹣3,在第四象限.18.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.19.【解答】解:如图所示:景山(0,1.5),王府井(3,﹣1),天安门(0,﹣2),中国国家博物馆(1,﹣3),前门(0,﹣5.5),人民大会堂(﹣1,﹣3),电报大楼(﹣4,﹣2).20.【解答】解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(﹣4,3)而PQ=3,∴Q点的横坐标为﹣1或﹣7,∴Q点的坐标为(﹣1,3)或(﹣7,3).21.【解答】解:(1)如图所示,发现的规律:纵坐标相同的点在平行于x轴的直线上,横坐标相同的点在平行于y轴的直线上.(2)∵PQ∥x轴,∴m﹣1=﹣2,∴m=﹣1,∴P(﹣1,﹣2),Q(3,﹣2)∴PQ=|﹣1﹣3|=4.答:线段PQ的长为4.22.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).23.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).24.【解答】解:(1)由图可知,A4,A8,A12都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0);故答案为:2,0;4,0;6,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);(3)∵101÷4=25...1,102÷4=25 (2)∴A101与A102的移动方向与从点A1到A2的方向一致,为从左向右.。

八年级上册沪科版数学 第11章平面直角坐标系测试卷(含答案)

八年级上册沪科版数学 第11章平面直角坐标系测试卷(含答案)

第11章测试卷(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,将点(2,1)向右平移3个单位,则所得的点的坐标是( )A.(0,5)B.(5,1)C.(2,4)D.(4,2)2.下列说法正确的是( )A.点 P(-3,5)到x轴的距离为3B.在平面直角坐标系中,点(-3,1)和(1,-3)在同一象限内C.若x=0,则点 P(x,y)在x轴上D.在平面直角坐标系中,有且只有一个点既在横轴上,又在纵轴上3.如果点A(1—a,b+1)在第三象限,那么点 B(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.点P 在第二象限,点 P到x轴的距离是5,到y轴的距离是2,那么点 P的坐标为( )A.(-5,2)B.(-2,-5)C.(-2,5)D.(2,-5)5.已知点 P(-3,-3),Q(-3,4),则直线 PQ( )A.平行于x轴B.平行于y轴C.垂直于y轴D.以上都不正确6.已知点 A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点 A 的对应点的坐标为((−2,1),则点 B 的对应点的坐标为( )A.(5,3)B.(−1,−2)C.(-1,-1)D.(0,−1)7.(2019·兰州中考)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形.A₁B₁C₁D₁,已知A(−3,5),B(−4,3),A₁(3,3),则B₁的坐标为( )A.(1,2)B.(2,1)C.(1,4)D.(4,1)8.在如图所示的平面直角坐标系内,画在透明胶片上的四边形ABCD 的点A 的坐标是(0,2).现将这张胶片平移,使点 A落在点.A′(5,−1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位9.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(--1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=( )A.(2,—3)B.(—2,3)C.(2,3)D.(-2,-3)10.如图,长方形BCDE 的各边分别平行于x 轴与y轴,物体甲和物体乙由点 A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒的速度匀速运动,物体乙按顺时针方向以2个单位/秒的速度匀速运动,则两个物体运动后的第 2 021次相遇地点的坐标是 ( )A.(1,—1)B.(2,0)C.(—1,1)D.(-1,-1)二、填空题(本大题共4小题,每小题5分,满分20分)11.已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点 P 的坐标.12.线段AB=3,且AB∥x轴,若点A的坐标为(1,—2),则点B的坐标为 ·13.如果点 P(x,y)的坐标满足 xy>0,那么点 P 在第象限.如果满足xy=0,那么点P在.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56 个点的坐标为 .三、(本大题共2小题,每小题8分,满分16分)15.如图,是某次海战中敌我双方舰艇对峙示意图.对我方潜艇来说:(1)北偏东 40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距我方潜艇图上距离1 cm的敌方战舰有哪几艘?(3)敌方战舰C和A 在我方潜艇什么方向?(4)要确定每艘敌方战舰的位置,各需要几个数据?16.已知点A(m+2,3)和点B(m−1,2m−4),且AB‖x轴.(1)求m的值;(2)求 AB的长.四、(本大题共2小题,每小题8分,满分16分)17.已知四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在如图的平面直角坐标系中,画出此四边形;(2)求此四边形的面积.18.已知点P(2m+4,m−1),试分别根据下列条件,求出点 P 的坐标.(1)点 P 在y 轴上;(2)点 P 的纵坐标比横坐标大3;(3)点 P 在过点.A(2,−4)且与x轴平行的直线上.五、(本大题共2小题,每小题10分,满分20分)19.在平面直角坐标系中,已知点.A(−5,0),点B(3,0),点C在y轴上,三角形ABC的面积为12,试求点C的坐标.20.如图,已知三角形ABC三个顶点的坐标分别是.A(−4,−4),B(−2,−3),C(−3,−1).(1)将三角形ABC三个顶点的横坐标都加上5,纵坐标不变,分别得到点A₁,B₁,C₁,请画出三角形.A₁B₁C₁,它与三角形ABC在大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都加上4,横坐标不变,分别得到点A₂,B₂,C₂,,请画出三角形A₂B₂C₂,,它与三角形ABC在大小、形状和位置上有什么关系?(3)由三角形A₁B₁C₁能通过一次平移得到三角形A₂B₂C₂吗?若能,各对应点的坐标发生了怎样的变化?六、(本题满分12分)21.如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点 B 的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点 P,使以A,B,P三点为顶点的三角形的面积为 7?若存在,请写出点 P 的坐标;若不存在,请说明理由.七、(本题满分12分)22.当m,n是正数,且满足m+n=mn时,我们称点Q(m,m n)为“完美点”.(1)若点 P(2019,a)是一个完美点,试确定a的值;(2)若点M(x,y)是“完美点”且满足.x+y=5,过M作MH⊥x轴于点H,求三角形OMH的面积.八、(本题满分14分)23.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(−2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为a,b+c,d=a+c,b+d.解决问题:(1)计算:3,1+1,2;1,2+3,1;(2)动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到点 A,再按照“平移量”{1,2}平移到点 B;若先把动点 P 按照“平移量”{1,2}平移到点C,再按照“平移量”{3,1}平移,最后的位置还是点 B吗? 在图1中画出四边形OABC;(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头 P 航行到码头Q(5,5),最后回到出发点 O.请用“平移量”加法算式表示它的航行过程.第11章测试卷1. B2. D3. D4. C5. B6. C7. B8. B9. B 10. D11.(1,-2)(答案不唯一) 12.(4,-2)或(-2,-2)13.一、三 坐标轴上 14.(11,10)15.解(1)北偏东40°的方向上有敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道我方潜艇到敌方战舰B 的距离.(2)距我方潜艇图上距离1 cm 处有敌方战舰B.(3)敌方战舰C 在我方潜艇正东方向,敌方战舰A 在我方潜艇正南方向.(4)要确定每艘敌方战舰的位置,各需要方向和距离两个数据.16.解(1)因为点A 的坐标为(m+2,3),点 B 的坐标为(m-1,2m-4),且AB∥x 轴,所以2m-4=3,所以 m =72.(2)由(1)可知 m =72,所以 m +2=112,m−1=52,2m−4=3,所以点A 的坐标为( 112,3),.点B的坐标为( 52,3).因为 112−52=3,所以AB 的长为3.17.解(1)四边形ABCD 如图所示.(2)四边形的面积 =9×7−12×2×7−12×2×5−12×2×7=63-7-5-7=44.18.解(1)∵点P(2m+4,m-1)在y 轴上,∴2m+4=0,解得m=-2,则m--1=-3.∴P(0,-3).(2)由题意,得m--1--(2m+4)=3,解得m=--8.∴P(-12,-9).(3)点P 在过点A(2,-4)且与x 轴平行的直线上,则其纵坐标为-4,即m--1=-4,解得m=-3,∴P(-2,-4).19.解设点C 的坐标为(0,b),所以OC=|b|.因为A(-5,0),B(3,0),所以AB=8.因为 S ±用∗ABC =12AB ⋅OC =12,所以 12×8×|b|=12,所以|b|=3,所以b=3或-3,所以点C 的坐标为(0,3)或(0,—3).20.解(1)平移后的图形如图所示,所得三角形 A ₁B ₁C ₁与三角形ABC 的大小、形状 完 全 相同,三 角 形A ₁B ₁C ₁可以看成是三角形A BC 向右平移5个单位得到的.(2)平移后的图形如图所示,所得三角形A ₂B ₂C ₂与三角形ABC 的大小、形状完全相同,三角形 A ₂B ₂C ₂ 可以看成是三角形ABC 向上平移4个单位得到的.(3)三角形 A₁B₁C₁能通过一次平移得到三角形 A₂B₂C₂,三角形 A₁B₁C₁的各点的横坐标都减去5,纵坐标都加上4.21.解(1)因为 A (−1,0),点B 在x 轴上,且 AB =4,所以 −1−4=−5,−1+4=3.所以点B 的坐标为(-5,0)或(3,0).(2)因为C(1,4),AB=4,所以 S z→甲ABC =12AB ⋅|y c |=12×4×4=8.(3)假设存在,设点P 的坐标为(0,m),因为 S ±β对ABP =12AB ⋅|y P |=12×4×|m|=7,所以 m =±72.所以在y 轴上存在点 P (0,72)或 P (0,−72),使以A,B,P 三点为顶点的三角形的面积为7.22.解(1)由题意知 2019+n =2019n,∴n =20192018.∴a =2019÷20192018=2018.(2)∵M(x,y)是“完美点”, ∴x +n =xn.∴n =xx−1.∴y =x ÷x x−1=x−1.联立 {x +y =5,y =x−1,解得 {x =3,y =2.∴M(3,2).∴OH=3,HM=2.∴三角形OMH 的面积为 12×2×3=3.23.解(1){3,1}+{1,2}={3+1,1+2}={4,3};{1,2}+{3,1}={1+3,2+1}={4,3}.(2)最后的位置仍是点B ,如图所示.(3)从O 出发,先向右平移2 个单位,再向上平移3个单位,可知平移量为{2,3},同理得到 P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.。

人教版七年级下册第7章《平面直角坐标系》达标考试测试卷 解析版

人教版七年级下册第7章《平面直角坐标系》达标考试测试卷  解析版

人教版七年级下册第7章《平面直角坐标系》达标测试卷满分120分班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)3.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)4.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,0)C.(﹣1,2)D.(﹣2,2)5.如图是2019北京世园会的部分场馆展示区的分布示意图.当表示国际馆A馆的点的坐标为(325,0),表示九州花境的点的坐标为(﹣65,460)时,则建立的平面直角坐标系,x轴最有可能的位置是()A.表示中国馆和世艺花舞的两点所在的直线B.表示中国馆和中华园艺展示区的两点所在的直线C.表示中国馆和九州花境的两点所在的直线D.表示百松云屏和中华园艺展示区的两点所在的直线6.点A(,1)在第一象限,则点B(﹣a2,ab)在()A.第一象限B.第二象限C.第三象限D.第四象限7.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.58.在平面直角坐标系中,点P(m﹣2,m+1)一定不在第()象限.A.四B.三C.二D.一9.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)二.填空题(共6小题,满分24分)11.已知点A在第三象限,且到x轴,y轴的距离分别为4、5,则A点的坐标为.12.已知点P(2k+1,k﹣4)到两坐标轴的距离相等,那么k的值为13.若点P(1﹣m,﹣2m﹣4)在第四象限,且m为整数,则m的值为.14.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为.15.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为.16.图中A、B两点的坐标分别为(﹣3,3)、(3,3),则C的坐标为.三.解答题(共7小题,满分66分)17.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.18.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的平面直角坐标系.并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?19.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.20.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的地方是哪个?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.21.△ABC与△A′B′C′在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标:A′;B′;C′(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为.(3)求△ABC的面积.22.已知点P(﹣3a﹣4,2+a),解答下列各题:(1)若点P在x轴上,则点P的坐标为P;(2)若Q(5,8),且PQ∥y轴,则点P的坐标为P;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2018+2018的值.23.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,4),A1(2,4),A2(4,4),A3(8,4),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则点A4的坐标是,B4的坐标是.(2)若按第一题找到的规律将△OAB进行了n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.参考答案一.选择题(共10小题)1.【解答】解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.2.【解答】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),故选:D.3.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.4.【解答】解:由“将”和“象”的坐标可建立如图所示平面直角坐标系:则“炮”位于点(﹣2,0),故选:B.5.【解答】解:∵表示国际馆A馆的点的坐标为(325,0),∴表示国际馆A馆的点位于x轴.又表示九州花境的点的坐标为(﹣65,460),∴x轴在九州花境的下面,观察选项,只有选项D符合题意.故选:D.6.【解答】解:∵点A(,1)在第一象限,∴>0,∴ab>0,a≠0,∴﹣a2<0,则点B(﹣a2,ab)在第二象限.故选:B.7.【解答】解:∵点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,∴a﹣2=1,解得a=3.故选:B.8.【解答】解:∵(m+1)﹣(m﹣2)=m+1﹣m+2=3,∴点P的纵坐标大于横坐标,∴点P一定不在第四象限.故选:A.9.【解答】解:由A(﹣3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(﹣4,3),∴B1的坐标为(2,1),故选:B.10.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.二.填空题(共6小题)11.【解答】解:∵点A在第三象限内,点A到x轴的距离是4,到y轴的距离是5,∴点A的横坐标为﹣5,纵坐标为﹣4,∴点A的坐标为(﹣5,﹣4).故答案为:(﹣5,﹣4).12.【解答】解:∵点P(2k+1,k﹣4)到两坐标轴的距离相等,∴2k+1=k﹣4或2k+1=﹣(k﹣4),解得:k=﹣5或k=1,故答案为:﹣5或1.13.【解答】解:∵点P(1﹣m,﹣2m﹣4)在第四象限,且m为整数,∴,解得:﹣2<m<1,则m为:﹣1,0.故答案为:﹣1,0.14.【解答】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),∴线段AB向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=1+1=2,点B1的坐标为(1,2),故答案为:(1,2),15.【解答】解:过N作NE⊥y轴,NF⊥x轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故答案为:(2,1),16.【解答】解:如图,,∵A,B两点的坐标分别为(﹣3,3),(3,3),∴线段AB的中垂线为y轴,且向上为正方向,最下面的水平线为x轴,且向右为正方向,∴C点的坐标为(﹣1,5).故答案为:(﹣1,5).三.解答题(共7小题)17.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.18.【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)每级台阶高为1,所以10级台阶的高度是10.19.【解答】解:(1)点C表示放置3个胡萝卜,2棵小白菜,点E表示放置3个胡萝卜,1棵小白菜,(2)从A到达B,共有3条路径可供选择,其中路径①A﹣D﹣C﹣B吃到11个胡萝卜,7棵小白菜,路径②A﹣E﹣C﹣B吃到12个胡萝卜,6棵小白菜,路径③A﹣E﹣F﹣B吃到13个胡萝卜,5棵小白菜,∴走路径③吃到胡萝卜最多,走路径①吃到小白菜最多.20.【解答】解:(1)∵点C为OP的中点,∴OC=OP=×4=2km,∵OA=2km,∴距小明家距离相同的是学校和公园.(2)学校在小明家北偏东45°的方向上,且到小明家的距离为2km,商场在小明家北偏西30°的方向上,且到小明家的距离为3.5km,停车场在小明家南偏东60°的方向上,且到小明家的距离为4km.21.【解答】解:(1)如图所示:A′(﹣3,﹣4),B′(0,﹣1)、C′(2,﹣3);(2)A(1,0)变换到点A′的坐标是(﹣3,﹣4),横坐标减4,纵坐标减4,∴点P的对应点P′的坐标是(m﹣4,n﹣4);(3)△ABC的面积为:3×5﹣×1×5﹣×2×2﹣×3×3=6.故答案为:(﹣3,﹣4),(0,﹣1)、(2,﹣3);(m﹣4,n﹣4).22.【解答】解:(1)由题意可得:2+a=0,解得:a=﹣2,﹣3a﹣4=6﹣4=2,所以点P的坐标为(2,0);(2)根据题意可得:﹣3a﹣4=5,解得:a=﹣3,2+a=﹣1,所以点P的坐标为(5,﹣1);(3)根据题意可得:﹣3a﹣4=﹣2﹣a,解得:a=﹣1,把a=﹣1代入a2018+2018=2019,故答案为:(2,0);(5,﹣1)23.【解答】解:(1)∵A1(2,4),A2(4,4),A3(8,4),∴A4的横坐标为:24=16,纵坐标为:4,∴点A4的坐标为:(16,4).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为:25=32,纵坐标为:0,∴点B4的坐标为:(32,0).故答案为(16,4),(32,0);(2)由A1(2,4),A2(4,4),A3(8,4),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是4.故A n的坐标为:(2n,4).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0).故答案为(2n,4),(2n+1,0).。

新人教版七年级下册数学第七章平面直角坐标系检测试题及答案

新人教版七年级下册数学第七章平面直角坐标系检测试题及答案

人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10 小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点 B 的坐标为()A. .(-2,2)B. .(-2,-3)C. .(-3,-2)D. (-2,-2)3.已知点 A(-3,0),则 A 点在()A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点 M 到 x 轴的距离为3,到 y 轴的距离为4,则点 M 的坐标是()A. (3,-4)B.(-4,3)C. (4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移 2 个单位长度,再向下平移 2 个单位长度所获得的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.123° ~124° 34′C.福建的正方向D. 123° ~124° 34′ ,北 25° 40′~26° 8.已知点 M(a,1),N(3,1), 且 MN=2 , a 的(A.1 B. 5)C.1 或5D.不可以确立9.如所示是一个棋棋(局部)①的坐是 (-2,-1),白棋③的坐是A. (0,-2) B. (1,-2),把个棋棋搁置在一个平面直角坐系中,白棋(-1,-3),黑棋②的坐是()C. (2,-1)D. (1,2)10.如,在直角坐系中,已知点 A(-3,0)、B(0,4),△ OAB作旋,挨次获得△1、△2、△3、△4、⋯ ,△16的直角点的坐()19 1 9 A. (60,0)B. (72,0)C. 675,5D. 79 5,5二.填空(共 6 小)11.若 4 排3 列用有序数(4,3)表示,那么表示 2 排5 列的有序数.12.在平面直角坐系中,已知点A(2,3),点 B 与点A 对于x 称,点 B 坐是.13.若点P(m+5,m-2)在x 上,m=;若点P(m+5,m-2) 在y 上,m=.14A(-2,3)和B(2,1),那么炸机 C 的平面坐是.15.将点P(x,4)向右平移 3 个单位获得点(5,4),则P 点的坐标是.16.把自然数按如图的序次在直角坐标系中,每个点坐标就对应着一个自然数,比如点(0,0)对应的自然数是1,点 (1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n) 对应的自然数是三.解答题(共 6 小题)17.在平面直角坐标系中,点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,试求m+n 的值.18.已知点P(2m+4,m-1), 请分别依据以下条件,求出点P 的坐标.(1)点 P 在 x 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过点 A(2,-4)且与 y 轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如下图,但是她忘掉了在图中标出原点和x 轴、 y 轴,只知道游玩园 D 的坐标为 (2,-2),且一格表示一个单位长度.(1)在原图中成立直角坐标系,求出其余各景点的坐标;(2)在( 1)的基础上,记原点为 0,分别表示出线段 AO 和线段 DO 上随意一点的坐标.20.已知 A(1,0)、 B(4,1)、 C(2,4),△ABC经过平移获得△A′ B′ C′ ,若 A′的坐标为 (-5,-2).(1)求 B′、 C′的坐标;(2)求△ A′B′ C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB 变换成△ OA B,第二次将△ OA B 变换成1111△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0) .( 1 )察看每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则 A4的坐标为 ,B4的坐标为.(2)按以上规律将△ OAB 进行 n 次变换获得△ OA n B n,则 A n的坐标为 ,B n的坐标为 ;(3)△ OA n B n的面积为.22.( 1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1), 并将各点用线段按序连结起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)假如将原图形上各点的横坐标加2、纵坐标减 5,猜一猜,图形会发生如何的变化?(4)假如想让变化后的图形与原图形对于原点对称,原图形各点的坐标应当如何变化?答案:1-10 BDBCD DDCAA11.(2,5)12.(2,-3)13.-514.( -2, -1)15.(2,4)16.604n2 -2n+117.解:∵点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,∴2m-7=1,n-6=-3 ,解得 m=4, n=3,因此 ,m+n=4+3=7.18.解:( 1)∵点 P(2m+4,m-1) 在 x 轴上,∴m-1=0 ,解得 m=1,∴2m+4=2×1+4=6,m-1=0,因此,点P 的坐标为 (6,0);(2)∵点 P(2m+4,m-1)的纵坐标比横坐标大 3,∴m-1-(2m+4)=3 ,解得 m=-8,∴人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x 轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D.东经 123° ~124° 34′ ,北纬 25° 40′~26°8.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且MN=2 ,则a 的值为()A.1B. 5C.1 或5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空(共 6 小)11.若影票上座位是“ 4 排 5号” 作 (4,5), (8,13)的座位是12.若 P(a-2,a+1)在 x 上, a 的是.13.若 4 排 3 列用有序数(4,3)表示,那么表示 2 排 5列的有序数.14.在平面直角坐系中,将点A(-1,3)向左平移 a 个位后,获得点A′ (-3,3), a 的是15.在平面直角坐系中,点M 在 x 的上方, y 的左面,且点 M 到 x 的距离 4,到y 的距离 7,点 M 的坐是.16.如,在平面直角坐系中,每个最小方格的均1,P2 ,P3,⋯1 个位度, P均在格点上,其序按中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),⋯,依据个律,点P2019的坐三.解答(共 5 小)17.已知平面直角坐系中有一点M(2m-3,m+1) .(1)点 M 到 y 的距离 l , M 的坐?(2)点 N(5,-1)且 MN ∥x , M 的坐?18.六形六个点的坐A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所坐系中画出个六形;(2)写出各拥有的平行或垂直关系.(不原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段B A 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C 点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与 CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形 BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第是.1 个单位2012/ 秒匀速运动,物体次相遇地址的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21. 解:( 1)由点 A 位于点( -4 , 4。

七年级数学(下)第七章《平面直角坐标系》测试卷含答案

七年级数学(下)第七章《平面直角坐标系》测试卷含答案

七年级数学(下)第七章《平面直角坐标系》测试卷(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.下面的有序数对的写法正确的是()A. (1、3)B. (1,3)C. 1,3D. 以上表达都正确2.我们用以下表格来表示某超市的平面示意图.如果用(C,3)表示“体育用品”的位置,那么表示“儿童服装”的位置应记作()A B C D1 收银台收银台收银台收银台2 酒水糖果小食品熟食3 儿童服装化妆品体育用品蔬菜4 入口服装家电日用杂品A. (A,3)B. (B,4)C. (C,2)D. (D,1)3.如图所示,网格中画有一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A. (1,0)B. (-1,0)C. (-1,1)D. (1,-1)4.电影票上的“2排5号”如果用(2,5)表示,那么“5排2号”应该表示为( )A. (2,5)B. (5,2)C. (-5,-2)D. (-2,-5)5.已知点P(x,y)在第二象限,且点P到x轴、y轴的距离分别为3,5,则点P的坐标()A. (﹣5,3)B. (5,﹣3)C. (﹣3,5)D. (3,﹣5)6.体育课上,七年级某班49名同学在操场上练习正方形方队,他们站成7×7方队,每横队7人,每纵队7人,小敏在第2纵队的排头,记为(1,2),小娟在第5纵队的队尾,则小娟的位置应记为()A. (6,5)B. (5,6)C. (5,7)D. (7,5)7.下列点中,位于直角坐标系第二象限的点是()A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)8.在平面直角坐标系中,点A(2,-3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,一个三角形的三个顶点的坐标,纵坐标保持不变,横坐标增加4个单位,则所得的图形与原来图形相比()A. 形状不变,大小扩大4倍B. 形状不变,向右平移了4个单位C. 形状不变,向上平移了4个单位D. 三角形被横向拉伸为原来的4倍10.如图所示,小亮从学校到家所走最短路线是( )A. (2,2)→(2,1)→(2,0)→(0,0)B. (2,2)→(2,1)→(1,1)→(0,1)C. (2,2)→(2,3)→(0,3)→(0,1)D. (2,2)→(2,0)→(0,0)→(0,1)二、填空题(共10小题,每题3分,共30分)11.如果用(7,3)表示七年级三班,则(9,6)表示________.12.点P (-2,-3)把坐标系向左平移1个单位长度,再向上平移3个单位长度,则点P的坐标变为________.13.有序数对(2,5)和(5,2)表示的含义_________.(填“相同”或“不同”)14.已知点P在第二象限,且横坐标与纵坐标的和为4,试写出一个符合条件的点P__.15.如图,长方形ABOC在直角坐标系中,点A的坐标为(–2,1),则长方形的面积等于﹒16.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是__________.17.如图,一所学校的平面示意图中,如果图书馆的位置记作(3,2),实验楼的位置记作(1,﹣1),则校门的位置记作________.18.点P (a ﹣1,a 2﹣9)在x 轴负半轴上,则P 点坐标是________.19.如图,小东在____排____列;小强在____排___列,如果先表示列数,后表示排数,则用有序数对表示小东和小强的位置为:________,________.20.第三象限内的点P(x ,y),满足5x =, 29y =,则点P 的坐标是_________. 三、解答题(共60分)21.(8分)如图,A (—1,0),C (1,4),点B 在x 轴上,且AB=3。

第七章 平面直角坐标系 达标测试卷(含答案)

第七章 平面直角坐标系  达标测试卷(含答案)

第七章平面直角坐标系达标测试卷时间:90分钟分值:120分得分:__________分一、选择题(本大题10小题,每小题3分,共30分)1.下列各点中,在第一象限的是()A.(4,2) B.(4,-2) C.(-4,-2) D.(-4,2)2.把向东走5公里,向北走2公里记为(5,2),那么(3,-2)表示的意义是()A.向东走3公里,向北走2公里B.向东走3公里,向西走2公里C.向西走3公里,向南走2公里D.向东走3公里,向南走2公里3.若点P(a,-2)在第三象限内,则点Q(-a,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上4.已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,则点A的坐标为() A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)5.将点A(2,-3)向上平移4个单位长度得到点B,再将点B向左平移4个单位长度得到点C,则点C的坐标是()A.(6,1) B.(-2,-7) C.(6,-7) D.(-2,1)6.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”A,B两点的坐标分别为(-2,2),(-3,0),则表示叶杆“底部”点C的坐标为()第6题图A.(2,-2) B.(2,-3) C.(3,-2) D.(3,-3)7.已知点P(x,y)的坐标满足|x|=2,y =3,且xy<0,则点P的坐标是()A.(2,-3) B.(-2,3) C.(2,-9) D.(-2,9)8.如图,在5×4的方格纸中建立平面直角坐标系,每个小正方形边长为1,点O,A,B都在方格纸的交点(格点)上,在第四象限内的格点上找一点C,使三角形ABC的面积为3,则这样的点C共有()第8题图A.2个B.3个C.4个D.5个9.在平面直角坐标系中,若AB∥y轴,AB=3,点A的坐标为(-2,3),则点B的坐标为()A.(2,-6) B.(1,3)C.(1,3)或(-5,3) D.(-2,6)或(-2,0)10.如图,在平面直角坐标系中,OA1=1,将边长为1的正方形的一边与x轴重合,按图中的规律摆放,其中相邻两个正方形的间距都是1,则点A2 023的坐标为()第10题图A.(1 010,0) B.(1 011,0)C.(1 011,-1) D.(1 012,-1)二、填空题(本大题6小题,每小题4分,共24分)11.点(3,-4)到x轴的距离是__________.12.如图,一艘船在A处遇险后向位于50海里外的B处的救生船报警,用方向和距离描述遇险船相对于救生船的位置是__________.第12题图13.如图,某吉祥物所处的位置分别为M(-2,2),B(1,1),则A,C,N三点中为坐标原点的是点__________.第13题图14.如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD的位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a b=__________.第14题图15.已知点P的坐标为(a,b),其中a,b均为实数,若a,b满足3a=2b+5,则称点P 为“和谐点”.若点M(m-1,3m+2)是“和谐点”,则点M所在的象限是第__________象限.16.如图,在平面直角坐标系中,A(-1,0),B(3,0),C(0,2),在y轴上存在一点P,连接PB,使S三角形ABC=S三角形PCB,则点P的坐标为__________.第16题图三、解答题(本大题6小题,共66分)17.(8分)在平面直角坐标系xOy中,A,B,C,D四点的位置如图所示.(1)写出图中点A,B,C,D的坐标;(2)在图中描出下列各点:E(-5,-3),F(4,0),G(0,5),H(6,2).3第17题图18.(10分)如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立平面直角坐标系;(2)写出图上其他地点的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.第18题图19.(10分)如图,三角形ABC三个顶点的坐标分别为A(0,2),B(-3,1),C(-2,-2).(1)画出将三角形ABC向右平移2个单位长度,得到的三角形A′B′C′;(2)写出三角形A′B′C′的顶点坐标;(3)求三角形A′B′C′的面积.第19题图20.(11分)已知平面直角坐标系中一点M(m-1,2m+3).(1)若点M在x轴上,求点M的坐标;(2)若点N(5,-1),MN∥x轴,求点M的坐标;(3)若点M到y轴的距离为2,求点M的坐标.21.(12分)如图,在平面直角坐标系的坐标轴上按如下规律取点:点A1在x轴正半轴上,点A2在y轴正半轴上,点A3在x轴负半轴上,点A4在y轴负半轴上,点A5在x轴正半轴上……且OA1+1=OA2,OA2+1=OA3,OA3+1=OA4….设点A1,A2,A3,A4…的坐标分别为(a1,0),(0,a2),(a3,0),(0,a4),…,s n=a1+a2+a3+…+a n.(1)当a1=1时,求a5的值;(2)若s7=1,求a1的值.5第21题图22.(15分)如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(a ,0),点C 的坐标为(0,b ),且a ,b 满足a -4 +|b -6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿O →C →B →A →O 的路线运动,回到点O 后停止运动.(1)a =__________,b =__________,点B 的坐标为__________; (2)当点P 运动的时间为4秒时,求点P 的坐标;(3)在运动过程中,当三角形OAP 的面积为10时,求点P 运动的时间.第22题图第七章 平面直角坐标系 达标测试卷1.A 2.D 3.A 4.B 5.D 6.B 7.D 8.B 9.D 10.D11.4 12.南偏西15°,50海里 13.A 14.27 15.三 16.⎝⎛⎭⎫0,143 或⎝⎛⎭⎫0,-23 17.解:(1)A (-3,-2),B (-5,4),C (5,-4),D (0,-3). (2)描点E ,F ,G ,H 如答图所示.7第17题答图18.解:(1)建立平面直角坐标系如答图所示.第18题答图(2)校门口(1,0),实验楼(-4,0),综合楼(-5,-3),信息楼(1,-2). (3)点P 如答图所示.19.解:(1)如答图,三角形A ′B ′C ′即为所求.第19题答图(2)A ′(2,2),B ′(-1,1),C ′(0,-2).(3)S 三角形A ′B ′C ′=3×4-12 ×1×3-12 ×1×3-12 ×2×4=5.20.解:(1)因为点M 在x 轴上,所以2m +3=0.解得m =-32 .所以m -1=-32 -1=-52.所以点M 的坐标为⎝⎛⎭⎫-52,0 . (2)因为MN ∥x 轴,N (5,-1),所以点M 与点N 的纵坐标相等,即点M 的纵坐标为-1. 所以2m +3=-1.解得m =-2.所以m -1=-2-1=-3.所以点M 的坐标为(-3,-1). (3)因为点M 到y 轴的距离为2, 所以|m -1|=2.解得m =3或m =-1.当m =3时,m -1=3-1=2,2m +3=2×3+3=9, 所以M (2,9);当m =-1时,m -1=-1-1=-2,2m +3=2×(-1)+3=1, 所以M (-2,1).综上所述,点M 的坐标为(2,9)或(-2,1).21.解:(1)当a 1=1时,a 2=1+1=2,a 3=-(2+1)=-3, a 4=-(3+1)=-4,a 5=4+1=5.(2)由题意,得a 2=a 1+1,a 3=-(a 1+2),a 4=-(a 1+3),a 5=a 1+4,a 6=a 1+5,a 7=-(a 1+6),所以s 7=a 1+a 2+a 3+…+a 7=a 1+1-2-3+4+5-6=a 1-1. 所以当s 7=1时,a 1-1=1.解得a 1=2. 22.解:(1)4 6 (4,6).(2)由题意,得点P 运动的路程为2×4=8.因为A (4,0),C (0,6),所以OA =CB =4,OC =BA =6. 所以点P 在线段CB 上,且离点C 的距离为8-6=2. 所以点P 的坐标为(2,6).(3)因为S 三角形OAP =10,OA =4,所以点P 到x 轴的距离为5. 存在两种情况:①当点P 在OC 上时,点P 运动的路程为5. 所以点P 运动的时间为5÷2=2.5(秒).②当点P 在BA 上时,点P 运动的路程为6+4+(6-5)=11. 所以点P 运动的时间为11÷2=5.5(秒).综上,点P运动的时间为2.5秒或5.5秒.9。

长沙市雅礼中学七年级数学下册第七章【平面直角坐标系】经典测试卷(培优提高)

长沙市雅礼中学七年级数学下册第七章【平面直角坐标系】经典测试卷(培优提高)

一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b2.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 3.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1)9.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行 D .平行、垂直相交二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.14.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.15.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.16.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________17.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.18.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A 地,黄军的指挥所地B 地,A 地在B 地的正西边(如图).部队司令部在C地.C 在A 的北偏东60︒方向上、在B 的北偏东30方向上.(1)BAC ∠=______°;(2)请在图中确定(画出)C 的位置,标出字母C ;(3)演习前,司令部要蓝军、黄军派人到C 地汇报各自的准备情况.黄军一辆吉普车从B 地出发、蓝军一部越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地.已知吉普车行驶了18分钟.A 到C 的距离是B 到C 的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B 地到C 地的距离(速度单位用:千米/时).23.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.24.如图,在平面直角坐标系中,A (-2,0),C (2,2),过C 作CB ⊥x 轴于B ,在y 轴上是否存在点P ,使得ABC 和ABP △的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 4.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 5.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 6.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,57.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 8.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 9.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)10.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 11.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A.第一象限B.第二象限C.第三象限D.第四象限二、填空题12.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=_____.13.写一个第三象限的点坐标,这个点坐标是_______________.14.若点M(5,a)关于y轴的对称点是点N(b,4),则(a+b)2020= __15.已知点P(a,a+1)在平面直角坐标系的第二象限内,则a的取值范围___.16.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB =2,则点A的坐标是___.17.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是_____.20.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A2020的坐标是________.21.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.三、解答题22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.24.如图,在平面直角坐标系中,四边形ABCD 的顶点都在格点上,其中A 点坐标为(﹣2,﹣1),C 点坐标为(3,3).(1)填空:点B 到y 轴的距离为 ,点B 到直线AD 的距离为 ; (2)求四边形ABCD 的面积;(3)点M 在y 轴上,当△ADM 的面积为12时,请直接写出点M 的坐标. 25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 5.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 6.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)7.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.14.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 15.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________. 16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.17.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.21.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题22.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.23.如图,△ABC 在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.24.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.25.已知点P(m+2,3),Q(−5,n−1),根据以下条件确定m、n的值(1)P、Q两点在第一、三象限的角平分线上;(2)PQ∥x轴,且P点与Q点的距离为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系测试题
班级 姓名 一、选择题(每题2分,共30分)
1.点P(m,1)在第二象限内,则点Q(-m,0)在()
A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上2.已知点A(a,b)在第四象限,那么点B(b,a)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.点P(1,-2)关于y轴的对称点的坐标是()
A.(-1,-2) B.(1,2) C.(-1,2) D.(-2,1)
4.已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是()
A.(-3,5) B.(5,-3) C.(3,-5) D.(-5,3)5.点P(m+3,m+1)在x轴上,则P点坐标为()
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)6.三角形ABC三个顶点的坐标分别是A(-4,-1),B(1,1),C(-1,4),将三角形ABC 向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是
()
A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7)
C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
7.若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是
()
A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(2,-2)或(-2,2)8.若点P(a,b)在第四象限,则点M(b-a,a-b)在()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
9.点P(3,-5)到x轴,y轴的距离分别为( )
A.3,5
B.3,-5
C.5,3
D.-5,3
10.若P(x,y)的坐标满足xy>0,,则点P在()
A.第一象限
B. 第二象限
C. 第一或三象限
D.第二或四象限
11.已知,点A(0,1)、 B(2,0)、 C(0,0)、D(-1,0)、 E(-3,0),
则在y 轴上的点有( ).
A .1个 B.2个 C .3个 D. 4个
12.将三角形各顶点的纵坐标分别加3,横坐标不变,连结三个点所成的三角形是原图形
( )
A .向左平移3个单位得到
B .向右平移3个单位得到
C .向上平移3个单位得到
D .向下平移3个单位得到
13.已知A (-4,2),B (1,2),则A ,B 两点的距离是( )
A .3个单位长度
B .4个单位长度
C .5个单位长度
D .6个单位长度
14.点P (m +3,m +1)在直角坐标系的x 轴上,则点P 的坐标是( )
A .(2,0)
B .(0,-2)
C .(4,0)
D .(0,-4)
15.已知x 轴上的点P 到y 轴的距离为3,那么点P 的坐标是( )
A .(3,0)
B .(0,3)
C .(0,3)或(0,-3)
D .(3,0)或(-3,0)
二、填空题(每题2分,共24分)
16.点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.
17.点A (1-a ,5),B (3,b )关于y 轴对称,则a+b=_______.
18.已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,
则点P 的坐标是 。

19.已知点M 在轴上,则点M 的坐标为 .
()a a -+4,3y 20.已知A (2,-4)、B (2,4),那么线段AB = 。

21.点A 的坐标为(4,-3),把点A 向左平移5个单位到点A ´,则点A ´的坐标为 。

22.已知点P (0,b )在Y 轴负半轴上,那么点Q (-b 2-1,-b +1)在第 象限.
23.已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为___.
24. 已知点A (2-a ,3a +10)且点P 到两坐标轴距离相等,则a =___。

25.点A (2,-5)关于x 轴的对称点的坐标是______,关于y 轴的对称点的坐标是________.
26.在正方形ABCD 中,A 、B 、C 的坐标分别是(1,2),(-2,1),(-1,-2),则顶点
D 的坐标是__________.
27. 若点A (a ,2)与B (-3,b )关于x 轴对称,则a =____,b =_____.
三、解答题(共46分)
28.(8分)如图是一台雷达探测相关目标得到的
结果,若记图中目标A 的位置为( 2,90°),
则其余各目标的位置分别是多少?
29.(7分)如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),
一辆汽车在轴上行驶,从原点O 出发.
x
(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B 村最近?写出此点的坐标.
(3)汽车行驶在哪一段路上时离A 越来越远却离B 越来越近?写出这段路两个端点的坐标。


30.(7分)如图,△AOB 中,A 、B 两点的坐标分别为(-4,-6),(-6,-3),求△AOB 的
面积。

(提示:△AOB 的面积可以看作一个梯形的面积减去一些小三角形的面积).
31.(6分)
32.(8分)在图所示的平面直角坐标系中表示下面各点:A(0,3);
B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)
(1)A点到原点O的距离是。

x
(2)将点C向轴的负方向平移6个单位,它与点重合。

y
(3)连接CE,则直线CE与轴是什么关系?
x y
(4)点F分别到、轴的距离是多少?
X
33.(本题10分)如图,已知在平面直角坐标系中,三角形ABC的位置如图所示.
(1)请写出A、B、C三点的坐标;
(2)你能想办法求出三角形ABC的面积吗?
(3)将三角形ABC 向右平移6个单位,再向上平移2个单位,
请在图中作出平移后的三角形,并写出三角形各点的坐标. A B C '''A B C '''。

相关文档
最新文档