信息论与编码学上机实习报告
信息论与编码实验报告
信息论与编码实验报告信息论与编码实验报告实验一:英文文本信息量的计算一、实验目的及要求a)实验目的1、通过本实验熟悉Matlab 软件编程环境2、编写M 文件实现对英文文本信息量的统计,掌握信息量、信源熵的计算方法b)实验要求1、了解matlab 中M 文件的编辑、调试过程2、编写程序实现对给定英文文本信息量的统计3、英文文本中字母不区分大小写,考虑空格的信息量,但不考虑标点符号的信息量4、建议英文文本采用txt 格式二、实验步骤及运行结果记录a)实验步骤1、查找各个英文字母及空格出现的频率2、在Matlab 中读取给定的英文文章3、计算英文文章的长度4、统计在该文章中各个字母及空格出现的次数并放入数组N 中5、计算各个字母和空格的信息量及整篇文章的信息量6、计算信源熵b)实验结果sumI = +003;H = 三、程序流程图四、程序清单,并注释每条语句五、实验小结通过本次实验熟悉了Matlab 软件编程环境和一些函数的功能及使用,掌握了信息量、信源熵的计算方法。
1 附一:开始读取英文文章计算文章的长度嵌套的for 循环语句假判断是否符合循环条件真if 否elseif 判断字是否为大写母输入相应的频率否elseif 判断是否为小写字母计算各个字母、空格及整篇文章的信息量是判断是否为小写字母是计算信源熵是放入数组N 中对应的位置放入数组N 中对应的位置放入数组N 中对应的位置结束附二: wenzhang=textread(‘实验一:english ‘,’\’); M=size(wenzhang); row=M(1,1); line=M(1,2); N=zeros(1,27); for i=1:row for j=1:line %读取英文文章%文章的长度ifdouble(wenzhang(i,j))>96&&double(wenz hang(i,j))double(wenzhang(i,j))>64&&double(wenz hang(i,j))N(1,double(wenzhang(i,j))-64)=N(1,doubl e(wenzhang(i,j))-64)+1; elseif double(wenzhang(i,j))==32N(1,27)=N(1,27)+1; end end end %统计各字母和空格出现的个数并存入N数组中。
信息论与编码实验报告
信息论与编码实验报告信息论与编码实验报告学院:计算机与通信工程学院专业:计算机科学与技术班级:计1203班学号:姓名:2014年12月29日实验一唯一可译码判别准则实验目的:1.进一步熟悉唯一可译码判别准则;2.掌握C语言字符串处理程序的设计和调试技术。
实验内容:1.已知:信源符号数和码字集合C;2.输入:任意的一个码,码字的个数和每个具体的码字在运行时从键盘输入;3.输出:判决(是唯一可译码/不是唯一可译码);循环(若继续判决则输入1循环判决,否则输入0结束运行)。
实验原理:根据唯一可译码的判别方法,利用数据结构所学的知识,定义字符串数据类型并利用指针进行编程来实现算法。
算法:1、考察C 中所有的码字,若Wi是Wj的前缀,则将对应的后缀作为一个尾随后缀码放入集合Fi+1中;2、考察C和Fi俩个集合,若Wi ∈C是Wj ∈F的前缀或Wi ∈F是Wj∈C的前缀,则将相应的后缀作为尾随后缀码放入集合Fi+1中;3、F=∪Fi即为码C的尾随后缀集合;4、若F中出现了C中的元素,算法终止,返回假(C不是唯一可译码);否则若F中没有出现新的元素,则返回真。
实验环境及实验文件存档名:1.实验环境:visual C++ 6.02.文件名:weiyikeyi.cpp实验结果及分析:1.源代码:#include<stdio.h>#include<string.h>char c[100][50];char f[300][50];int N,sum=0; //N为输入码字的个数,sum为尾随后缀集合中码字的个数int flag;//判断是否唯一可译标志位void patterson(char c[],char d[]) //检测尾随后缀{int i,j,k;for(i=0;;i++){if(c[i]=='\0'&&d[i]=='\0')//2字符串一样,跳出break;if(c[i]=='\0') //d比c长,将d的尾随后缀放入f中{for(j=i;d[j]!='\0';j++) f[sum][j-i]=d[j];f[sum][j-i]='\0';for(k=0;k<sum;k++){if(strcmp(f[sum],f[k])==0) //查看当前生成的尾随后缀在f集合中是否存在{sum--;break;}}sum++;break;}if(d[i]=='\0') //c比d长,将c的尾随后缀放入f中{for(j=i;c[j]!='\0';j++) f[sum][j-i]=c[j];f[sum][j-i]='\0';for(k=0;k<sum;k++){if(strcmp(f[sum],f[k])==0) //查看当前生成的尾随后缀在f集合中是否存在{sum--;break;}}sum++;break;}if(c[i]!=d[i])//字符不一样了也退出break;}}void yima(){int i,j;printf(" ********唯一可译码判别********\n");printf("请输入码字的个数:");//输入码得个数scanf("%d",&N);while(N>100){printf("输入码字个数过大,请输入小于100的数\n");printf("请输入码字的个数:");scanf("%d",&N);}flag=0;printf("请分别输入码字:\n");for(i=0;i<N;i++){scanf("%s",&c[i]);}for(i=0;i<N-1;i++)//判断如果码本身是否重复for(j=i+1;j<N;j++){if(strcmp(c[i],c[j])==0){flag=1;break;}}if(flag==1)//如果码本身有重复,就可以断定它不是唯一可译码{printf("这不是唯一可译码。
信息论与编码实习报告
信息论与编码实习报告指导老师:姓名:班级:学号:实验一绘制二进制熵函数曲线一、内容用Matlab软件制作二进制熵函数曲线。
二、要求1.掌握Matlab绘图函数2.掌握、理解熵函数表达式及其性质三.Matlab程序及实验结果1.matlab程序:p=0.00001:0.001:1;h=-p.*log2(p)-(1-p).*log2(1-p);plot(p,h);title('二进制熵函数曲线');ylabel('H(P,1-P)')2.运行结果:结果分析:从图中可已看出当p=0.5即信源等概时熵取得最大值。
实验二一般信道容量迭代算法一、内容编程实现一般信道容量迭代算法。
伪代码见教材。
二、要求1.掌握一般信道容量迭代算法的原理2.掌握MA TLAB开发环境的使用(尤其是程序调试技巧),或者使用C语言完成程序设计三.Matlab程序及运行结果1.matlab程序:clc;clear all;N = input('输入信源符号X的个数N=');M = input('输入信源符号Y的个数M=');p_yx=zeros(N,M); %程序设计需要信道矩阵初始化为零fprintf('输入信道矩阵概率\n')for i=1:Nfor j=1:Mp_yx(i,j)=input('p_yx='); %输入信道矩阵概率if p_yx(i)<0error('不符合概率分布')endendEndfor i=1:N %各行概率累加求和s(i)=0;for j=1:Ms(i)=s(i)+p_yx(i,j);endendfor i=1:N %判断是否符合概率分布if (s(i)<=0.999999||s(i)>=1.000001)error('不符合概率分布')endendb=input('输入迭代精度:'); %输入迭代精度for i=1:Np(i)=1.0/N; %取初始概率为均匀分布endfor j=1:M %计算Q(j)Q(j)=0;for i=1:NQ(j)=Q(j)+p(i)*p_yx(i,j);endendfor i=1:N %计算F(i) f(i)=0;for j=1:Mif(p_yx(i,j)==0)f(i)=f(i)+0;elsef(i)=f(i)+p_yx(i,j)*log(p_yx(i,j)/Q(j));endendF(i)=exp(f(i));endx=0;for i=1:N %计算x x=x+p(i)*F(i);endIL=log2(x); %计算ILIU=log2(max(F)); %计算IUn=1;while((IU-IL)>=b) %迭代计算for i=1:Np(i)=p(i)*F(i)/x; %重新赋值p(i) endfor j=1:M %计算Q(j) Q(j)=0;for i=1:NQ(j)=Q(j)+p(i)*p_yx(i,j);endendfor i=1:N %计算F(i) f(i)=0;for j=1:Mif(p_yx(i,j)==0)f(i)=f(i)+0;elsef(i)=f(i)+p_yx(i,j)*log(p_yx(i,j)/Q(j));endEndF(i)=exp(f(i));endx=0;for i=1:N %计算xx=x+p(i)*F(i);endIL=log2(x); %计算ILIU=log2(max(F)); %计算IUn=n+1;endfprintf('信道矩阵为:\n');disp(p_yx);fprintf('迭代次数n=%d\n',n);fprintf('信道容量C=%f比特/符号',IL);2.运行结果为:若输入信道矩阵为:0.8500 0.15000.7500 0.2500则运行结果为:实验四线性分组码的信道编码和译码一、内容编程实现线性分组码(6,2)重复码的信道编码和译码。
信息论与编码实验2-实验报告
信息论与编码实验2-实验报告信息论与编码实验 2 实验报告一、实验目的本次信息论与编码实验 2 的主要目的是深入理解和应用信息论与编码的相关知识,通过实际操作和数据分析,进一步掌握信源编码和信道编码的原理及方法,提高对信息传输效率和可靠性的认识。
二、实验原理(一)信源编码信源编码的目的是减少信源输出符号序列中的冗余度,提高符号的平均信息量。
常见的信源编码方法有香农编码、哈夫曼编码等。
香农编码的基本思想是根据符号出现的概率来分配码字长度,概率越大,码字越短。
哈夫曼编码则通过构建一棵最优二叉树,为出现概率较高的符号分配较短的编码,从而实现平均码长的最小化。
(二)信道编码信道编码用于增加信息传输的可靠性,通过在发送的信息中添加冗余信息,使得在接收端能够检测和纠正传输过程中产生的错误。
常见的信道编码有线性分组码,如汉明码等。
三、实验内容与步骤(一)信源编码实验1、选取一组具有不同概率分布的信源符号,例如:A(02)、B (03)、C(01)、D(04)。
2、分别使用香农编码和哈夫曼编码对信源符号进行编码。
3、计算两种编码方法的平均码长,并与信源熵进行比较。
(二)信道编码实验1、选择一种线性分组码,如(7,4)汉明码。
2、生成一组随机的信息位。
3、对信息位进行编码,得到编码后的码字。
4、在码字中引入随机错误。
5、进行错误检测和纠正,并计算错误纠正的成功率。
四、实验结果与分析(一)信源编码结果1、香农编码的码字为:A(010)、B(001)、C(100)、D (000)。
平均码长为 22 比特,信源熵约为 184 比特,平均码长略大于信源熵。
2、哈夫曼编码的码字为:A(10)、B(01)、C(111)、D (00)。
平均码长为 19 比特,更接近信源熵,编码效率更高。
(二)信道编码结果在引入一定数量的错误后,(7,4)汉明码能够成功检测并纠正大部分错误,错误纠正成功率较高,表明其在提高信息传输可靠性方面具有较好的性能。
信息论与编码技术实验报告
《信息论与编码技术》实验报告实验一:请根据公式-plogp ,说明小概率事件和大概率事件对熵的贡献。
解:先做图,然后分析。
将公式写为)(log )(2p p p f -=对它编写计算和画图程序如下:p=0:0.01:1;x=-p.*log2(p);plot(p,x);从图中曲线看出,小概率事件和大概率事件的情况下,熵值都很低,贡献很小,在概率为0.5附近时熵值最大,故此时对熵的贡献最大。
实验二:请对a 、b 、c 霍夫曼编码,它们的概率是0.6、0.3、0.1。
并以此对符号串ababaacbaa 编码和译码。
解:编码步骤分为:事件排序,符号编码,信源编码,信道编码。
MATLAB 程序:clc;a=0.3;b=0.3;c=0.4; %%%霍夫曼编码A=[a,b,c];A=fliplr(sort(A)); %%%降序排序if (a==b)&(a>c), %%实现了当a,b,c 其中两概率相同时的编码,及3值均不同时的编码 u='a';x=a;v='b';y=b;w='c';z=c;elseif (a==b)&(a<c),u='c';x=c;v='a';y=a;w='b';z=b;elseif (c==b)&(c>a),u='b';x=b;v='c';y=c;w='a';z=a;elseif (c==b)&(c<a),u='a';x=a;v='b';y=b;w='c';z=c;elseif(a==c)&(a>b),u='a',x=a;v='c',y=c;w='b',z=b;elseif(a==c)&(a<b),u='b';x=b;v='a';y=a;w='c';z=c;elseif A(1,1)==a,u='a';x=a;elseif A(1,1)==b,u='b';x=b;elseif A(1,1)==c,u='c';x=c;endif A(1,2)==a,v='a';y=a;elseif A(1,2)==b,v='b';y=b;elseif A(1,2)==c,v='c';y=c;endif A(1,3)==a,w='a';z=a;elseif A(1,3)==b,w='b';z=b;elseif A(1,3)==c,w='c';z=c;endend %%%x,y,z按从大到小顺序存放a,b,c的值,u,v,w存对应字母if x>=(y+z),U='0';V(1)='0';V(2)='1';W(1)='1';W(2)='1';else U='1';V(1)='0';V(2)='0';W(1)='1';W(2)='0';enddisp('霍夫曼编码结果:')if u=='a',a=fliplr(U),elseif u=='b',b=fliplr(U),else c=fliplr(U),end if v=='a',a=fliplr(V),elseif v=='b',b=fliplr(V),else c=fliplr(V),end if w=='a',a=fliplr(W),elseif w=='b',b=fliplr(W),else c=fliplr(W),end %%%编码步骤为:信源编码,信道编码disp('信源符号序列:')s='ababaacbaa' %%%信源编码q=[];for i=s;if i=='a',d=a;elseif i=='b';d=b;else d=c;end;q=[q,d];endm=[]; %%%符号变数字for i=q;m=[m,str2num(i)];endP=[1,1,1,0;0,1,1,1;1,1,0,1];G=[eye(3),P];%%%信道编码%%%接下来的for循环在程序中多次使用,此处作用是将已编码组m每3个1组放入mk中进行运算之后存入Ck数组中,每次mk中运算结束之后清空,再进行下一组运算,而信道编码结果数组C则由C=[C,Ck]存入每组7个码。
信息论与编码实验报告
NANCHANG UNIVERSITY信息论与编码实验报告(2018年11月27日)学院:信息工程学院系电子信息工程系专业班级:学生姓名:学号:指导教师:目录实验一自信息量和熵源.............................................................................................. 实验二准对称信道容量.............................................................................................. 实验三费诺不等式...................................................................................................... 实验四香农编码.......................................................................................................... 实验五费诺编码.......................................................................................................... 实验六霍夫曼编码......................................................................................................实验一自信息量和熵源一、实验要求1、画出I=-的函数图;2、画出H(p)=-p-(1-p)函数图。
二、实验原理及理论分析自信息量:一个事件的自信息量就是对其不确定性的度量。
信息论与编码实习报告
信息论与编码实习报告一、引言信息论与编码是通信工程、计算机科学和电子工程等领域的重要基础课程。
本次实习旨在通过实际操作,深入理解和掌握信息论与编码的基本原理和技术,提高我们的实际操作能力和问题解决能力。
二、实习内容1、信息论基础:实习的第一部分,我们通过自学和讨论的方式,深入学习了信息论的基本概念和原理,包括信息的度量、熵、信道容量等。
2、编码理论:在这一阶段,我们重点学习了线性编码、循环编码、哈夫曼编码等编码方法,并了解了编码的效率及其可靠性。
3、模拟与数字通信系统:我们通过模拟软件,设计和实现了简单的模拟通信系统,同时,也通过实验箱,了解了数字通信系统的基本原理和技术。
4、无线通信和网络:在这一部分,我们重点学习了无线通信和网络的基础知识,包括无线信道模型、无线调制解调技术、无线网络协议等。
5、实习项目:最后,我们根据所学的知识,完成了一个实习项目——设计并实现一个具有高可靠性和高效率的通信系统。
三、实习收获通过这次实习,我们收获颇丰。
首先,我们对信息论与编码的基本概念和原理有了更深入的理解和掌握,能够更好地将理论知识应用到实际中。
其次,我们提高了自己的实际操作能力和问题解决能力,能够在实践中发现和解决问题。
最后,我们了解了通信系统的基本原理和技术,对未来的学习和工作有了更好的准备。
四、结论本次实习是我们学习信息论与编码的重要环节,我们通过实际操作,深入理解和掌握了信息论与编码的基本原理和技术,提高了自己的实际操作能力和问题解决能力。
我们也发现了自己的不足之处,将在未来的学习和工作中更加努力,不断提高自己的能力和水平。
信息论与编码曹雪虹课后习题答案随着科技的发展,信息已经成为现代社会中不可或缺的一部分。
在大学中,信息论与编码作为一门重要的学科,已经成为了计算机科学、通信工程、电子工程等专业的必修课程。
而在这门课程中,曹雪虹教授的教材《信息论与编码》被广泛使用。
本文将介绍一些该教材的课后习题答案,以帮助读者更好地掌握信息论与编码的相关知识。
信息论与编码实验报告
信息论与编码实验报告一、实验目的本实验主要目的是通过实验验证信息论与编码理论的基本原理,了解信息的产生、传输和编码的基本过程,深入理解信源、信道和编码的关系,以及各种编码技术的应用。
二、实验设备及原理实验设备:计算机、编码器、解码器、信道模拟器、信噪比计算器等。
实验原理:信息论是由香农提出的一种研究信息传输与数据压缩问题的数学理论。
信源产生的消息通常是具有统计规律的,信道是传送消息的媒体,编码是将消息转换成信号的过程。
根据信息论的基本原理,信息的度量单位是比特(bit),一个比特可以表示两个平等可能的事件。
信源的熵(Entropy)是用来衡量信源产生的信息量大小的物理量,熵越大,信息量就越多。
信道容量是用来衡量信道传输信息的极限容量,即信道的最高传输速率,单位是比特/秒。
编码是为了提高信道的利用率,减少传输时间,提高传输质量等目的而进行的一种信号转换过程。
常见的编码技术有霍夫曼编码、香农-费诺编码、区块编码等。
三、实验步骤1.运行编码器和解码器软件,设置信源信息,编码器将信源信息进行编码,生成信道输入信号。
2.设置信道模拟器的信道参数,模拟信道传输过程。
3.将信道输出信号输入到解码器,解码器将信道输出信号进行解码,恢复信源信息。
4.计算信道容量和实际传输速率,比较两者的差异。
5.改变信道参数和编码方式,观察对实际传输速率的影响。
四、实验结果与分析通过实验,我们可以得到不同信道及编码方式下的信息传输速率,根据信道参数和编码方式的不同,传输速率有时会接近信道容量,有时会低于信道容量。
这是因为在真实的传输过程中,存在信噪比、传输距离等因素导致的误码率,从而降低了实际传输速率。
在实验中,我们还可以观察到不同编码方式对传输速率的影响。
例如,霍夫曼编码适用于信源概率分布不均匀的情况,可以实现数据压缩,提高传输效率。
而区块编码适用于数据容量较大的情况,可以分块传输,降低传输错误率。
此外,通过实验我们还可以了解到信息论中的一些重要概念,如信源熵、信道容量等。
学习信息论与编码心得范文三篇
学习信息论与编码心得范文三篇学习信息论与编码心得范文三篇学习信息论与编码心得1作为就业培训,项目的好坏对培训质量的影响十分大,常常是决定性的作用。
关于在学习java软件开发时练习项目的总结,简单总结为以下几点:1、项目一定要全新的项目,不能是以前做过的2、项目一定要企业真实项目,不能是精简以后的,不能脱离实际应用系统3、在开发时要和企业的开发保持一致4、在做项目的时候不应该有参考代码长话短说就是以上几点,如果你想要更多的了解,可以继续往后看。
一:项目的地位因为参加就业培训的学员很多都是有一定的计算机基础,大部分都具备一定的编程基础,尤其是在校或者是刚毕业的学生,多少都有一些基础。
他们欠缺的主要是两点:(1)不能全面系统的、深入的掌握某种技术,也就是会的挺多,但都是皮毛,不能满足就业的需要。
(2)没有任何实际的开发经验,完全是想象中学习,考试还行,一到实际开发和应用就歇菜了。
解决的方法就是通过项目练习,对所学知识进行深化,然后通过项目来获取实际开发的经验,从而弥补这些不足,尽快达到企业的实际要求。
二:如何选择项目项目既然那么重要,肯定不能随随便便找项目,那么究竟如何来选择呢?根据java的研究和实践经验总结,选择项目的时候要注意以下方面:1:项目不能太大,也不能太小这个要根据项目练习的阶段,练习的时间,练习的目标来判断。
不能太大,太大了做不完,也不能太小,太小了没有意义,达不到练习的目的。
2:项目不能脱离实际应用系统项目应该是实际的系统,或者是实际系统的简化和抽象,不能够是没有实战意义的教学性或者是纯练习性的项目。
因为培训的时间有限,必须让学员尽快地融入到实际项目的开发当中去。
任何人接受和掌握一个东西都需要时间去适应,需要重复几次才能够真正掌握,所以每个项目都必须跟实际应用挂钩。
3:项目应能覆盖所学的主要知识点学以致用,学完的知识点需要到应用中使用,才能够真正理解和掌握,再说了,软件开发是一个动手能力要求很高的行业,什么算会了,那就是能够做出来,写出代码来,把问题解决了,你就算会了。
信息论与编码实验报告
中南大学信息论编码实验报告题目信息论编码学生姓名汤思远指导教师张祖平学院信息院学号 090912052专业班级电子1班完成时间 14/12/5实验一 关于信源熵的实验一、实验目的1. 掌握离散信源熵的原理和计算方法。
2. 熟悉matlab 软件的基本操作,练习使用matlab 求解信源的信息熵。
3. 自学图像熵的相关概念,并应用所学知识,使用matlab 或其他开发工具求解图像熵。
4. 掌握Excel 的绘图功能,使用Excel 绘制散点图、直方图。
二、实验原理1. 离散信源相关的基本概念、原理和计算公式产生离散信息的信源称为离散信源。
离散信源只能产生有限种符号。
随机事件的自信息量I (x i )为其对应的随机变量x i 出现概率对数的负值。
即:I (x i )= -log 2 p (x i )随机事件X 的平均不确定度(信源熵)H (X )为离散随机变量x i 出现概率的数学期望,即:∑∑-==i ii i i i x p x p x I x p X H )(log )()()()(2. 信源的信息熵设信源符号集X ={a1,a2,…,ar},每个符号发生的概率分别为p (a1)=p 1,p (a2)=p 2,…,p (ar),即信源的概率空间为,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)(...... )2(2 )1(1ar p ar a p a a p a P X 则该信源的信源熵为:H (X ) = - p (a1) log p (a1) –p (a2) log p (a2) –…–p (ar) log p (ar)3. 信道的数学模型与相关熵的计算• 单符号离散无噪声无损信道的信道容量 ()max (;)bit/i p x C I X Y =信道符号4. MATLAB 二维绘图用matlab 中的命令plot(x , y )就可以自动绘制出二维图来。
例1-2,在matlab 上绘制余弦曲线图,y = cos x ,其中0 ≤ x ≤ 2π。
信息论与编码实验报告
实验一:计算离散信源的熵一、实验设备:1、计算机2、软件:Matlab二、实验目的:1、熟悉离散信源的特点;2、学习仿真离散信源的方法3、学习离散信源平均信息量的计算方法4、熟悉 Matlab 编程;三、实验内容:1、写出计算自信息量的Matlab 程序2、写出计算离散信源平均信息量的Matlab 程序。
3、将程序在计算机上仿真实现,验证程序的正确性并完成习题。
四、求解:1、习题:A 地天气预报构成的信源空间为:()⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡6/14/14/13/1x p X 大雨小雨多云晴 B 地信源空间为:17(),88Y p y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦ 小雨晴 求各种天气的自信息量和此两个信源的熵。
2、程序代码:p1=[1/3,1/4,1/4,1/6];p2=[7/8,1/8];H1=0.0;H2=0.0;I=[];J=[];for i=1:4H1=H1+p1(i)*log2(1/p1(i));I(i)=log2(1/p1(i));enddisp('自信息I分别为:');Idisp('信息熵H1为:');H1for j=1:2H2=H2+p2(j)*log2(1/p2(j));J(j)=log2(1/p2(j));enddisp('自信息J分别为');Jdisp('信息熵H2为:');H23、运行结果:自信息量I分别为:I = 1.5850 2.0000 2.0000 2.5850信源熵H1为:H1 = 1.9591自信息量J分别为:J =0.1926 3.0000信源熵H2为:H2 =0.54364、分析:答案是:I =1.5850 2.0000 2.0000 2.5850 J =0.1926 3.0000H1 =1.9591; H2 =0.5436实验2:信道容量一、实验设备:1、计算机2、软件:Matlab二、实验目的:1、熟悉离散信源的特点;2、学习仿真离散信源的方法3、学习离散信源平均信息量的计算方法4、熟悉 Matlab 编程;三、实验内容:1、写出计算自信息量的Matlab 程序2、写出计算离散信源平均信息量的Matlab 程序。
信息论与编码课程实验报告
福建农林大学计算机与信息学院信息工程类信息论与编码课程实验报告实验项目列表实验名称1:信源建模一、实验目的和要求(1)进一步熟悉信源建模;(2)掌握MATLAB程序设计和调试过程中数值的进制转换、数值与字符串之间的转换等技术。
二、实验内容(1)假设在一个通信过程中主要传递的对象以数字文本的方式呈现。
(2)我们用统计的方式,发现这八个消息分别是由N1,N2,…,N8个符号组成的。
在这些消息是中出现了以下符号(符号1,符号2,…,符号M)每个符号总共现了(次数1,次数2,…,次数M)我们认为,传递对象的信源模型可表示为:X为随机变量(即每次一个字符);取值空间为:(符号1,符号2,…,符号M);其概率分布列为:(次数1/(N1+…+N8),…,次数M/( N1+…+N8))三、实验环境硬件:计算机软件:MATLAB四、实验原理图像和语声是最常用的两类主要信源。
要充分描述一幅活动的立体彩色图像,须用一个四元的随机矢量场X(x,y,z,t),其中x,y,z为空间坐标;t 为时间坐标;而X是六维矢量,即表示左、右眼的亮度、色度和饱和度。
然而通常的黑白电视信号是对平面图像经过线性扫描而形成。
这样,上述四元随机矢量场可简化为一个随机过程X(t)。
图像信源的最主要客观统计特性是信源的幅度概率分布、自相关函数或功率谱。
关于图像信源的幅度概率分布,虽然人们已经作了大量的统计和分析,但尚未得出比较一致的结论。
至于图像的自相关函数,实验证明它大体上遵从负指数型分布。
其指数的衰减速度完全取决于图像类型与图像的细节结构。
实际上,由于信源的信号处理往往是在频域上进行,这时可以通过傅里叶变换将信源的自相关函数转换为功率谱密度。
功率谱密度也可以直接测试。
语声信号一般也可以用一个随机过程X(t)来表示。
语声信源的统计特性主要有语声的幅度概率分布、自相关函数、语声平均功率谱以及语声共振峰频率分布等。
实验结果表明语声的幅度概率分布可用伽玛(γ)分布或拉普拉斯分布来近似。
信息论与编码实验报告
信息论与编码实验报告一、实验目的信息论与编码是一门涉及信息的度量、传输和处理的学科,通过实验,旨在深入理解信息论的基本概念和编码原理,掌握常见的编码方法及其性能评估,提高对信息处理和通信系统的分析与设计能力。
二、实验原理(一)信息论基础信息熵是信息论中用于度量信息量的重要概念。
对于一个离散随机变量 X,其概率分布为 P(X) ={p(x1), p(x2),, p(xn)},则信息熵H(X) 的定义为:H(X) =∑p(xi)log2(p(xi))。
(二)编码原理1、无失真信源编码:通过去除信源中的冗余信息,实现用尽可能少的比特数来表示信源符号,常见的方法有香农编码、哈夫曼编码等。
2、有噪信道编码:为了提高信息在有噪声信道中传输的可靠性,通过添加冗余信息进行纠错编码,如线性分组码、卷积码等。
三、实验内容及步骤(一)信息熵的计算1、生成一个离散信源,例如信源符号集为{A, B, C, D},对应的概率分布为{02, 03, 01, 04}。
2、根据信息熵的定义,使用编程语言计算该信源的信息熵。
(二)香农编码1、按照香农编码的步骤,首先计算信源符号的概率,并根据概率计算每个符号的编码长度。
2、确定编码值,生成香农编码表。
(三)哈夫曼编码1、构建哈夫曼树,根据信源符号的概率确定树的结构。
2、为每个信源符号分配编码,生成哈夫曼编码表。
(四)线性分组码1、选择一种线性分组码,如(7, 4)汉明码。
2、生成编码矩阵,对输入信息进行编码。
3、在接收端进行纠错译码。
四、实验结果与分析(一)信息熵计算结果对于上述生成的离散信源,计算得到的信息熵约为 184 比特/符号。
这表明该信源存在一定的不确定性,需要一定的信息量来准确描述。
(二)香农编码结果香农编码表如下:|信源符号|概率|编码长度|编码值|||||||A|02|232|00||B|03|174|10||C|01|332|110||D|04|132|111|香农编码的平均码长较长,编码效率相对较低。
信息论与编码实验报告
信息论与编码实验报告一、实验目的1.了解信息论与编码的基本概念和原理。
2.学习如何通过信息论与编码方法实现对数据的压缩和传输。
3.掌握信息论与编码实验的实验方法和实验技能。
4.提高实验设计、数据分析和报告撰写的能力。
二、实验内容1.通过对输入信源进行编码,实现对数据的压缩。
2. 比较不同编码方法的压缩效果,包括Shannon-Fano编码和霍夫曼编码。
3.通过传输信道对编码后的数据进行解码,还原原始信源。
4.分析并比较不同编码方法的传输效果,包括码率和传输质量。
三、实验原理1.信息论:熵是信息论中衡量信源不确定性的指标,熵越小表示信源的可预测性越高,在编码过程中可以压缩数据。
2. 编码方法:Shannon-Fano编码通过分治的方法将输入信源划分为不同的子集,分别进行编码;霍夫曼编码则通过构建最佳二叉树的方式,将较常出现的信源符号编码为较短的二进制码,较少出现的信源符号编码为较长的二进制码。
3.传输信道:信道可能存在误码和噪声,通过差错控制编码可以在一定程度上保障传输数据的正确性和完整性。
四、实验步骤1. 对给定的输入信源进行Shannon-Fano编码和霍夫曼编码。
2.计算编码后的码率,分析不同编码方法的压缩效果。
3.将编码后的数据传输到信道,模拟信道中的误码和噪声。
4.对传输后的数据进行解码,还原原始信源。
5.比较不同编码方法的传输质量,计算误码率和信噪比。
五、实验结果与分析1. 编码结果:通过对输入信源进行编码,得到了Shannon-Fano编码和霍夫曼编码的码表。
2.压缩效果:计算了不同编码方法的码率,比较了压缩效果。
3.传输结果:模拟信道传输后的数据,对数据进行解码,还原原始信源。
4.传输质量:计算了误码率和信噪比,分析了不同编码方法的传输质量。
六、实验总结通过本次实验,我深刻理解了信息论与编码的基本概念和原理,并掌握了信息论与编码实验的实验方法和实验技能。
在实验过程中,我遇到了一些困难,比如对编码方法的理解和实验数据的处理。
信息论与编码实验报告
中南大学信息论编码实验报告题目信息论编码学生姓名汤思远指导教师张祖平学院信息院学号 090912052专业班级电子1班完成时间 14/12/5实验一 关于信源熵的实验一、实验目的1. 掌握离散信源熵的原理和计算方法。
2. 熟悉matlab 软件的基本操作,练习使用matlab 求解信源的信息熵。
3. 自学图像熵的相关概念,并应用所学知识,使用matlab 或其他开发工具求解图像熵。
4. 掌握Excel 的绘图功能,使用Excel 绘制散点图、直方图。
二、实验原理1. 离散信源相关的基本概念、原理和计算公式产生离散信息的信源称为离散信源。
离散信源只能产生有限种符号。
随机事件的自信息量I (x i )为其对应的随机变量x i 出现概率对数的负值。
即:I (x i )= -log 2 p (x i )随机事件X 的平均不确定度(信源熵)H (X )为离散随机变量x i 出现概率的数学期望,即:∑∑-==i ii i i i x p x p x I x p X H )(log )()()()(2. 信源的信息熵设信源符号集X ={a1,a2,…,ar},每个符号发生的概率分别为p (a1)=p 1,p (a2)=p 2,…,p (ar),即信源的概率空间为,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)(...... )2(2 )1(1ar p ar a p a a p a P X 则该信源的信源熵为:H (X ) = - p (a1) log p (a1) –p (a2) log p (a2) –…–p (ar) log p (ar)3. 信道的数学模型与相关熵的计算• 单符号离散无噪声无损信道的信道容量 ()max (;)bit/i p x C I X Y =信道符号4. MATLAB 二维绘图用matlab 中的命令plot(x , y )就可以自动绘制出二维图来。
例1-2,在matlab 上绘制余弦曲线图,y = cos x ,其中0 ≤ x ≤ 2π。
信息论与编码实验报告(DOC)
计算机与信息学院信息论与编码实验报告专业班级学生姓名及学号周伟康20112910 课程教学班号任课教师苏兆品实验指导教师实验地点2013 ~ 2014 学年第一学期信息论与编码课程设计目录一.课程设计目的 (2)二.课程设计要求 (2)三.课程设计描述 (2)四.程序结构 (2)五.算法及部分源码 (3)六.用例测试 (9)七.总结 (20)一.课程设计目的通过编程实现,在理解掌握的基础上进一步扩展课授的几种无失真信源编码算法。
以实践检验理论。
二.课程设计要求1.对一灰度图像进行游程编码的设计实现(将Huffman与游程结合)。
2.试对任意的数字序列(如学号、电话号码)进行自适应算术编码。
3.围绕设计题目查阅资料,掌握编码的基本原理。
4.按设计要求和编码原理进行算法的设计,算法的设计应满足正确性、可读性、健壮性、高效率等要求。
5.在此基础上,可以进行扩展三.课程设计描述本次设计实现内容:1.对任意的信源符号序列进行N元Huffman编码/译码。
2.对任意的信源符号序列进行N元Fano 编码/译码。
3.对任意的信源符号序列进行N元Elias 编码/译码。
4.对像素矩阵进行游程与上述编码方式结合的编码/译码。
5.数字串的自适应算数编码/译码。
6.对任意给定译码规则的译码和判断其是否为即时码。
输入数据从键盘或磁盘文件读入,运算结果显示到屏幕或保存到文件。
编写可视化图形交互界面。
本次设计程序用Java实现,由本人独立完成。
四.程序结构本次设计采用MVC设计模式:控制包下为文件读写线程执行包下是执行主类模式包分编码译码两部分Item:封装每个码元符号信息和操作AnlysisModel:信源序列统计分析模型其他如右图顾名思义视图包也分编码译码两部分MainFrame:主框架界面编码下:算数编码面板分组码编码面板译码下:算数译码面板分组码译码面板五. 算法及部分源码a) N 元Huffman 编码:算法:1) 将每个信源符号加入优先队列Heap 。
信息论上机实验报告
信息论与编码实验报告实验一:计算离散信源的熵一、实验设备:1、计算机2、软件:Matlab二、实验目的:1、熟悉离散信源的特点;2、学习仿真离散信源的方法3、学习离散信源平均信息量的计算方法4、熟悉 Matlab 编程;三、习题:1. 甲地天气预报构成的信源空间为:1111(),,,8482X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦小雨云 大雨晴乙地信源空间为:17(),88Y p y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦小雨晴求此两个信源的熵。
求各种天气的自信息量。
代码:x=[1/2,1/4,1/8,1/8];y=[7/8,1/8];HX=sum(-x.*log2(x))HY=sum(-y.*log2(y))IX=-log2(x)IY=-log2(y)答案:() 1.75;()0.5436H X H Y ==2、 某信息源的符号集由A 、B 、C 、D 、E 组成,设每一符号独立出现,其出现的概率分别为,1/4,1/8,1/8,3/16,5/16,试求该信源符号的平均信息量。
代码:x=[1/4,1/8,1/8,3/16,5/16];HX=sum(-x.*log2(x))答案:H(X) = 2.2272bit/符号3、设有四个消息分别以概率1/4,1/8,1/8,1/2传送,每一消息的出现是相互独立的。
试计算其平均信息量。
代码:x=[1/4,1/8,1/8,1/2];HX=sum(-x.*log2(x))答案:H(X) =1.75bit/符号4. 设一个二元信源(只有0和1两种符号)其概率空间为:(),1X p x p p ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦0 1 编程画出H 与p 的关系,并说明当P 呈什么分布时,平均信息量达到最大值。
(说明:H=-p.*log2(p)-(1-p).log2(1-p);)代码:p= 1/1000000:1/1000:1;H=-p.*log2(p)-(1-p).*log2(1-p);plot(p,H)grid onxlabel('p');ylabel('HP');图:实验二:验证熵的可加性与强可加性1. 【例2.6】有一离散无记忆信源123111(),,244a a a X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦验证二次扩展信源2X 的熵等于离散信源X 的熵的2倍,即 2()2()H X H X =代码:x=[1/2,1/4,1/4];hx=sum(x.*log2(1./x))x2=[1/4,1/16,1/16,1/8,1/8,1/8,1/16,1/8,1/16]hx2=sum(x2.*log2(1./x2))答案:2() 1.5;() 3.0H X H X ==2. 验证两个统计独立的信源,X Y ,验证:()()()H XY H X H Y =+其中:123111(),,244a a a X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦ 123111(),,333b b b Y p y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦代码:x=[1/2,1/4,1/4];y=[1/3,1/3,1/3];xy=[1/6,1/6,1/6,1/12,1/12,1/12,1/12,1/12,1/12]hx=sum(x.*log2(1./x))hy=sum(y.*log2(1./y))Hxy=sum(xy.*log2(1./xy))答案:() 1.5,() 1.585() 3.085H X H Y H XY ===3、条件熵的计算与熵的强可加性验证离散二维平稳信源,满足:12121()()(|)H X X H X H X X =+某一离散二维平稳信源 0121141(),,3694X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦12X X 其联合概率分布12()p X X 为:编程计算:1) 联合熵12()H X X 2) 条件熵21(|)H X X 3) 验证:12121()()(|)H X X H X H X X =+代码: x1=[11/36,4/9,1/4];x2=[11/36,4/9,1/4];b=[1/4,1/18,0;1/18,1/3,1/18;0,1/18,7/36];HXY=0;for i=1:size(b,1)for j=1:size(b,2)if b(i,j)>0HXY=HXY-b(i,j).*log2(b(i,j));endendendHXYHx1=sum(x1.*log2(1./x1))Hx2=sum(x2.*log2(1./x2))b0=b(1,:);b1=b(2,:);b2=b(3,:);x1x2=[b0./x2;b1./x2;b2./x2];Hx1x2=0;for i=1:size(x1x2,1)for j=1:size(x1x2,2)if x1x2(i,j)>0Hx1x2=Hx1x2-b(i,j).*log2(x1x2(i,j));endendendHx1x2答案: 12112121() 1.5426;(|)0.8717() 2.4144()(|) 2.4144H X H X X H X X H X H X X ===+=实验三:离散信道的平均互信息的计算1. 【习题3.1】设信源12()0.6,0.4X x x p x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦通过一干扰信道,接收到符号为12[,]Y y y =,其信道矩阵为:516631,44P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦1) 求信源X 中事件1x 和2x 分别含有的自信息; 2) 收到消息(1,2)j y j =后,获得的关于(1,2)i x i =的信息量;3) 求信源X 和输出变量Y 的信息熵;4) 信道疑义度(|)H X Y 和噪声熵(|)H Y X ;5) 接收到消息Y 后获得的平均互信息;代码:x=[0.6,0.4];p=[5/6,1/6;3/4,1/4];Ix1=log2(1./(x(1,1)))Ix2=log2(1./(x(1,2)))pxy=[x(1,1)*p(1,:);x(1,2)*p(2,:)];py=[x*p(:,1),x*p(:,2)];px_y=[pxy(:,1)/py(1,1),pxy(:,2)/py(1,2)];I=log2(p./[py;py])Hx=sum(x.*log2(1./x))Hy=sum(py.*log2(1./py))Hx_y=sum(sum(pxy.*log2(1./px_y)))Hy_x=sum(sum(pxy.*log2(1./p)))Ixy=sum(sum(pxy.*log2(p./[py;py])))答案:12111221221.()0.737() 1.32192.(;)0.0589,(;)0.263,(;)0.0931,(;)0.32193.()0.971,()0.72194.(|)0.9635(|)0.71455.(;)0.0074I x I x I x y I x y I x y I x y H X H Y H X Y H Y X I X Y ====-=-======2. 二元信道的互信息与信源分布的关系有二元信源:01()1X p x ωω⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦有二元信道,其传递矩阵为:11p p P p p -⎡⎤=⎢⎥-⎣⎦, 其中0.2p =,即传递矩阵0.80.20.20.8P ⎡⎤=⎢⎥⎣⎦ 编程实现下面题目:1) 画出平均互信息(;)I X Y 随信源分布ω的关系曲线,并求出最大平均互信息。
信息论与编码实验二
信息论与编码上机报告
完成时间:200 年月日
实验要求
1. 二进制对称信道容量:
利用BPSK 信号在一个加性白高斯噪声信道上传输二进制数据,并在用最佳匹配滤波器检测的输出端利用硬判决解码。
1) 画出该信道的差错概率作为函数,γ作为自变量的图。
γ=ε/N 0
ε—在每个BPSK 信号中的能量
N 0/2—噪声功率谱密度
用最佳检测的BPSK 的差错率是:()
γ2Q p =
2) 画出作为γ函数的信道容量的图。
()
γ21)(1Q H p H C b b -=-=
2. 信道容量与带宽和SNR 的关系
1) 输入功率受限为P 和带宽为W 的带限AWGN 信道的容量由下式给出
⎪⎪⎭⎫ ⎝⎛+=W N P W C 021log 画出容量作为W 和P /N 0的函数关系。
2) 画出离散时间AWGN 信道容量作为输入功率和噪声方差的函数关系
⎪⎭⎫ ⎝⎛+=221log 21σP C。
信息论和编码实验报告
信息论与编码实验报告实验课程名称:赫夫曼编码(二进制与三进制编码)专业信息与计算科学班级信息与计算科学1班学生姓名李林钟学号 20####指导老师王老师信息论和编码实验报告一、实验目的利用赫夫曼编码进行通信可以大大提高通信利用率,缩短信息传输时间,降低传输成本。
赫夫曼编码是信源编码中最基本的编码方法。
●理解赫夫曼编码,无论是二进制赫夫曼编码,还是m 进制赫夫曼编码,都要理解其编码原理和编码步骤。
● 回顾无失真信源编码定理,理解无失真编码的基本原理和常用编码方法。
●掌握二进制赫夫曼编码和m 进制赫夫曼编码的基本步骤,能计算其平均码长,编码效率等。
●应用二进制赫夫曼编码或m 进制赫夫曼编码处理简单的实际信源编码问题。
二、实验环境与设备1、操作系统与编程软件:windows 操作系统,cfree5.0, Visual C++ 6.0。
2、编程语言:C 语言以及C++语言 三、实验内容1. 二进制赫夫曼编码原理及步骤: (1)信源编码的计算设有N 个码元组成的离散、无记忆符号集,其中每个符号由一个二进制码字表示,信源符号个数n 、信源的概率分布P={p(s i )},i=1,…..,n 。
且各符号xi 的以li 个码元编码,在变长字编码时每个符号的平均码长为∑==ni li xi p L 1)( ;信源熵为:)(log )()(1xi p xi p X H ni ∑=-= ;唯一可译码的充要条件:11≤∑=-ni Ki m ;其中m 为码符号个数,n 为信源符号个数,Ki 为各码字长度。
(2)二元霍夫曼编码规则(1)将信源符号依出现概率递减顺序排序。
(2)给两个概率最小的信源符号各分配一个码位“0”和“1”,将两个信源符号合并成一个新符号,并用这两个最小的概率之和作为新符号的概率,结果得到一个只包含(n-1)个信源符号的新信源。
称为信源的第一次缩减信源,用s1 表示。
(3)将缩减信源 s1 的符号仍按概率从大到小顺序排列,重复步骤(2),得到只含(n-2)个符号的缩减信源s2。
香农编码上机报告
西华大学计算机系上机实践报告课程名称:信息论与编码年级:2009级上机实践成绩:指导教师:王晓明姓名:唐梁尧上机实践名称:香农编码学号:35 上机实践日期:上机实践编号:实验一组号:上机实践时间:一、目的1、熟悉C/C++编程环境,提高自己的实践动手能力。
2、利用已学的程序语言知识,编写相应的程序实现对信源的香农编码。
二、内容与设计思想1、使用结构体数组来存储各信源的相应信息,对于编码过程中的每一个过程书写一函数,然后再主函数中调用这些函数实现程序功能。
2、其中对信源按概率大小排序时采用冒泡排序算法,在对pa转换为二进制时采用乘二取整法实现。
三、使用环境Windowns 7,VC++四、核心代码及调试过程排序算法:void sort(aaa *&temp) /*对各符号按照概率从大到小排序*/{aaa t;int i,j;for(i=0;i<n-1;i++)for(j=0;j<n-i-1;j++){if(temp[j].p<temp[j+1].p){t=temp[j];temp[j]=temp[j+1];temp[j+1]=t;}}}Pa的转换算法:void exchange(aaa *&temp) /*讲pa转换为二进制*/ {int i,j;float s;for(i=0;i<n;i++){s=temp[i].pa;for(j=0;j<temp[i].k;j++){if(2*s>=1){temp[i].code[j]='1';s=2*s-1;}else{temp[i].code[j]='0';s=2*s;}}temp[i].code[j]='\0';}}调试过程:五、总结通过本次上机,我对香农编码有了进一步的了解,掌握了其具体的过程的实现方法,也对信源编码这一概念有了更加深刻的理解,在编码的过程中,使我对C以及C++语言的基础知识掌握更加牢固,特别是巩固了对输出流格式控制的相关知识,总而言之,这次上机实践让我受益匪浅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
for(j=0;j<Y_num;j++)
{
printf("P[%d][%d]=",i,j);
scanf("%lf",&P[i][j]);
}
}
printf("\n请输入迭代法精度误差(e):");
scanf("%lf",&e);
for(i=0;i<X_num;i++)
double Calculate_cap_max(double a[])
{
int i;
double max_a = a[0];
for(i=0;i<X_num;i++)
{
if(a[i] > max_a)
{
max_a = a[i];
}
}
printf("较大值=%f",log(max_a));
return log(max_a);
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int X_num,Y_num; // X_num为信源个数,Y_num为信宿个数
int n=1;
double e; //迭代法精度误差
double PXi[50]; //输入符号的概率P(xi)数组
【思路】:利用迭代法,使cap_result初步逼近cap_max,当误差小于e时,cap_result即为信道容量
**********************************************************************************************/
{
char c3[5];
DataType C2;
int i;
int flag=1,flag1=0,flag2=0,k=1;
SLNode *p;
printf("The message is:\n %s\n",c1);
printf("The codeword is:\n");
for(i=0;i<x1;i=i+flag2)
函数名:double Calculate_cap_max(double a[])
功能:计算并输出迭代法所需的参数cap_max
参数:
返回值:cap_max,也即a[k]的最大值*/
/**************************************************************************/
{
c3[0]=c1[i];
c3[1]='\0';
p=head;
while(p->next!=NULL)
{
if(strcmp(c3,p->ble)) //c3与链表中的值不相等
{
p=p->next;
flag1=0;
}
else //c3与链表中的值相等
{
c3[flag++]=c1[i+k];
double Calculate_a(int k,double PXi[])
{
int i,j;
double sum1 = 0;
for(j=0;j<Y_num;j++)
{
double sum = 0; //必须在此处令sum置0
for(i=0;i<X_num;i++) //求和PXi[i] * P[i][j]得到P(yj)
char c2[]="The cat cannot sit on the canopy of the car.";
char s1[]="\0",s2[]="\0";
ListInitiate(&head);
x1=strlen(c1);
ListInitiate(&head1);
x2=strlen(c2);
4.main()函数主要是实现初始字典的构建,即’a’-’z’和’A’-’Z’的存储。
五、程序代码
子函数:
#ifndef DICTIONARY_H_INCLUDED
#define DICTIONARY_H_INCLUDED
void dictionary(SLNode *head,int x1,char c1[],int num)
p=p->next;
}
}
#endif // DICTIONARY_H_INCLUDED
主函数:
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
typedef struct
{
char lable[5];
2、输出:经过字典编码后生成的码字。
二、实验目的
1、理解和掌握字典编码的原理;
2、理解和掌握字典译码的原理。
三、算法设计
四、程序分析
1.用结构体存储字符串及其对应的字典编码;
2.用链表存储整个字典;
3.dictionary()子函数的作用是将当前字符同链表中的字典相比较,若存在与字典中,则向结构体的数组里存放发送信息的下一位,直到当前数组中的字符串和链表字典不相等则将该字符串存储到链表中,并将标号存储到加最后一位字符之前的字符串对应的结构体的code,更新字典。
信息论与编码上机实习
学生姓名:XX
班级:XXXXX
学号:XXXXXXXX
指导老师:XX
实验一 字典编码
一、实验题目
1、输入:
①The Lempel Ziv algorithm can compress theEnglish text by about fifty five percent.
②The cat cannot sit on the canopy of the car.
PXi[i] = 1 / ((double)X_num); //初始化输入符号的概率P(xi),等概率预处理
函数名:double Calculate_a(int k,double PXi[])
功能:计算并输出迭代法所需的参数a[k]
参数:
返回值:a[k],也就是P(yi|xj)*log(P(yi|xj)/P(yi))/log2对i从0到Y_num-1求和
**************************************************************************/
int code;
}DataType;
#include "list.h"
#include "dictionary.h"
int main()
{
SLNode *head,*head1;
DataType C2;
int x1,x2,num=0;
char c1[]="The Lempel Ziv algorithm can compress the English text by about fifty five percent.";
参数:
返回值:cap_result,也即是用来逼近最值的参数
**************************************************************************/
double Calculate_cap_result(double PXi[],double a[])
}
/**************************************************************************
函数名:double Calculate_cap_result(double PXi[],double a[])
功能:计算并输出迭代法所需的参数cap_result
}
for(s1[0]='a';s1[0]>='a'&&s1[0]<='z';s1[0]++,num++)
{
strcpy(ble,s1);
C2.code=num;
ListInsert(head,ListLength(head),C2);
ListInsert(head1,ListLength(head1),C2);
}
s1[0]='.';
strcpy(ble,s1);C2.code=num++;
ListInsert(head,ListLength(head1),C2);
dictionary(head,x1,c1,num);
dictionary(head1,x2,c2,num);
return 0;
}
六、
k++;
c3[flag]='\0';
flag2=flag-1;
flag1=1;
printf("%d ",p->data.code);
if(i+k>=x1) break;
continue;
}
}
if(flag1==0) //插入新元素
{
strcpy(ble,c3);