人教版2011年八年级上期数学期末试卷1
八级上期末数学试卷
2010—2011学年度第一学期期末测试试题八年级数学(满分:150分 考试时间:120分钟)一、选择题(每小题有且只有一个答案正确,每小题3分,计24分) 1.数64的立方根是( )A .4B .8C .±4D .±8 2.点M (-l ,2)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列汽车的徽标中,是中心对称图形的是( )4.两只小鼹鼠在地下同一地点开始打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A. 50cmB. 80cm.C. 100cmD. 140cm 5.如果一组数据n x x x x x ,,.,,4321⋅⋅⋅的平均数为2011,那么5,5,5,54321++++x x x x ,…,5+n x 这组数据的平均数是( ) A. 2015 B. 2016 C. 2017 D. 2018 6.下列说法正确的个数是( )①无理数都是无限小数;②4的平方根是±2 ;④ 2a =a ;④梯形的面积等于中位线与高的乘积;⑤与数轴上的点一一对应的数是实数。
A .1个 B. 2个 C. 3个 D. 4个7. 在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )8.一名考生步行前往考场, 10分钟走了总路程的1/4,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A. 20分钟B. 22分钟C. 24分钟D. 26分钟二、填空题(每题3分,共30分)9.电影院的8排10号用(8、10)表示,那么10排8号可用 表示。
10.若等腰梯形的一底角为1200,腰长为10cm ,下底长为30cm ,则上底长为 cm 。
11.函数5-=x y 中,自变量x 的取值范围是 。
2011-2012学年度第一学期期末考试八年级数学试卷
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
2011学年八上第一学期数学期末考试含答案
(第1题图)第6题图FGE D BCAD.C.B.A.2011学年第一学期期末考试八年级数学考生须知:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分. 2.答题前,请在答题卷的左上角填写学校、班级、姓名和考试编号. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应. 试题卷一、 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是 A .同位角 B.内错角 C .对顶角 D.同旁内角2.下列函数中,y 的值随着x 值的增大而增大的是A .y =x+1B .y =-xC .y =1-xD .y =-x -13.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是4.某皮鞋厂为提高市场占有率而对鞋码进行调查时,他最应该关注鞋码的 A.平均数 B.中位数 C.众数 D.方差 5.直角三角形两条直角边长分别是5和12,则第三边上的中线长为 A.5 B.6 C.6.5 D.12 6.如图,已知DC ∥EF,点A 在DC 上,BA 的延长线交EF 于点G ,AB=AC,∠AGE=130°,则∠B 的度数是A.50°B.65°C.75°D.55°图甲图乙第3题图2)第10题图t(小时)S7.若a>b ,则下列各式中一定成立的是A .ma>mbB .c 2a>c 2b C .1-a>1-b D .(1+c 2)a>(1+c 2)b8.为了了解某路口每天在学校放学时段的车流量,有下面几个样本,统计该路口在学校放学时段的车流量,你认为合适的是A.抽取两天作为一个样本B. 春、夏、秋、冬每个季节各选两周作为样本C. 选取每周星期日作为样本D. 以全年每一天作为样本 9.如图,直线y 1=ax+b 与直线y 2=mx+n 相交于点(2,3),则不等式ax+b >mx+n 的解是A.x >2B.x <2C.x >3D.x <310.如图在一次越野赛跑中,当小明跑了9千米时,小强跑了5千米,此后两人匀速跑的路程S(千米)和时间t(小时)的关系如图所示,则由图上的信息可知S 1的值为A. 21千米B. 29千米C.15千米D.18千米二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.球的表面积S 与半径R 之间的关系是24R S π=.对于各种不同大小的圆,请指出公式24R S π=中常量是 ▲ ,变量是 ▲ .12.用不等式表示:“a 的2倍与1的和是非负数”是 ▲ . 13.把点A(-1,3)先向右平移3个单位,再向下平移2个单位,则最后所得的像的坐标是 ▲ .14. 在某公用电话亭打电话时,需付电话费y (元)与 通话时间 x (分钟)之间的函数关系用图象表示如图. 则小明打了6分钟需付费 ▲ 元.15.若一组数据x 1, x 2,……x n 的平均数是x ,则数据2x 1-1, 2x 2-1,……2x n -1的平均数是 ▲ .2011学年第一学期八年级数学期末试卷 第 3 页 共 7 页CBA第19题图B 1第20B1B第16题图GFE DCBA 16. 如图,正方形(正方形的四边相等,四个角都是直角)ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿对折至△AFE ,延长EF交边BC 于点G ,连结AG 、CF.则ΔFGC 的面积是 ▲ .三、全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17. (本小题满分10分)解不等式(组):出来并将解集在数轴上表示()(⎪⎩⎪⎨⎧-+≥-+≤-131325135)132x x x x 18.(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用两种不同方法表述点B 相对点A 的位置.19. (本小题满分9分)一个蔬菜大棚(四周都是塑料薄膜)的形状如图. (1)它可以看成是怎样的棱柱?(2)若它的底面是边长为AB=3米的正三角形,大棚总长BC=10米,那么搭建这个蔬菜大棚需要多少的塑料薄膜?20. (本小题满分9分)在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转得到ΔA 1B 1C ,设A 1B 1与BC 相交于点D .(1)如图1,当AB ∥CB 1时,说明△A 1CD 是等第18题图Bxx 211411≤-)(边三角形;(2) 如图2,当点A1正好在边AB上时,判别A1B1与BC的位置关系,并说明理由.21. (本小题满分10分)某校从两名优秀选手中选一名参加全市中小学运动会的男子100米跑项目,该校预先对这两名选手测试了8次,测试成绩如下表(1)为了衡量这两名选手100米跑的水平,你选择哪些统计量?请分别求出这些统计量的值.(2)你认为选派谁比较合适?为什么?22. (本小题满分10分)为了抓住世博会的商机,某商店决定购进甲、乙两种玩具.其中甲种玩具是每件5元,乙种玩具是每件10元.(1)若该商店决定拿出1000元钱全部用来购进这两种玩具,考虑市场需要,要求购进甲种玩具的数量不少于乙种玩具数量的6倍,且不超过乙种玩具数量的8倍,那么该商店有几种不同购进方案?(2)若销售每件甲种玩具可获利3元,销售每件乙种玩具可获利4元,在第(1)问的各种进货方案中,哪种进货方案获利最大?最大利润为多少?23. (本小题满分12分)如图,点O是坐标系原点,直线y=kx+b与x轴交于点A,与直线y=-x+5交于点B,点B 的纵坐标是3,且AB=5,直线y=-x+5与y轴交于点C.(1)求直线y=kx+b的解析式;(2)求ΔABC的面积;(3)在直线BC上是否存在一点P,使ΔPOC的面积是ΔBOC面积的一半,若不存在,请说明理由,若存在,求出点P的坐标.42011学年第一学期八年级数学期末试卷 第 5 页 共 7 页-----图2分2011年第一学期期末考试八年级数学参考答案一.选择题 (每小题3分, 共30分)二.填空题 (每小题4分,共24分)11. 4π , S,R; 12. 2a+1≥0 ; 13. (2,1) ; 14. 1.8 ; 15. 12-x ; 16.518. 三.解答题 (本大题有7个小题,共66分) 17.(本题满分10分)(1)解:不等式两边同乘4得: (2)由①解得x ≥-3---------1分x-4≤2x---------1分 由①解得x ≤31---------1分 -x ≤4----------1分 所以不等式组的解集是-3≤x ≤31------2分X ≥-4----------2分18. (本题满分6分) 解:有两种:(1)用坐标(或有序实数对)来表示点B 相对于A 的位置,------ -1 如图建立坐标系后,------ -1分 B 点的坐标是(3,3)------ -1分(2)用方向和距离来表示点B 相对于A 的位置--------- 1分点B 在点A 的东北方向的23个单位处-----------2分(若此答案对,则上面的1分可以不扣,第一种方法也一样) 19. (本题满分9分) 解:(1)它可以看成是直三棱柱------3分(2)分分分分侧底侧底16023912223010324393432----------------------------------------+=+==⨯==⨯=S S S S S6B 1第20B1B 20. (本题满分9分) 证明:(1)当AB ∥CB 1时,∠BCB 1=∠B=∠B 1=30°∴∠A 1DC=∠BCB 1+∠B 1=60°(或∠A 1DC=60°) ----------------2分又因为∠A 1=60°∴∠A 1DC=∠A 1=∠A 1CD=60°------------2分 所以△A 1CD 是等边三角形(3)A 1B 1⊥BC ----------1分∵A 1C=AC, ∠A=60° ∴△A 1CA 是等边三角形----------2分∴∠A 1CA=60°= ∠CA 1D ∴∠A 1CD=30°----------1分 ∴∠A 1DC=90°---------1分 ∴A 1B 1⊥BC21. (本题满分10分) 解:(1)为了衡量这两名选手100米跑的水平,应选择平均数、方差、中位数这些统计量.…1分(2) 分,秒,乙成绩的中位数是甲成绩的中位数是分,分秒秒乙甲乙甲2----45.1255.122------085.0125.02------5.126.1222====S S(3)应选择乙参赛.-----------1分因为乙比较稳定,从平均数和中位数来看,也是乙的成绩比较好,故选乙参赛。
人教版八年级上册数学期末试卷1
人教版八年级上册数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个手机APP图标中,是轴对称图形的是( )A.B.C.D.2.已知点A坐标为(3,﹣2),点B与点A关于x轴对称,则点B的坐标为( )A.(﹣3,﹣2) B.(﹣3,2) C.(2,﹣3) D.(3,2)3.下列运算正确的是( )A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3 D.x•x4=x54.若分式有意义,则x的取值范围是( )A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣15.已知图中的两个三角形全等,则∠α的度数是( )A.72° B.60° C.58° D.50°6.若关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),则m的值为( )A.﹣3 B.11 C.﹣11 D.37.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )A.7cm B.3cm C.7cm或3cm D.8cm9.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E.如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.7cm B.8cm C.9cm D.10cm10.以下说法正确的是( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A.①② B.②④ C.①③ D.①③④二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:2a﹣2b= .12.计算:= .13.已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC= cm.14.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角度数为 .15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S△ABD = .16.如图,△ABC≌△AED,点D在BC边上.若∠EAB=50°,则∠ADE的度数是 .定义一种新运算,规定x⊗y=,例如:1⊗2=,若a⊗2 17.对两实数x,y⊗=1,则a的值为 .三.解答题(共62分)18解方程:.19按照要求完成以下作图,保留作图痕迹,不写作法.(1)尺规作图:请在直线AB上作一点P,使得PC=PD.(2)在直线AB上作一点P′,使得P'C+P'D的值最小.20如图,△ABC中,∠C=2∠DAC,∠B=75°,AD是△ABC的高,求∠BAC的度数.21随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?22如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年9月份的日历,我们任意选择两组其中所示的四个数(阴影表示),分别将每组数中相对的两数相乘,再相减,得到的结果都是48,例如:8×10﹣2×16=48;19×21﹣13×27=48.请解答:再选择一个类似的部分试一试,看看是否符合这个规律;如果符合,利用整式的运算对这个规律加以证明.24先阅读下列材料:分解因式:(a+b)2﹣2(a+b)+1.解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将M还原,得原式=(a+b ﹣1)2.上述解题用到的是“整体思想”,请你仿照上面的方法解答下列问题:(1)分解因式:(a2+2a+2)(a2+2a)+1.(2)化简:.25定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED 于N,求证:DE=2AM;(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列四个手机APP图标中,是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.已知点A坐标为(3,﹣2),点B与点A关于x轴对称,则点B的坐标为( ) A.(﹣3,﹣2) B.(﹣3,2) C.(2,﹣3) D.(3,2)【分析】直接利用关于x轴对称点的性质分析得出答案.【解答】解:∵点A坐标为(3,﹣2),点B与点A关于x轴对称,∴点B的坐标为:(3,2).故选:D.3.下列运算正确的是( )A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3 D.x•x4=x5【分析】根据幂的乘方和积的乘方,同底数幂的除法、乘法,合并同类项法则分别求出每个式子的值,再进行判断即可.【解答】解:A、结果是8x6,故本选项错误;B、结果是x3,故本选项错误;C、结果是2x2,故本选项错误;D、结果是x5,故本选项正确;故选:D.4.若分式有意义,则x的取值范围是( )A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1【分析】根据分母不能为零,可得答案.【解答】接:由题意,得x﹣1≠0,解得x≠1,故选:A.5.已知图中的两个三角形全等,则∠α的度数是( )A.72° B.60° C.58° D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案. 【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.6.若关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),则m的值为( ) A.﹣3 B.11 C.﹣11 D.3【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m即可.【解答】解:(x﹣4)(x+7)=x2+7x﹣4x﹣28=x2+3x﹣28,∵关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),∴m=3,故选:D.7.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.【解答】解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选:B.8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( ) A.7cm B.3cm C.7cm或3cm D.8cm【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.9.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E.如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.7cm B.8cm C.9cm D.10cm【分析】由DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AD=BD,又由AC=5cm,BC=4cm,即可求得△DBC的周长.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=5cm,BC=4cm,∴△DBC的周长是:BD+CD+BC=AD+CD+BC=AC+BC=5+4=9(cm).故选:C.10.以下说法正确的是( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A.①② B.②④ C.①③ D.①③④【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【解答】解:①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选:C.二.填空题(共7小题)11.因式分解:2a﹣2b= 2(a﹣b) .【分析】直接提取公因式2即可分解因式.【解答】解:2a﹣2b=2(a﹣b).故答案为:2(a﹣b).12.计算:= x﹣1 .【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.【解答】解:==x﹣1.故答案为:x﹣1.13.已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC= 5 cm.【分析】先判定△ABC是等边三角形,再根据BC的长,即可得出AC的长.【解答】解:∵△ABC中,AB=AC,∴△ABC是等腰三角形,又∵∠A=60°,∴△ABC是等边三角形,∵BC=5cm,∴AC=5cm,故答案为:5.14.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角度数为 135° .【分析】根据多边形的内角和公式列式计算即可得解.【解答】解:这个正八边形每个内角的度数=×(8﹣2)×180°=135°.故答案为:135°.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S△ABD = 15 .【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴S△ABD=AB•DE=×10×3=15,故答案为15.16.如图,△ABC≌△AED,点D在BC边上.若∠EAB=50°,则∠ADE的度数是 65° .【分析】根据全等三角形的性质得到∠BAC=∠EAD,∠EDA=∠C,AD=AC,根据等腰三角形的性质、三角形内角和定理求出∠ADE=∠ADC=∠C=65°.【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,∠EDA=∠C,AD=AC,∴∠DAC=∠EAB=50°,∴∠ADE=∠ADC=∠C=65°,故答案为:65°.定义一种新运算,规定x⊗y=,例如:1⊗2=,若a⊗2 17.对两实数x,y⊗=1,则a的值为 ﹣.【分析】已知等式利用题中的新定义化简,计算求出解即可得到a的值.【解答】解:根据题中的新定义化简得:=1,去分母得:a2+4a+4=a2+2,解得:a=﹣,检验:当a=﹣时,a2+2≠0,∴分式方程的解为a=﹣.故答案为:﹣.三.解答题18解方程:.【考点】解分式方程.【专题】分式方程及应用;运算能力.【答案】x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+3)=12x,去括号得:3x+9=12x,解得:x=1,检验:当x=1时,2x(x+3)≠0,∴分式方程的解为x=1.19按照要求完成以下作图,保留作图痕迹,不写作法.(1)尺规作图:请在直线AB上作一点P,使得PC=PD.(2)在直线AB上作一点P′,使得P'C+P'D的值最小.【考点】线段垂直平分线的性质;作图—复杂作图;轴对称﹣最短路线问题.【专题】作图题;几何直观.【答案】(1)(2)作图见解析部分.【分析】(1)作线段CD的垂直平分线交AB于点P,点P即为所求作.(2)作点C关于AB的对称点C′,连接DC′交AB于点P′,连接CP′,点P′即为所求作. 【解答】解:(1)如图,点P即为所求作.(2)如图,点P′即为所求作.20如图,△ABC中,∠C=2∠DAC,∠B=75°,AD是△ABC的高,求∠BAC的度数.【考点】三角形内角和定理.【专题】三角形;几何直观.【答案】45°.【分析】利用三角形的内角和等于180°和直角三角形的两个锐角互余即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠C+∠DAC=90°,∵∠B=75°,∴∠BAD=180°﹣∠ADB﹣∠B=180°﹣90°﹣75°=15°,又∵∠C=2∠DAC,∴3∠DAC=90°,∴∠DAC=30°,∴∠BAC=45°.21随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?【考点】分式方程的应用.【专题】分式方程及应用;运算能力;推理能力.【答案】甲型机器人每台60万元,乙型机器人每台80万元.【分析】设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”列出分式方程,解方程即可. 【解答】解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.22如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【答案】见试题解答内容【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.23在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年9月份的日历,我们任意选择两组其中所示的四个数(阴影表示),分别将每组数中相对的两数相乘,再相减,得到的结果都是48,例如:8×10﹣2×16=48;19×21﹣13×27=48.请解答:再选择一个类似的部分试一试,看看是否符合这个规律;如果符合,利用整式的运算对这个规律加以证明.【考点】有理数的混合运算;整式的混合运算.【专题】整式;运算能力;推理能力.【答案】10×12﹣4×18=120﹣72=48,证明过程见解答.【分析】根据2019年9月份的日历和题意,可以选择一组数据试一试是否符合规律,然后可以设左边的数字,然后即可表示出其他位置的数字,再对式子化简,即可证明规律成立.【解答】解:选择4,10,12,18,10×12﹣4×18=120﹣72=48,符合这个规律;证明:设左边数字是x,则上边的数字是x﹣6,下边数字是x+8,右边数字是x+2,x(x+2)﹣(x﹣6)(x+8)=x2+2x﹣x2﹣2x+48=48,故x(x+2)﹣(x﹣6)(x+8)=48这一规律成立.24先阅读下列材料:分解因式:(a+b)2﹣2(a+b)+1.解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将M还原,得原式=(a+b ﹣1)2.上述解题用到的是“整体思想”,请你仿照上面的方法解答下列问题:(1)分解因式:(a2+2a+2)(a2+2a)+1.(2)化简:.【考点】因式分解﹣运用公式法.【专题】计算题;运算能力.【答案】(1)(a+1)4;(2)n2+3n+1.【分析】(1)运用“整体思想”设a2+2a=M,代入原式运用完全平方式进行因式分解即可;(2)先将原式变形,设n2+3n=M,代入原式运用完全平方分解因式后,再约分即可.【解答】解:(1)设a2+2a=M,原式=(M+2)M+1=M2+2M+1=(M+1)2,将M还原得,原式=(a2+2a+1)2=(a+1)4;(2)设n2+3n=M,原式==,将M还原得,原式=n2+3n+1.25定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED于N,求证:DE=2AM;(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明;若不存在,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】阅读型;三角形.【答案】见试题解答内容【分析】(1)根据“顶补等腰三角形”的定义,得到边、角之间的关系,进而证得∠B=∠2,再利用AAS证明△ABM≌△DAN即可得证;(2)连接AC,取AC的中点P,连接PB,PD,利用△ADC≌△ABC和直角三角形斜边的中线等腰斜边的一半,证明PA=PB=PC=PD,再根据△PDC≌△PBC,证明顶角互补即可.【解答】(1)证明:∵△ABC与△ADE互为“顶补等腰三角形”,∴AB=AC=AD=AE,∠BAC+∠DAE=180°,∴∠B=∠C,又∵AM⊥BC,AN⊥ED,∴∠3=∠4=90°,∠1=∠2,DE=2DN,∴∠BAC+2∠2=180°,又∵∠BAC+2∠B=180°,∴∠B=∠2,在△ABM和△DAN中,,∴△ABM≌△DAN(AAS),∴AM=DN,∴DE=2AM;(2)存在.证明:如图2,连接AC,取AC的中点P,连接PB,PD,∵AD=AB,CD=BC,AC=AC∴△ADC≌△ABC,∴∠ABC=∠ADC=90°,∵P是AC的中点,∴PB=PA=PC=AC,PD=PA=PC=AC.∴PA=PB=PC=PD,又∵DC=BC,PB=PD,PC=PC,∴△PDC≌△PBC(SSS),∴∠DPC=∠BPC,∵∠APD+∠DPC=180°,∠APD+∠BPC=180° ∴△APD与△BPC互为“顶补等腰三角形”.。
2011-2012学年度第一学期八年级期末数学训练试卷
D CA BD C B A 2011-2012学年度第一学期八年级期末数学训练试卷本试卷120分 考试用时120分钟一、选一选(本大题共1 2小题,每小题3分,共36分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答寒的代号在答题卡上将对应的答案标号涂黑。
1.下列运算中,正确的是A . x 2x 3=5x B . x+x 2=x 3 C . 2x 3÷x 2=x D .(2x )3=23x2.若2 x 在实数范围内有意义,则x 的取值范围是( )A. x≥-2B. x≠-2 .C. x≥2D. x≠23.下列各点,不在函数y=2x -1的图象上的是( ) A .(2,3) B .(-9,-5) C .(O ,-1) D .(-1,0)4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )5.估计与28最接近的整数是( )A .4B . 5 C.6 D . 76.下列各式:①XL 一xy';②X2一xy+2y2;③_X2+ y2;④X2—2xy+y2,其中能用 公式法分解因式的有A .1个B .2个C .3个D .4个 7.下列计算:①2+3=5;②2a 3·3a 2= 6a 6;③(2x+y)(x -3y)=2x 2-5xy -3y 2; ④(x+ y)2=x 2+ y 2.其中计算错误的个数是( )A.O 个B.l 个 C .2个 D.3个8.如图,点A 在线段BC 的垂直平分线上,AD=DC ,∠ A=28°, 则∠BCD 的度数为( )A . 76° .B . 62°C . 48°D . 38° 9.已知a+b=2,则a 2-b 2+4b 的值是( )A . 2B . 3C . 4D . 610.如果直线y=ax+2与直线y=bx -3相交于x 轴上的同一点,则a:b 等于 ( )A . -32 B .32 C.-23 D .23 11.甲、乙两人以相同路线前往距离工作单位10km 的培训中心 参加学习.图中l 甲、,l 乙分别表示甲、乙两人前往目的地所走的 路程S (km)随时间t (分)变化的函数图象,以下说法:①乙比甲E D ABCECAEDBAC8km 后遇到甲;④乙出发6分钟后追上甲,其中正确的有( ) A .4个 B .3个 C .2个 D .1个12.如图: △ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD, CE ⊥CD,且CE=CD ,连接BD. DE. BE ,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥ BE;④BDCD=1. 其中正确的是( ) A .①②③ B.①②④ C .①⑧④ D.①②⑧④二、填一填(每题3分,共12分)13.计算:(2a )3=_____, 24x 2y-(-6xy)=_________, ,2)3(- =___14.若1+-b a 与42++b a 互为相反数,则1+b a=______.15.如图,点D 、E 在△ABC 的BC 边上,.∠ BAD=∠CAE ,要推理得出 △ABF ≌△ACD,可以补充的一个条件是__________________. (不添加辅助线,写出一个即可). 16.如图,直线l 1 y 1:= kx+b 与直线l 2:y 2=mx+n 交点为P(1,1),当y 1>y 2>0时,x 的取值范围是________.三、解下列各题(本大题有9小题,共72分)17.(本题6分)计算:(21x 4y 3 -35x 3y 2+7x 2y 2)÷(18.(本题6分)分解因式:9x 2y- 6xy 2+ y 319. (本小题6分)如图,△ABC 中,AB=AC, BD 上AC 于点D , CE ⊥AB 于点E . 求证:BD=CE20.(本题7分)先化简,后求值:[(x 2+y 2)-(x —y)2+2y(x —y)]÷4y,其中2x-y =18.EEx 乙地甲地B 省A 省捐赠省台数(台)调运灾区FA21.(本题7分)(1)点(1,3)沿X 轴的正方向平移4个单位得到的点的坐标是_________(2)直线y=3x 沿x 轴的正方向平移4个单位得到的直线解析式为____________ (3)若直线l 与(2)中所得的直线关于直线x=2对称,试求直线l 的解析式. 22.(本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且BA=BC ,过点C 作BE 的垂线CD ,过E 点作EF 上AE 交∠DCE 的角平分线于F 点,交HE 于P . (1)试判断△PCE 的形状,并请说明理由. (2)若∠HAE=120°,AB=3,求EF 的长. 23.(本题10分)玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种 大型挖掘机,甲地需要27台,乙地需要25台;A 、B 两省获知情况后慷慨相助,分别捐赠 该型号挖掘机28台和24台,并将其全部调运往灾区,如果从A 省调运一台挖掘机到甲地耗 资0.4万元,到乙地耗资0.3万元;从B 省调运一台挖掘机到甲地耗资0.5万元,到乙 地耗资0.2万元;设从A 调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共 耗资y 万元:(1)请完成表格的填空:(2)求出y 与x 之间的函数关系式,并直接写出 自变量x 的取值范围 (3)画出这个函数的图象,结合图象说明若要使总耗资不超过16.2万元,有哪几种调运方案?哪种调运方案的总耗资最少?24.(本题10分)如图1,AD∥BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E 在线段AB 上.(1)填空:∠ADE=____°; 求证: AB=BC;2所示,若F 为线段CD 上一点,∠FBC=30°,求FCDF(3)的25. (本题12分)如图1:直线y= kx+4k (k ≠0)交x 轴于点A ,交y 轴于点C ,点M (2,m)为直线AC 上一点,过点M 的直线BD 交x 轴于点B ,交y 轴于点D . (1)求OAOC的值(用含有k 的式子表示.); (2)若S ∆BOM =3S ∆DOM ,且k 为方程(k+7)(k+5)-(k+6)(k+5=29的根,求直线BD 的解析式. (3)如图2,在(2)的条件下,P 为线段OD 之间的动点(点P 不与点O 和点D 重合),OE 上AP 于E ,,DF 上AP 于F ,下列两个结论:①DF OE AE +值不变;②DFOEAE -值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,青山区2010—2011学年度第一学期八年级期末测试数学试卷答案二、填空题三、解下列各题(本大题有9小题,共72分)17.(本题6分)解:原式=y xy y x -+-5322 (对一项得2分) ……6分 18. (本题6分)解:原式=y(9x 2-6xy+y 2) ……3分 =y(3x-y)2 ……6分19. (本小题6分)证明:∵BD ⊥AC ,CE ⊥AB∴∠ADB=∠AEC=90°……1分在△ABD 和△AEC 中⎪⎩⎪⎨⎧=∠=∠∠=∠AC AB AA AEC ADB ∴△ABD ≌△AEC(AAS ) ……4分 ∴BD =CE . ……6分20. (本题7分)解:原式=()[]y y xy yxy x y x 422222222÷-++--+ ……2分=[]y y xy y xy x y x 422222222÷-+-+-+ ……3分2=y x 21-……5分 ∵y x -2 =18∴y x 21-=9 ∴原式=9 ……7分21. (本题7分) 解:(1)(5,3); ……1分 (2)y=3x-12; ……3分 (3)设直线l 的解析式为:y=kx+b∵点(4,0)和(0,-12)在直线y=3x-12上,它们关于直线x=2的对称点为: (0,0) (4,-12) ……5分 将x=0,y=0和x=4,y=-12分别代入y= kx+b 中,得:⎩⎨⎧-=+=1240b k b 解得:⎩⎨⎧=-=03b k∴直线l 的解析式为:y=-3x ……7分22. (本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且,过点C 作BE 的垂线CD ,过E 点作交∠DCE 的角平分线于F 点,交HE 于P.(1)试判断△PCE 的形状,并请说明理由; (2)若,AB=3,求EF 的长.解: (1)△PCE 是等腰直角三角形,理由如下: ……1分∵∠PCE=21∠DCE=21×90°=45° ∠PEC=45°∴∠PCE=∠PE C ……3分 ∠CPE=90°∴△PCE 是等腰直角三角形 ……4分 (2)∵∠HEB=∠H=45°∴HB=BE ∵BA=BC∴AH =CE ……5分 而∠HAE=120°∴∠BAE=60°,∠AEB=30° 又∠AEP=90°∴∠CEP=120°=∠HAE ……6分 而∠H=∠FCE=45°∴△HAE ≌△CEF(ASA)又AE=2AB=2×3=6∴EF=6 ……8分23.(本题10分) (1)(每空1分) ……3分 解:(2)y=0.4x+0.3(28-x )+0.5(27-x )+0.2(x-3)0.221.3x =-+ ……5分 (273≤≤x 且 x 为整数) ……6分(3)如图,当2.16=y 时,2.163.212.0=+-x5.25=x ……7分 函数图象经过点(25.5,16.2) 又∵273≤≤x∴当275.25≤≤x 时,总耗资不超过16.2万元 ……8分∵x 为整数∴有两种调运方案:①当26=x 时,即从A 省调运26台到甲地,2台到乙地,从B 省调运1台到甲地,23台到乙地;②当27=x 时,即从A 省调运27台到甲地,1台到乙地,从B 省调运0台到甲地,24台到乙地. ……9分∵02.0 -∴y 随x 的增大而减小∴27=x ,即第二种方案耗资最少,为9.15=y 万元. ……10分24. (本题10分) 解:(1)45; ……2分 (2)证明:连接AC∵∠DCB=75º,AD ∥BC ∴∠ADC=105º由等边△DCE 可知:∠CDE =60º故∠ADE =45º由AB ⊥BC ,AD ∥BC 可得:∠DAB=90º ∴∠AED=45º∴AD=AE∴点A 在线段DE 的垂直平分线上 ……4分 又CD=CE∴点C 也在线段DE 的垂直平分线上 ……5分 ∴AC 就是线段DE 的垂直平分线 即AC ⊥DE∴AC 平分∠EAD ∴∠BAC=45°∴△ABC 是等腰直角三角形(3)解:连接AF ,延长BF 交AD 的延长线于点G ∵∠FBC=30º,∠ABC=90 º ∴∠ABF=60º,∠DCB=75º ∴∠BFC=75º 故BC=BF由(2)知:BA=BC ∴BA=BF∴△ABF 是等边三角形∴AB=BF=FA ……7分 ∴∠BAC=60 º ∴∠DAF=30 º 又∵AD ∥BC∴∠FAG=∠G=30º∴FG =FA= FB ……8分 又∠DFG=∠CFB∴△BCF ≌△GDF (ASA ) ……9分 ∴DF=CF∴DFFC=1 ……10分25. (本题12分)(1)解:∵A (-4,0) C(0,4k ) ……2分 由图象可知0k∴OA=4 , OC=4k - ……3分∴k kOA OC -=-=44 ……4分(2)解: ∵()()()()295657=++-++k k k k 解得:12k =-……5分 ∴直线AC 的解析式为:122y x =--∴M (2,-3) ……6分 过点M 作ME ⊥y 轴于E ∴ME=2∵DOM BO M S S ∆∆=3 ∴DOM BOD S S ∆∆=4又∵2OB OD S BOD ⋅=∆ 2MEOD S DOM ⋅=∆ ∴422⨯⋅=⋅MEOD OB OD ∴ME OB 4=∴8=OB∴B (8,0) ……7分 设直线BD 的解析式为:b kx y +=则有 ⎩⎨⎧=+-=+0832b k b k解得:⎪⎩⎪⎨⎧-==421b k ……9分∴直线BD 的解析式为:421-=x y ……8分(3)解:②DFOEAE -值不变.理由如下:过点O 作OH ⊥DF 交DF 的延长线于H ,连接EH ……9分 ∵DF ⊥AP∴∠DFP=∠AOP=90º 又∠DPF=∠APO ∴∠ODH=∠OAE ∵点D 在直线421-=x y ∴D(0,-4) ∴OA=OD=4又∵∠OHD=∠OEA=90 º∴△ODH ≌⊿OAE (AAS ) ……10分 ∴AE=DH , OE=OH , ∠HOD=∠EOA∴∠EOH=∠HOD+∠EOD=∠EOA+∠EOD=90º ……11分 ∴∠OEH=45º∴∠HEF=45º=∠FHE ∴FE=FH∴等腰Rt ⊿OH ≌等腰Rt ⊿FHE ∴OE=OH=FE=HF ∴1=-=-DFHFDH DF OE AE ……12分。
2011-2012学年度第一学期期末考试八年级数学试卷
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以乙下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分 ×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
2010-2011初二数学第一学期期末试卷
2010~2011学年度第一学期期末考试初二数学试卷(基础卷)考试时间:2011年1月20日下午2:30-3:50(共80分钟) 满分:100分2. 如图,小手盖住的点的坐标可能为 A .(52),B .(63)-,C .(46)--,D .(34)-,3. 正方形具有而矩形不一定具有的特征是A .四个角都相等B .四边都相等C .对角线相等D .对角线互相平分4.下列实数中,是无理数的为A. 3.14B. 13C. 3D. 95.为了参加市中学生篮球运动会,淮安外国语学校一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:则这10双运动鞋尺码的众数和中位数分别为A .25.5厘米,26厘米B .26厘米,25.5厘米C .25.5厘米,25.5厘米D .26厘米,26厘米6. 在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比A.向上平移3个单位;B.向下平移3个单位;C.向右平移3个单位;D.向左平移3个单位. 7.已知a 是整数,点A(2a +1,2+a)在第二象限,则a 的值是 A .-1 B .0 C .1 D .28. 分别顺次连结⑴等腰梯形;⑵矩形;⑶菱形;⑷对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是A .⑴B .⑵C .⑴⑵⑶D .⑴⑵⑷9.某次知识竞赛共有20道选择题,对于每一道题,答对了得10分,答错或不答扣3分,小明要想得分不少于70分,请问他至少要答对几道题 A .12 B .13 C .10 D . 1610. 已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是 A .0x < B .11x -<<或2x >C .1x >-D .1x <-或12x <<二、填空题(本大题共8小题,每空3分,共30分) 11. 下列实数中,71-、311、2π、-3.14,25、0、327-、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是 个.12. 等腰三角形的一个角为50°,则它的另两个角是____ ____. 13. 点P (-3,4)到原点的距离是__________.14.如图,在四边形ABCD 中,已知AB =4cm ,BC =3cm ,AD =12cm ,DC =13cm ,∠B =90°, 则四边形ABCD 的面积为 cm 2. 15. 不等式组2133x x +⎧⎨>-⎩≤的解集为 .16. 一次函数2y x =-的图像不.经过第__________象限.17. 如图,在等腰梯形ABCD 中,AB ∥CD ,AC 、BD 是对角线.将△ABD 沿AB 向下翻折到△AEB 的位置.则四边形AEBC 的形状为 , 若AD=6,BD=8,AB=10则四边形AEBC 的形状为 .18. 在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y 轴分别交于点A,B,则△OAB 为此函数的坐标三角形. 则函数y =43-x +3的坐标三角形的面积为 .x14题图 A BC17题图A BC D E三.解答题(共5大题,计40分) 19. (6分) 解不等式1315>--x x ,并将解集在数轴上表示出来.20. (8分) 已知,如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF∥BE. (1)求证:△AFD≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.21. (8分) 某校初二级部(1)班每位同学都向“希望工程”捐赠图书.捐书情况如下表:⑴这个班级每位同学平均捐多少册书? ⑵求捐书册数的中位数和众数.F ED CBA20题图22. (8分) 如图,直线l 是一次函数y kx b =+的图象,点A 、B 在直线l 上.根据图象回答下列问题:(1)求一次函数的解析式(2)写出方程0=+b kx 的解;(3)写出不等式b kx +>1的解集;(4)若直线l 上的点P (a,b )在线段AB 上移动,则 a 、b 应如何取值?23. (10分)小明同学准备利用寒假社会实践活动,卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在寒假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元. (1)请说明:小明同学要达到目的,卖出报纸的份数必须超过1000份.(2)小明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.初二数学试卷(竞赛卷)考试时间:2011年1月20日下午3:50-4:30(共40分钟) 满分:50分 命题:徐朗千 审核:傅俊一.选择题(每小题4分,共16分)1. 正方形ABCD 与正方形A /B /C /O 的边长都是2cm,当正方形A /B /C /O 绕O 转动时,两个正方形重叠部分的面积(图中阴影部分)等于 ( ) A.1cm 2B.2cm 2C. 2cm 2D.随正方形的转动而变化2.在□ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m,那么m 的取值范围是 ( ) A.10<m <12 B.2<m <22 C.1<m <11 D.5<m <63. 菱形OABC 在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,则点B的坐标为 ( ) A . B .(1C .11),D .(11) 4. 如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .6B .7C .8D .9二.填空题(每小题4分,共16分)5.如图,将两张长为8,宽为2的矩形纸条交叉,则重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值 ,那么菱形周长的最大值是 . 6. 等腰梯形的高为4cm,上底为4 cm,下底长为6cm,则对角线长为_______cm. 7. 已知2-a 和3-2a 的值的符号相反,则a 的取值范围是 . 8. 如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线OA 的解析式为 ;不等式20x kx b <+<的解集为 .′ C1题图3题图8题图三.解答题(9题8分:2+3+3;10题10分: 3+4+3)9.(8分)如图在直角坐标系中,已知点0M 的坐标为(1,0),将线段0OM 绕原点O 沿逆时针方向旋转45 ,再将其延长到1M ,使得001OM M M ⊥,得到线段1OM ;又将线段1OM 绕原点O 沿逆时针方向旋转45 ,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM ,如此下去,得到线段3OM ,4OM ,…n OM .(1)写出点M 5的坐标为 ;(2)求65OM M ∆的周长 ; (3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()n n y x ,称之为点n M 的“绝对坐标”.根据图中点n M 的分布规律,请你猜想点n M 的“绝对坐标”,并写出来. ①当点M 在x 轴上时,点n M 的“绝对坐标”为 ;②当点M 在y 轴上时, 点n M 的“绝对坐标”为 ; ③当点M 在各象限的角平分线上时,点n M 的“绝对坐标”为 .10. (10分) 随着生活水平的逐步提高,某小区的私家小轿车越来越多,为确保有序停车,小区物业部门决定筹集资金维修和新建一批停车棚.该小区共有42辆小轿车,准备维修和新建的停车棚共有6个,费用和可供停车的辆数及用地情况如下表:(1)求y 与x 之间的函数关系;(2)满足要求的方案有几种?(3)为确保工程顺利完成,单位最少需要出资多少万元.。
2011-2012学年度第一学期期末考试八年级数学试卷
2011-2012学年度第一学期期末考试八年级数学试卷祝你考出好成绩!一、精心选一选(请将下列各题唯一正确的选项代号填在题后的括号内.本大题共10小题,每小题3分,共30分.)1.9的算术平方根是( )A .3±B .3C .3-D .32、在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第四象限B. 第三象限C.第二象限 D. 第一象限 3、化简:a+b-2(a-b)的结果是 ( )A.3b-aB.-a-bC.a+3bD.-a+b 4、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、 E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm 5.矩形具有而一般平行四边形不一定具有的性质是( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等 6、小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是 ( ) A. 200元 B. 250元 C. 300元 D. 350 7、下列函数中,自变量的取值范围选取错误..的是 ( ) A .y=2x 2中,x 取全体实数 B .y=11x +中,x 取x ≠-1的实数 C .y=x 取x≥2的实数D .中,x 取x ≥-3的实数8、下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④A 、②③④B 、①②③C 、①②④D 、①②④ 9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )图2A .65°或50°B .80°或40°C .65°或80°D .50°或80° 10、如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D二、耐心填一填(本大题共6小题,每小题4分,共24分.)11、32c ab -的系数是 ,次数是 。
新人教版八年级上数学期末试卷及答案详解
2010—2011学年度上学期八年级期末考试数 学 试 卷亲爱的同学:紧张而忙碌的一学期即将结束,这里是你展示本学期来学业成果的舞台;在你答题前,请认真阅读下面的注意事项:1、本试卷共3页,25小题,满分120分.用时120分钟.2、请将答案填、涂在相应的答题卡上。
预祝你取得优异成绩! 一、选择题(下面各题的四个备选答案中,有且只有一个是正确的。
12×3=36分) 1、16的算术平方根是( )A 、±4B 、4C 、±2D 、2 2、函数02(3)y x x =-+-中自变量的取值范围是( ) A 、2x ≠ B 、2x ≤ C 、23x x ≠且 D 、23x x ≥≠且3、下列运算正确的是( )A 、a+2a 2=3a 3B 、(a 3)2=a 6C 、a 3•a 2=a 6D 、a 6÷a 2=a 3 4、下列美丽的图案中,是轴对称图形的是( )5、一次函数36y x =--的图象不经过( )A 第一象限B 、第二象限C 、第三象限D 、第四象限 6、点(—2,4)关于x 轴对称的点的坐标是( )A(-2,-4) B 、(-2,4) C 、(2,—4) D 、(2,4)7、如图,∠ACB=900,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm ,则BE=A 、1cmB 、0.8cmC 、4.2cmD 、1.5cm 8、下列各式能用完全平方公式分解因式的是( )A 、x 2+2xy -y 2B 、x 2-xy+4y 2C 、x 2-xy+42y D 、x 2—5xy+10y 2 9、点11(,)x y 、22(,)x y 在直线y x b =-+上,若12x x <,则1y 与2y 大小关系是( )A .B .C .D .A 、12y y <B 、12y y =C 、12y y >D 、无法确定10、如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定11、如图中的图像(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.⑤汽车离出发地64千米是在汽车出发后1.2小时时。
人教版初中八年级上学期数学期末考试试卷和参考答案
2010-2011学年新人教八年级数学(上)期末试题(时间:120分钟,满分:100分)一、填空题(每小题2分,共20分)1.计算:=⋅-)43()8(2b a ab 。
2.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为3.函数34x y x-=-的自变量x 的取值范围是 .4.已知y=(m-2)x32-m 是正比例函数,则m= .5.分解因式:2233ax ay -= .6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .7.如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌△DOC ,你补充的条件是 .8. 如图,ABC ∆中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= 。
9.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .10.如图,已知函数y =3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________。
二、选择题(每小题3分,共24分) 11.下列计算正确的是( ).A 、a 2²a 3=a 6B 、y 3÷y 3=yC 、3m +3n =6mnD 、(x 3)2=x 6 12.下列图形中,不是..轴对称图形的是( )A. B. C. D.CB ′(第2题)l13.已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( )A .1a >B .1a <C .0a >D .0a <14.如图,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB ,那么判定△OAB ≌△OAB 的理由是( )A.边角边B.角边角C.边边边D.角角边15.已知x 2+kxy+64y 2是一个完全式,则k 的值是( ) A .8 B .±8 C .16 D .±1616. 等腰三角形的周长为cm 13,其中一边长为cm 3,则该等腰三角形的底边为( )(A )cm 7 (B )cm 3 (C )cm 7或cm 3 (D )cm 8 17.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直角三角形共有( )A .3对B .4对C .5对D .6对18.2007火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )三、解答题(共18分)19.计算题:(每小题3分,共6分)(1))65()34(3---x x (2))5()201525(2432x x y x x -÷-+20.(本题4分)先化简,再求值:(x +2)(x -2)-x(x -1),其中x =-1.S A .B .C .D .(第14题)21.(本题4分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的函数图象.22.(本题4分)ABC △在平面直角坐标系中的位置如图所示. (1)作出与ABC △关于y 轴对称的111A B C △;(2)将ABC △向下平移3个单位长度,画出平移后的222A B C △.(第21题)(第22题)23.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,以△ABC 的一边为边画等腰三角形,使它的第三个顶点在△ABC 的其它边上.请在图①、图②、图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中表明所画等腰三角形的腰长(不要求尺规作图).24.两块含30°角的相同直角三角板,按如图位置摆放,使得两条相等的直角边AC 、C 1A 1共线。
2011学年第一学期八年级数学科期末测试题
- 1 -2011学年第一学期八年级数学科期末测试题本试卷共6页,25小题,全卷满分100分,考试时间为120分钟. 注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名和座位号、准考证号填写在答题卡上,并用2B 铅笔将准考证号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作图题请先用2B 铅笔作图,然后用黑色字迹的钢笔或签字笔将所作线条覆盖.5.本次考试可以使用计算器.一、选择题 (本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出来,填入下表中相对应的表格.) 1.(※). (A )8(B )4(C )4± (D )4-2.下列四个图形中,轴对称图形的个数是(※)个.(A )1 (B )2 (C )3 (D )4 3.下列运算中正确的是(※).(A )325m m m ⋅= (B )235m n mn +=(C )623m m m ÷= (D )22()m n m n 2-=-4.点A (-2,1)关于x 轴对称的点为B ,则点B 的坐标为(※).(A )(21)-,(B )(21), (C )(21)--, (D )(21)-, 5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是(※).(A )0x > (B )0x < (C )2x > (D )2x <x第5题图第2题图- 2 -6.下列判断中错误..的是(※). (A )有两角和一边对应相等的两个三角形全等 (B )有两边和一角对应相等的两个三角形全等 (C )有三边对应相等的两个三角形全等 (D )有一边对应相等的两个等边..三角形全等 7.把多项式3222x x y xy -+分解因式结果正确的是(※).(A )2(2)x x y - (B )2()x x y + (C )2(2)xy x y - (D )2()x x y - 8.如图,已知函数 y x b =+和3y ax =+的图象交点为(1,2)P ,则不等式3x b ax +≤+的 解集为(※).(A )1x ≤ (B ) 1x ≥ (C )2x ≤ (D ) 2x > 9.如图所示,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ',C '的位置. 若65DEF ∠=︒,则AED '∠=(※).(A ) 25° (B ) 50° (C ) 65° (D )70°10.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 (※). (A )203210x y x y +-=⎧⎨--=⎩, (B )2103210x y x y --=⎧⎨--=⎩,(C )2103250x y x y --=⎧⎨+-=⎩, (D )20210x y x y +-=⎧⎨--=⎩,第10题图第8题图- 3 -二、填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上.)11.函数y=的自变量x 的取值范围是 ※ .12.如图,点D 、E 分别在线段AB 、AC 上,BE CD 、相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是 ※ (不添加辅助线,只写一个条件).13.如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 30BD BAD =∠=︒,,则ABC ∆的周长为 ※ cm . 14. 实数127-的立方根是 ※ .15.根据如图所示的流程图中的程序,当输入数值x 为2-时,输出函数值y 为 ※ . 16. 在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 ※ .三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,各题3分)计算: (1) ()23(2)x y xy -+-; (2)32221-7x y x y ÷(). 18.(本小题满分6分)分解因式:(1)225x -; (2)2712a a -+. 19.(本小题满分7分)已知直线1l :45y x =-+和直线2l :142y x =-. (1)在坐标系中作出此两条直线,并求出直线1l 和2l 的交点P 的坐标;(2)判断该交点P 是否在正比例函数2y x =-的图象上.第15题图AC D B第13题图OCEA DB第12题图第19题图- 4 -20.(本小题满分7分)如图所示,BAC ABD AC BD ∠=∠=,,AD BC 、交于点O . (1)判断BAC △与ABD △是否全等,并给出证明;(2)用直尺和圆规作AB 的垂直平分线l (保留作图痕迹, 不写作法),试判断直线l 是否过点O ,并说明理由.21.(本小题满分8分)(1)已知:3,2a +b =ab =,求22a b+ab 的值.(2)先化简,再求值:2228(2)(76)(3)x y x x y x y --+++,其中x y ==.22.(本小题满分8分)如图,在方格纸上建立平面直角坐标系,ABC ∆的顶点都在格点上,直线MN 经过坐标原点O ,且点M 的坐标是(1,2). (1)写出点C 的坐标;(2)分别求直线MN 、AB 所对应的函数关系式, 并说明其函数的名称; (3)作出ABC ∆关于直线MN 的对称图形(保留作图痕迹,不写作法).COEAD第20题图第22题图- 5 -23.(本小题满分8分)如图, 已知C 为AB 的中点,CD CE =,DCA ECB ∠=∠,BD 与AE 交于点M . (1)证明:AD BE =;(2)判断AE 与BD 是否相等, 并对结论加以证明; (3)DMA ∆与EMB ∆是否全等?为什么?24.(本小题满分9分)据羊城晚报报道,为了倡导节约用水,居民生活用水“阶梯式计量水价”制度写入了广州市地方性法规.某自来水公司工作人员设计了一个居民用水以户为单位“分段收费方案”,提交听证会给市民讨论:一月用水不超过15吨的用户,每吨收水费a 元;一月用水超过15吨的用户,15吨水仍按每吨a 元收费,超过15吨的部分,按每吨b 元(b a >)收费,设某户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图所示.按此方案, (1)求a 的值,若某户居民用水10吨,应交水费多少元? (2)求b 的值,并写出当15x >时,y 与x 之间的函数关系式;(3)某户居民每月用水不超过25吨,拟每月水费支出不超过32元,上述方案能否满足要求? 若不满足,请你重新设计一个满足此户居民要求的“分段收费方案”,并用函数关系式表示出来,再画出它的图象。
2011年八年级上册数学期末试卷精品
2011—2012学年度八年级数学期末试卷第一学期班级_________ 姓名________ 学号_________一.填空题(每题3分,共18分,直接填写结果)1.若式子5+x 在实数范围内有意义,则x 的取值范围是 .2.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .3.已知P 是⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B.若PA =6,则PB = .4.将抛物线21(5)33y x =--+向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为 .5.函数y = k x + b (k ≠o)的图象平行于直线y=2x+3,且交y 轴于点(0,一1),则其解析 式是_______________________________。
6.设x 2(,x y ==xy 等于__________。
二、选择题.(本大题共10个小题,每小题3分,共30分)7.如图,已知,在△ABC 中,AB=AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F , 那么图中全等的三角形有( )对A 、2B 、3C 、4D 、5F E DCBA第7题图第8题图8.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm , △ADC 的周长为9cm ,则△ABC 的周长是( )9.已知点1(1,5)P a -和2(2,1)P b -关于x 轴对称。
则2009()a b +的值为 ( )A .0B .1-C .1D .2009(3)-10.下列函数中,自变量x 的取值范围是x ≥2的是 ( ) A.y =B.y =C.y =D.y =11.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲植树x 棵,乙植树y 棵,那么可以列方程组.( )(A )⎩⎨⎧==+y x y x 5.2,20 (B )⎩⎨⎧=+=y x y x 5.1,20 (C )⎩⎨⎧==+y x y x 5.1,20 (D )⎩⎨⎧+==+5.1,20y x y x12.一次函数y ax a =-(0a ≠)的大致图像是( )A B C D13点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( )A 、 (-4,-8)B 、 (4,8)C 、 (-4,8)D 、 (4,-8) 14.已知直线y=(k 一2) x + k 不经过第三象限,则k 的取值范围是( ) A .k ≠2 B .k>2 C .0<k<2 D .0≤k<215.一个三角形任意一边上的高都是这边上的中线, 则对这个三角形的形状最准确的判 断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形16.某学校组织团员举行申奥成功宣传活动,从学校骑车出发, 先上坡到达某地后,宣传8分钟;然后下坡到某地宣传8分 钟返回,行程情况如图.若返回时,上、下坡速度仍保持不 变,在A 地仍要宣传8分钟, 那么他们从B 地返回学校用 的时间是( )A .45.2分钟B .48分钟C .46分钟D .33分钟三、解答题:(本大题共6小题,共52分,解答应写出必要的计算过程、推演步骤或文字说明,把解答过程写在答题纸相应的位置上) 17.(本题满分6分)求tan 2 60°+4sin30°cos45°的值.18.(本题满分8分)解不等式215132x x -+-≤1,并把它的解集在数轴上表示出来.19.(本题满分8分)解方程:2(3)4(3)0x x x -+-=20.(本题满分8分)如图,在平面直角坐标内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO=5,sin ∠BOA=35. (1)求点B 的坐标; (2)求tan ∠BAO 的值.第23题图FEDCBAG21.(本题满分10分)关于x 的方程222(4)10x a x a ---+=. (1)a= 时,方程的一根为0 ? (2)a 为何值时,方程的两根互为相反数?(3)试证明:无论a 取何值,方程的两根不可能互为倒数22.如图,已知△ABC 是等边三角形,D 为AC 边上的一个动点,DG ∥AB ,延长AB 到E ,使BE=CD ,连结DE 交BC 于F .(本题满分12分) (1)求证:DF=EF ;(2)若△ABC 的边长为a ,BE 的长为b ,且a 、b 满足096)5(22=+-+-b b a ,求BF 的长;(3)若△ABC 的边长为5,设CD=x ,BF=y ,求y 与x 间的函数关系式,并写出自变量x 的取值范围.。
新人教版八年级上册数学期末试卷(附答案)
2010—2011学年度上期期末考试八年级数学试题(时间:90分钟 满分:150分)一、细心填一填(本题共10小题;每小题4分,共40分.)1.若x2+kx+9是一个完全平方式,则k= . . 4.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是 .5.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3,则∠C= .6.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为 .7.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水 8. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:4题 5题图AD CAEB D C① AD=BE ;② PQ ∥AE ;③ AP=BQ ;④ DE=DP ;⑤ ∠AOB=60°.一定成立的结论有____________(把你认为正确的序号都填上).9.对于数a ,b ,c ,d ,规定一种运算a b c d =ad -bc ,如12(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=10、已知,3,5==+xy y x 则22y x +=二、精心选一选(本题共10小题;每小题4分,共40分) 11、下列四个图案中,是轴对称图形的是 ( )12、等腰三角形的一个内角是50°,则另外两个角的度数分别是( ) A 、65°,65° B 、50°,80° C 、65°,65°或50°,80° D 、50°,5013、下列命题 :(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A 、2B 、3C 、4D 、514.对于任意的整数n ,能整除代数式(n+3)(n -3)-(n+2)(n -2)的整数是 ( ) A.4 B.3C.5D.216.下列运算正确的是( ) A.x2+x2=2x4B.a2·a3= a5ABC EDO P QC.(-2x2)4=16x6D.(x+3y)(x -3y)=x2-3y217.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分 为△EBD ,那么,下列说法错误的是( ) A .△EBD 是等腰三角形,EB=ED B .折叠后∠ABE 和∠CBD 一定相等 C .折叠后得到的图形是轴对称图形 D .△EBA 和△EDC 一定是全等三角形 18.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm三.用心做一做21.计算(10分,每小题5分)(1)分解因式6xy2-9x2y-y3 (2)223(2)()()a b ab b b a b a b --÷-+-22. (10分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A1B1C1 (2)请计算△ABC 的面积 (3)直接写出△ABC 关于X 轴对称的三角形EAB D△A2B2C2的各点坐标。
2010-2011学年度八年级上数学期末复习试题(一)及答案-新人教版
八年级数学期末复习题一一、选择题:1.下列四点中,在函数23+=x y 的图象上的点是 ( )A .(-1,1) B.(-1,-1) C.(2,0) D.(0,-1.5)2.下列函数中,自变量的取值范围选取错误..的是 ( )A .x 取x ≥2B .y=11x +中,x 取x ≠-1 C .y=2x 2中,x 取全体实数 D .中,x 取x ≥-3 3. 下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④A 、②③④B 、①②③C 、①②④D 、①②④4.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D5.等腰三角形的周长为13 cm ,其中一边长为3cm ,则该等腰三角形的底边为( )A .7cmB .3cmC .7cm 或3cmD .8cm6.下列运算中,计算结果正确的是 ( )A .236a a a ⋅= B.235()a a = C.2222()a b a b = D. 3332a a a +=7. 下列多项式中,不能进行因式分解的是( )A .–a 2+b 2B .–a 2-b 2C . a 3-3a 2+2aD . a 2-2ab+b 2-18. 如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm9. 下列各式中,不能用平方差公式的是( )A.)34)(34(y x y x ++-B.)43)(34(x y y x --C.)34)(34(y x y x --+-D.)34)(34(y x y x -+10. 等腰三角形的一个内角是50°,则这个三角形的底角的大小是( )A .65°或50°B .80°或40°C .65°或80°D .50°或80°二、填空题:11.Rt△ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm .12. .函数y=kx+b (k ≠0)的图象平行于直线y=2x+3,且交y 轴于点(0,-1),•则其解析式是_________ .13. 等腰三角形底边长为5cm ,腰上的中线把周长分为两部分的差为3cm ,则腰长为___ ____.14. 若1242+-kx x 是完全平方式,则k=_____________.15. 已知5=+b a ,1922=+b a ,则ab =__________,__________)(2=-b a .16. 对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,那么当(1)(2)(3)(1)x x x x ++--=27时,则x= . 17. 函数y=2x 向左平移3个单位所得到的函数为 ,再向下平移5个单位得到的函数为 .18. 因式分解32296y y x xy -+= .19. 已知x,y 为实数,y=319922-+-+-x x x 求5X+6y 的值 . 20. 列几何图形中:①长方形 ②菱形 ③等腰直角三角形 ④圆 ⑤等边三角形。
2010-2011学年度第一学期期末试卷八年级数学
2010-2010学年度第一学期期末试卷八年级数学(考试时间:100分钟 满分:100分)一.选择题(共8小题,每题2分,满分16分;每小题只有一个正确的选项,请将正确的答案填在下面的表格中)1. 下列每一组数据中的三个数值分别为三角形的三边长,不能..构成直角三角形的是 A.3、4、5 B.6、8、2、12、132.下列图形中,不是..轴对称图形的是3. 已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是A .1a >B .1a <C .0a >D .0a <4.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 A.(-4,3) B. (-3,4 ) C. (-4,-3) D.(-3,-4)5.若一组数据x 1,x 2,x 3,x 4,…,x n 的平均数为2010,那么x 1+2,x 2+2,x 3+2,x 4+2,…,x n +2,这组数据的平均数是A .2009 B.2010 C.2011 D.20126.小明的父亲是某公司市场销售部的营销人员,他的月工资等于基本工资加上他的销售提成,他的月工资收入与其每月的销售业绩满足一次函数关系,其图象如图所示,根据图象提供的信息,小明父亲的基本工资是A. 600元B.750元C. 800元D. 860元7.如图,把矩形OABC 放在直角坐标系中,OC 在x 轴上,OA 在y 轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90o得到矩形OA B C ''',则点B '的坐标为A.(24),B. (24)-,C.(24)-,D.(42),8.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并延长 交BC 的延长线于点F ,则图中全等的直角三角形共有 A .3对 B .4对C .5对D .6对二.填空题(共10题,每题2分,满分20分,请将正确的答案填在下面的横线上...)A. B. C. D.第3题图 第6题图 第7题图9.上海世博会第四轮环保活动投资总金额高达82800000000元,其中82800000000亿用科学记数法表示为____________________.(保留两位有效数学)10.已知:一次函数(3)(2)y m x m =---,函数值y 随自变量x 的增大而减小,则m 的取值范围是 . 11. 数722,0,-3.14,-21,32,8,38125-,-2π,-0.232 332 333 2……(每两个2之间的3依次多一个)中,有理数的个数有_______个.12.据调查,某班30位同学所穿鞋子的尺码如下表所表示:则该班30位同学所穿鞋子尺码的众数是______________.13. 油箱有油40升,油从管道中匀速流出,100秒可流完,油箱中剩油量Q (升)与流出时间t (秒)之间的函数关系式是 ._____________. 15. 在数据-1、0、4、5、8中插入一数据x ,使得该组数据中的中位数是3,则x = . 16. 如图8-19,已知△ABC 中,AB=AC=26,DE 是AB 的垂直平分线,交AB 于点E,交AC 于点D,且△BDC 的周长为46,则BC=_______________.17. 如图所示,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为 .18.如图,已知矩形ABCD ,AD 在y 轴上,AB=2,BC=3,点A 的坐标为(0,1),在AB 边上有一点E(2,1),过点E 的直线与CD 交于点F.若EF 平分矩形ABCD 的面积,则直线EF 的解析式为 .三、作图题(计6分,按要求画图)19. (1)(满分2分) 如图,已知∠AOB,OA=OB,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出∠AOB 的平分线(请保留画图痕迹,用圆规作图不给分........). (2)(满分4分) 某校有两块正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称或中心对称图案.下面是两种不同设计方案中的一部分,请把图①补成既是..轴对称图形,又是..中心对称图形,并画出..一条对称轴;把图②补成只是..中心对称图形,并把中心标上..字母P .(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉.)第17题图 第16题四、解答题(计58分)20. (满分6分) 已知一次函数的图象经过点(1,-4)和点(2,5),(1)求一次函数的关系式;(2)画出函数图象.21. (满分6分)已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ______________;(2)错误的原因为_______________________________________________________;(3)本题正确的解题过程:22.(满分6分) 如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7,Array (1)指出旋转中心和旋转角度;(2)求DE的长度;(3)探索:BE与DF的位置关系.23.(满分6分) 有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.24.(满分7分) 某中学篮球队有10名队员.在“二分球”投篮训练中,这10名队员各投篮50次的进球情况如下表:针对这次训练,请解答下列问题:(1)求这10名队员进球数的平均数、中位数;(2)求这支篮球队投篮命中率〔投篮命中率=(进球数÷投篮次数)×100%〕;(3)若队员小亮“二分球”的投篮命中率为55%,请你分析一下小亮在这支球队中的投篮水平.25.(满分8分)如图,△ABC中,D、E分别是AC、AB上的点,BD、CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可以判定△ABC是等腰三角形(用序号写出所有情形);(2)选择(1)中的一种情形,说明△ABC为等腰三角形.26.(满分9分)如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s.(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)点 E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值.如不能,请说明理由.第26题图27. (满分10分) 甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)。
2011-2012学年八年级(上)期末数学试卷
2011-2012学年八年级(上)期末数学试卷一、选择题(共6小题,每小题3分,满分18分)1.有下列几种说法:①1的平方根是1;②无论x取任何实数,式子都有意义;③无理数是无限小数;④是分数,其中正确的个数是()2.(3分)下列运算正确的是()3.(3分)(2008•宝安区二模)在线段、平行四边形、菱形、正方形、梯形、等边三角形中既是轴对称图形又是中心对称图形的有()4.(3分)如图数轴上的点A、C分别表示﹣1和1,BC⊥AC且BC=1,以A为圆心,AB为半径作弧交数轴于点D,则点D表示的数是()﹣1 +15.(2012•西城区模拟)正方形具备而菱形不具备的性质是()6.(2006•枣庄)在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成三角形,又能拼成平行四边形和梯形的可能是()二、填空题(共9小题,每小题3分,满分27分)7.(3分)的平方根是_________.8.(3分)已知a m=2,a n=3,则a2n﹣m=_________.9.(3分)分解因式:(a﹣b)2﹣4(a﹣b)+4=_________.10.已知a、b均为实数且+(ab﹣7)2=0,则a2+b2=_________.11.(3分)在平行四边形ABCD中,对角线AC与BD相交于点O,若AC=6,BD=8,则边AB的取值范围是_________.12.(3分)如图,四边形ABCD是正方形,点E是CD上一点,点F是CB延长线上一点,且DE=BF,通过观察与思考可以知道△AFB可以看作是_________绕_________,顺时针旋转_________得到△AEF 是_________三角形.13.菱形的对角线长分别是6cm和8cm,则菱形的周长是_________.14.(3分)如图,在边长为6cm的菱形中∠DAB=60°,E为AC上一动点,当E运动到某个位置时,BE+DE有最小值,这个最小值是_________.15.(3分)(2008•随州)如图,梯形ABCD中,AD∥BC,AB=DC,∠ABC=72°,现平行移动腰AB至DE后,再将△DCE沿DE折叠,得△DC′E,则∠EDC′的度数是_________度.三、解答题(共8小题,满分75分)16.(8分)分解因式(1)2x5﹣32x;(2)(x﹣y)2+4xy.17.(10分)化简求值.(1)[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷(﹣2y),其中x=﹣,y=2.(2)已知x2﹣2x﹣2=0,求(x﹣1)2+(x+3)(x﹣3)+(x﹣3)(x﹣1)的值.18.(9分)有一块铁皮零件,AB=4cm,BC=3cm,CD=12cm,AD=13cm.按照规定标准,这个零件中∠B=90°,求这块铁皮零件的面积.19.(9分)(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?20.(9分)如图,在四边形ABCD中,∠B=∠D=90°,∠AEC=∠BAD,则AE与DC的位置有什么关系?并说明理由.21.(9分)如图所示,P是正方形ABCD的边CD上任意一点,PE⊥BD 于E,PF⊥AC于F,则PE+PF=1,求正方形ABCD的面积.22.(10分)如图,△ABC中,D为AB的中点,E为AC上一点,过D作DF∥BE交AC于O,EF∥AB.(1)猜想:OD与OF之间的关系是_________.(2)证明你的猜想.23.(11分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12,动点P从A点出发以每秒1个单位的速度向终点D运动,动点Q 从C点出发以每秒2个单位的速度向终点B运动,两点同时出发,设运动时间为t.(1)梯形ABCD的面积是_________.(2)①当t为多少秒时,四边形ABQP是平行四边形?②当t为多少秒时,四边形ABQP是梯形?(3)当t=3秒时通过计算判断四边形ABQP是否是直角梯形?参考答案:1.B2.D3.C4.C5.C6.C(a﹣b﹣2)2.7.正负根号3. 8.10. 11 11. 1<AB<712. △AED点A,90°等腰直角13. 20 14. 6cm15. 3616. 解:(1)原式=2x(x4﹣16),=2x(x2﹣4)(x2+4),=2x(x﹣2)(x+2)(x2+4);(2)原式=x2﹣2xy+y2+4xy,=(x+y)2.17.解:(1)原式=(x﹣y)[(x+y)﹣(x﹣y)+2y]÷(﹣2y)=2y﹣2x,当x=﹣,y=2时,原式=2×2﹣2×(﹣)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.18.解:在Rt△ABC中,AB=4cm,BC=3cm,∴AC2=25.即AC2+CD2=AD2.∴△ACD为直角三角形,∴3×4×+5×12×=6+30=36cm2.19.20. 解:AE∥DC,理由是:∵四边形ABCD的内角和为360°,∠B=∠D=90°,∴∠BAD+∠C=180°,又∵∠AEC=∠BAD,∴∠AEC+∠C=180°,∴AE∥DC.21. 解:∵正方形ABCD,PE⊥BD于E,PF⊥AC于F,∴四边形OEPF为矩形,三角形PFC为等腰直角三角形,∴PE=OF,PF=CF,∴PE+PF=OF+CF=OC=1,∴OA=1,BD=2,∴正方形ABCD的面积=△ABD的面积+△BCD的面积=×2×1+×2×1=2,所以正方形ABCD的面积为2.22. 解:(1)OD=OF;(2)∵EF∥AB,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,∵D是AB的中点,∴AD=BD,∴EF=AD,∵EF∥AB,∴∠ADO=∠EFO,∠DAO=∠FEO,∴,∴△ADO≌△EFO,∴OD=OF.23. 解:(1)由题意得,AB=DC=5,AD=6,BC=12,∴BE=(BC﹣AD)=3,在RT△ABE中,AE==4,∴S梯形ABCD=(AD+BC)×AE=36.(2)由题意得,AP,BQ=BC﹣2t=12﹣2t,①AP=BQ即可满足四边形ABQP是平行四边形,即t=12﹣2t,∴t=4秒.即:t为4秒时,四边形ABQP是平行四边形;②要使四边形ABQP是梯形,只需满足AP≠BQ即可,这时t≠4;即t不为4秒时,四边形ABQP是梯形;(3)当t=3秒时,AP=t=3,BQ=12﹣2t=6,此时,P为AD的中点,Q为BC中点,∵AB=DC=5,∴此时PQ所在直线是梯形ABCD的对称轴,∴PQ⊥BC,PQ⊥AD,又AP∥BQ∴ABQP是直角梯形.。
2011-2012学年度第一学期期末考试八年级数学试卷
2011~2012学年度第一学期期末考试八年级数学试卷命题人:徐晓兰 审核人:赵志林说明:1.本试卷共4页,满分120分。
考试时间120分钟;2.考生必须在答卷纸上指定区域内作答,在本试卷上和其他位置作答一律无效.. 一、填空题 (共12小题,每小题2分,计24分)1.计算:38-= ▲ .2.点A (—2,4)关于y 轴对称的点的坐标是 ▲ . 3.写出一.个.在函数2y x =图象上的点的坐标_____▲ _____. 4.观察手机号码133********的11个数字,这些数字的中位数是 ▲ . 5.一个正比例函数的图象经过点(2,-3),它的表达式为______▲ ________. 6.如图,等腰三角形ABC 中,已知AB =AC ,∠A =30°,AB 的垂直平分线交AC 于D ,则∠CBD的度数为 ▲ °.7.如图,矩形ABCD 中,AE ⊥BD 于E ,AD =4cm,∠DAE =2∠BAE ,则DE = ▲ cm . 8.已知梯形ABCD 的面积为24cm 2,高DE =4cm ,则该梯形的中位线长是 ▲ cm . 9.已知一次函数2(2)4y m x m =-+-,当m = ▲ 时,它的图象过原点.10.在直角坐标系中,一次函数334y x =+图象与坐标轴围成的三角形的周长为 ▲ .11.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2012厘米后停下,则这只蚂蚁停在 ▲ 点.12.如图,在△ABC 中,∠BAC =150º,AD ⊥BC 于D ,且AB +BD =DC ,那么∠C = ▲ °.二、选择题(共6小题,每小题3分,计18分)13.无理数3-的相反数是………………………………………( ▲ )A .3-B .3C .31 D .31-14.5个整数从小到大排列,中位数是4,这组数据唯一的众数是6,则这5个整数可能的最大和是( ▲) A . 21 B . 22 C . 23 D .2415.一次函数20122012y x =-的图象不经过的象限是 …………………………( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限ADCB E第7题 第6题 AC DE 第8题 CAF DEB G第11题 BAC第12题C BA第20题 16.如图,ABC ∆是边长为3的等边三角形,DCE ∆与ABC ∆呈轴对称,已知点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为……………………………………( ▲ ) A .3 B .4 C .6 D .2317.如图,矩形OBCD 的顶点C 的坐标为(1,3),则线段BD 的长等于…………( ▲ )A .7B .22C .23D .1018.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到……………………………………( ▲ )A .N 处B .P 处C .Q 处D .M 处三、解答题:(共10题,计78分) 19.(每小题4分,共8分)求各式中的实数x .(1)(x - 3 )2=25 (2)27)5(3=+x20.(本题6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC 关于y 轴对称的△A′B′C′;⑶写出点B′的坐标.21.(本题8分)已知一次函数y=kx+4的图象经过点(-3,-2),(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象. (3)判断(-4, 4)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是___▲____. EDCBA 第16题第17题第18题 QM(图1)(图2)4 9 yxO22.(本题8分)如图,在梯形ABCD 中,AB ∥CD ,BD ⊥AD ,BC =CD ,∠A =60°,CD =3cm . (1)求∠CBD 的度数; (2)求下底AB 的长.23.(本题8分)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时, 四边形ABFG 是菱形?证明你的结论.24.(本题8分)镇江市教育局举办初中生演讲比赛,每校派一名学生参赛,某校有A 、B 、C 三名学生竞选,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图①:(1)请将表和图①中的空缺部分补充完整;(2)竞选的最后一个程序是由本校的300名学生代表进行投票,三名候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;(3)若每票计1分,学校里将笔试、口试、得票三项测试得分按4:3:3的比例确定最后成绩,请计算三名学生的最后成绩,并根据成绩判断谁能当选. 25.(本题8分)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,以△ABC 的一边为边画等腰三角形,使它的第三个顶点在△ABC 的其它边上.请在图①、图②、图③、图④中分别画出一个符合条件的等腰三角形,且四个图形中的等腰三角形各不相同,并在图中表明所画等腰三角形哪两条边相等(要求尺规作图并保留痕迹).第25题图③ B C A 图④B C A 图①B C A 图②B C A ADGCBFE23题A BCD60°22题26.(满分8分)已知某种水果的批发单价与批发量的函数关系如图所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.27.(满分8分)如图,在△ABC 中,点O 是AC 边上的一个动点(点O 不与A 、C 两点重合),过点O 作直线MN ∥BC ,直线MN 与∠BCA 的平分线相交于点E ,与∠DCA (△ABC 的外角)的平分线相交于点F .(1)OE 与OF 相等吗?为什么?(2)探究:当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)在(2)中,当∠ACB 等于多少时,四边形AECF 为正方形.(不要求说理由)28.(满分8分)如图1,在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,与直线OC :y x =交于点C . ⑴ 若直线AB 解析式为212y x =-+,①求点C 的坐标;②求△OBC 的面积.⑵ 如图2,作AOC ∠的平分线ON ,若AB ⊥ON ,垂足为E ,△OAC 的面积为6,且OA =4,P 、Q 分别为线段OA 、OE 上的动点,连结AQ 与PQ ,试探索:AQ +PQ 是否存在最小值? 若存在,求出这个最小值;若不存在,说明理由.O M N A ByOCx图1图2APQ ByOC xE N。
人教版八年级数学上册第一学期期末考试试卷.doc
初中数学试卷桑水出品2011学年第一学期期末考试初二数学试卷(完卷时间:90分钟,满分:100分) 2012.1一、填空题:(本大题共14题,每题2分,满分28分)1.计算:26÷= _______ ____. 2.计算:()24-π= ______ ____.3.函数12+=x y 的定义域是 .4.方程042=-x x 的根为 .5.已知正比例函数的图象经过点)3,2(,那么这个函数解析式是 .6.如果函数12)(-=x x f ,那么=)3(f .7.如果反比例函数xk y 1-=的图像经过第二、四象限,则k 的取值范围是 . 8.如果正比例函数kx y =的图像与正比例函数x y 5=的图像关于x 轴对称,则=k ______.9.命题“线段的垂直平分线上的任意一点到这条线段两个端点的距离相等”的逆命题是______________________________________________________________.10.到点A 的距离等于cm 3的点的轨迹是 .11.在直角坐标平面中,如果线段AB 的两个端点坐标分别为(5,−2)和(2,3),那么线段AB 的长为 .12.已知:如图,ABC ∆中,AC AB =,AB CD ⊥于D ,且AB CD 21=,则=∠B __________°.13.如图,在,ABD ∆的周长为12,MN 垂直平分AC ,交BC 于D ,则=AB 14.已知等边三角形的高为1,则这个三角形的面积为___________.二、选择题:(本大题共4题,每题3分,满分12分) 15.下面计算正确的是( ) (A )2222=+(B )39±= (C )74322=+ (D )366362=⋅16.下列关于x 的方程一定有实数根的是( )(A )022=+-x x (B )012=--mx x (C )01222=+-x x (D )02=-+m x x17.函数()x m y 12-=是正比例函数,且y 随x 的增大而减小,则m 的取值范围是( ) (A )m <21 (B )m >21 (C )m ≤21 (D )m ≥21 18.已知a 、b 、c 分别是△ABC 的三边,根据下列条件能判定△ABC 为直角三角形的是( ) (A )11,13,8===c b a (B )12,10,6===c b a (C )9,41,40===c b a (D )25,9,24===c b a 三、(本大题共6题,每题6分,满分36分) 19.计算:xx x x 323327+-. 20.解方程:5)3(22-=-x x x .21.如图,利用12米长的墙为一边,用篱笆围成一个长方形菜地,并在中间用篱笆分割成四个小长方形,总共用去篱笆48米. 如果围成的菜地面积是90米2,求菜地的宽AB 的长.22.已知反比例函数xky =与正比例函数x y 2=的图像都经过点()2,a A .(1)求k 的值;(2)点B 在x 轴上,且OB OA =,求点B 的坐标.23.已知函数21y y y -=,1y 与x 成正比例,2y 与x 成反比例,且当1=x 时,2=y ;当2-=x 时,7-=y .(1)求y 关于x 的函数关系式; (2)求当3=x 时的函数值.24.已知:如图,A 、E 、F 、D 四点在一直线上,FD AE =,AB ∥CD ,且CD AB =. 求证: BF ∥CE .四、(本大题共3题,第25题7分,第26题8分,第27题9分,满分24分)25.如图,︒=∠30BAC ,点P 是BAC ∠的平分线上的一点,AC PD ⊥于D ,PE ∥AC 交AB 于E ,已知cm AE 10=,求PD 的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7题图
2
1
D
E C
B
A
2011学年度上学期期末考试
八年级数学试卷
一、选一选,比比谁细心(每小题3分,共30分) 1.下列说法不正确的是( )
A .
25
1的平方根是5
1±
B .16的算术平方根是4
C .5
.3273-=-
2.下面有4个奥运会标志图案,其中是轴对称图形的是 ( )
A B C D 3.计算322()(2)x y xy ÷的结果应该是( )
A .41
2
x B. 41
4
x C. 41
4
x y D. 21
4
x y
4.下列计算中,正确的是( )
A .ab b a 853=+
B .a 0=1
C .336()a a a -⋅=
D .236(2)8x x -=- 5.如图,已知∠1=∠2,AC=AD ,增加下列条件之一:①AB=A
E ;②BC=ED ; ③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( ) A .1个 B .2个 C .3个 D .4个 6.在
22
7
3.1415926,
3.14 中无理
数个数是: ( )
A 、1个
B 、2个
C 、3个
D 、4个
7.下列多项式相乘的结果是234a a --的是( )A .(2)(2)a a -+ B. (1)(4)a a +- C. (1)(4)a a -+ D. (2)(2)a a ++
8.如图,已知函数y x b =+和3y ax =+的图象交点为P ,
则不等式3x b ax +>+的解集为( ).
A.x <1
B.x >1
C.x ≥1
D.x ≤1 9.如图,∠ACB=90°,AC=BC ,AE ⊥CD 于E ,BD ⊥CD 于D ,AE=5cm BD=3cm ,则
DE 的长是( )
A.8
B.5
C.3
D.2
2008年北京 2004年雅典 1988年汉城 1980年莫斯
10.函数y=kx+∣k ∣(k ≠0)在直角坐标系中的图象可能是( )
D
C
B A x
y
o
x
y
o
x
y
o
o
y
x
二、填一填,看看谁仔细(每小题3分,共24分) 11.
函数y =
x 的取值范围是______________
12. 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,
若BC =5㎝,BD =3㎝,则点D 到AB 的距离为 。
13.若x 2+(m-3)x+4 是完全平方式,则m 的值是
14. 如果正数m 的平方根为1x +和3x -,则m 的值是
15.已知y 与3-x 成正比例,当4=x 时,1-=y ;那么当4-=x 时,=y
16.已知a +
a
1=3,则a 2+
2
1a
的值是______________
17.对于实数a ,b ,c ,d ,规定一种运算
a b c d
=ad-bc ,如
102
(2)
-=1×(-2)-0×2=-2,
那么当(1)(2)(3)(1)
x x x x ++--=27时,则x= .
18. 为了加强公民的节水意识,某市制定了如下收费标准:每户每月的用水量不超过10方时,水价为每吨1.2元;超过10方时,超过部分按每吨1.8元收费.该市某户居民5月份用水x(方)(x>10),应交水费y 元,则y 与x 的函数关系式为_____________ 三、解一解,试试谁最棒(本大题共9小题,共82分). 17.分解因式:(每小题5分,共10分)
(1) 2216ay ax - (2) 9
66)(2
++--
y x y x
18.(本题满分10分) (1)先化简:2(2)(1)(1)(21)(2)a a a a a +++--+-,并请选取你所喜欢的a 的值代入求值.
12题图
A
C
B
D
(2)已知a-b=5,b-c=2,求a2+b2+c2-ab-bc-ac的值
19.(本题满分6分)
如图7,已知A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.
求证:(1)△ABC≌△DEF; (2)∠CBF=∠FEC.
20.(本题满分7分)
如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图像回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多少时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式
21. (本题满分5分)
如图,CD 是直角△ABC 的斜高,∠A =300 ,求证:AD=3BD
22.(本题满分8分)
大桥局在A 、B 两地有闲置的挖土机16台和12台,现要运往甲、乙两地,其中甲地15台,乙地13台,从A 、B 两地分别运送一台挖土机到甲、乙两地的费用如下表:
(1)如果设A 地运往甲地的挖土机为x 台,请填写下表
(2)求所需总费用y (元)与x (台)之间的函数关系式。
(3)如果经过精心组织实行最佳方案,那么需要准备的总调运费用最低为多少?
A
B
C D。