数形结合
“数形结合”思想在小学数学教学中的应用
“数形结合”思想在小学数学教学中的应用“数形结合”是指将数学理论与几何形状相结合,通过几何形状来帮助孩子理解数学概念和解决数学问题的一种教学方法。
这种思维方式的应用可以帮助小学生更好地理解抽象的数学内容,增强他们对数学的兴趣和学习动力。
下面我将从三个方面具体介绍“数形结合”思想在小学数学教学中的应用。
在教学过程中,教师可以通过使用具体的几何形状来让学生直观地感受和理解数学概念。
以学习平面图形为例,通过展示不同形状的图形,让学生观察并找出相同的特征,如边数、角度等,从而形成对各种图形的分类和认知。
教师还可以让学生自己动手拼凑出不同的图形,锻炼他们的观察力和动手能力。
通过与数学知识的结合,学生能够更加深入地理解和记忆数学概念,提高学习效果。
“数形结合”思想还可以帮助学生解决数学问题。
在解决实际问题时,教师可以通过引导学生将问题转化为几何形状,并与相关的数学知识相结合进行解答。
解决“一个正方形花坛的边长是5米,求其面积和周长”这个问题时,可以引导学生通过画图将问题转化为计算正方形面积和周长的问题。
通过将问题形象化,学生可以更容易地理解问题的本质,并应用所学的数学知识进行解答。
“数形结合”思想还可以在学生探索和发现的过程中发挥作用。
教师可以设计一些探究性的问题,让学生通过观察、实践和思考来发现问题的规律和解决方法。
通过观察几何形状的特征,学生可以发现数学概念之间的联系和性质,培养他们的发现和解决问题的能力。
教师还可以引导学生通过对几何形状的操作和变换来探索数学知识,如旋转、平移、翻转等。
通过这种探索和发现的方法,学生可以更加深入地理解和掌握数学知识,并培养他们的创造力和创新思维。
专题复习数形结合(含答案)
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
数形结合知识点
数形结合知识点数形结合是指数学中数与图形的结合,通过运用数学知识解决与图形和空间有关的问题。
在数形结合中,数与图形的关系相互补充,相互依存,共同呈现出独特的数学魅力。
一、数形结合的基本概念数形结合是数学中的一个重要概念,它主要包括以下几个方面的内容:1.几何图形与数量关系:通过几何图形可以了解到其中的数量关系,例如平行线的性质、多边形的各种角度关系等。
通过数学思维和分析方法可以研究这些数量关系,从而更好地理解和应用几何图形。
2.数学模型与几何形状相结合:数学模型是指利用数学方法来模拟和解决实际问题的过程。
而几何形状则是模型的基础,通过数学建模和分析,可以将问题转化为几何形状的关系,进而获得问题的解答。
3.平面几何与立体几何的结合:在数形结合中,平面几何和立体几何的知识相互交叉、相互渗透。
例如在计算一个立体图形的体积时,需要运用到平面几何中的面积计算公式,而在分析一个平面图形的特征时,也需要考虑到其所在平面的空间性质。
4.空间想象与数学推理的结合:数形结合还要求我们能够在思维中准确地理解和想象几何图形的形状、大小和位置。
在这个过程中,我们需要结合空间想象能力和数学推理能力来分析和解决问题。
二、数形结合的应用领域数形结合的知识点在数学学科的多个领域都有广泛的应用,下面以几个典型的应用领域来介绍:1.建筑设计与规划:建筑设计中需要考虑到空间形状、比例、尺寸等因素,这些都需要通过数形结合的方法进行分析和解决。
例如,设计师在确定建筑物的尺寸和布局时,常常需要运用到数学几何的知识。
2.工程测量与绘图:在进行工程测量与绘图时,需要准确地测量和绘制各种几何形状,例如房屋平面图、道路工程图等。
在这个过程中,运用到的就是数形结合的方法。
3.地理与地貌研究:地理和地貌研究中需要考虑到地球表面的形状、地貌特征等因素,而这些都可以通过数学几何的知识进行研究和分析。
4.数据可视化与分析:在进行数据可视化与分析时,常常需要利用图表来呈现数据的分布和关系。
数学中的数形结合
数学中的数形结合数形结合是数学中的一个重要概念,它指的是数学与几何之间的联系。
数学是一门抽象的学科,而几何则是一门具有可视化特征的学科。
将数学和几何结合起来,不仅可以更加深入地理解数学知识,也可以更加直观地观察几何形状和变换。
本文将从数形结合的概念、历史背景、现实应用以及教学方法四个方面进行浅谈。
一、数形结合的概念数形结合,顾名思义,指的是数学与几何之间的联系。
具体来说,就是将数学中的概念和方法运用到几何学中来,探究几何形状与数学方法之间的内在联系。
在数形结合中,数学主要运用代数和解析几何的方法,而几何主要运用几何变换和几何图形的构造等方法。
这种结合可以帮助我们更全面、深入地理解数学和几何的本质,从而更好地应用它们来解决现实问题。
二、数形结合的历史背景数形结合的历史可以追溯到古希腊时期。
古希腊著名数学家毕达哥拉斯就被誉为“数学之父”,他提出了著名的“毕达哥拉斯定理”,即勾股定理。
勾股定理是数形结合的典型例子,将几何图形的勾股三角形与代数里的平方和相联系,奠定了代数与几何之间的基础关系。
此后,一系列数学家如欧几里得、阿基米德、阿波罗尼乌斯、帕斯卡等,都在数学和几何领域做出了重要的贡献,并不断将数学和几何结合起来,探究数学和几何之间的奥妙。
三、数形结合的现实应用数形结合不仅在理论研究上有重要作用,在现实应用中也有广泛的应用。
数形结合被广泛运用于自然科学、工程技术、金融经济等领域。
例如,在自然科学中,物理学家会运用数学方法来模拟具体的实验,从而推导出更深刻的物理规律。
在工程技术领域,数形结合可以帮助人们更好地利用研究数据,设计出更加准确、高效的工程模型。
在金融经济领域,数形结合可以使用代数和几何建立金融模型,预测市场趋势,分析投资风险等等。
因此,数形结合在现实生活中起到了重要的作用。
四、数形结合的教学方法数形结合作为一个重要的数学概念,也应该在数学的教学中得到重视。
在教学中,应该尽量使用具体的实例,结合图形、图像来讲解数学的概念,以增加学生对数学知识的理解和记忆。
数形结合十大经典题型
数形结合十大经典题型
数形结合是一种常见的解题方法,特别适用于一些几何问题。
以下是十大经典的数形结合题型:
1. 长方形面积问题:已知长方形的周长或宽度,求最大面积。
2. 圆的问题:已知圆的周长或半径,求其面积或直面积。
3. 直角三角形问题:已知直角三角形的两条边,求第三条边的长度。
4. 正方形问题:已知正方形的对角线长度,求其边长。
5. 圆环问题:已知两个同心圆的半径,求其面积差。
6. 多边形问题:已知多边形的边长和内角个数,求其周长或面积。
7. 体积问题:已知几何体的表面积和一个尺寸,求其体积。
8. 圆柱问题:已知圆柱的底面半径或高度,求其体积或表面积。
9. 三角形面积问题:已知三角形的底边和高,求其面积。
10. 平行四边形问题:已知平行四边形的两个邻边和夹角,求其面积。
六年级数学上册教案《数形结合》人教版
六年级数学上册教案《数形结合》人教版一. 教材分析《数形结合》是人教版六年级数学上册的一章内容,主要目的是让学生理解数形结合的思想,能够运用数形结合的方法解决实际问题。
本章内容主要包括数形结合的概念、意义和应用。
通过本章的学习,学生应该能够理解数形结合的思想,并能够运用数形结合的方法解决实际问题。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则已经有了一定的理解。
但是,对于数形结合的概念和意义可能还比较陌生,需要通过实例和实际操作来理解和掌握。
此外,学生的学习兴趣和动机也是影响学习效果的重要因素,因此,在教学过程中需要注重启发和引导学生主动参与。
三. 教学目标1.知识与技能:让学生理解数形结合的概念和意义,能够运用数形结合的方法解决实际问题。
2.过程与方法:通过实例和实际操作,让学生体验数形结合的过程,培养学生的数学思维能力。
3.情感态度与价值观:培养学生对数学的兴趣和好奇心,引导学生主动参与学习,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:数形结合的概念和意义。
2.难点:数形结合的方法和应用。
五. 教学方法1.启发式教学:通过提问和引导,激发学生的思考和探究兴趣,培养学生的数学思维能力。
2.实例教学:通过具体的实例和实际操作,让学生理解和掌握数形结合的概念和方法。
3.小组合作:学生进行小组合作学习,培养学生的合作意识和探究精神。
六. 教学准备1.教学材料:教材、PPT、黑板、粉笔等。
2.教学工具:计算机、投影仪等。
七. 教学过程1. 导入(5分钟)教师通过一个具体的实例,如数轴上的点与实数的关系,引导学生思考数形结合的意义。
2. 呈现(10分钟)教师通过PPT或黑板,呈现数形结合的概念和意义,并进行解释和阐述。
3. 操练(10分钟)教师给出一些实际的数学问题,让学生运用数形结合的方法进行解决,并引导学生进行思考和讨论。
4. 巩固(10分钟)教师通过一些练习题,让学生巩固数形结合的概念和方法。
数形结合在小学数学教学中的运用
数形结合在小学数学教学中的运用数形结合是指数学和几何的结合。
它是一个重要的数学方法,可以帮助孩子们更好地理解和应用数学。
在小学数学教学中,数形结合是一个重要的教学方法,可以使学习更加有趣和生动。
一、数形结合的优点数形结合具有以下优点:1. 使学习更加具有生动性和趣味性。
2.可以解释数学概念和理论,并使它们更加可见和直观。
3. 可以帮助孩子们更好地理解难以理解的数学内容,因为它可以减少孩子们阅读或听听讲的负担。
4.可以做到更好地鼓励学习和思考,并提高学生的学习积极性。
1.二维图形在小学数学教学中,二维图形是一项重要的任务。
通过图形,孩子们可以更好地理解角度、面积和周长等概念。
从简单的形状(例如三角形、正方形和矩形)到更复杂的形状(例如梯形、菱形和多边形),教师可以通过制作实物或使用幻灯片或视频展示,帮助学生更好地理解和掌握二维图形。
与二维图形类似,三维图形也是数形结合的一个重要部分。
孩子们通过将二维图形移动并在空间中旋转来理解三维图形的概念。
在小学数学教学中,孩子们可以制作简单的立体图形,例如用牛奶盒制作长方体、正方体和矩形。
学生可以通过旋转立体图形,更好地理解不同的立体角度。
这种数形结合的方法可以提高学生的数学思维能力和丰富的想象力。
3.解决问题在小学数学教学中,孩子们需要学习如何解决数学问题。
数形结合可以帮助孩子们更好地理解和应用数学知识。
例如,在解决加减法和乘法问题时,教师可以使用图形,让学生更好地理解问题。
在解决分数问题时,教师可以使用图形将分数理解为形状的一部分。
这种数形结合的方法可以使孩子们更容易理解并解决问题。
4. 计算孩子们需要学习如何计算,例如学习加减法、乘法、除法和万能公式。
数形结合可以使孩子们更好地理解和应用这些公式。
教师可以使用图形或演示器来演示这些公式,让孩子们更好地理解和记忆。
例如,在学习乘法表时,教师可以使用形状制作乘法表,让孩子们更好地理解乘法表。
小结。
数形结合思想
数形结合思想数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学.”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.“数”与“形”是一对矛盾,华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系和单位圆来定义的.数形结合在解决集合运算、函数方程、不等式、解析几何、三角、向量等问题中均有广泛运用.应用数形结合的思想,应注意以下数与形的转化:数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.数形结合的途径(1)通过坐标系形题数解借助于建立直角坐标系、复平面可以将图形问题代数化.这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考察的);值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大简化代数推理)实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义,如等式22(2)(1)4xy .常见方法有:(1)解析法:建立适当的坐标系(直角坐标系,极坐标系),引进坐标将几何图形变换为坐标间的代数关系.(2)三角法:将几何问题与三角形沟通,运用三角代数知识获得探求结合的途径. (3)向量法:将几何图形向量化,运用向量运算解决几何中的平行、垂直、夹角、距离等问题.把抽象的几何推理化为代数运算.特别是空间向量法使解决立体几何中平行、垂直、夹角、距离等问题变得有章可循.(2)通过转化构造数题形解许多代数结构都有着对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将|a |与距离互化,将a 2与面积互化,将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通,将有序实数对(或复数)和点沟通,将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常借助于相伴而充分地发挥作用.常见的转换途径为:1°方程或不等式问题常可以转化为两个图象的交点位置关系的问题,并借助函数的图象和性质解决相关的问题.2°利用平面向量的数量关系及模AB 的性质来寻求代数式性质.3°构造几何模型.通过代数式的结构分析,构造出符合代数式的几何图形,如将2a与正方形的面积互化,将abc 与勾股定理沟通等等.4°利用解析几何中的曲线与方程的关系,重要的公式(如两点间的距离,点到直线的距离002dA B,直线的斜率,直线的截距)、定义等来寻求代数式的图形背景及有关性质.2.数形结合的原则 (1)等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导.(2)双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.(3)简单性原则就是找到解题思路之后,至于用几何方法还是用代数方法、或者兼用两种方法来叙述解题过程,则取决于那种方法更为简单.而不是去刻意追求一种固定的模式——代数问题运用几何方法,几何问题寻找代数方法.一、引入1.函数()|log |(0a f x x a ,1)a 的单调递增区间是 A .(0]a , B .(0),C .(01],D .[1),2.方程2243xx x 的实数解的个数是A .1B .2C .3D .以上都不对3.已知不等式2log 0m xx在1(0)2x,时恒成立,则m 的取值范围是( )A .01mB .1116mC .1mD .1016m4.如果实数x y 、满足22(2)3x y ,则y x的最大值为A .12B .3C .2D .5.在平面直角坐标系中,点O (0,0),P (6,8),将向量OP 绕点O 按逆时针方向旋转34π后得向量OQ ,则点Q 的坐标是 A .(722), B .(722), C .(462), D .(462),6.若2()f x x bx c 对任意实数t ,都有(2)(2)f t f t ,则(1)f 、(3)f 、f ()4由小到大依次为___________.7.对a b R ,,记max{}.a ab a b b ab ,,,, 函数()max{|1||2|}f x x x ,的最小值是_________.8.若方程22320xax a 的一个根小于1,而另一根大于1,则实数a 的取值范围是______.9.已知奇函数()f x 在(0),上是增函数,且(3)0f ,不等式()0xf x 的解集为_________.10.已知定义在[11],上的函数()f x 为增函数,则不等式11()()21f x f x 的解集为 . 11.若关于x 的方程223320x xa 在[02],上只有一个根,则实数a 的取值范围是______. 12.讨论关于x 的方程|31|xk (k R )根的个数.二、例题:1.方程2221xx x 的实数解的个数是A .1B .2C .3D .以上都不对2.已知不等式2log 0xm x在1(0)2x,时恒成立,则m 的取值范围是 .3.点A (2,1)在圆225x y 上,将点A 绕原点O 顺时针旋转到点B ,求B 的坐标.4.当[1)x ,时,不等式222x ax a 恒成立,求a 的取值范围.5.设关于θsin 0θθa 在区间(02)π,内有相异的两个实根α,β,求实数a 的取值范围,并求α+β的值.三、练习:1.方程sin lg x x 的根的个数有 .2.设方程 22xx的实根为a ,2log 2xx的实根为b ,则ab.3.方程2||10xx a 有四个根,则a 的取值范围是 .4.设a b c ,,均为正数,且122log aa ,121()log 2b b ,21()log 2c c ,则A .ab c B .c b a C .c a b D .b a c5.设函数2log (1)2()1()1 2.2xx xf x x ,,,若0()1f x ,则0x 的取值范围是 A .(0)(2),, B .(02), C .(1)(3),, D .(13), 6.若log a 2<log b 2<0,则a ,b 的取值范围是A . 0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 7.已知0x 是函数1()21xf x x的一个零点,若10(1)x x ,,20()x x ,,则A .12()0()0f x f x ,B .12()0()0f x f x ,C .12()0()0f x f x , D .12()0()0f x f x ,8.已知01a ,则方程|||log |x a a x 的根的个数为A .1个B .2个C .3个D .1个或2个或3个 9.方程1sin()44πxx 的实数解的个数是( ) A . 2 B .3 C .4 D .以上均不对 10.函数||y a x 与y x a 的图象恰有两个公共点,则实数a 的取值范围是A .(1),B .(11),C .(1][1),,D .(1)(1),,11.若(12)x ,时,不等式2(1)log a x x 恒成立,则a 的取值范围为( )A .(0,1)B .(1,2)C .(1,2]D . [1,2]12.定义在R 上的函数()y f x 在(2),上为增函数,且(2)y f x 是偶函数,则( )A .(1)(3)f fB .(0)(3)f f C .(1)(3)f f D .(2)(3)f f13.已知51260xy 的最小值是A . 6013B .135C .1312D .1 14.已知()22ππx ,,则sin x ,tan x 与x 的关系是 A .tan sin xx x B .tan sin x x x C .|tan ||||sin |x x x D .不确定15.已知函数2()11([01])f x x x ,,对于满足121x x 的任意12x x ,,给出下列结论:①1212()[()()]0x x f x f x -;②2121()()()f x f x x x -;③2121()()()22f x f x x x f .其中正确的结论的序号是A .①B .②C .③D .①③ 16.若关于x 的方程24||5x x m 有四个互不相等的实根,则实数m 的取值范围是 . 17.函数2222613y x x x x 的最小值为___________.18.若直线yx m 与曲线21yx 有两个不同的交点,则实数m 的取值范围是 .19.若不等式|1||1|m x x 的解集是非空数集,那么实数m 的取值范围是_________. 20.对a bR ,,记min{}.b a b a b a ab ,,,, 函数1()min{|1|2}2f x x x ,的最大值是_________. 21.求函数sin 2cos 2x y x 的值域.22.关于x 的方程2230x kx k 的两根都在1和3之间,求k 的取值范围.23.已知向量(34)OA ,,(63)OB ,,(53)OC m m ,. (1)若点A B C ,,能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A 为直角,求实数m 的值.。
浅谈“数形结合”在小学低段数学教学中的应用
浅谈“数形结合”在小学低段数学教学中的应用1. 引言1.1 什么是数形结合数形结合是指将数学中的抽象概念与几何图形相结合,通过图形直观地展示数学概念,帮助学生更好地理解和掌握数学知识。
通过数形结合,学生可以在实践中感受到抽象数学概念的具体意义,加深对数学知识的理解和记忆,提高学习效果。
数形结合的方法包括利用几何图形展示数字关系、利用数字计算几何问题等,通过观察、推理和实践,帮助学生建立数学思维和解决问题的能力。
数形结合不仅可以提高学生的数学学习兴趣和动手能力,还可以培养学生的逻辑思维和创新意识,为他们的终身学习打下良好的基础。
数形结合是一种全面发展学生数学素养的有效教学方法,应该在小学低段数学教学中得到充分的应用和推广。
1.2 数形结合的重要性数形结合是数学教学中一种重要的教学方法,它通过结合数学概念和几何形态的方式,帮助学生更好地理解抽象的数学概念,激发他们对数学的学习兴趣。
数形结合的重要性体现在以下几个方面:数形结合可以帮助学生更好地理解抽象概念。
在数学中,有些概念比较抽象,比如数字之间的关系、图形的属性等。
通过将这些概念与具体的形态结合起来,可以让学生通过观察、比较和实践的方式更直观地理解这些抽象概念,从而提高他们的学习效果。
数形结合可以提高学生的数学技能。
通过数形结合的教学方法,学生不仅可以理解数学概念,还可以通过实际操作和解决问题来提高他们的数学技能,培养他们的逻辑思维能力、分析问题能力和解决问题能力。
数形结合还可以激发学生对数学的兴趣和学习热情。
通过将数学概念与具体形态相结合,可以使学生在学习过程中感受到数学的魅力和乐趣,使他们对数学产生浓厚的兴趣,从而更加积极地投入到数学学习中去。
数形结合在小学低段数学教学中具有重要的意义。
2. 正文2.1 数形结合在小学低段数学教学中的具体应用1. 数形结合在教学内容的引入中起到重要作用。
通过用具体的形状(如三角形、矩形等)来帮助学生理解数字的概念,可以让抽象的数字变得更加具体和可观察,引起学生的兴趣和注意力,从而更好地吸收知识。
数形结合
数形结合,主要指的是数与形之间的一一对应关系。
数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
数形结合思想简单来讲是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
数形结合是数学中四种重要思想方法之一.它既具有数学学科的鲜明特点又是数学研究的常用方法.著名数学家华罗庚先生曾指出:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.”这充分说明了数形结合思想在数学研究和数学应用中的重要性。
数和形这两个基本概念,是数学的两块基石。
在数学发展的进程中,数和形常常结合在一起,在内容上互相联系,在方法上互相渗透,在一定条件下互相转化。
数与形是中学数学研究的两类基本对象,相互独立又互相渗透。
尤其在坐标系建立以后,数与形的结合更为紧密。
而且在实际应用中,若就数论数,缺乏直观性;若就形论形缺乏严密性,当二者结合往往可优势互补,收到事半功倍的效果。
而且通过数到形结合的研究有助于数学思维品质的培养。
数形结合的思想方法,具体来说就是把问题中的数量关系与相应的图形结合起来,由数的性质得到相应图形的特征,或由图形的特征得出相应的数量关系,从而解决问题的思想方法。
其实质是将抽象的数学语言与直观的图形结合起来使抽象思维和形象思维结合。
通过对图形的认识、数形的转化,可以培养思维的灵活性、形象性,使问题化难为易、化抽象为具体。
例如:数轴就是数形结合的产物;解析几何就是用代数的方法研究几何问题的数学分支。
初中数学思想方法篇——数形结合
解题思想之数形结合一、注解:数形结合思想指将数量与图形结合起来,对题目中的给定的题设和结论既进行代数方面的分析,又从几何含义方面进行分析,将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,也可以使图形的性质通过数量之间的计算与分析,达到更加完整、严密和准确。
在解决数学问题的过程时要善于由形思数,由数思形,数形结合,通过数量与图形的转化,把数的问题利用图形直观的表示出来,力图找到解题思路。
数形结合是数学学习的一个重要方法,通常与平面直角坐标系,数轴及其他数学概念同时使用。
二、实例运用:1.在实数中的运用【例1】如图,在所给数轴上表示出实数—3,—1,2-的点,并把这组数从小到大用“<”连接。
【例2】已知a<0,b<0,且a<b,则()A —b>—aB —b>aC —a >bD b>a2.在不等式中的运用【例3】不等式组2030xx-⎧⎨-≥⎩的正整数解的个数为()A 1个B 2个C 3个D 4个【例4】关于x的不等式组521xx a-≥-⎧⎨-⎩无解,则a的取值范围是。
3.在方程(组)中的运用【例5】利用图像法解方程组24212x yx y-=⎧⎨+=⎩4.在函数中的运用【例6】某水电站的蓄水池有2个进水口和1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示。
已知某天0点到6点进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示。
给出三个判断:(1)0点到3点,只进水不出水;(2)3点到4点,不进水只出水;(3)4点到6点,不进水不出水。
则以上判断正确的是()A (1)B (2)C (2)(3)D (1)(2)(3)【例7】已知二次函数y=ax2+bx+c的图象如图所示,则在(1)a<0,(2)b>0(3)c<0(4)b2-4ac>0中,正确的判断是()A (1)(2)(3)(4)B (4)C(1)(2)(3)D(1)(4)5.在统计与概率中的运用【例8】近年来,某市旅游业蓬勃发展,吸引了大批海内外游客前来观光,下面两图分别反映了该市2001—2004年旅客总人数和旅游业总收入的情况。
数形结合教研活动总结(3篇)
第1篇一、活动背景随着新课程改革的不断深入,数学教学逐渐从传统的“重计算、轻应用”向“重思维、重能力”转变。
数形结合作为一种重要的数学思想方法,在培养学生数学思维、提高学生数学素养方面具有重要意义。
为了更好地推进数形结合教学,提高教师的专业素养,我校数学组于近日开展了以“数形结合”为主题的教研活动。
本次活动旨在通过研讨、交流和实践,探索数形结合在数学教学中的应用,提升教师的教学水平和学生的数学学习效果。
二、活动内容1. 理论学习活动伊始,全体数学教师共同学习了数形结合的相关理论知识。
通过学习,教师们对数形结合的概念、原理及其在数学教学中的应用有了更深入的了解。
同时,教师们还学习了国内外关于数形结合教学的研究成果,为后续的教学实践提供了理论支撑。
2. 经验分享在理论学习的基础上,各年级教师结合自身教学实践,分享了在数形结合教学中的成功经验和心得体会。
例如,一年级教师通过图形的变换,引导学生发现数与形的联系;二年级教师利用数形结合的思想,帮助学生解决实际问题;三年级教师则通过实例引导学生体会数形结合在解决问题中的优势。
3. 案例研讨针对具体的教学案例,教师们进行了深入的研讨。
以“分数与小数”为例,教师们讨论了如何运用数形结合的思想,帮助学生理解分数与小数之间的关系,以及如何通过图形的变换,使学生在直观感受中掌握分数与小数的概念。
4. 教学实践为了将数形结合的思想更好地融入课堂教学,教师们进行了教学实践。
在教学实践中,教师们尝试运用多种教学手段,如多媒体、实物操作等,使学生在直观、生动的教学环境中感受数形结合的魅力。
5. 总结反思活动最后,教师们对本次教研活动进行了总结反思。
大家一致认为,数形结合教学在提高学生数学素养、培养学生的数学思维能力方面具有重要意义。
同时,教师们也认识到,在今后的教学中,还需不断探索和实践,使数形结合教学更加贴近学生的实际需求。
三、活动成果1. 教师的专业素养得到提升。
通过本次教研活动,教师们对数形结合有了更深入的认识,教学水平得到提高。
(完整word)数形结合思想在解题中的应用(包含30例子)汇总,推荐文档
数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:“数形结合”在解题中的应用原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202 解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
数学中的数形结合
数学中的数形结合数学是一门基础性科学,无论是在自然界还是人类社会中,都具有广泛的应用价值和意义。
其中,数形结合作为数学学科中的一个重要分支,已经成为现代数学中不可或缺的一部分。
那么,数形结合到底是什么呢?它有哪些特点和应用呢?本文将为大家详细解读数形结合在数学中的重要性和作用。
一、数形结合的定义数形结合,顾名思义,就是数学的“数学”和“形状”相结合。
它是指通过在数学中运用图形或形状来解决问题的方法。
所以,数形结合涉及到的不仅是数学的运算和计算,还包括几何学中的图形和形状。
二、数形结合的特点1. 视觉观察数形结合是一种视觉观察的方法。
通过观察图形或形状,以及它们的属性和特征,能够更加深入地理解运算和计算规则。
正是因为这个特点,数形结合能够让学生更深入地理解各种数学概念,加强学习兴趣,提高学习效率。
2. 视觉化思考数形结合可以将抽象的数学概念转化成具体的图形或形状,从而在视觉化层面上进行思考。
这种方法可以帮助我们更深入地理解数学问题和规律,从而更好地解决问题。
3. 加强记忆数形结合是一种基于图形或形状的记忆方法。
我们可以通过对不同图形或形状的记忆,来深入理解或记忆数学计算法则。
这种方法可以让我们加强对抽象知识的记忆和理解。
4. 提高直觉数形结合是一种直觉的方法。
通过对图形或形状的观察和分析,我们可以培养自己的直觉思维,使我们更加熟练、敏捷地处理数学问题。
三、数形结合的应用1. 解决复杂问题通过数形结合,我们可以将抽象的数学问题转化成简单的图形和形状问题。
这种方法可以让我们更轻松、更准确地解决复杂的数学问题。
2. 培养创新思维数形结合可以帮助我们培养创新思维。
在数学学习中,我们通过观察、分析、思考和表达,可以激发自己的创新潜能,从而运用数学思维解决问题。
3. 寓教于乐数形结合的优点在于可以寓教于乐。
通过图形或形状的游戏、绘图等方式,让学生轻松愉快地学习数学知识,从而加深对数学的兴趣和爱好。
四、数形结合的实践数形结合虽然是一种理论方法,但是它需要通过实践来深入了解。
数形结合的概念
数形结合的概念数形结合的概念数形结合是指在数学中,通过对几何图形的研究来发现其中的数学规律和性质,从而推导出一些与几何图形相关的数学定理和公式。
这种方法不仅可以帮助我们更深入地理解几何图形,还可以拓展我们对数学知识的认识,使我们能够更好地应用数学知识解决实际问题。
一、数形结合的历史背景早在古代,人们就已经开始探索几何图形与数字之间的联系。
例如,在古希腊时期,欧几里得就提出了许多关于几何图形和数字之间关系的定理,如勾股定理、相似三角形定理等。
此外,在古代中国、印度和阿拉伯等地也有许多学者研究过这方面的问题。
二、数形结合的基本思想数形结合是一种通过探究几何图形中隐藏着的数学规律和性质来推导出一些与几何图形相关的数学定理和公式的方法。
其基本思想是将几何问题转化为代数问题,并通过代数运算来解决问题。
这种方法不仅可以帮助我们更深入地理解几何图形,还可以拓展我们对数学知识的认识,使我们能够更好地应用数学知识解决实际问题。
三、数形结合的应用范围数形结合方法在数学中有着广泛的应用。
例如,在初中阶段,我们就需要通过数形结合方法来推导出勾股定理和相似三角形定理等基本几何定理;在高中阶段,我们需要通过数形结合方法来推导出圆锥曲线的方程和立体几何体积公式等高级数学知识;在大学阶段,我们需要通过数形结合方法来研究微积分、复变函数等高级数学领域。
四、数形结合的优点1. 拓展了我们对数学知识的认识:通过探究几何图形中隐藏着的数学规律和性质,可以帮助我们更深入地理解几何图形,并拓展我们对数学知识的认识。
2. 便于应用:通过将几何问题转化为代数问题,并通过代数运算来解决问题,可以使得复杂的计算变得简单易懂,便于应用。
3. 帮助培养逻辑思维能力:数形结合方法需要我们通过逻辑推理来得出结论,这可以帮助我们培养逻辑思维能力。
五、数形结合的缺点1. 需要具备一定的数学基础:数形结合方法需要我们具备一定的数学基础,否则很难理解其中的概念和推导过程。
小学数学总结_数形结合
第一讲 数形结合看到数,想到形,利用图形的技巧解决问题。
a 想到线段,2a 想到正方形,3a 想到正方体。
一、 三角形数自然数列,金字塔数列,可以构成三角形的图形,成为三角形数。
连续自然数的三角形数的解题思路:1、是连续自然数列,1+2+…+n ,2、圈内填等差数列,3、旋转对称求解。
详见相关例题。
二、 正方形数平方数、奇数数列、金字塔数列,可以构成正方形的图形,成为正方形数。
1+3+5+7+…+(2n-1)=2n ,1+2+3+…+n+…+3+2+1=2n ,23333)...321(...321n n++++++++=。
101、【补充1】1+2+3+…+n =21n(n+1),想到的图形?【难度级别】★☆☆☆☆ 【解题思路】正三角形。
102、【补充2】求解222 (21)n +++【难度级别】★★★☆☆【解题思路】提供数形结合的两种方法,通过此题了解三角形数、正方形数的求解方法。
方法一:正方形数(金字塔数列、奇数列)平方数可以表示成金字塔数列:21=1,1个数; 22=1+2+1,3个数; 23=1+2+3+2+1,5个数;24=1+2+3+4+3+2+1,7个数;……数的个数,构成了奇数列,1+3+5+7+…+(2n-1)=2n ,奇数列可以构成正方形数,将金字塔数列填入正方形数中,如上图。
所以,222 (21)n +++=(2n-1)×1+(2n-3)×2+(2n-5)×3+…+[2n-(2n-1)]×n=2n ×(1+2+3+…+n)-[1×1+2×3+3×5+4×7+…+n ×(2n-1)]1112121231234321=n ×n ×(n+1)-[2(2n-1)+1]÷3×2)1(+⨯n n =)12)(1(61++⨯⨯n n n其中,1×1+2×3+3×5+4×7+…+n ×(2n-1)是采用三角形数的求解方法: 1、连续自然数,1、2、3、…、n 2、每个圈内的数,形成奇数数列 3、旋转对称每个位置的平均值为:[2(2n-1)+1]÷3,数的个数为:1+2+3+…+n =2)1(+⨯n n所以,1×1+2×3+3×5+4×7+…+n ×(2n-1)=[2(2n-1)+1]÷3×2)1(+⨯n n 。
数形结合教研活动方案(3篇)
第1篇一、活动背景数形结合是数学教育中的一个重要理念,它强调数学与图形的相互转化与融合,有助于学生更好地理解和掌握数学知识。
为了提升教师对数形结合教学的理解和运用能力,促进教师专业成长,特制定本教研活动方案。
二、活动目标1. 提高教师对数形结合教学理念的认识,理解其内涵和重要性。
2. 培养教师运用数形结合方法进行教学设计的能力。
3. 促进教师之间的交流与合作,共同探讨数形结合教学的有效策略。
4. 提升学生的数学思维能力和图形意识。
三、活动时间2023年X月X日至X月X日,共两天。
四、活动地点学校多功能厅五、活动参与人员1. 全体数学教师2. 邀请相关专家进行讲座和指导3. 部分优秀数学教师进行经验分享六、活动内容(一)第一天1. 开幕式(上午8:00-8:30)- 主持人介绍活动背景、目的和意义。
- 校长或相关部门负责人致辞。
2. 专家讲座(上午8:30-10:30)- 邀请专家进行“数形结合教学理念与实践”专题讲座。
- 讲座内容主要包括:- 数形结合的基本概念和内涵- 数形结合在教学中的应用案例- 数形结合教学策略与方法3. 分组研讨(上午10:30-11:30)- 将全体教师分成若干小组,围绕“如何在教学中运用数形结合”进行研讨。
- 每组推选一名代表进行总结发言。
4. 经验分享(下午1:00-3:00)- 邀请几位在数形结合教学方面有丰富经验的教师进行经验分享。
- 分享内容主要包括:- 数形结合教学的成功案例- 数形结合教学中的困惑与解决策略- 数形结合教学的心得体会5. 分组实践(下午3:00-5:00)- 教师根据所学知识和经验,分组设计数形结合教学活动方案。
- 各小组提交活动方案,并进行简要说明。
(二)第二天1. 活动展示(上午8:00-11:30)- 邀请部分教师进行数形结合教学活动展示。
- 活动形式包括:- 课堂教学展示- 课外活动展示- 教学设计展示2. 专家点评(上午11:30-12:00)- 邀请专家对活动展示进行点评,并提出改进建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6
(1)不 (1)不等式 4 x − x 2 < x的解集是--------。
(2)若 (2)若不等式 x + a ≥ x ( a > 0)的解集是 [ m , n], 且 m − n = 2a , 则a的值为----------。 (3)当0 ≤ x ≤ 1时,不等式sin
πx
2
≥ kx成立,
1 2 若点P在曲线 在曲线C上 ③ 若点 在曲线 上,则△ F1PF2的面积不大于 a . 2 其中, . 其中,所有正确结论的序号是
( x + 1)2 + y 2 ⋅ ( x − 1)2 + y 2 = a 2 (a > 1). (1) (0,0)不满足; (2) ( x , y )满足, 则( − x , − y )也满足; 1 1 2 1 2 = PF1 ⋅ PF2 sin θ = a sin θ ≤ a . 2 2 2
)
sin x (2)函 (2)函数y = 的最大值、最小值分别是-------------。 2 + cos x x2 y2 (3)已知F是双曲线 - = 1的左焦点,定点(1,4), 4 12 P是双曲线右支上的动点,则 PF + PA 的最小值为 - - - - - 。
例8 命题:
已知a与b均为单位向量,其夹角为θ ,有下列四个
曲线C是平面内与两个定点 曲线 是平面内与两个定点F1(-1,0) 是平面内与两个定点 ,
的点的轨迹. , 的距离的积等于常数 的点的轨迹 和F2(1,0)的距离的积等于常数 a2(a>0)的点的轨迹 给出下列三个结论: 给出下列三个结论: 曲线C过坐标原点 过坐标原点; ① 曲线 过坐标原点; 曲线C关于坐标原点对称 关于坐标原点对称; ② 曲线 关于坐标原点对称;
例1
Байду номын сангаас
已知平面直角坐标系xOy上的区域 上的区域 已知平面直角坐标系
0 ≤ x ≤ 2, D由不等式组 y ≤ 2, 给定 若 M(x,y)为D 给定.若 由不等式组 , 为 x ≤ 2y uuuu uuu r r 上动点, 上动点,点A的坐标为 ( 2,1) ,则 z = OM ⋅ OA 的坐标为
(3) S
F1 PF2
例5
2 x≥2 , 已知函数 f ( x ) = x , ( x − 1)3 , x < 2
若关于x 的方程 有两个不同的实根, 若关于 的方程f(x)=k有两个不同的实根,则 有两个不同的实根
实数k的取值范围是 实数 的取值范围是_______. 的取值范围是
y −1 k1 = , y = k1 x + 1 x ( x ≠ 0) ⇒ 代入k1 k2 + 2 = 0 ,得 y+1 y = k2 x − 1 k2 = x y −1 y +1 +2=0,整理,得 2 x 2 + y 2 = 1. ⋅ x x
例4
其中的真命题是 A. p1 , p4 B. p1 , p3 C. p2 , p3 D. p2 , p4
2π p1 : a + b > 1 ⇔ θ ∈ 0, 3 π p3 : a − b > 1 ⇔ θ ∈ 0, 3
2π p2 : a + b > 1 ⇔ θ ∈ ,π 3 π p1 : a − b > 1 ⇔ θ ∈ , π 3
数形结合, 数形结合,就是根据数与形之间的 对应关系, 对应关系,通过数与形的相互转化来解 决数学问题的一种重要思想方法。 决数学问题的一种重要思想方法。 数形结合通过“以形助数, 数形结合通过“以形助数,以数解 形”,使复杂问题简单化,抽象问题具 使复杂问题简单化, 体化,能够变抽象思维为形象思维。 体化,能够变抽象思维为形象思维。
则实数k的取值范围是--------------。
例7
(1)设 (1)设函数g ( x ) = x 2 − 2( x ∈ R ),
g ( x ) + x + 4, x < g ( x ) f ( x) = ,则f ( x )的值域是( g( x ) − x , x ≥ g( x ) 9 A - ,0 U (1, +∞ ) 4 9 C - , +∞ 4 B[0,+∞ ) 9 D - ,0 U (2, +∞ ) 4
函数f(x)的图象的四个端点为 的图象的四个端点为 函数
3 1 3 3 A(-1,-1), B( −1, −2), C , , D , − 2 4 2 4
从图象中可以看出, 从图象中可以看出,直线 y=c穿过 穿过 之间时, 与图象有且只有两个公共点;或直 点 A与点 C之间时,直线 与图象有且只有两个公共点 或直 与点 之间时 穿过点B 线 y=c穿过点 及其下方时,直线 与图象有且只有两个公共 穿过点 及其下方时, 点,所以实数 的取值范围是 ( −∞ , −2] U −1, − 3 .故选B. 故选B. 4
例3
设直线l 设直线 1:y=k1x+1 ,l2:y=k2x-1, ,
其中实数k 满足k 其中实数 1, k2满足 1k2+2=0 . (Ⅰ) 证明 1与l2相交; Ⅰ 证明l 相交; (Ⅱ) 证明 l1与l2的交点在椭圆 2+y2=1 上. Ⅱ 的交点在椭圆2x
代入k (1)假设 1//l2,则k1=k2,代入 1k2+2=0,得 )假设l 代入 , , k12+2=0,与k1为实数矛盾,故l1、l2相交 为实数矛盾, , 、 相交. 坐标为(x,y),则 (2)设点 坐标为 )设点P坐标为 ,
2 x≥2 , f ( x) = x ( x − 1)3 , x < 2
y=f(x)与y=k 与 有两个不同的 交点⇔ 交点⇔ 0<k<1
例55 对实数a和b,定义运算“⊗”:a ⊗ b = a , a − b ≤ 1, 设函数f ( x ) = ( x 2 − 2) ⊗ x 2 − x ), x ∈ R. ( b, a − b > 1. 若函数y =f (x )-c的图象与x轴恰有两个公共点,则 实数c的取值范围是 3 A. ( −∞ , −2 ) U −1, 2 1 1 C. −1, U , +∞ 4 4 3 B. ( −∞ , −2 ) U −1, − 4 3 1 D. −1, − U , +∞ 4 4
的最大值为 A. 4 2 B. 3 2 C. 4 D. 3
0 ≤ x ≤ 2, y ≤ 2, x ≤ 2y M ( x , y ), A( 2,1) uuuu uuu r r ⇒ z = OM ⋅ OA = 2 x + y ⇒ y = − 2x + z x = 2, y = 2, zmax = 4.
例2
设A(0,0) ,B(4,0) ,C(t+4,4) ,D(t,4) .
为平行四边形ABCD内部(不含边界)的 内部( 记N(t) 为平行四边形 内部 不含边界) 整点的个数,其中整点是指横、 整点的个数,其中整点是指横、纵坐标都是整数 的点, 的点,则函数 N(t)的值域为 的值域为 A. {9,10,11} C. {9,11,12} B. {9,10,12} D. {10,11,12}
a , a − b ≤ 1, a⊗b= f ( x ) = ( x 2 − 2) ⊗ x − x 2 ), x ∈ R. ( b, a − b > 1. 3 解( x 2 − 2) − x − x 2 ) ≤ 1,即2 x 2 − x − 3 ≤ 0 , − 1 ≤ x ≤ . ( 得 2 3 2 x − 2, −1 ≤ x ≤ 2 故f ( x ) = 3 2 x − x , x < −1或x > 2