牛顿第二定律连接体问题(整体法与隔离法) (1)

合集下载

牛顿定律的应用-两类动力学问题与超重、失重

牛顿定律的应用-两类动力学问题与超重、失重

运动情况
超重、失重
视重
a=0
不超重也不失重
F=mg
a的方向竖直向上
超重
F=m(g+a)
a的方向竖直向下
失重
F=m(g-a)
a=g ,a的方向竖直 向下
完全失重
F=0
名师支招:
判断物体超重或失重,仅分析加速度的方向即可,只要加速度的竖直分量向
上就是超重,加速度的竖直分量向下就是失重。
*体验应用*
2.(双项选择)游乐园中,游客乘坐能做加速或减速运动的升
(2)处理连接体问题时,整体法与隔离法往往交叉使用,一般 的思路是先用整体法求加速度,再用隔离法求物体间的作用力。
(3)利用牛顿第二定律可以处理匀变速直线运动问题,也可以 定性分析非匀变速直线运动的规律,它常和力学、电磁学等有关 知识结合起来考查一些综合问题。
*体验应用*
1.[2009年高考安徽理综卷]在2008年北京残奥会开幕式上, 运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残 疾运动员坚韧不拔的意志和自强不息的精神。为了探求上 升过程中运动员与绳索和吊椅间的作用,可将过程简化。 一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅, 另一端被坐在吊椅上的运动员拉住,如图3-2-1所示。设运 动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳 子间的摩擦。重力加速度取g=10 m/s2。当运动员与吊椅一 起正以加速度a=1 m/s2上升时,试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。
慢慢加速,再匀速运转。一顾客乘扶梯上楼,恰
好经历了这两个过程,如图3-2-8所示。那么下列
C 说法中正确的是(
)
A.顾客始终受到三个力的作用

牛顿运动定律 典型例题 参考答案

牛顿运动定律 典型例题 参考答案

牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。

据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。

整体法与隔离法

整体法与隔离法
A.大小为700 N,方向竖直向上 B.大小为350 N,方向竖直向上 C.大小为200 N,方向竖直向下 D.大小为204 N,方向竖直向下
2、五个质量相等的物体置于光滑的水平面上,如 图所示.现向右施加大小为F、方向向右的水平恒力, 则第3个物体对第4个物体的作用力等于( B )
1
2ห้องสมุดไป่ตู้
A.5F
B.5F
考点二 整体法和隔离法
1、连接体与隔离体
两个或两个以上物体相互连接组成的系统称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体.
2、外力和内力
如果以系统为研究对象,受到系统以外的力,这些 力就是该系统受到的外力,而系统内相互作用的力则 称为内力。(举例)
应用牛顿第二定律求系统的加速度时,不考虑系统 的内力。如果把某物体隔离出来作为研究对象,则这 些力将转化为隔离体的外力。
3
4
C.5F
D.5F
3、如图所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时, 物体A的加速度为a1.当在B端施以F=mg的竖直向下的拉力作 用时,A的加速度为a2.则a1与a2的大小关系是( C )
A.a1=a2 C.a1<a2
B.a1>a2 D.无法确定
5、如下图所示,用一根细线通过一只无摩擦、无 质量的滑轮,把静止在斜面上和悬挂在斜面边缘高 处的两块木块连接起来.悬挂木块的质量为M=16.0 kg,斜面上的木块的质量为m=8.0 kg.已知木块与斜 面间的动摩擦因数为μ=0.2.这两木块从静止释 放.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
(1)木块的加速度为多大? (2)连接两木块的细线的张力为多大?

整体法与隔离法解牛顿第二定律的应用

整体法与隔离法解牛顿第二定律的应用
解:将A、B当作一个整体,由牛顿第二定律得: F2 F1 F1 F2 2ma L L 1) 对A隔离:F1 K x ma L L (2) F1 F2 由( 1)(2)式得:x 2K 注意:(2)式中换成对B隔离分析也行!连接体问题 一般先采用整体法求出共同加速度,再用隔离法对其 中某个物体或某几个物体分析求内力。
例1:如图示:桌面光滑,小车质量为M,砝码质 量为m,求小车受到的拉力和小车的加速度。
F
F
解法一(隔离法): 对m:mg-F=ma L( 1) 对M:F=Ma L L(2) 由(1)(2)得:a= m g M+m 解法二(整体法):将M 、m当作整体,由牛顿第二定律得: mg=(M+m)a a= m g M+m
例3:5个质量相同的木块并排放在光滑水平桌面上, 当用水平向右推力F推木块1,使它们共同向右加 速运动时,求第2与第3块木块之间弹力及第4与 第5块木块之间的弹力.
F
1
2
3
4
5
例2. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
m
M
F
例1.如图所示,质量为M的斜面放在水平面 上,其上有质量为 m 的物块,各接触面均 无摩擦,第一次将水平力F1加在m 上,第二 次将水平力F2加在M上,两次要求m与M不 发生相对滑动,求F1与F2之比
F1
F2
m:M
mg
a
Mm g M m Mm m 分析绳子的拉力F g g mg m M m 1 M 但当M ? m时 F mg 研究对M绳子拉力:F=Ma= M、m一起匀加速的加速度a= 当M ? m时:a m g M+m

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。

如果把其中某个物体隔离出来,该物体即为。

二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。

运用 列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。

已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。

牛顿第二定律连接体问题(整体法与隔离法)

牛顿第二定律连接体问题(整体法与隔离法)

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。

要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。

f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。

连接体问题中的整体法和隔离法

连接体问题中的整体法和隔离法

连接体问题中的整体法和隔离法“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。

在“连接体运动”的解题中,常常要用到两种解题方法──“整体法”和“隔离法”。

例题1、如图1-15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?⒈ “整体法”解题 采用此法解题时,把物体M 和m 看作一个整体..,它们的总质量为(M+m )。

把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。

又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。

现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM ma +=⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M 与m 之间的相互..作用力T 必须标出,而且对M 和m 单独..来看都是外力..(如图1-16所示)。

根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式: mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM ma +=练习:如图1-17所示,用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。

解:g mM mM a +-=例题2、如图,质量为M 的木板,放在倾角为θ的光滑斜面上,木板上一质量为m 的人应以多大的加速度沿斜面跑下,才能使木板静止在斜面上?解一:隔离法。

M 静止,其受合外力为0。

M 受到重力Mg 、支持力N 、人的摩擦力f 而平衡。

故: f=Mgsin θ 人受到重力mg 、支持力N ′、木板的摩擦力f F 合= mgsin θ+f= mgsin θ+ Mgsin θ ∴ a= (m+M)gsin θ/ma m M解二.整体法。

牛顿第二定律的应用-整体法与隔离法

牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。

应用整体法和隔离法的解题技巧—内力公式(解析版)

应用整体法和隔离法的解题技巧—内力公式(解析版)

高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。

两物体的连接物为轻弹簧、轻杆时,此结论不变。

注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。

第三章 第3课时 专题强化:牛顿第二定律的综合应用-2025物理大一轮复习讲义人教版

第三章 第3课时 专题强化:牛顿第二定律的综合应用-2025物理大一轮复习讲义人教版

第3课时专题强化:牛顿第二定律的综合应用目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。

2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。

考点一动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。

系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。

1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。

(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大,绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fgm1+m2+μm1C.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关答案C 解析若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有F T -μm 1g =m 1a ,得a =F T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得F T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为F T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。

拓展(1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。

①如图甲所示,用力F 竖直向上拉木块时,绳的拉力F T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力F T =__________。

牛二专题:整体法和隔离法

牛二专题:整体法和隔离法
力,使B向左运动,A相对于
B恰好不移动时,即是绳子
拉力恰好为零时。此时推力 设为F.
对A受力分析如图, 由三角形关系得:
ma tan
mg
对整体: F (M m )g (M m )a
联立求解可得: F (M m )g ( ta)n
即:这个拉力必须满整体与隔离体法
规律总结:一个重要结论拓展:如下图所示,倾角
为 α 的斜面上放两物体 m1 和 m2,用与斜面平行的力 F 推 m1,使两物体加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 FN=m1m+2m2F.
有相互作用力的系统 整体与隔离体法
【例2】A、B的质量分别为m1和m2,叠放置于光滑的水 平地面上,现用水平力F拉A时,A、B一起运动的最大
牛二专题:整体法和隔离法
一、连接体 当两个或两个以上的物体之间通过轻绳、轻杆、弹 簧相连或直接叠放在一起的系统。
二、处理方法——整体法和隔离法
使用原则:
1、整体法:系统内各物体的运动状态相同(具有相同的a或平衡态); 问题不涉及物体间的内力。
2、隔离法:系统内各物体的运动状态不同(具有不同的a); 问题涉及物体间的内力。
加速度为a1,若用水平力F改拉B时,A、B一起运动的最
大加速度为a2,则a1:a2等于:(

A 1:1 B m1:m2 C m2:m1
D m12:m22
B
有相互作用力的系统 整体与隔离体法
【例3】水平桌面上放着质量为M的滑块,用细绳 通过定滑轮与质量为m的物体相连,滑块向右加速 运动。已知滑块与桌面间的动摩擦因数为μ.试求 滑块运动的加速度和细绳中的张力。
例:A、B两物体用轻绳连接,置于光滑水平面上,它们的质
量分别为M和m,现以水平力F拉A,求AB间绳的拉力T1为多少?

牛顿定律:整体法与隔离法

牛顿定律:整体法与隔离法

牛顿第二定律——连接体问题(整体法与隔离法)例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+ B.F m m m 212+ C.FD.F m m21扩展:1.若m 1与m 2于 。

2.如图所示,倾角为α的斜面上放两物体m 1和m 2,使两物加速上滑,不管斜面是否光滑,【例1】A 、B kg m B 6=,今用水平力N F A 6=推A ,用水平力N F B 3=的作用力有多大?8.如图所示,质量分别为m 和2m 的两物体A 、B 最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 则作用于A 、B 上的最大拉力F A 与F B 之比为多少?10.如图所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动.设弹簧的劲度系数为k .当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( )A .0B .kxC .kx M mD .kx m M m )(+【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 物体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为1m 的物体,与物体1相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m2、连接体整体内部各部分有不同的加速度:【例2有一个环,箱和杆的总质量为M ,环的质量为m 加速度大小为a 时(a <g A. Mg + mg B. Mg —1.(★★★)如图2-8所示,质量为M 端固定一个质量为m 的小球,小球上下振动时,压力为零瞬间,小球的加速度大小为A.gB.m mM - g C.0D. mm M +g【例12】如图,底座A 上装有一根直立竖杆,其总质量为M 量为m 的环B ,它与杆有摩擦。

牛顿第二定律典例(连接体)

牛顿第二定律典例(连接体)

牛顿第二定律是经典力学的基础和核心,是分析、研究和解决力学问题的三大法宝之一,同时也是高考考查的重点和热点。

因此,深刻理解和灵活应用牛顿第二定律是力学中非常重要的内容,下面阐述应用牛顿第二定律时的几类典型问题,供大家参考。

一、连接体问题两个或两个以上物体相互连接并参与运动的系统称为有相互作用力的系统, 即为连接体问题,处理非平衡状态下的有相互作用力的系统问题常常用整体法和隔离法。

当需要求内力时,常把某个物体从系统中“隔离”出来进行研究,当系统中各物体加速度相同时,可以把系统中的所有物体看成一个整体进行研究。

例 1:如图 1所示的三个物体质量分别为 m 1、 m 2和 m 3。

带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计。

为使三个物体无相对滑动,试求水平推力 F 的大小。

解答:本题是一道典型的连接体问题。

由题意可知,三个物体具有向右的相同的加速度,设为 a ,把它们三者看成一个整体,则这个整体在水平方向只受外力 F 的作用。

由牛顿第二定律,即:F=(m 1+m2+m3a ……①隔离 m 2,受力如图 2所示在竖直方向上,应有: T=m2g ……②隔离 m 1,受力如图 3所示在水平方向上,应有: T′=m1a ……③由牛顿第三定律T′=T ……④联立以上四式解得:点评:分析处理有相互作用力的系统问题时,首先遇到的关键问题就是研究对象的选取。

其方法一般采用隔离和整体的策略。

隔离法与整体法的策略,不是相互对立的, 在一般问题的求解中随着研究对象的转化,往往两种策略交叉运用,相辅相成,所以我们必须具体问题具体分析,做到灵活运用。

二、瞬时性问题当一个物体(或系统的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统对和它有联系的物体(或系统的受力发生变化。

例 2:如图 4所示,木块 A 与 B 用一轻弹簧相连,竖直放在木块 C 上。

3-3_牛顿运动定律—连接体问题(整体隔离法)、临界

3-3_牛顿运动定律—连接体问题(整体隔离法)、临界

[变式训练] 1.如图所示,一个质量为 m = 0.2 kg的小球用细绳吊在倾
角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当
斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜 面对小球的弹力大小.
第三章 牛顿运动定律
第29页
金版教程 · 高三一轮总复习 · 新课标 · 物理
第三章 牛顿运动定律
第26页
金版教程 · 高三一轮总复习 · 新课标 · 物理
主干回顾固基础 典例突破知规律 特色培优增素养 高考模拟提能训 限时规范特训
1 2 由运动学公式 x= at 得从挡板开始运动到小球与挡板分 2 离所经历的时间为 t= 2mgsinθ-a . ka
(2)小球速度达最大时,其加速度为零,即 kx′=mgsinθ 即从挡板开始运动到小球的速度达最大时,小球的位移为 mgsinθ x′= k .
动: ①拉力水平,m1、m2在光滑的水平面上加速运动;
②拉力水平,m1、m2在粗糙的水平面上加速运动;
③拉力平行于倾角为θ的斜面,m1、m2在光滑的斜面上沿斜 面向上加速运动; ④拉力平行于倾角为θ的斜面,m1、m2在粗糙的斜面上沿斜 面向上加速运动.
用 Δl1 、 Δl2 、 Δl3 、 Δl4 依次表示弹簧在以上四种情况下的伸 长量,则下列选项正确的是( )
[针对训练] [2013·湖北重点中学联考 ]如图所示,在建筑工地,民工兄
弟用两手对称水平使力将两长方体水泥制品夹紧并以加速度 a竖
直向上匀加速搬起,其中A的质量为m,B的质量为3m,水平作 用力为 F , A 、 B 之间的动摩擦因数为 μ ,在此过程中, A 、 B 间 的摩擦力为( )
A.μF 3 C. m(g+a) 2

牛顿定律之连接体问题

牛顿定律之连接体问题

牛顿定律之连接体问题几个物体连在一起;在外力作用下一起运动的问题;称为连接体问题..1.一般问题特征:具有相同加速度规律:牛顿第二定律;牛顿第三定律方法:整体法;隔离法(1)绳子或弹簧连接体绳子或弹簧上的力作为连接体的内力;在用整体法时不予考虑★如图所示;两个质量分别为m1 2kg、m2=3kg的物体置于光滑的水平面上;中间用轻质弹簧秤连接..两个大小分别为F1=30N、F2=20N的水平拉力分别作用在m1、m2上;则A.弹簧秤的示数是25NB.弹簧秤的示数是50NC.在突然撤去F2的瞬间;m1的加速度大小为5m/s2D.在突然撤去F1的瞬间;m1的加速度大小为13m/s2答案:D★如图所示;在光滑的水平面上;质量分别为m1和m2的木块A和B之间用轻弹簧相连;在拉力F作用下;以加速度a做匀加速直线运动;某时刻突然撤去拉力F;此瞬时A和B的加速度为a1和a2;则A. a1=a2=0B. a1=a;a2=0C. ;D. 1;答案:D★如图所示;在光滑水平面上有个质量分别为m1和m2的物体A、B;;A、B间水平连接着一弹簧秤;若用大小为F的水平力向右拉B;稳定后B的加速度大小为a1;弹簧秤的示数为F1;如果改用大小为F的水平力向左拉A;稳定后A的加速度为a2;弹簧秤的示数为F2;则下列关系正确的是A.B.C.D.答案:A★★如图所示;两个用轻线相连的位于光滑水平面上的物块;质量分别为m1和m2..拉力F1和F2方向相反;与轻线沿同一水平直线;且F1>F2;试求在两个物块运动过程中轻线的拉力T..答案:2轿厢问题物体处于某一加速运动的空间中;此空间与物体相对静止;此时可视为连接体;可使用整体及隔离的思路..★如图所示;跨过定滑轮的绳的一端挂一吊板;另一端被吊板上的人拉住;已知人的质量为70kg;吊板的质量为10kg;绳及定滑轮的质量、滑轮的摩擦均可不计;取重力加速度g=10m/s2..当人以440N的力拉绳时;人与吊板的加速度a和人对吊板的压力F分别为多少答案:;330N★一有固定斜面的小车在水平面上做直线运动;小球通过细绳与车顶相连..小球某时刻正处于如图所示状态..设斜面对小球的支持力为N;细绳对小球的拉力为T;关于此时刻小球的受力情况;下列说法正确的是A. 若小车向左运动;N可能为零B. 若小车向左运动;T可能为零C.若小车向右运动;N不可能为零D.若小车向右运动;T不可能为零答案:AB★在水平地面上运动的小车车厢底部有一质量为m1的木块;木块和车厢通过一根水平轻弹簧相连接;弹簧的劲度系数为k..在车厢的顶部用一根细线悬挂一质量为m2的小球..某段时间内发现细线与竖直方向的夹角为θ;在这段时间内木块与车厢也保持相对静止;如图所示..不计木块与车厢底部的摩擦力;则在这段时间内弹簧的形变量为A. B.C. D.答案:A★★如图所示;在动力小车上固定一直角硬杆ABC;分别系在水平直杆AB两端的轻弹簧和细线将小球P悬吊起来..轻弹簧的劲度系数为k;小球P的质量为m;当小车沿水平地面以加速度a向右运动而达到稳定状态时;轻弹簧保持竖直;而细线与杆的竖直部分的夹角为θ;试求弹簧的形变量的大小重力加速度为g..答案:★质量为M的探空气球匀速下降..若气球所受浮力F始终保持不变;气球在运动过程中所受阻力仅与速率有关;重力加速度为g..现欲使该气球以同样速率匀速上升;需从气球吊篮中减少的质量为A. B.C. D.0答案: A3叠加木块问题叠放在一起的木块;彼此无相对滑动时;可视为连接体..彼此间摩擦力为整体内力..★★质量分别为m、2m、3m的物块A、B、C叠放在光滑的水平地面上;现对B施加一水平力F;已知AB间、BC间最大静摩擦力均为f0;为保证它们能够一起运动;F最大值为A.6f0 B.4f0 C.3f0 D.2f0答案:D★★如图所示;光滑水平面上放置质量分别为m和2m的四个木块;其中两个质量为m 的木块间用可伸长的轻绳相连;木块间的最大静摩擦力是..现用水平拉力F拉其中一个质量为2m的木块;使四个木块以同一加速度运动;则轻绳对m的最大拉力为A. B.C. D. 3μmg答案:B补充思考:若F作用在m上;则轻绳最大拉力为★★如图所示;一足够长的木板静止在光滑水平面上;一物块静止在木板上;木板和物块间有摩擦..现用水平力向右拉木板;当物块相对木板滑动了一段距离但仍有相对运动时;撤掉拉力;此后木板和物块相对于水平面的运动情况为A. 物块先向左运动;再向右运动B. 物块向右运动;速度逐渐增大;直到做匀速运动C. 木板向右运动;速度逐渐变小;直到做匀速运动D. 木板和物块的速度都逐渐变小;直到为零答案:BC★★如图所示;两质量相等的物块A、B通过一轻质弹簧连接;B足够长、放置在水平面上;所有接触面均光滑..弹簧开始时处于原长;运动过程中始终处在弹性限度内..在物块A上施加一个水平恒力;A、B从静止开始运动到第一次速度相等的过程中;下列说法中正确的有A.当A、B加速度相等时;系统的机械能最大B.当A、B加速度相等时;A、B的速度差最大C.当A、B的速度相等时;A的速度达到最大D.当A、B的速度相等时;弹簧的弹性势能最大答案:BCD不为连接体的★★如图;在倾角为α的固定光滑斜面上;有一用绳子拴着的长木板;木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时;猫立即沿着板向上跑;以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为A.B.C.D.FmM答案: C★小孩从滑梯上滑下的运动可视为匀加速直线运动;质量为M 的小孩单独从滑梯上滑下;加速度为a 1..该小孩抱着一只质量为m 的小狗再从滑梯上滑下小狗不与滑梯接触;加速度为a 2.则a 1和a 2的关系为A. a 1=B.1C. 1D. a 1=a 2答案: D ★★如图所示;质量的小车停放在光滑水平面上..在小车右端施加一个的水平恒力..当小车向右运动的速度达到3.0m/s 时;在其右端轻轻放上一个质量的小物块初速为零;物块与小车间的动摩擦因数;假定小车足够长..求:⑴经多长时间物块停止在小车上相对滑动 ⑵小物块从放在车上开始;经过;通过的位移是多少 取g=10m/s 2答案:2s ;8.4m 2.连接体中的临界问题★★直升机悬停在空中向地面投放装有救灾物资的箱子;设投放初速度为零;箱子所受的空气阻力与箱子下落速度的平方成正比;在箱子下落过程中;下列说法正确的是A. 箱内物体对箱子底部始终没有压力B. 箱子刚从飞机上投下时;箱内物体受到的支持力最大C. 箱子接近地面时;箱内物体受到的支持力比刚投下时大D. 若下落距离足够长;箱内物体有可能不受底部支持力而“飘起来”答案:C★★如图所示;质量为M的木块放在水平地面上;一轻质弹簧下端固定在木板上;上端固定一个质量为m的小球;小球上下跳动时;木块始终没有跳起;求在木块对地面压力为零的瞬间;小球的加速度是多大小球跳动的全过程中木板对地面的最大压力是多少答案:;★★如图所示;在倾角为θ的光滑斜面上有两个用轻质弹簧相连的物块A、B;它们的质量分别为m A、m B;弹簧的劲度系数为k;C为一固定挡板..系统处于静止状态..现开始用一恒力F沿斜面方向拉物块A 使之向上运动;求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d..重力加速度为g答案:;★★一弹簧秤的秤盘质量为M=1.5kg;盘内放一物体P;P的质量m=10.5kg;弹簧本身质量不计;劲度系数k=800N/m;系统处于静止状态;如图..现给P施加一个竖直向上的力F;使P从静止开始做匀加速运动;已知头0.2s内F是变力;在0.2s以后是恒力;求F 的最小值和最大值答案:72N;168N。

连接体问题的处理——整体法与隔离法

连接体问题的处理——整体法与隔离法

力.即“先整体求加速度,后隔离求内力”. 2.整体法和隔离法的物理模型 (1)涉及滑轮的问题,若要求绳的拉力,一般都必须采用隔离法. 这类问题中一般都忽略绳、滑轮的重力和摩擦力,且滑轮大小不计. 若绳跨过定滑轮,连接的两物体虽然加速度方向不同,但大小相同. (2)固定斜面上的连接体问题.这类问题一般多是连接体(系统) 各物体保持相对静止,即具有相同的加速度.解题时,一般采用先整 体、后隔离的方法.建立坐标系时也要考虑矢量正交分解越少越好的 原则,或者正交分解力,或者正交分解加速度. (3)斜面体(或称劈形物体、楔形物体)与在斜面上物体组成的连 接体(系统)的问题.这类问题一般为物体与斜面体的加速度不同, 其中最多的是物体具有加速度,而斜面体静止的情况,解题时一般 采用隔离法分析.
• (2)若突然撤去拉力F,在撤去拉力F的瞬 间,A的加速度为a/,a/与a之间比为多少?
• 3.质量分别为m1和m2的两个小物块用轻绳连接, 绳跨过位于倾角α=30°的光滑斜面顶端的轻滑 轮,滑轮与转轴之间的摩擦不计,斜面固定在水 平桌面上,如图所示。第一次,m1悬空,m2放 在斜面上,用t表示m2自斜面底端由静止开始运 动至斜面顶端所需的时间。第二次,将m1和m2 位置互换,使m2悬空,m1放在斜面上,发现m1 自斜面底端由静止开始运动至斜面顶端所需的时 间为。求m1与m2之比。
【答案】 B
• 2.如图AB两滑环分别套在间距为1m的两根 光滑平直杆上,A和B的质量之比为1∶3, 用一自然长度为1m的轻弹簧将两环相连, 在 A环上作用一沿杆方向大小为20N的拉力 F,当两环都沿杆以相同的加速度a运动时, 弹簧与杆夹角为53°。(cos53°=0.A6F)求:
• (1)弹簧的劲度系数为多少? B
l
1 2

牛顿运动定律的应用之用整体法、隔离法巧解连接体问题(解析版)

牛顿运动定律的应用之用整体法、隔离法巧解连接体问题(解析版)

牛顿运动定律的应用之用整体法、隔离法巧解连接体问题1.连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。

(1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;(2)弹簧连接:两个物体通过弹簧的作用连接在一起;(3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。

2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。

轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。

学科,网特别提醒(1)“轻”——质量和重力均不计。

(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。

3.连接体问题的分析方法(1)分析方法:整体法和隔离法。

(2)选用整体法和隔离法的策略:①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法;②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。

4. 整体法与隔离法的选用方法(1)整体法的选取原则若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。

当系统内物体的加速度相同时:a m m m F n )...(21+++=;否则n n a m a m a m F +++=...2211。

(2)隔离法的选取原则若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典例1】如图所示,两个质量分别为m 1=3 kg 、m 2=2 kg 的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律——连接体问题(整体法与隔离法)
一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统 二、处理方法——整体法与隔离法
使用原则
三、连接体题型:
1【例1】A 、B kg m A 3=,kg m B 6=,今用水平力F A B ,A 、B 间的作用力有多大?
【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. g m M F g a )(,cot +==μθ
【练2】如图所示,质量为2m 的物体2定滑轮连接质量为1m 的物体,与物体1A. 车厢的加速度为θsin g
B. 绳对物体1的拉力为θcos 1g
m
C. 底板对物体2的支持力为g m m )(12-
D. 物体2所受底板的摩擦力为θtan 2g m
2、连接体整体内部各部分有不同的加速度:【例2
质量为M ,环的质量为m
力为( )
A. Mg + mg
B. Mg —ma
C. Mg + ma
D. Mg + mg
【练3】如图所示,一只质量为m 杆下降的加速度为( )
A. g
B. g M m
C. g M m M +
D. g
M m M -【练4】如图所示,在托盘测力计的托盘内固定一个倾角为30个重4 N 的物体放在斜面上,让它自由滑下,那么测力计因4 N 的读数是(
A.4 N
B.23 N
C.0 N
D.3 N
【练5】如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。

当用火柴烧断O 处的细线瞬间,木块A 的加
速度a A 多大?木块B 对盘C 的压力F BC 多大?(g 取10m/s 2

连接体作业
1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。

要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)
球刚好离开斜面 球刚好离开槽底
F= F= F= F=
2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。

f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小 4、如图所示,小车的质量为M,正在向右加速运动,一个质量为m 的木块紧靠在车的前端相对于车保持静止,
A B
O
F
a b
c
则下列说法正确的是( )
A.在竖直方向上,
B.在水平方向上,
C.若车的加速度变小,
D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 匀加速运动的过程中,物体A 、B 擦力为
2
f F ,(
2≠f F ),则(A. 01=f F B.
2f F C.
1
f F 水平向左 D.
2
f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8k
g 恒力F =8N ,当小车速度达到质量m =2kg 体从放在小车上开始经t =1.5s 8、如图6所示,质量为A m 的物体上升,斜面与水平面成θ
9、如图10所示,质量为M 的滑块C 滑块上,与滑块间动摩擦因数为μ擦力作用,水平推力F 应为多大?
10、在粗糙的水平面上有一质量为M
A
B。

相关文档
最新文档