河北省涞水波峰中学2019届高考数学模拟试题(2)理

合集下载

2019年5月河北省涞水波峰中学高三高考模拟(二)语文试题

2019年5月河北省涞水波峰中学高三高考模拟(二)语文试题

绝密★启用前河北省涞水波峰中学2019届高三毕业班下学期高考模拟(二)语文试题2019年5月注意事项:1.本试卷共10页。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

中唐时期,思想文化的发展处于一个关键点,在传统文化和外来文化的互相激荡中,中国文化应该沿着怎样的道路发展,韩愈给出了自己的方案。

韩愈对一些古代著作如《论语》《鹖冠子》等,都下过校勘、注释、疏解的深细功夫。

对诸子百家的学说,他也有一个比较、辨析、批判、吸收的过程,《读荀》《读鹖冠子》《读仪礼》《读墨子》等一系列读书札记都以深入的比较研究为基础,提出了许多独特的学术见解。

如《读荀》中提出的“孟氏,醇乎醇者也;荀与杨,大醇而小疵”;《读墨子》中认为“孔子必用墨子,墨子必用孔子,不相用不足为孔墨”等,皆以壁立千仞的勇毅提出新见,成为建立其道统思想体系的基础。

唐代的官学虽仍以儒家经典为主,但就民间和知识界的信仰与风尚而言,佛教实有风靡之势,思想文化方面的情形有类于战国时期的“杨朱、墨翟之言盈天下”。

韩愈在《与孟尚书书》中说:“汉室以来,群儒区区修补,百孔千疮,随乱随失,其危如一发引千钧,绵绵延延,浸以微灭。

于是时也,而唱释老于其间,鼓天下之众而从之。

呜呼,其亦不仁甚矣!”在这种沧海横流的大势下,韩愈“障百川使东之,挽狂澜于既倒”,以勇毅之力排击异端,护持道统,在中国思想文化史上留下了光辉的一笔。

理论上,他著《原道》,从社会经济发展的现实出发批判佛老二教的蠹国害民,从历史发展的角度论证儒家形成、发展的必然性和历史贡献;在实践上,他逆批龙鳞,谏迎佛骨,反对官方对佛教的宣扬。

学术史上关于韩愈与佛教关系的讨论出现过多次,谈论的问题颇为丰富复杂。

陈善认为,韩愈赠浮屠诸诗文中,不仅没有丧失辟佛的儒者立场,而且有着引导佛子改弦更张、归顺儒道的良苦用心。

2019年高考数学(理)模拟题及答案带解析.docx

2019年高考数学(理)模拟题及答案带解析.docx

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!2019年高考数学(理)模拟题及答案带解析【满分150分,考试时间为120分钟】一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 4 = {-2,-1,0,2,3},B = {y | y =对-1, x w 4},则 4 B 中兀素的个数是A. 2B. 3C. 4D. 52.,是虚数单位,复数z = a + i(^a e R)满足z2 + z = l-3i,贝!]忖=A.血或厉 B 2 或5 C. A/5 D. 53.设向量°与〃的夹角为0,且a = (-2,1), a + 2"(2,3),则cos& =A. —E B 2 C. D.5 5 5 2^5__5-A. 7B. -7C.75.《九章算术》中,将底面是直角二角形的直二棱柱称之为"堑堵",已知某"堑堵"的三视图如图所示,则该"堑堵" 的表面积为A. 4B. 6 + 4 血C. 4 + 4^2D. 26.已知数列{a n},{b n}满足b n=a n+a n+l,则"数列匕}为等差数列"是"数列{$}为等差数列"的A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件7.执行如图所示的程序框图,则输出的"A. 1 D.-8.在(x-2)10展开式中,二项式系数的最大值为a,含F项的系数为方,则2 = aA. —B. —C.D.21 80 80 21x — 2y— 5 W 09.设实数满足约束条件x+y-4<0 ,贝% = /+尸的最小值为3.x+y-10>0A. VioB. 10C. 8D. 510.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为A A/6 g V6 c 3V2 D 3V23龙6718^. 2 211.已知O为坐标原点,F是双曲线-与= l(a>0』>0)的左焦a b点,4,B分别为「的左、右顶点,P为厂上一点,且PF丄兀轴,过点4的直线/与线段PF交于点M ,与y轴交于点E,直线BM与y轴交于点N,若|OE\ = 2\ON\ ,则「的离心率为A. 3B. 2C. -D.212.已知函数/(x) = ln(e' +e-') + x2 ,则使得/(2x) >/(x + 3)成立的■x的取值范围是A. (-1,3)B. (^0,-3)(3,+co)C. (-3,3)D. (YO,—1)(3,4W)二、填空题:本题共4小题,每小题5分,共20分。

2019年高考数学模拟试题2版带有答案

2019年高考数学模拟试题2版带有答案

1 V= (S1+ S1 S2 +S2) h
3
其中 S1、 S2 表示台体的上、下底面积,
V= 4 πR3
3
其中 R 表示球的半径
h 表示棱台的高 .
选择题部分 (共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分 .在每小题给出的四个选项中,只有一项是符合题目
要求的 .
1.( 原创题 ) 已知集合 P
bn . 3 2n
【命题意图】 本题考查数列的概念及通项公式的求解,前
n 项求和问题,同时考查转化与化归、整体思想
的能力 .
21.( 原创题 ) (本题满分 15 分)已知抛物线高三数C学:试y题2 卷第8 x 的5焦页点,共为 6F页,过 F 作直线 l 与抛物线 C 交于 A, B 两点,分别过 A, B 作抛物线 C 的切线,交 y 轴于 M , N 两点,且两切线相交于点 E .
11.
12.
13.
14.
15.
16.
17.
18.(本小题满分 14 分)
高三数学答题卷第 1 页,共 4 页
19.(本小题满分 15 分)
D1
A1
A B1
B
C1 D
C
20.(本小题满分 15 分)
ቤተ መጻሕፍቲ ባይዱ
高三数学答题卷第 2 页,共 4 页
21.(本小题满分 15 分)
22.(本小题满分 15 分)
高三数学答题卷第 3 页,共 4 页
x ym
区域的面积为 1 ,则 m 6
A. 13 6
B. 13 3
C. 3
D. 6
【命题意图】 本题主要考查数形结合的思想,以及综合运用函数思想解题的能力

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。

河北省涞水波峰中学2019届高考数学模拟试题

河北省涞水波峰中学2019届高考数学模拟试题

河北省涞水波峰中学2019届高考数学模拟试题(1)文1、选择题 (每小题5分,共60分)1.已知集合A ={∈|-1<<3},集合B ={|0<<},则A∩B=x N x x x πA .{|0<<3} B .{0,1,2} x x C .{1,2} D .{|0<<}x x π2.已知i 为虚数单位,复数z 满足z (1-i )=2+i ,则在复平面内的对应的点在z A .第一象限 B .第二象限C .第三象限 D .第四象限3.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5 部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为A .B .C .D .35710459104.已知双曲线(a >0,b >0)的一条渐近线经过点(),则该双曲线的22221y x a b -=2离心率为A B C D .35.同时具有性质“①最小正周期是;②图象关于(,0)对称;③在[0,]上是增函π6π4π数”的一个函数可以是A .B .3sin 24y x π=(-)sin 23y x π=(-)C .D .2cos 23y x π=(+)sin 26y x π=(+)6.在△ABC 中,若点D 满足=2,点M 为AC 中点,则=CD u u u r DB u u u r MD u u u rA .B .2136AB AC -1136AB AC-C . D .2133AB AC -2136AB AC+7.已知定义在R 上的函数f (x )满足f (-x )=f (x ),且函数f (x )在(-∞,0)上是减函数,若a =f (-1),=,c =f (20.3),则a ,b ,c 的大小关系为b 142log f ()A .c <b <a B .a <c <b C .b <c <a D .a <b <c8.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆锥的底面半径与圆柱的底面半径之比为A B .2 C ..4229.已知数列{},{}满足==1,-==3,∈.则数列{}的n a n b 1a 1b 1n a +n a 1n nb b +n N *n a b 前10项和为A .B .C .D .101312(-)10118(9-)91126(27-)101126(27-)10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为ABC .6483π-D .643π-411.函数f (x )的定义域为D ,若f (x )满足在D 内是单调函数且存在[m ,n]D 使f (x )⊆在[m ,n]上的值域为[,],那么就称y =f (x )为“半保值函数”,若函数f (x )2m 2n=log a (a x +t )(a >0且a≠1)是“半保值函数”,则正实数t 的取值范围是A .(0,] B .(0,) C .(0,+∞) D .(,+∞)14141412.已知椭圆C 1:(a >b >0)与双曲线C 2:有公共焦点,C 2的一条22221x y a b +=2219y x -=渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则A . B . C . D .2878a =212a =298b =21b =二 填空题(每小题5分,共20分).13.若实数x ,y 满足条件则z =3x -2y 的最大值为__________.01033x y x y x y ⎧⎪⎨⎪⎩+-1≥,--≤,-+≥0,14.在三棱锥D -ABC 中,AB =AC=AD ,BC =BD =CD =2,则三棱锥D -ABC 外接球的表面积为__________.15.在数列{}中,满足=1,=4.2=(-1)+(+1)(≥2n a 1a 2a n na n 1n a -n 1n a +n 且∈),则=__________.n N *8a 16.已知函数,若在区间(1,+∞)上函数f (x )的图象恒在21ln 2f x a x x ()=(-)+直线y =2ax 的图象的下方,则实数a 的取值范围是__________.2.3,解答题。

2019年最新河北省高考数学二模试卷(理科)及答案解析

2019年最新河北省高考数学二模试卷(理科)及答案解析

河北省高考数学模拟试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3,4},集合A={1,2,3},集合B={3,4},则(C U A)∪B=()A.{4} B.{2,3,4} C.{0,3,4} D.{0,2,3,4}2.若复数z满足3﹣i(z+1)=i,则z=()A.﹣2+3i B.﹣2﹣3i C.2+3i D.2﹣3i3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=ln|x| B.y=cosx C.D.y=﹣x2+14.命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0 B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0 D.∀x∈R,x2+x+1≥05.若直线y=2x与双曲线﹣=1没有公共点,则双曲线的离心率的取值范围是()A.[,+∞)B.[,+∞)C.(1,] D.(1,]6.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.17.某程序框图如图所示,该程序运行后输出S的值是()A.2 B.C.﹣ D.﹣38.在等差数列{a n}中,S n为其前n项和,S7=35,a2+a3+a10=12,则S n的最大值为()A.28 B.36 C.45 D.559.现有4名选手参加演讲比赛活动,若每位选手可以从4个题目中任意1个,则恰有1个题目没有被这4为选手选中的情况有()A.36种B.72种C.144种D.288种10.已知M(x0,y0)是曲线C:﹣y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若<0,则x0的取值范围是()A.(﹣1,0)∪(0,1) B.(﹣1,0)C.(0,1)D.(﹣1,1)11.如图,网格纸上小正方形的边长为1,粗线图是一个几何体的三视图,则此几何体外接球的表面积为()A.25πB.25πC.50πD.50π12.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[0,1]时,f(x)=x+b,若函数y=f(x)﹣log a(x+1)在(0,+∞)上恰好有三个零点,则a 的取值范围是()A.(0,) B.(0,) C.(,)D.(,1)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(x﹣)dx= .14.已知||=2,||=4,⊥(),则向量与的夹角的余弦值是.15.如图为某小区100为居民2015年月平均用水量(单位:t)的频率分布直方图的一部分,据此可求这100位居民月平均用水量的中位数为吨.16.关于函数f(x)=sin2x+sinx+cosx,以下说法:①周期为2π;②最小值为﹣;③在区间(0,)单调递增;④关于x=对称,其中正确的是(填上所有正确说法的序号).三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.S n为数列{a n}的前n项和,S n=2a n﹣2(n∈N+)(1)求{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.18.△ABC的内角A,B,C的对边a,b,c满足a2+ac=b2.(Ⅰ)求A的取值范围;(Ⅱ)若a=2,A=,求△ABC的面积.19.已知四棱锥P﹣ABCD,底面ABCD为菱形,△PAB是等边三角形,∠ABC=60°,AB=2,PC=(1)证明:平面PAB⊥平面ABCD;(2)求二面角B﹣PC﹣D的余弦值.20.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.21.已知椭圆C:+=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.(1)求椭圆的方程;(2)已知点P(﹣3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3,4},集合A={1,2,3},集合B={3,4},则(C U A)∪B=()A.{4} B.{2,3,4} C.{0,3,4} D.{0,2,3,4}【考点】交、并、补集的混合运算.【分析】根据全集、补集与并集的定义,进行计算即可.【解答】解:全集U={0,1,2,3,4},集合A={1,2,3},集合B={3,4},∴C U A={0,4},∴(C U A)∪B={0,3,4}.故选:C.2.若复数z满足3﹣i(z+1)=i,则z=()A.﹣2+3i B.﹣2﹣3i C.2+3i D.2﹣3i【考点】复数代数形式的乘除运算.【分析】把已知等式变形,和利用复数代数形式的乘除运算化简得答案.【解答】解:由3﹣i(z+1)=i,得i(z+1)=3﹣i,∴z+1=,则z=﹣2﹣3i.故选:B.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=ln|x| B.y=cosx C.D.y=﹣x2+1【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:y=ln|x|是偶函数,则(0,+∞)上单调递增,不满足条件.y=cosx是偶函数,则(0,+∞)上不单调,不满足条件.是奇函数,则(0,+∞)上单调递减,不满足条件.y=﹣x2+1是偶函数,则(0,+∞)上单调递减,满足条件.故选:D4.命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0 B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0 D.∀x∈R,x2+x+1≥0【考点】命题的否定.【分析】特称命题“∃x0∈R,x02+x0+1≤0”的否定是:把∃改为∀,其它条件不变,然后否定结论,变为一个全称命题.即“∀x∈R,x2+x+1>0”.【解答】解:特称命题“∃x0∈R,x02+x0+1≤0”的否定是全称命题:“∀x∈R,x2+x+1>0”.故选B.5.若直线y=2x与双曲线﹣=1没有公共点,则双曲线的离心率的取值范围是()A.[,+∞)B.[,+∞)C.(1,] D.(1,]【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,由题意可得渐近线的斜率的正值不大于2,由a,b,c的关系和离心率公式,可得范围.【解答】解:双曲线的渐近线方程为y=±x,由直线y=2x与双曲线﹣=1没有公共点,可得≤2,即b≤2a,又e==≤=,但e>1,可得1<e≤.故选:D.6.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.1【考点】简单线性规划.【分析】先画出平面区域D,进行数量积的运算即得z=2x+y﹣5,所以y=﹣2x+5+z,所以根据线性规划的方法求出z的最大值即可.【解答】解:表示的平面区域D,如图中阴影部分所示,的=(2,1)•(x﹣2,y﹣1)=2x+y﹣5;∴y=﹣2x+5+z;∴5+z表示直线y=﹣2x+5+z在y轴上的截距,所以截距最大时z最大;如图所示,当该直线经过点A(2,2)时,截距最大,此时z最大;所以点(2,2)带人直线y=﹣2x+5+z即得z=1.故选:D.7.某程序框图如图所示,该程序运行后输出S的值是()A.2 B.C.﹣ D.﹣3【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,i的值,当i=2017时不满足条件i≤2016,退出循环,输出S的值,即可得解.【解答】解:模拟执行程序,可得S=2,i=1满足条件i≤2016,S=﹣3,i=2满足条件i≤2016,S=﹣,i=3满足条件i≤2016,S=,i=4满足条件i≤2016,S=2,i=5…观察规律可知S的取值周期为4,由2016=504×4可得满足条件i≤2016,S=,i=2016满足条件i≤2016,S=2,i=2017不满足条件i≤2016,退出循环,输出S的值为2.故选:A.8.在等差数列{a n}中,S n为其前n项和,S7=35,a2+a3+a10=12,则S n的最大值为()A.28 B.36 C.45 D.55【考点】等差数列的前n项和.【分析】由题意和等差数列的求和公式和性质可得a4=5,a5=4,进而可得通项公式,可得数列前8项为正数,第9项为0,从第10项开始为负数,可得结论.【解答】解:∵在等差数列{a n}中,S n为其前n项和,S7=35,a2+a3+a10=12,∴S7=7a4=35,a2+a3+a10=3a5=12,∴a4=5,a5=4,∴公差d=a5﹣a4=﹣1,故a n=5﹣(n﹣4)=9﹣n,故数列的前8项为正数,第9项为0,从第10项开始为负数,故数列的前8或9项和最大为S9=9a5=36,故选:B.9.现有4名选手参加演讲比赛活动,若每位选手可以从4个题目中任意1个,则恰有1个题目没有被这4为选手选中的情况有()A.36种B.72种C.144种D.288种【考点】计数原理的应用.【分析】利用间接法,先确定4个选手无遗漏的选择,再去掉恰好2、3、4道题目被选的情况,即可得出结论.【解答】解:由题意,每个选手都有4种选择,所以4个选手无遗漏的选择是44种,其中恰好2道题目被选的有C42(C43A22+C42)=84、恰好3道未被选(四人选了同一题目,有4种)、恰好0道题未被选的(4个题目都被选,有A44=24种).故共有256﹣84﹣4﹣24=144种.故选:C.10.已知M(x0,y0)是曲线C:﹣y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若<0,则x0的取值范围是()A.(﹣1,0)∪(0,1) B.(﹣1,0)C.(0,1)D.(﹣1,1)【考点】双曲线的简单性质.【分析】由题意可设M(x0,),(x0≠0),求得N的坐标,求出抛物线的焦点坐标,运用向量的数量积的坐标表示,解不等式即可得到所求范围.【解答】解:由题意可设M(x0,),(x0≠0),由题意可得N(x0,0),又抛物线x2=2y的焦点F(0,),即有=(﹣x0,﹣),=(0,﹣),由<0,即为(﹣)•(﹣)<0,即有x02<1且x0≠0),解得﹣1<x0<0且0<x0<1.故选:A.11.如图,网格纸上小正方形的边长为1,粗线图是一个几何体的三视图,则此几何体外接球的表面积为()A.25πB.25πC.50πD.50π【考点】球内接多面体;简单空间图形的三视图.【分析】几何体是底面为直角三角形的直三棱柱,补充为长方体,长宽高分别为3,4,5,求出对角线长,可得外接球的半径,代入球的表面积公式计算.【解答】解:由三视图知:几何体是底面为直角三角形的直三棱柱,补充为长方体,长宽高分别为3,4,5,其对角线长为=5,∴此几何体外接球的半径为∴外接球的表面积S=4π×()2=50π.故选:C.12.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[0,1]时,f(x)=x+b,若函数y=f(x)﹣log a(x+1)在(0,+∞)上恰好有三个零点,则a 的取值范围是()A.(0,) B.(0,) C.(,)D.(,1)【考点】函数零点的判定定理.【分析】根据条件先求出f(1)=0,即函数f(x)是周期为2的周期函数,然后根据奇偶性求出函数在一个周期内的图象,结合函数与方程之间的关系转化两个函数的交点个数问题,利用数形结合建立不等式关系进行求解即可.【解答】解:∵偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),∴令x=﹣1,得f(﹣1+2)=f(﹣1)﹣f(1),即f(1)=f(1)﹣f(1)=0,则f(1)=0,即对∀x∈R,有f(x+2)=f(x)﹣f(1)=f(x),则函数f(x)是周期为2的周期函数,∵当x∈[0,1]时,f(x)=x+b,∴f(1)=1+b=0,则b=﹣1,即当x∈[0,1]时,f(x)=x﹣1,若x∈[﹣1,0]时,﹣x∈[0,1]时,则f(﹣x)=﹣x﹣1=f(x),则当x∈[﹣1,0]时,f(x)=x+1,由函数y=f(x)﹣log a(x+1)=0,得f(x)=log a(x+1),作出f(x)和g(x)=log a(x+1)在(0,+∞)上的图象若函数y=f(x)﹣log a(x+1)在(0,+∞)上恰好有三个零点,则等价为两个函数f(x)和g(x)在(0,+∞)上恰好有三个交点,若a>1,两个函数只有一个交点,不满足条件.若0<a<1,要使两个函数有三个交点,则点A(2,﹣1)则g(x)的图象的下方,B(4,﹣1)在g(x)的上方,即,即,即<a<,即实数a的取值范围是(,),故选:C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(x﹣)dx= 1﹣ln2 .【考点】定积分.【分析】根据:积分公式化简求解∫(x﹣)dx=(x﹣lnx)|,利用牛顿莱布尼兹定理得出答案即可.【解答】解:∫(x﹣)dx=(x﹣lnx)|=2﹣ln2﹣1+ln1=1﹣ln2,故答案为:1﹣ln214.已知||=2,||=4,⊥(),则向量与的夹角的余弦值是.【考点】平面向量数量积的运算.【分析】由便可得出,进行数量积的运算便可得到,从而便可得出向量与夹角的余弦值.【解答】解:∵;∴;即=;∴;即向量与夹角的余弦值是.故答案为:.15.如图为某小区100为居民2015年月平均用水量(单位:t)的频率分布直方图的一部分,据此可求这100位居民月平均用水量的中位数为 2.02 吨.【考点】频率分布直方图.【分析】根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值.【解答】解:根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.44×0.5=0.49<0.5,0.49+0.5×0.5=0.74>0.5,设中位数为a,则0.49+(a﹣2)×0.5=0.5,解得a=2.02,∴估计中位数是2.02.故答案为:2.02.16.关于函数f(x)=sin2x+sinx+cosx,以下说法:①周期为2π;②最小值为﹣;③在区间(0,)单调递增;④关于x=对称,其中正确的是①②④(填上所有正确说法的序号).【考点】三角函数的化简求值.【分析】①由f(x+2π)=f(x)即可得证;②换元法,设t=sinx+cosx,由三角函数知识可得t∈[﹣,],且sin2x=t2﹣1,可得y=t2+t ﹣1,由二次函数区间的最值可得.③由②利用二次函数的性质即可得解;④证明f(﹣x)=f(x),即可判断正误.【解答】解:①∵f(x+2π)=sin[2(x+2π)]+sin(x+2π)+cos(x+2π)=sin2x+sinx+cosx=f (x),∴函数周期为2π,故①正确;②设t=sinx+cosx=sin(x+)∈[﹣,],∴t2=(sinx+cosx)2=1+sin2x,∴sin2x=t2﹣1,∴y=sin2x+sinx+cosx=t2﹣1+t=t2+t﹣1=(t+)2﹣,t∈[﹣,],由二次函数可知,当t∈[﹣,﹣]时,函数y=t2+t﹣1单调递减,当t∈[﹣,]时,函数y=t2+t﹣1单调递增,∴当t=﹣时,函数取最小值y min=﹣,故②正确;③由②可知y=t2+t﹣1,t∈[﹣,],故③错误;④∵f(﹣x)=sin[2(﹣x)]+sin(﹣x)+cos(﹣x)=sin(π﹣2x)+sinx+cosx=sin2x+sinx+cosx=f(x),∴函数关于x=对称,故④正确.故答案为:①②④.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.S n为数列{a n}的前n项和,S n=2a n﹣2(n∈N+)(1)求{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.【考点】数列的求和;根的存在性及根的个数判断.【分析】(Ⅰ)通过S n=2a n﹣2与S n﹣1=2a n﹣1﹣2(n≥2)作差,进而可知数列{a n}是首项、公比均为2的等比数列,计算即得结论;(Ⅱ)通过(Ⅰ)得b n=3n×2n,进而利用错位相减法计算即得结论.【解答】解:(Ⅰ)依题意,S n=2a n﹣2,S n﹣1=2a n﹣1﹣2(n≥2),两式相减得:a n=2a n﹣1,又∵S1=2a1﹣2,即a1=2,∴数列{a n}是首项、公比均为2的等比数列,∴a n=2n;(Ⅱ)由(Ⅰ)得b n=3n×2n,∴T n=3×2+6×22+9×23+…+3n×2n,2T n=3×22+6×23+…+3(n﹣1)×2n+3n×2n+1,两式相减得:﹣T n=3(2+22+23+…+2n)﹣3n×2n+1=3•﹣3n×2n+1=﹣3(n﹣1)2n+1﹣6,∴T n=6+3(n﹣1)2n+1.18.△ABC的内角A,B,C的对边a,b,c满足a2+ac=b2.(Ⅰ)求A的取值范围;(Ⅱ)若a=2,A=,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)由余弦定理得a2﹣b2=c2﹣2bccosA,由a2+ac=b2得a2﹣b2=﹣ac,故c2﹣2bccosA=﹣ac,即cosA=,因为a+c>b,所以cosA,得出A的范围;(2)将A=和a=2分别代入a2+ac=b2和b2+c2﹣a2=2bccosA,联立方程组解出b,c,使用S=bcsinA求出面积.【解答】解:(1)由余弦定理得a2=b2+c2﹣2bccosA,∴a2﹣b2=c2﹣2bccosA,又∵a2+ac=b2,∴a2﹣b2=﹣ac.∴c2﹣2bccosA=﹣ac,∴cosA=,∵a+c>b,∴cosA.∴0<A<.(2)∵a2+ac=b2,∴4+2c=b2,∵b2+c2﹣a2=2bccosA,∴b2+c2﹣4=bc,联立方程组,解得b=2,c=4.S△ABC=bcsinA==2.19.已知四棱锥P﹣ABCD,底面ABCD为菱形,△PAB是等边三角形,∠ABC=60°,AB=2,PC=(1)证明:平面PAB⊥平面ABCD;(2)求二面角B﹣PC﹣D的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)取AB中点O,连结OP,OC,AC,推导出OP⊥AB,OP⊥OC,从而OP⊥面ABC,由此能证明平面PAB⊥平面ABCD.(2)以O为原点,OB,OC,OP为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣PC﹣D的余弦值.【解答】证明:(1)取AB中点O,连结OP,OC,AC,∵△PAB是等边三角形,∴OP=,且OP⊥AB,由题意知△ABC为等边三角形,且OC=,在△POC中,∵OC2+OP2=CP2,∴OP⊥OC,∴OP⊥面ABC,∵OP⊂平面PAB,∴平面PAB⊥平面ABCD.解:(2)以O为原点,OB,OC,OP为x,y,z轴,建立空间直角坐标系,则O(0,0,0),B(1,0,0),C(0,,0),P(0,0,),A(﹣1,0,0),D(﹣2,,0),设=(x,y,z)是平面PBC的法向量,=(﹣1,,0),=(﹣1,0,),则,取x=,得=(),设平面PCD的法向量=(a,b,c),=(0,,﹣),=(﹣2,,﹣),则,取b=1,得=(0,1,1)<cos<>==,由图形得二面角B﹣PC﹣D的平面角为钝角,∴二面角B﹣PC﹣D的余弦值为﹣.20.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【考点】条件概率与独立事件;离散型随机变量的期望与方差.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.21.已知椭圆C:+=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.(1)求椭圆的方程;(2)已知点P(﹣3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆G的右焦点为F(c,0),由题意可得:b=c,且b2+c2=8,由此能求出椭圆G的方程.(Ⅱ)以AB为底的等腰三角形ABP存在.设斜率为1的直线l的方程为y=x+m,代入中,得:3x2+4mx+2m2﹣8=0,由此利用根的判别式、韦达定理,结合已知条件能求出直线l的方程.【解答】解:(Ⅰ)设椭圆G的右焦点为F(c,0),由题意可得:b=c,且b2+c2=8,∴b2=c2=4,故a2=b2+c2=8,∴椭圆G的方程为(Ⅱ)以AB为底的等腰三角形ABP存在.理由如下设斜率为1的直线l的方程为y=x+m,代入中,化简得:3x2+4mx+2m2﹣8=0,①因为直线l与椭圆G相交于A,B两点,∴△=16m2﹣12(2m2﹣8)>0,解得﹣2,②设A(x1,y1),B(x2,y2),则,.③于是AB的中点M(x0,y0)满足=﹣,.已知点P(﹣3,2),若以AB为底的等腰三角形ABP存在,则k PM=﹣1,即=﹣1,④,将M(﹣)代入④式,得m=3∈(﹣2,2)满足②此时直线l的方程为y=x+3.22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.【考点】利用导数研究曲线上某点切线方程.【分析】(1)当a=2时,求函数的导数,利用导数的几何意义进行求解即可.(2)由f(x)﹣1=0得f(x)=1,求函数的导数f′(x),判断函数的单调性,利用函数单调性和最值之间的关系进行判断即可.【解答】解:(Ⅰ)当a=2时,f(x)=•e﹣2x.f()=3e﹣1,又f′(x)=•e﹣2x,∴f′()=2e﹣1,故所求切线方程为y﹣3e﹣1=2e﹣1(x﹣),即y=x+.(Ⅱ)方程f(x)﹣1=0即f(x)=1.f(x)的定义域为(﹣∞,1)∪(1,+∞),当x<﹣1或x>1时,易知f(x)<0,故方程f(x)=1无解;故只需考虑﹣1≤x≤1的情况,f′(x)=•e﹣2x,当<a≤2时,f′(x)≥0,所以f(x)区间[﹣1,1)上是增函数,又易知f(0)=1,所以方程f(x)=1只有一个根0;当a>2时,由f′(x)=0可得x=±,且0<<1,由f′(x)>0可得﹣1≤x<﹣或<x<1,由f′(x)<0可得﹣<x<,所以f(x)单调增区间为[﹣1,﹣)和(,1)上是增函数,f(x)单调减区间为(﹣,),由上可知f()<f(0)<f(﹣),即f()<1<f(﹣),在区间(﹣,)上f(x)单调递减,且f(0)=1,所以方程f(x)=1有唯一的根x=0;在区间[﹣1,﹣)上f(x)单调递增,且f(﹣1)=0<1,f(﹣)>1,所以方程f(x)=1存在唯一的根0在区间(,1)上,由f()<1,x→1时,f(x)→+∞,所以方程f(x)=1有唯一的根;综上所述:当0<a≤2时,方程f(x)=1有1个根;当a>2时,方程f(x)=1有3个根.。

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案理科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019•乐山调研]若与互为共轭复数,则的值为()A.B.C.D.2.[2019•济南外国语]已知集合,,则()A.B.C.D.3.[2019•九江一模] 的部分图像大致为()A.B.C.D.4.[2019•榆林一模]已知向量,满足,,,则()A.2 B.C.D.5.[2019•湘潭一模]以双曲线的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为()A.B.C.D.6.[2019•武邑中学]在中,角,,的对边分别为,,,若,,,则角()A.B.C.或D.或7.[2019•新乡调研]某医院今年1月份至6月份中,每个月为感冒来就诊的人数如下表所示:()上图是统计该院这6个月因感冒来就诊人数总数的程序框图,则图中判断框、执行框依次应填()A.;B.;C.;D.;8.[2019•优创名校联考]袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为()A.B.C.D.9.[2019•成都一诊]在各棱长均相等的四面体中,已知是棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.10.[2019•长沙一模]已知是函数图象的一个最高点,,是与相邻的两个最低点.设,若,则的图象对称中心可以是()A.B.C.D.11.[2019•湖北联考]已知偶函数满足,现给出下列命题:①函数是以2为周期的周期函数;②函数是以4为周期的周期函数;③函数为奇函数;④函数为偶函数,则其中真命题的个数是()A.1 B.2 C.3 D.412.[2019•宜昌调研]已知椭圆:上存在、两点恰好关于直线:对称,且直线与直线的交点的横坐标为2,则椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.[2019•泉州质检]若函数的图象在点处的切线过点,则______.14.[2019•湖北联考]设,满足约束条件,则的最大值为____.15.[2019•镇江期末]若,,则_______.16.[2019•遵义联考]已知三棱锥中,面,且,,,,则该三棱锥的外接球的表面积为__________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019•潍坊期末]已知数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)数列满足,求数列的前项和.18.(12分)[2019•开封一模]大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:分数人数25 50 100 50 25参加自主招生获得通过的概率(1)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过的前提下认为学习先修课程与优等生有关系?优等生非优等生总计学习大学先修课程250没有学习大学先修课程总计150(2)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.(i)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;(ii)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:参考公式:,其中.19.(12分)[2019•湖北联考]如图,在四棱锥中,,,,且,.(1)证明:平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.20.(12分)[2019•河北联考]在直角坐标系中,直线与抛物线交于,两点,且.(1)求的方程;(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由.21.(12分)[2019•泉州质检]已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2019•九江一模]在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(,),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为.(1)求,的极坐标方程;(2)设点的极坐标为,求面积的最小值.23.(10分)【选修4-5:不等式选讲】[2019•湘潭一模]设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.2019届高三第二次模拟考试卷理科数学(二)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】∵,,又与互为共轭复数,∴,,则.故选A.2.【答案】C【解析】∵集合,,∴,,∴.故选C.3.【答案】B【解析】,则函数是偶函数,图象关于轴对称,排除A,D,,排除C,故选B.4.【答案】A【解析】根据题意得,,又,∴,∴,∴.故选A.5.【答案】D【解析】由题可知,所求双曲线的顶点坐标为,又∵双曲线的渐近线互相垂直,∴,则该双曲线的方程为.故选D.6.【答案】A【解析】∵,,,∴由正弦定理可得,∵,由大边对大角可得,∴解得.故选A.7.【答案】C【解析】∵要计算1月份至6月份的6个月的因感冒来就诊的人数,∴该程序框图要算出所得到的和,①当时,,没有算出6个月的人数之和,需要继续计算,因此变成2,进入下一步;②当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成3,进入下一步;③当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成4,进入下一步;④当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成5,进入下一步;⑤当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成6,进入下一步;⑥当时,用前一个加上,得,刚好算出6个月的人数之和,因此结束循环体,并输出最后的值,由以上的分析,可得图中判断框应填“”,执行框应填“”.故选C.8.【答案】C【解析】∵随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.9.【答案】C【解析】设各棱长均相等的四面体中棱长为2,取中点,连结,,∴是棱的中点,∴,∴是异面直线与所成角(或所成角的补角),,,∴,∴异面直线与所成角的余弦值为,故选C.10.【答案】D【解析】结合题意,绘图又,,∴周期,解得,∴,,令,得到,∴,令,,得对称中心,令,得到对称中心坐标为,故选D.11.【答案】B【解析】偶函数满足,即有,即为,,可得的最小正周期为4,故①错误;②正确;由,可得,又,即有,故为奇函数,故③正确;由,若为偶函数,即有,可得,即,可得6为的周期,这与4为最小正周期矛盾,故④错误.故选B.12.【答案】C【解析】由题意可得直线与直线的交点,,设,,则,,∵、是椭圆上的点,∴①,②,①﹣②得:,∴,∴,∴,∴,故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】1【解析】函数,可得,∴,又,∴切线方程为,切线经过,∴,解得.故答案为1.14.【答案】5【解析】作出,满足约束条件,所示的平面区域,如图:作直线,然后把直线向可行域平移,结合图形可知,平移到点时最大,由可得,此时.故答案为5.15.【答案】【解析】由得,即,又,解得,∴.16.【答案】【解析】取的中点,连结、,∵平面,平面,∴,可得中,中线,由,,,可知,又∵,、是平面内的相交直线,∴平面,可得,因此中,中线,∴是三棱锥的外接球心,∵中,,,∴,可得外接球半径,因此,外接球的表面积,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)∵,,成等差数列,∴,当时,,∴,当时,,,两式相减得,∴,∴数列是首项为,公比为的等比数列,∴.(2),∴,∴.18.【答案】(1)见解析;(2)见解析.【解析】(1)列联表如下:优等生非优等生总计学习大学先修课程50 200 250没有学习大学先修课程100 900 1000总计150 **** ****由列联表可得,因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.(2)(i)由题意得所求概率为.(ii)设获得高校自主招生通过的人数为,则,,,1,2,3,4,∴的分布列为0 1 2 3 4估计今年全校参加大学先修课程的学生获得大学自主招生通过的人数为.19.【答案】(1)见证明;(2)见解析.【解析】(1)∵在底面中,,,且,∴,,∴,又∵,,平面,平面,∴平面,又∵平面,∴,∵,,∴,又∵,,平面,平面,∴平面.(2)方法一:在线段上取点,使,则,又由(1)得平面,∴平面,又∵平面,∴,作于,又∵,平面,平面,∴平面,又∵平面,∴,又∵,∴是二面角的一个平面角,设,则,,这样,二面角的大小为,即,即,∴满足要求的点存在,且.方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系,且由(1)知是平面的一个法向量,设,则,,∴,,设是平面的一个法向量,则,∴,令,则,它背向二面角,又∵平面的法向量,它指向二面角,这样,二面角的大小为,即,即,∴满足要求的点存在,且.20.【答案】(1);(2)在轴的正半轴上存在一点,使得的外心在上.【解析】(1)联立,得,则,,从而.∵,∴,即,解得,故的方程为.(2)设线段的中点为,由(1)知,,,则线段的中垂线方程为,即.联立,得,解得或,从而的外心的坐标为或.假设存在点,设的坐标为,∵,∴,则.∵,∴.若的坐标为,则,,则的坐标不可能为.故在轴的正半轴上存在一点,使得的外心在上.21.【答案】(1)见解析;(2).【解析】解法一:(1),①当时,↘极小值↗∴在上单调递减,在单调递增.②当时,的根为或.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.若,即,在上恒成立,∴在上单调递增,无减区间.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.综上:当时,在上单调递减,在单调递增;当时,在,上单调递增,在上单调递减;当时,在上单调递增,无减区间;当时,在,上单调递增,在上单调递减.(2)∵,∴.当时,恒成立.当时,.令,,设,∵在上恒成立,即在上单调递增.又∵,∴在上单调递减,在上单调递增,则,∴.综上,的取值范围为.解法二:(1)同解法一;(2)令,∴,当时,,则在上单调递增,∴,满足题意.当时,令,∵,即在上单调递增.又∵,,∴在上有唯一的解,记为,↘极小值↗,满足题意.当时,,不满足题意.综上,的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1);;(2)2.【解析】(1)∵曲线的参数方程为(为参数),∴曲线的普通方程为,∴曲线的极坐标方程为,设点的极坐标为,点的极坐标为,则,,,,∵,∴,∴,,∴的极坐标方程为.(2)由题设知,,当时,取得最小值为2.23.【答案】(1);(2).【解析】(1)∵,∴的解集为.(2)∵,∴,即,则,∴.。

2019年高考数学模拟试题含答案

2019年高考数学模拟试题含答案

---- 专业文档 - 可编辑 --2019 年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并收回。

一.选择题:本大题共12 个小题,每小题 5 分,共60 分。

在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合 A { x x 2 2x 3 0} , B { 2,3,4} ,则 (C R A) B = A. { 2,3} B. { 2,3,4} C. { 2} D.2.已知 i 是虚数单位,z 1 ,则 z z =3 i1 1A. 5 B. 10 C.D.10 5 3.执行如图所示的程序框图,若输入的点为P(1,1) ,则输出的n 值为A. 3 B.4 C. 5 D. 6ED C--FA B(第 3 题)(第 4 题)4.如图,ABCD 是边长为8 的正方形,若DE 1 EC ,且 F 为 BC 的中点,则 EA EF3高三数学(理)科试题(第 1 页共 6 页)------ 专业文档 - 可编辑 --A. 10 B.12 C.16 D. 20x y 25.若实数 x, y 满足 y x 1 ,则 z 2 x 8 y的最大值是y 0A. 4 B.8 C.16 D. 326.一个棱锥的三视图如右图,则该棱锥的表面积为A. 16 5 8 2 32B. 32 5 32C. 16 2 32D. 16 5 16 2 327. 5 张卡片上分别写有0, 1, 2, 3 , 4,若从这 5 张卡片中随机取出 2 张,则取出的 2 张卡片上的数字之和大于 5 的概率是1 1 3 4A.B. C . D .10 5 10 58.设 Sn 是数列 { an } 的前 n 项和,且 a1 1, an 1 S n Sn 1 ,则 a5 =A.9.函数1 1B.1 C . D .1 30 30 20 201 xf x ln 的大致图像为1 x--10. 底面为矩形的四棱锥P ABCD 的体积为8,若 PA 平面 ABCD , 且 PA 3 ,则四棱锥P ABCD 的外接球体积最小值是高三数学(理)科试题(第 2 页共 6 页)------ 专业文档 - 可编辑 --25A. B . 125 C . 125 D . 256 611. 已知抛物线 y2 2 px p 0 , 过焦点且倾斜角为30 °的直线交抛物线于A,B 两点,以 AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为3 3A. x 1 B . x C. x D . x 32 312. 已知函数 f ( x) x2ln x ( x 2 ),函数g( x) x 1 ,直线y t 分别与两函数交于2 2A, B 两点,则AB 的最小值为1 3A.B. 1 C .D. 22 2二.填空题:本大题共 4 小题,每小题 5 分,共20 分.13. 设样本数据 x1,x2,... ,x2018的方差是 5,若 y i3x i1( i 1,2,...,2018 ),则 y1,y2, ... ,y2018的方差是 ________14.已知函数 f ( x) sin x3 cos x (0 ),若 3 ,则方程 f (x)1 在 (0, ) 的实数根个数是 _____15.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,... , 9 填入 3 3 的方格内,使三行、三列、两对角线的三个数之和都等于15 ( 如图) . 一般地,将连续的正整数1, 2,3,?,n2填入 n n 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方 . 记 n 阶幻方的一条对角线上数的和为N n ( 如:在 3 阶幻方中,N315 ) ,则 N5 =_______--ABC 中,内角A, B, C 所对的边分别π16. 已知为 a , b , c,且 c 1 , C .3高三数学(理)科试题(第 3 页共 6 页)------ 专业文档 - 可编辑 --若 sin C sin( A B ) sin 2B ,则ABC 的面积为三、解答题:本大题共 6 小题,其中17-21 小题为必考题,每小题12 分,第 22 — 23 题为选考题,考生根据要求做答,每题10 分.17.( 本小题满分12 分)设数列 { a n } 是公差为 d 的等差数列.( Ⅰ ) 推导数列{ a n } 的通项公式;( Ⅱ ) 设 d 0 ,证明数列{ a n1} 不是等比数列.18. ( 本小题满分12 分)某中学为了解全校学生的上网情况,在全校随机抽取了40 名学生 ( 其中男、女生各占一半) 进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为 5 组: [0 ,5), [5 , 10) , [10 , 15) , [15 ,20) , [20 , 25] ,得到如图所示的频率分布直方图.--( Ⅰ ) 写出女生组频率分布直方图中 a 的值;( Ⅱ ) 在抽取的40 名学生中从月上网次数不少于20 的学生中随机抽取 2 人,并用X 表示随机抽取的 2 人中男生的人数,求X 的分布列和数学期望.19.( 本小题满分12 分)在直三棱柱ABC A1B1C1中, AB AC AA1 2 , BA CA 。

河北省涞水波峰中学高三理科数学专练试题 精品

河北省涞水波峰中学高三理科数学专练试题   精品

理科专练试题1.已知全集{}9,U x x x N +=∈≤,集合{}1,2,3A =,{}3,4,5,6B =,则()UA B ⋃=ð( )A .{}3B .{}7,8C .{}7,8,9D .{}1,2,3,4,5,62.已知i 是虚数单位,若()113z i i +=+,则z =( )A .2i +B .2i -C .1i -+D .1i --3.若3sin 052a πα⎛⎫= ⎪⎝⎭<<,则sin 6a π⎛⎫+= ⎪⎝⎭( ) AD4.已知命题p ,q 是简单命题,则“p q ∨是真命题”是“p ⌝是假命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分有不必要条件5.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE CD =,若点P 为CD 的中点,且AP AB AE λμ=+,则λμ+=( )A .3B .52C .2D .16.如图,是某算法的程序框图,当输出29T >时,正整数n 的最小值是( )A .2B .3C .4D .57.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是( )A .23B .35C .12D .258.已知数列{}n a 满足()()1116,26,n n a n n a a n -⎧⎛⎫-+ ⎪⎪=⎝⎭⎨⎪⎩<≥若对于任意的*n N ∈都有1n n a a +>,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .17,212⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .7,112⎛⎫ ⎪⎝⎭9.已知不等式2cos 0444x x x m +-≥对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是( )A .(,-∞B .⎛-∞ ⎝⎦C .⎣D .)+∞ 10.如图,在三棱锥A BCD -中,已知三角形ABC 和三角形DBC 所在平面互相垂直,AB BD =,23CBA CBD π∠=∠=,则直线AD 与平面BCD 所角的大小是( ) A .6π B .4π C .3π D .2π11.椭圆()222210x y a b a b+=>>的一个焦点为F ,该椭圆上有一点A ,满足OAF ∆是等边三角形(O 为坐标原点),则椭圆的离心率是( )A 1B .21 D .212.已知函数()y f x =与()y F x =的图象关于y 轴对称,当函数()y f x =和()y F x =在区间[],a b 同时递增或同时递减时,把区间[],a b 叫做函数()y f x =的“不动区间”,若区间[]1,2为函数2x y t =-的“不动区间”,则实数t 的取值范围是( )A .(]0.2B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,22⎡⎤⎢⎥⎣⎦D .[)1,24,2⎡⎤⋃+∞⎢⎥⎣⎦13.二项式42x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 .14.学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C 或D 作品获得一等奖”;乙说:“B 作品获得一等奖”;丙说:“A ,D 两项作品未获得一等奖”;丁说:“是C 作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 .15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的面积为 .16.若一直线与圆22240x y x y a +--+=和函数24x y =的图象相切于同一点,则a 的值为 .。

河北省涞水波峰中学高三数学12月模拟考试试题(二)理

河北省涞水波峰中学高三数学12月模拟考试试题(二)理

河北省涞水波峰中学2017届高三数学12月模拟考试试题(二)理一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={x | y =lg (x ﹣1)},集合2{|2}B y y x ==-+,则A∩B 等于 A . (1,2] B . (1,2) C .[1,2) D .[1,2] 2. 已知a =(4,2),b =(x,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3 3.若实数a ,b 满足a +b =2,则3a+3b的最小值是( )A .18B .6C .2 3D .3 34. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行 5. 数列{(-1)n(2n -1)}的前2 016项和S 2 016等于( )A .-2 016B .2 016C .-2 015D .2 015 6. 若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6 7. 设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则 ()()()2,,3f ff π--的大小关系是A. ()()()23f f f π-<-<B.()()()23f f f π<-<-C. ()()()23f ff π-<<- D.()()()32f f f π-<-<8. 某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A .4B .2 2 C.203D .89. 已知向量a =(cosθ,sinθ),向量b =(3,-1),则|2a -b|的最大值,最小值分别是( )A .42,0B .4,4 2C .16,0D .4,010.已知P 是△ABC 所在平面内一点,20PB PC PA ++=,现将一粒红豆随机撒在△ABC 内,则红豆落在△PBC 内的概率是A .14B .13C .12D .2311. 《九章算术》是我国古代著名数学经典。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省涞水波峰中学2019届高考数学模拟试题(2)理
一.选择题(共12小题)
1.设全集为实数集R,集合A={x|x2<4},B={x|3x>1},则A∩(∁R B)=()A.{x|﹣2≤x≤0} B.{x|﹣2<x≤0} C.{x|x<1} D.{x|x≤0}
2.已知i为虚数单位,设z=1+,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限
3.二项式的展开式中第9项是常数项,则n的值是()A.4 B.8 C.11 D. 12
4.给出如下四个命题:
①“a≠0”是“a2+a≠0”的必要不充分条件;
②命题“若a>b,则2a>2b﹣1”的否命题为“若a<b,则2a≤2b﹣1”;
③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1<1”;其中正确的命题的个数是()
A.0 B.1 C.2 D.3
5.某三棱锥的三视图如图所示,则该三棱锥的体积为()
A.B.C.D.4
6.某程序框图如图所示,若输出的S=26,则判断框内应填()
A.k>3?B.k>4?C.k>5?D.k>6?
7.设函数f(x)的定义域为A,且满足任意x∈A恒有f(x)+f(2﹣x)=2的函数是()A.f(x)=log2x B.f(x)=2x C.D.f(x)=x2
8.函数的部分图象不可能为()
A.B.
C.D.
9.已知,,向量与垂直,则实数λ的值为()A.﹣B.C.﹣D.
10.部分省份在即将实施的新高考中将实行3+1+2模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二.小明与小芳都准备选物理,如果他们都对后面四科的选择没有偏好,则他们所考六科中恰有五科相同的概率为()
A .
B .
C .
D .
11.已知双曲线的一个焦点与抛物线的焦点重合,且与直线y =x ﹣1交于M ,N 两
点,若MN 中点的横坐标为
,则此双曲线的标准方程是( )
A .
B .
C .
D .
12.若直角坐标平面内的两点P 、Q 满足条件: ①P 、Q 都在函数y =f (x )的图象上;
②P 、Q 关于原点对称,则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”), 已知函数f (x )=,则此函数的“友好点对”有( )
A .0对
B .1对
C .2对
D .3对
二.填空题(共3小题)
13.过点P (﹣2,3)的抛物线的标准方程 14.设x ,y 满足约束条件,则z =(x +1)2+y 2
的最大值为
15.已知直线l :y =kx 与圆x 2
+y 2
﹣6x ﹣8y +16=0相交于A ,B 两点,若|AB |=4,则k
= .
16.为了计算不可直接测量的A ,B 两点间的距离,另选一点C ,测得AC =2,∠BAC =75°,∠ACB =60°,则AB = . 三.解答题(共5小题)
17.在△ABC 中,内角A ,B ,C 所对的边分别a,b,c ,且bcosA-acosB=2c (1)证明:tanB=-3tanA
(2)若,32
22bc a c b +=+且△ABC 的面积为3,求a 的值。

18.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:平面PAB⊥平面PAD;
(2)求二面角P﹣AB﹣D的大小.
19.(13分)国际上常用恩格尔系数(食品支出总额占个人消费支出总额的比重)反映一个国家或家庭生活质量的高低,恩格尔系数越低,生活质量越高.联合国根据恩格尔系数的大小,对世界各国的生活质量有一个划分标准如下:
下表记录了我国在改革开放后某市A,B,C,D,E五个家庭在五个年份的恩格尔系数.
(Ⅰ)从以上五个家庭中随机选出一个家庭,求该家庭在2008年和2018年都达到了“富裕”或更高生活质量的概率;
(Ⅱ)从以上五个家庭中随机选出三个家庭,记这三个家庭在2018年达到“富裕”或更高生活质量的个数为X ,求X 的分布列;
(Ⅲ)如果将“贫穷”,“温饱”,“小康”,“相对富裕”,“富裕”,“极其富裕”六种生活质量分别对应数值:0,1,2,3,4,5.请写出A ,B ,C ,D ,E 五个家庭在以上五个年份中生活质量方差最大的家庭和方差最小的家庭(结论不要求证明).
20.已知椭圆,右焦点F 的坐标为(2,0),且点在椭
圆C 上.
(Ⅰ)求椭圆C 的方程及离心率;
(Ⅱ)过点F 的直线交椭圆于A ,B 两点(直线不与x 轴垂直),已知点A 与点P 关于x 轴对称,证明:直线PB 恒过定点,并求出此定点坐标. 21.已知函数f (x )=axe x
﹣x 2
﹣2x .
(Ⅰ)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;
(Ⅱ)当x >0时,若曲线y =f (x )在直线y =﹣x 的上方,求实数a 的取值范围. 22. 在直角坐标系xoy 中,倾斜角为α的直线l 的参数方程为⎩⎨
⎧+==α
α
sin 1cos x t y t (t 为参
数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为
0cos 32sin 2=-θθρ。

(1)写出直线l 的普通方程和曲线C 的直角坐标方程;
(2)已知点P (0,1),点Q (3,0)。

直线l 过点Q 与曲线C 相交A ,B 两点,设线段
AB的中点为M,求PM的值。

相关文档
最新文档