高一数学必修2章节测试--第三单元测试(4)1(1)
新人教版高中数学必修第二册第三单元《立体几何初步》测试(含答案解析)(4)
一、选择题1.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥2.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若αβ⊥,m β⊥,则//m αB .若//m α,n m ⊥,则n α⊥C .若//m α,//n α,m β⊂,n β⊂,则//αβD .若//m β,m α⊂,n αβ=,则//m n3.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA =,则V 的最大值是( )A .4πB .92πC .1256πD .323π 4.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π5.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是( )A .αβ⊥,m β⊂B .//αβ,n β⊥C .αβ⊥,//n βD .//m α,n m ⊥ 6.已知直三棱柱ABC -A 1B 1C 1的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( )A .25︰1B .1︰25C .1︰5D .5︰17.已知四边形ABCD 为矩形,24AB AD ==,E 为AB 的中点,将ADE 沿DE 折起,连接1A B ,1A C ,得到四棱锥1A DEBC -,M 为1A C 的中点,在翻折过程中,下列四个命题正确的序号是( )①//BM 平面1A DE ;②三棱锥M DEC -的体积最大值为223; ③5BM =;④一定存在某个位置,使1DE A C ⊥;A .①②B .①②③C .①③D .①②③④ 8.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线9.如图,在长方体1111ABCD A B C D -中,18AA =,3AB =,8AD =,点M 是棱AD 的中点,点N 是棱1AA 的中点,P 是侧面四边形11ADD A 内一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .17,5]B .[4,5]C .[3,5]D .17] 10.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC ∆的中心O ,则1AC 与底面ABC 所成角的余弦值等于( )A .23B 7C 6D 5第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥ B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥12.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π; ④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为62+. 其中正确结论的个数是( )A .1B .2C .3D .413.用一根长为18cm 的铁丝围成正三角形框架,其顶点为,,A B C ,将半径为2cm 的球放置在这个框架上(如图).若M 是球上任意一点,则四面体MABC 体积的最大值为( )A 333B 33cmC .333cmD .33cm 14.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m二、解答题15.如图,已知三棱柱111ABC A B C -的侧面11BCC B 为矩形,2AB AC ==2BC =,D ,E 分别为BC 、11B C 的中点,过BC 作平面α分别交11A B 、1A E 、11A C 于点M 、F 、N .(1)求证:平面BCNM ⊥平面1AA ED .(2)若Q 为线段AD 上一点,3AD AQ =,1//A Q 平面BCNM ,则当1A Q 为何值时直线BM 与平面1AA ED 所成角的正弦值为13(请说明理由). 16.如图,BC 为圆O 的直径,D 为圆周上异于B 、C 的一点,AB 垂直于圆O 所在的平面,BE AC ⊥于点E ,BF AD ⊥于点F .(1)求证:BF AC ⊥;(2)若2AB BC ==,60CBD ∠=︒,求三棱锥B DEF -的体积.17.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.18.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.19.如图,在组合体中,ABCD -A 1B 1C 1D 1是一个长方体,P -ABCD 是一个四棱锥.AB =2,BC =3,点P ∈平面CC 1D 1D 且PD =PC =2(1)证明:PD ⊥平面PBC ;(2)求直线PA 与平面ABCD 所成角的正切值;(3)若AA 1=a ,当a 为何值时,PC //平面AB 1D .20.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.21.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)22.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;23.如图,四边形ABCD 是正方形,MA ⊥平面ABCD ,//MA PB ,且2PB AB ==.(1)求证://DM 平面PBC ;(2)求点C 到平面 APD 的距离. 24.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.25.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线45DBP ∠=,求四棱锥P ABCD -的体积.26.如图,已知四棱锥的底面是正方形,且边长为4cm ,侧棱长都相等,E 为BC 的中点,高为PO ,且30OPE ∠=︒,求该四棱锥的侧面积和表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.2.D解析:D【分析】对于A ,B 选项均有可能为线在面内,故错误;对于C 选项,根据面面平行判定定理可知其错误;直接由线面平行性质定理可得D 正确.【详解】若αβ⊥,m β⊥,则有可能m 在面α内,故A 错误;若//m α,n m ⊥,n 有可能在面α内,故B 错误;若一平面内两相交直线分别与另一平面平行,则两平面平行,故C 错误.若//m β,m α⊂,n αβ=,则由直线与平面平行的性质知//m n ,故D 正确.故选D.【点睛】本题考查的知识点是,判断命题真假,比较综合的考查了空间中直线与平面的位置关系,属于中档题. 3.D解析:D【分析】先保证截面圆与ABC 内切,记圆O 的半径为r ,由等面积法得()68AC AB BC r ++=⨯,解得2r .由于三棱柱高为5,此时可以保证球在三棱柱内部,球的最大半径为2,由此能求出结果.【详解】解:如图,由题意可知,球的体积要尽可能大时,球需与三棱柱内切.先保证截面圆与ABC 内切,记圆O 的半径为r , 则由等面积法得1111 (682222)ABC S AC r AB r BC r =++=⨯⨯△, 所以()68AC AB BC r ++=⨯,又因为6AB =,8BC =,所以10AC =,所以2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,若r 增大,则无法保证球在三棱柱内,故球的最大半径为2,所以3344322333V r πππ==⋅=. 故选:D .【点评】本题考查球的最大体积的求法,考查空间想象能力,属于中档题.4.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 5.B解析:B【分析】n α⊥必有n 平行α的垂线,或者n 垂直α的平行平面,依次判定选项即可.【详解】解:αβ⊥,m β⊂,不能说明n 与α的关系,A 错误;//αβ,n β⊥能够推出n α⊥,正确;αβ⊥,//n β可以得到n 与平面α平行、相交,所以不正确.//m α,n m ⊥则n 与平面α可能平行,所以不正确.故选:B .【点睛】本题考查直线与平面垂直的判定,考查空间想象能力,是基础题.6.D解析:D【分析】根据题意得到三棱柱的高是内切球的直径,也是底面三角形内切圆的直径,根据等边三角形的性质得到内切球和外接球的半径,计算表面积的比值.【详解】设点O 是三棱柱外接球和内切球的球心,点M 是底面等边三角形的中心,点N 是底边AB 的中点,连结OM ,MN ,AM ,OA ,设底面三角形的边长为a ,则3MN a =,3MA a =, 因为三棱锥内切球与各面都相切,所以三棱柱的高是内切球的直径,底面三角形内切圆的直径也是三棱柱内切球的直径,所以OM MN ==,即三棱柱内切球的半径r =,3AM a =,所以3OA a ==,即三棱柱外接球的半径R =, 所以内切球的表面积为22443r a ππ=,外接球的表面积222043S R a ππ==, 所以三棱柱外接球和内切球表面积的比值为22204:5:133a a ππ=故选:D 【点睛】本题考查空间几何体的内切球和外接球的表面积,重点考查空间想象,计算能力,属于中档题型.7.B解析:B 【分析】①通过线面平行的判定定理判断正确性;②求得三棱锥M DEC -的体积最大值来判断正确性;③结合①判断正确性;④利用反证法判断正确性. 【详解】①,设F 是AD 的中点,折叠过程中1F 是1A D 的中点,连接11,F M EF , 由于M 是1A C 的中点,所以1F M 是三角形1A CD 的中位线, 所以111//,2F M CD F M CD =.由于E 是AB 的中点,所以1//,2BE CD BE CD =. 所以11//,F M BE F M BE =,所以四边形1BEF M 是平行四边形, 所以1//BM EF ,由于BM ⊄平面1A DE ,1EF ⊂平面1A DE , 所以//BM 平面1A DE ,所以①正确. ②,由于M 是1A C 的中点,所以112M DEC A DEC V V --=. 在折叠过程中,三角形DEC 的面积为定值14242⨯⨯=, 当平面1A DC ⊥平面ABCD 时,1A 距离平面ABCD 的距离最大.过A 作AO DE ⊥,交DE 于O ,连接1A O ,则1AO DE ⊥. 当平面1A DC ⊥平面ABCD 时,由于平面1A DC 平面ABCD DE =,所以1A O ⊥平面ABCD .22222DE =+=则1122222AE AD AE AD DE AO AO DE ⋅⋅=⋅⇒===则12AO =.所以三棱锥1A DEC -体积的最大值为1424233⨯⨯=, 所以三棱锥M DEC -体积的最大值为142222⨯=.所以②正确. ③,由①知221415BM EF EF AE AF ===+=+=,所以③正确.④,由于22222,4,DE CE CD DE CE CD ===+=,所以DE CE ⊥.若1DE A C ⊥,1CE AC C ⋂=, 则DE ⊥平面1A CE ,则1DE A E ⊥,根据折叠前后图象的对应关系可知14DEA DEA π∠=∠=,与1DE A E ⊥矛盾,所以④错误. 综上所述,正确的为①②③. 故选:B【点睛】本小题主要考查线面平行、几何体体积、线线垂直等知识.8.D解析:D 【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案. 【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确. 故选:D. 【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.9.A解析:A 【分析】取11A D 中点E ,取1DD 中点F ,连接EF 、1C E 、1C F ,证明平面//CMN 平面1C EF 后即可得P ∈线段EF ,找到取最值的情况求解即可得解. 【详解】取11A D 中点E ,取1DD 中点F ,连接EF 、1C E 、1C F , 由//EF MN ,1//C E CM ,1EFC E E =可得平面//CMN 平面1C EF ,P 是侧面四边形11ADD A 内一动点(含边界),1//C P 平面CMN ,∴P ∈线段EF ,∴当P 与EF 的中点O 重合时,线段1C P 长度取最小值1C O ,当P 与点E 或点F 重合时,线段1C P 长度取最大值1C E 或1C F , 在长方体1111ABCD A B C D -中,18AA =,3AB =,8AD =, 点M 是棱AD 的中点,点N 是棱1AA 的中点,∴221max 11345C P C E C F ===+=,42EF =,2221min 1125(22)17C P C O C E EO ==-=-=. ∴线段1C P 长度的取值范围是[17,5].故选:A.【点睛】本题考查了长方体的特征及面面平行的性质与判定,考查了空间思维能力,属于中档题.10.B解析:B 【分析】连接1,,,OA OB OC AC ,设侧棱与底面边长都等于a ,计算3AO OC ==,163A O a =,1AC a =,13AC a =,再根据点1C 到底面ABC 的距离等于点1A 到底面ABC 的距离,求解1AC 与底面ABC 所成角的正弦值,即可.【详解】如图所示,设三棱柱111ABC A B C -的侧棱与底面边长都等于a . 连接1,,,OA OB OC AC ,则33AO a OC ==. 在1Rt A OA ∆中,22211A A A O OA =+,得16A O a =. 在1Rt AOC ∆中,222211A C A O OC a =+=,即1AC a =, 则1A AC ∆为等边三角形,所以160A AC ∠=. 在菱形11ACC A 中,得111120,3AAC AC a ∠==.又因为点1C 到底面ABC 的距离等于点1A 到底面ABC 的距离16A O a =所以1AC 与底面ABC 62333aa=. 即1AC 与底面ABC 所成角的余弦值为73.故选:B 【点睛】本题考查直线与平面所成角的问题,属于中档题题.11.C解析:C 【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误. 故选:C. 【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.12.C解析:C 【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解. 【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 0,2222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===, 所以三棱锥P ABC -外接球的球心为D , 半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上, 则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=,根据余弦定理可得6221221cos1052BD +=+-⨯⨯⨯=, ④正确. 故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.13.D解析:D 【分析】由等边三角形的性质,求出ABC 内切圆半径3r cm =,其面积293ABCScm =,从而可求四面体MABC 的高max 3h =,进而可求出体积的最大值. 【详解】解:设球的圆心为O ,半径为R ,ABC 内切圆圆心为1O ,由题意知ABC 三边长为6cm ,则ABC 内切圆半径1cos3033r AB cm =⋅⋅︒=,则2211OO R r =-=, 所以四面体MABC 的高max 13h OO R =+=.因为223934ABCS AB cm =⋅=, 所以四面体MABC 体积的最大值3max max 1933ABCV S h cm =⋅=.故选:D. 【点睛】本题考查了三棱锥体积的求解.本题的难点是求出球心到三角形所在平面的距离.14.A解析:A 【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可. 【详解】由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确;在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、解答题15.(1)证明见解析(2)13AQ =,理由见解析 【分析】(1)先根据直线与平面垂直的判定定理证明BC ⊥平面1AA ED ,再根据平面与平面垂直的判定定理证明平面BCNM ⊥平面1AA ED ;(2)连DF ,可推得1A Q 与DF 平行且相等,在线段BD 上取点H ,使BH FM ==23,连FH ,可推得HFD ∠为直线BM 与平面1AA ED 所成角,利用正弦值可求得DF 的值,即可得1A Q 的值. 【详解】(1)因为AB AC =,BD DC =,所以BC AD ⊥, 又D ,E 分别为BC 、11B C 的中点,所以1//DE BB , 因为侧面11BCC B 为矩形,所以1BC BB ⊥,所以BC DE ⊥, 又AD DE D ⋂=,所以BC ⊥平面1AA ED ,因为BC ⊂平面BCNM ,所以平面BCNM ⊥平面1AA ED .(2)因为AB AC ==2BC =,所以222AB AC BC +=,所以AB AC ⊥,又D 为BC 的中点,112AD BC ==,因为3AD AQ =,所以13AQ =,23QD =,连接DF ,因为1//AQ 平面BCNM ,平面1A ADE 平面BCNM DF =,所以1//A Q DF ,因为1A A 与1B B 平行且相等,1B B 与DE 平行且相等,所以1A A 与DE 平行且相等,所以四边形1A ADE 为平行边形,所以1A F 与QD 平行且相等,所以四边形1A QDF 为平行四边形,所以1A Q 与DF 平行且相等,因为123A F QD ==,所以13EF =,所以2233FM BD ==, 在线段BD 上取点H ,使BH FM ==23,则21133DH =-=,连FH ,则四边形FMBH 为平行四边形,所以FH 与BM 平行且相等,因为BD ⊥平面1AA ED ,所以HFD ∠为直线BM 与平面1AA ED 所成角,所以1sin 3HFD ∠=,即13DH HF =,所以31HF DH ==, 所以2212219DF FH DH =-=-=122A Q DF ==. 【点睛】关键点点睛:(1)证明面面垂直的关键是找到线面垂直,利用直线与平面垂直的判定定理可证BC ⊥平面1AA ED ;(2)解题关键是找到直线BM 与平面1AA ED 所成角,通过计算可知,在线段BD 上取点H ,使BH FM ==23,连FH ,则HFD ∠为直线BM 与平面1AA ED 所成角. 16.(1)证明见解析;(23 【分析】(1)易证得CD ⊥平面ABD ,由线面垂直性质可得CD BF ⊥,利用线面垂直判定定理可证得BF ⊥平面ACD ,由线面垂直性质证得结论;(2)利用勾股定理可求得,AD BD 长,在ABD △中,利用面积桥可求得BF ,进而得到BDFS;由等腰三角形三线合一可知E 为AC 中点,由此确定E 到平面ABD 的距离;利用体积桥和三棱锥体积公式可求得结果. 【详解】 (1)AB 垂直于圆O 所在平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥,BC 为圆O 的直径,CD BD ∴⊥,又,BD AB ⊂平面ABD ,AB BD B =,CD平面ABD ,BF ⊂平面ABD ,CD BF ∴⊥,又BF AD ⊥,AD CD D =,,AD CD ⊂平面ACD ,BF ∴⊥平面ACD , AC ⊂平面ACD ,BF AC ∴⊥.(2)2BC =,60CBD ∠=︒,CD BD ⊥,1BD ∴=,由AB ⊥平面BCD ,CD ⊂平面BCD 知:AB BD ⊥,AD ∴==,111222ABDSAB BD AD BF BF ∴=⋅=⋅==,解得:5BF =,DF ∴===11122555BDFS DF BF ∴=⋅=⨯=, AB BC =,BE AC ⊥,E ∴为AC 中点,由(1)知:CD ⊥平面ABD ,E ∴到平面ABD 的距离为122CD =,13230B DEF E BDF BDF V V S--∴==⨯=. 【点睛】方法点睛:立体几何求解三棱锥体积的问题常采用体积桥的方式,将所求三棱锥转化为底面面积和高易求的三棱锥体积的求解问题.17.(1)证明见解析;(2)11. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦. 【详解】(1)证明:∵2AD DE ==,90ADE ∠=︒∴AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥又平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥,又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥, 又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE , 过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C - 平面ADE 的法向量1//n EB ,∴1(0,1,0)n =又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =,2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,22022220x x y z +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩∴平面BDC 的法向量2(1,1,3)n =--()12122221211cos ,111113n n n n n n ⋅∴===⋅⨯+-+ ∴平面ADE 与平面BDC 所成锐二面角的余弦值为1111. 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.18.(1)证明见解析;(239 【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得11122AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得115B C =,由2AB BC ==,120ABC ∠=︒得23AC =,由1CC AC ⊥,得113AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C .(2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD .由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由115B C =,1122AB =,1121AC =得1116cos 7C A B ∠=,111sin 7C A B ∠=, 所以13CD =,故11139sin C D C AC AD ∠==. 因此,直线1AC 与平面1ABB 所成的角的正弦值是39.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 19.(1)证明见解析;(2)10;(3)当a =2时,PC //平面AB 1D . 【分析】(1)先证PD ⊥PC ,再由线面垂直的性质证得BC ⊥PD ,运用线面判定方法即可证明结果;(2)由题意先作出线面角,运用勾股定理计算三角形边长,最后求出线面角得正切值;(3)运用线面平行得判定定理证明即可.【详解】(1)证明:∵PD =PC =2,CD =AB =2,∴△PCD 为等腰直角三角形,所以PD ⊥PC .又∵ABCD -A 1B 1C 1D 1是一个长方体,∴ BC ⊥平面CC 1D 1D ,而P ∈平面CC 1D 1D ,∴ PD ⊂平面CC 1D 1D ,所以BC ⊥PD .又∵PC ∩BC =C ,∴ PD ⊥平面PBC .(2)如图,过P 点作PE ⊥CD ,连接AE .∵平面ABCD ⊥平面PCD ,所以PE ⊥平面ABCD ,∴∠PAE 就是直线PA 与平面ABCD 所成的角.又∵PD =PC 2,PD ⊥PC ,所以PE =1,DE =1,所以2223110AE AD DE =+=+=∴10tan 10PE PAE AE ∠=== ∴直线PA 与平面ABCD 10 (3)当a =2时,PC //平面AB 1D .理由如下:连接C 1D ,∵a =2,∴四边形CC 1D 1D 是一个正方形,∴∠C 1DC =45°,而∠PDC =45°,∴∠PDC =90°,所以C 1D ⊥PD .又∵PC ⊥PD ,C 1D 与PC 在同一个平面内,∴PC //C 1D .又∵C 1D ⊂平面AB 1C 1D∴PC //平面AB 1C 1D∴PC //平面AB 1D .【点睛】方法点睛:在证明线面垂直或者线面平行时运用其判定定理进行证明,找线线垂直的方法有:(1)运用勾股定理逆定理;(2)已知线面垂直,由其性质得线线垂直;(3)在圆中直径所对的圆周角(4)三角形相似找线线平行的方法有:(1)有中点找中点,构造三角形中位线或者平行四边形;(2)线面平行的性质定理;(3)直线平行的条件(同位角、内错角等知识).20.(1)证明见解析;(2)7. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明.(2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离7d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,22113AO AA AO =-=2211115OB B C OC =-= 221122AB AO OB =+=,∵11AA B 中,11122A B AB ==,12AA =, ∴117AA B S = ∴1112237323d ⨯⨯⨯=, 解得217d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B 所成角的正弦值为:1121sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.21.(1)截面见解析,面积为2;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为22;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠,因为111222442AG A D ===,111122A H AC ==,所以1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.22.(1)证明见解析;(2)62;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =22×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=,解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.23.(1)证明见解析;(2.【分析】(Ⅰ)利用面面平行的判定定理证明平面//AMD 平面BPC ,再利用面面平行的性质定理即可证明//DM 平面PBC ;(2)先证明AD ⊥平面ABPM ,设点C 到平面APD 的距离为d ,利用等体积法得13P ACD C APD APD V V d S --==⋅△,通过计算即可得d . 【详解】(Ⅰ)因为四边形ABCD 是正方形,所以//BC AD ,又BC ⊂平面PBC ,AD ⊄平面PBC ,//AD 平面PBC ,因为//MA PB ,同理可证//MA 平面PBC ,,,AD MA A AD MA ⋂=⊂平面AMD ,所以平面//AMD 平面PBC ,又因为DM ⊂平面AMD ,所以//DM 平面PBC ;(2)因为AM ⊥平面ABCD ,∴AM ⊥AD ,PB ⊥平面ABCD ,又∵AD ⊥AB ,AM AB A =,∴AD ⊥平面ABPM ,∴AD ⊥AP又AP =设点C 到平面APD 的距离为d ∵11142223323P ACD ACD V PB S -=⋅=⨯⨯⨯⨯=△ 又∵13P ACD C APD APD V V d S --==⋅△ 122APD S =⨯⨯=△∴142233d ⨯=; ∴2d =即点C 到平面APD 的距离为2【点睛】方法点睛:证明直线与平面平行可通过证明直线与直线平行或平面与平面平行来证明. 24.(I)证明见解析;(II)3 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EFAP =,∵//FE AP =,∴四边形FAPE 是平行四边形,∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥,由AB AD ⊥,可得PC AD ⊥,设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 ,∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE .(Ⅱ)解:取Q CD 为的中点,连结,PQ EQ ,∵CE DE =,∴.EQ CD ⊥∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, 2EP PQ EQ a PQ a ==⊥,,.于是在Rt EPQ △中,cos PQ EQP EQ ∠==∴二面角A CD E --的余弦值为3. 【点睛】 方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值).25.(1)证明见解析;(2 【分析】(1)证明AC BD ⊥,PD AC ⊥,结合线面垂直的判定定理得出AC ⊥平面PBD ; (2)求出菱形ABCD 的面积,结合PD ⊥平面ABCD ,利用棱锥的体积公式得出四棱锥P ABCD -的体积.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥.又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥.又PD BD D ⋂=,PD ⊂平面PBD ,BD ⊂平面PBD ,故AC ⊥平面PBD ;(2)因为45DBP ∠=,PD ⊥平面ABCD因此2BD PD ==.又2AB AD ==所以菱形ABCD 的面积为sin6023S AB AD =⋅⋅=故四棱锥P ABCD -的体积13V S PD =⋅=. 【点睛】本题主要考查了证明线面垂直以及求棱锥的体积,属于中档题.26.()232cm ,()248cm。
高一数学必修2第三章检测试卷及答案
请浏览后下载,资料供参考,期待您的好评与关注!高一数学必修2第三章数学试卷考试时间:120分钟 总分150分一、选择题(本大题共12个题,每小题5分,共60分,每题只有一个正确答案)1.若直线x =1的倾斜角为 α,则 α( ). A .等于0B .等于πC .等于2π D .不存在2.图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ). A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2(第2题)3.已知直线l 1经过两点(-1,-2)、(-1,4),直线l 2经过两点(2,1)、(x ,6),且l 1∥l 2,则x =( ).A .2B .-2C .4D .14.已知直线l 与过点M (-3,2),N (2,-3)的直线垂直,则直线l 的倾斜角是( ). A .3π B .32π C .4π D .43π 5.如果l 的一般式方程为012=+-y x ,则直线l 不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A (2,a )(a >0)到直线l:03=+-y x 的距离为1,则a 的值为( )A .21-- B.21+- C. 21- D.21+7.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ).A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =08.直线l 1:x +a 2y +6=0和直线l 2 : (a -2)x +3ay +2a =0没有公共点,则a 的值 是( ).A .3B .-3C .1D .-19. 直线0=++c by ax 的倾斜角为135°,则b a ,满足 ( )A. 1=+b aB. 1=-b aC. 0=+b aD. 0=-b a 10.到直线0143=--y x 的距离为2的直线方程为 ( ) A .01143=--y x B. 01143=+-y xC .094301143=+-=--y x y x 或 D.094301143=+-=+-y x y x 或11. 设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=012. 点),(y x P 在直线04=-+y x 上,则22y x +的最小值是( ) A. 8 B. 22 C.2 D.16 二、填空题(本大题共四个小题,每题5分,共20分)13.若三点A (-2,3),B (3,-2),C (21,m )共线,则m 的值为 . 14.已知0>m ,则点)2,1(m m p -到直线的x y =的距离为 . 15.已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为 .16.已知点A (2,3)、B (1-,2),则AB = .班级 姓名 得分……密……………………封……………………线……………………………………请浏览后下载,资料供参考,期待您的好评与关注!三、解答题(本题共6题,共70分,解答应写出文字说明、正面过程或演算步骤) 17,.(本题满分10分) (1)求点)7,5(-p 到直线03512=-+y x 的距离.18.(本题满分10分)直线)0(0126≠=--a a y ax 在.x 轴上的截距是它在y 轴上的截距的3倍,求a 值及其斜率.19. (本题满分12分)根据下列条件分别写出直线的方程,并化为一般式方程。
人教版高中数学必修第二册第三单元《立体几何初步》测试题(包含答案解析)
一、选择题1.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥2.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .1025+C .1625+D .1325+ 3.如图所示,在正方体1111ABCD A B C D -中,O 是11B D 的中点,直线1A C 交平面11AB D 于点M ,则下列结论正确的是( )A .,,A M O 三点共线B .1,,,A M O A 不共面C .,,,A M C O 不共面D .1,,,B B O M 共面4.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .455.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .183B .182C .123D .243 6.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E7.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .3417B .23417C .51717D .317178.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .129.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π; ④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为62+. 其中正确结论的个数是( )A .1B .2C .3D .410.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B 45C 5D .2511.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm12.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个13.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( )A .14B .154C .65D .1514.已知,m n 是两条不同的直线,,αβ为两个不同的平面,有下列四个命题: ①若m α⊥,n β⊥,m n ⊥,则a β⊥;②若//m α,//n β,m n ⊥,则//a β;③若m α⊥,//n β,m n ⊥,则//αβ;④若m α⊥,//n β,//αβ,则m n ⊥.其中所有正确的命题是( )A .①④B .②④C .①D .④二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线1⊥,D是棱AB的中点,且16.如图,在三棱锥V-ABC中,VC⊥底面ABC,AC BC==.AC BC VC(1)证明:平面VAB⊥平面VCD;(2)若22AC=,且棱AB上有一点E,使得线VD与平面VCE所成角的正弦值为15,试确定点E的位置,并求三棱锥C-VDE的体积.15-中,底面ABCD是边长为2的正方形,17.在四棱锥P ABCD∠==∠=,E为PD的中点.ADP PD AD PDC90,,60(1)证明:CE⊥平面PAD.-外接球的体积.(2)求三棱锥E ABC18.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=,ADC︒∠=C,1052AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.20.如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,90DAB ∠=︒,//AB CD ,2AD AF CD ===,4AB =.(1)求证:AC ⊥平面BCE ;(2)求三棱锥E BCF -的体积.21.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.22.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ;(2)若三棱锥A -BEA 1的体积是33,求异面直线AB 和A 1C 1所成角的大小. 23.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)24.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.25.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ;(Ⅱ)求三棱锥A PFB -的体积;26.在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点.(1)求证:平面EFG ⊥平面PDC ;(2)求证:平面//EFG 平面PM A .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.2.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.3.A解析:A【分析】连接11,A C AC ,利用两个平面的公共点在一条直线上可判断点共线.【详解】连接11,A C AC ,则11//A C AC ,11,,,A C C A ∴四点共面,1A C ∴⊂平面11ACC A ,1M AC ∈,M ∴∈平面11ACC A ,M ∈平面11AB D ,∴点M 在平面11ACC A 与平面11AB D 的交线上,同理点O 在平面11ACC A 与平面11AB D 的交线上,,,A M O ∴三点共线,故A 正确;,,A M O 三点共线,且直线与直线外一点可确定一个平面,1,,,A M O A ∴四点共面,,,,A M C O 四点共面,故B ,C 错误;1BB 平面11AB D ,OM ⊂平面11AB D ,1B ∈平面11AB D 且1B OM ,1BB ∴和OM 是异面直线,1,,,B B O M ∴四点不共面,故D 错误.故选:A.【点睛】本题主要考查空间中点的共线问题,此类题一般证明这些点同在两个不同的平面内,根据两平面的公共点在一条直线上即可判断.4.D解析:D【分析】本题先通过平移确定异面直线1A B 与1AD 所成角11A BC ∠,再在11A BC 中通过余弦定理求该角的余弦值即可.【详解】解:连接11A C 、1BC (如图),设12=2AA AB k =(0k >),则11=5A BC B k=,112AC k=, 在直四棱柱1111ABCD A B C D -中,∵11//BC AD ,∴ 异面直线1A B 与1AD 所成角可以表示为11A BC ∠,在11A BC 中,222222*********cos 25255A B BC AC A BC A B BC k k+-∠===⋅⋅⨯⨯, 故选:D.【点睛】本题考查了异面直线所成的角,余弦定理,是中档题.5.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 6.C解析:C【分析】根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D.【详解】对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确.故选C.【点睛】该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题7.D解析:D【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解.【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯, 则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.8.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.9.C解析:C【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解.【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===,所以三棱锥P ABC -外接球的球心为D ,半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上,则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD +=+-⨯⨯⨯=, ④正确.故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题. 10.C解析:C【分析】 取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.【详解】取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2,所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥,由OC OF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯⨯=. 故选:C.【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.11.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 12.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.13.D解析:D【分析】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,取BD 的中点为G ,连接EG ,在等腰BED ∆中,求出cosEG BEG BE ∠==cos BED ∠,即可得出答案. 【详解】 连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,则BE DE ==BD =,在等腰BED ∆中,取BD 的中点为G ,连接EG ,则EG ==cos EG BEG BE ∠== 所以2cos cos 22cos 1BED BEG BEG ∠=∠=∠-, 即:31cos 2155BED ∠=⨯-=, 所以异面直线AF ,DE 所成角的余弦值为15. 故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.14.A解析:A【分析】①若m α⊥,m n ⊥,∴n ⊂α或//n α再由面面垂直的判定定理得到结论.②根据面面平行的判定定理判断.③若m α⊥,m n ⊥,则n ⊂α或//n α,再由面面平行的判定定理判断.④若m α⊥,//αβ,由面面平行的性质定理可得m β⊥,再由//n β得到结论.【详解】①若m α⊥,m n ⊥,∴n ⊂α或//n α,又∵n β⊥,∴a β⊥,故正确. ②若//m α,//n β,由面面平行的判定定理可知,若m 与n 相交才平行,故不正确. ③若m α⊥,m n ⊥,则n ⊂α或//n α,又//n β,两平面不一定平行,故不正确. ④若m α⊥,//αβ,则m β⊥,又∵//n β,则m n ⊥.故正确.故选:A【点睛】本题主要考查线与线,线与面,面与面的位置关系及垂直与平行的判定定理和性质定理,综合性强,方法灵活,属中档题.二、解答题15.(1)证明见解析(2)8585【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果.【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =,所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN ,所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅175********+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 的中点;223.【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB平面ABC , 所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.17.(1)证明见解析;(2)82π. 【分析】 (1)由已知条件知AD ⊥面DPC ,即有AD CE ⊥,由PDC △为等边三角形有CE DP ⊥,结合线面垂直的判定有CE ⊥平面PAD .(2)由勾股定理可证AEC 为直角三角形,且ABC 为等腰直角三角形,即可知AC 的中点O 为外接球的球心,进而得到半径求球的体积.【详解】 (1)由90ADP ∠=知:AD DP ⊥,底面ABCD 是正方形有AD DC ⊥,又DP DC D =,∴AD ⊥面DPC ,而CE ⊂面DPC ,即AD CE ⊥,∵PD AD DC ==,60PDC ∠=,∴PDC △为等边三角形,E 为PD 的中点,故CE DP ⊥,∵DP AD D ⋂=,∴CE ⊥平面PAD .(2)由(1)知:ABC 为等腰直角三角形且2AB BC == ,有22AC =, 在AEC 中3,5CE AE ==,即222AC CE AE =+,故AE CE ⊥,∴由上知:ABC 、AEC 都是以AC 为斜边的直角三角形,由直角三角形斜边中点O 到三顶点距离相等知:OE OC OA OB ===,即O 为三棱锥E ABC -外接球的球心, ∴外接球的半径为22AC =, 所以三棱锥E ABC -外接球的体积为3482(2)33V ππ=⨯=. 【点睛】关键点点睛:(1)由90°及正方形有线面垂直:AD ⊥面DPC ,再由等边三角形的性质和线面垂直的判定证明CE ⊥平面PAD ;(2)由勾股定理说明AEC 是以AC 为斜边的直角三角形,同样ABC 也是AC 为斜边的直角三角形,即可确定三棱锥E ABC -外接球的球心,进而求体积.18.(1)证明见解析;(2. 【分析】 (1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.(1)证明见解析;(2)14. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =, 12)2QDE S x x =⨯⨯=△,21)33P QDE QDE V PQ S x -=⋅=--△2(3x =--+≤x =则当P QDE V -最大时,AQ =∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,QB QE ==PQ ⊥平面ABCD 得3,PE PB ==2BE =,则222cos 2PB BE PE PBE PB BE +-∠==⋅,∴异面直线PB 与QF 所成角的余弦值为14.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 20.(1)证明见解析;(2)83. 【分析】(1)先证明AC ⊥BE ,再取AB 的中点M ,连接CM ,经计算,利用勾股定理逆定理得到AC ⊥BC ,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM ⊥平面BEF ,即为所求三棱锥的高,进而计算得到其体积.【详解】解:(1)证明:∵四边形ABEF 为矩形∴//AF BE∵AF ⊥平面ABCD ∴BE ⊥平面ABCD∵AC ⊂平面ABCD ∴AC BE ⊥.如图,取AB 的中点M ,连接CM ,∴122AM AB DC === ∵//AM DC ,90MAD ∠=︒,2AM DC AD ===∴四边形ADCM 是正方形.∴90ADC ∠=︒∴222448C AD DC =+=+=,222448BC CM BM =+=+= ∵4AB =∴222AC BC AB +=∴ABC 是直角三角形∴AC BC ⊥. ∵BCBE B =,BC 、BE ⊂平面BCE∴AC ⊥平面BCE(2)由(1)知:CM AB ⊥∵AF ⊥平面ABCD ,CM ⊂平面ABCD ∴AF CM ⊥∵AF AB A ⋂=,AF 、AB 平面ABEF∴CM ⊥平面ABEF ,∴CM ⊥平面BEF即:CM 是三棱锥C BEF -的高 ∴11182243323E BCF C BEF BEF V V CM S --==⋅=⨯⨯⨯⨯=△ 【点睛】本题考查线面垂直的证明,棱锥的体积的计算,属基础题.在利用线面垂直的判定定理证明线面垂直时一定要将条件表述全面,“两个垂直,一个相交”不可缺少.21.(1)证明见解析;(2)1111. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦.【详解】 (1)证明:∵2AD DE ==,90ADE ∠=︒ ∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥ 又平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥, 又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥,又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C -平面ADE 的法向量1//n EB ,∴1(0,1,0)n =又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =,2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,0220x +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩ ∴平面BDC 的法向量2(1,1,3)n =--121212cos ,1111n n n n n n ⋅∴===⋅⨯ ∴平面ADE 与平面BDC 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.22.(1)证明见解析;(2)30.【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明; (2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小.【详解】(1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,1BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=, ∴B 1E ⊥平面ABE ; (2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离,由AB ⊥侧面BB 1C 1C 可得AB ⊥BE ,则1111113323A BEA A ABE ABE V V SB EAB --==⋅=⨯⨯=,解得AB = 则11A B AB == 在111Rt A B C △中,1111111tan 3B C C A B A B ∠===,11130A C B ∴∠=,即异面直线AB 和A 1C 1所成角为30.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.23.(1)截面见解析,面积为22;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为2;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.24.(I)证明见解析;(II)33 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EFAP =,∵//FE AP =,∴四边形FAPE 是平行四边形,∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥,由AB AD ⊥,可得PC AD ⊥,设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 ,∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE .(Ⅱ)解:取Q CD 为的中点,连结,PQ EQ ,∵CE DE =,∴.EQ CD ⊥∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, 6222EP PQ EQ a PQ a ==⊥,,. 于是在Rt EPQ △中,3cos PQ EQP EQ ∠==. ∴二面角A CD E --的余弦值为33. 【点睛】 方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值).25.(Ⅰ)证明见解析;(Ⅱ3 【分析】(Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论;(Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB ,∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点,∴//OG AB ,而OG ⊂/平面PAB ,AB平面PAB ,∴//OG 平面PAB ,又OG OF O =∴平面//OFG 平面PAB ,即//FG 平面PAB . (Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形,∴BD AO ⊥,又ADDB D =,∴AO ⊥平面PDB ,而F 为PD 的中点, ∴1111322sin 60224433A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯=. 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法;(2)补形法;(3)等体积法.26.(1)证明见解析;(2)证明见解析.【分析】(1)先证明BC ⊥平面PDC ,再利用线线平行证明GF ⊥平面PDC ,即证面面垂直; (2)先利用中位线证明//EG PM ,////GF BC AD ,再由此证明面面平行即可.【详解】(1)证明:由已知MA ⊥平面ABCD ,//PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥, 又PD DC D ⋂=,∴BC ⊥平面PDC ,在PBC 中,∵G 、F 分别为PB 、PC 的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)∵E 、G 、F 分别为MB 、PB 、PC 的中点,∴//EG PM ,//GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴//GF AD ,∵EG 、GF 在平面PM A 外,PM 、AD 在平面PM A 内, ∴//EG 平面PM A ,//GF 平面PM A ,又∵EG 、GF 都在平面EFG 内且相交,∴平面//EFG 平面PM A .【点睛】本题考查了线线、线面、面面之间平行与垂直关系的转化,属于中档题.。
人教版高中数学必修二第三章单元测试(一)- Word版含答案
2018-2019学年必修二第三章训练卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )A .k 1<k 3<k 2B .k 3<k 1<k 2C .k 1<k 2<k 3D .k 3<k 2<k 12.直线x +2y -5=0与2x +4y +a =0之间的距离为5,则a 等于( ) A .0B .-20C .0或-20D .0或-103.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A .-3B .2C .-3或2D .3或-24.下列说法正确的是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过定点A (0,b )的直线都可以用方程y =kx +b 表示C .不经过原点的直线都可以用方程x a +yb=1表示 D .经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示5.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =56.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=07.过点M (2,1)的直线与x 轴,y 轴分别交于P ,Q 两点,且|MP |=|MQ |,则l 的方程是( ) A .x -2y +3=0 B .2x -y -3=0 C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0B .2x +3y +7=0C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( )A .x +y =0B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________.此卷只装订不密封班级 姓名 准考证号 考场号 座位号16.与直线3x+4y+1=0平行且在两坐标轴上截距之和为73的直线l的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为-3.18.(12分)直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y +6=0截得的线段长度为5,求直线l的方程.2018-2019学年必修二第三章训练卷直线与方程(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D 【解析】所求直线与已知直线平行,且和点(1,-1)等距,不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知,O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |.因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0.【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB|=5,所以2232374191=25 1111k k k kk k k k--⎡--⎤⎛⎫⎛⎫⎛⎫-+---⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦.解得k=0,即所求直线为y=1.综上所述,所求直线方程为x=3或y=1.。
人教版高中数学必修2第三章测试
人教版高中数学必修2第三章测试(满分150分)得分率_______%Ⅰ卷(共计76分)一、选择题(每小题5分,共计60分)1、已知点A (1.a )点B (a-1,1),若过A 、B 的直线斜率是-2,则a=( )(A )-1 (B )-2 (C )0 (D )12、若直线AB 与坐标轴的两个借据分别是3和-4,则原点到直线的距离是( )(A )512 (B )511 (C )2 (D )5 3、若直线1l ,2l 关于y 轴对称,则它们的斜率1k ,2k 关系正确的是:( )(A )1k =2k (B )1k ·2k =0 (C )1k +2k =0 (D )1k 2k =-14、第三象限的点A (a ,a-1)到直线01512=+-y x 的距离为1,a=( )(A )-1 (B )-2 (C )2 (D )15、当直线与坐标轴围成面积为2且截距相同时,直线方程是( )(A )02=+-y x (B )01=++y x (C )02=+-y x (D )02=-+y x6、若两直线0=-+c y ax 与02=+-c ay x 相交于点P (1,1),则a+c=( )(A )-4 (B )-3 (C )-5 (D )-27、若正方形ABCD 中点A (1,2),C (-3,4)则BC 直线方程为( )(A )052=+-y x (B )01=-+y x (C )052=--y x (D )052=-+y x8、若直线向左平移1单位,再向上平移1单位,则与原来直线重合,则原直线斜率是( )(A )1 (B )-2 (C )0 (D )-19、若两直线0=-+c y ax 与02)1(=+++c ay x a 互相垂直,则a=( )(A )0 (B )-2 (C )0 或-2 (D )-1或-210、已知线段AB 端点坐标分别是(-3,1),(-1,2),当直线过点(1,1)且与AB 相交时,直线的斜率k 取值范围是( )(A )10≤≤k (B )121≤≤-k (C )10<≤k (D )021≤≤-k 11、若三直线方程分别是,022=--y x ,022=+-y x ,02=++y x ,则它们围成的封闭图形的面积是( )(A )4 (B )6 (C )5 (D )312、定义“最小值函数”:F(x)=min{f(x),g(x),h(x)……},若F(x)=min{x+1,-x+5,-2x+8},则当x 是( )时,F(x)取最大值。
高一数学必修2第二、三章单元测试题
B1C 1A 1D 1BAC D高一数学必修2第二章测试题一、选择题(每小题4分,共48分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A BC D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45 角D 、11AC 与1BC成605、若直线l 垂直平面α,直线a α⊂,则l 与a 的位置关系是A 、l 垂直aB 、l 与a 异面C 、l 与a 相交D 、以上三种6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、47、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点P 不在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个 9、如图,是正方体的平面展开图,在这个正方体中有下列几个结论①BM//ED ②CN 与BE 是异面直线 ③CN 与BM 成600角 ④DM ⊥BN 其中正确的结论的序号是()A ,①②③B ,②④C ,③④D ,②③④ 10、给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直.其中真命题的个数是A.4B.3C.2D.111、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45 D 、5612、直线m,n 分别在两个互相垂直的平面α,β内,且α∩β= a ,m 和n 与 a 不垂直也不平行,那么m 和n 的位置关系是()A .可能垂直,但不一定平行,B ,可能平行,但一定不垂直C ,可能垂直,可能平行,D ,一定不垂直,也一定不平行。
高一数学必修2第三章单元测试题AqPMKA
第三章 直线与方程(时间:45分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分) 1、若A(-2,3),B(3,-2),C(21,m)三点共线,则m为( ) A、21 B、21- C、-2 D、22.如果直线0121=+-ay x l :与直线07642=-+y x l :平行,则a 的值为 ( ) A .3 B .-3 C . 5 D .0 3.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x 4、若点P(x 0,y 0)在直线Ax+By+C =0上,则直线方程可表示为( ) A 、A(x-x 0)+B(y-y 0)=0 B 、A(x-x 0)-B(y-y 0)=0 C 、B(x-x 0)+A(y-y 0)=0D 、B(x-x 0)-A(y-y 0)=05.与直线01:2=--y m mx l 垂直于点P (2,1)的直线方程是( ) A .012=-+y m mx B .03=++y x C .03=--y x D .03=-+y x 6、若ac >0且bc <0,直线0=++c by ax 不通过( )A 、第三象限B 、第一象限C 、第四象限D 、第二象限 7. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3, 则必有A. k 3<k 1<k 2B. k 1<k 3<k 2C. k 1<k 2<k 3D. k 3<k 2<k 1 8、若三条直线001,0832=+=--=++ky x y x y x 和相交于一点,则k 的值为( )21.-A 2.-B 2.C 21.D 9、若A 、B 是x 轴上两点,点P 的横坐标是2,且|PA|=|PB|,若直线PA 的方程为 x –y –1=0,则直线PB 的方程是( )A 、2x-y-1=0B 、x+y-3=0C 、2x+y-7=0D 、2x-y-4=010、设两条平行线分别经过点(30),和(04),,它们之间的距离为d ,则( ) A.03d <≤ B.04d << C.05d <≤D.35d ≤≤二、填空题(本大题共4小题,每小题5分,共20分)11、直线ax-6y-12a =0(a ≠0)在x 轴上的截距是在y 轴上的截距3倍,则a= ___12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .14、经过点P (0,-2)作直线m,若直线m 与A (-2,3),B (2,1)的线段总没有公共点,则直线m 斜率的取值范围是 . 三、解答题(本大题共3小题,每小题10分,共30分)15、求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且与直线012=--y x 平行的直线方程;16、已知直线L :y=2x-1,求点P (3 ,4)关于直线L 的对称点。
word完整版人教版必修二第三章测试题含答案推荐文档
第三章测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.在下列四个命题中,正确的共有().(1)坐标平面内的任何一条直线均有倾斜角和斜率;(2)直线的倾斜角的取值范围是0, n ;(3)若两直线的斜率相等,则他们平行;(4)直线y=kx+b与y轴相交,交点的纵坐标的绝对值叫截距A . 0个B . 1个C . 2个D . 3个2. 如图:直线l1的倾斜角1=30° ,直线l1 I2 ,贝y¥12的斜率为().i L-A B . ——c. 43 D .罷兀333. 已知ab0,bc 0 ,则直线ax by c通过().-A.第一、二二、三象限 B.第一、二、四象限C.第一、三三、四象限 D. 第二、三、四象限4. 已知直线ax by 10在y轴上的截距为1,且它的倾斜角是直线J3x y0的倾斜角的2倍,则( ).A a ^, b 1B. a V3,b 1C. a J3,b 1D. a V3,b 15. 如果直线I: x+ ay + 2= 0平行于直线2x—y+ 3= 0,则直线I在两坐标轴上截距之和是().A.6B. 2C. —1 D . —26. 不论a为何实数,直线(a 3)x(2 a 1)y 7'0恒过( )A. 第一象限B.第二象限C.第三象限 D . 第四象限7. 若直线x2ay 10与(a 1)x ay 1 0平行,则a的值为(A. 1B.1或0 C . 0 D . 222&点(-1, 1 )关于直线x- y-1=0的对称点().A. (-1, 1)B.(1, - 1) C . (-2, 2) D . (2, -2)9. 等腰三角形两腰所在直线方程分别为x+y=2与x-7 y-4=0,原点在等腰三角形的底边上,则底边所在的直线斜率为()10.点P (x, y)在直线4x + 3y = 0上,且满足—14W x—y w 7,则点P到坐标原点距离的取值范围是(A. [0, 5]B. [0 , 10]C. [5, 10]D. [5, 15]11.等腰三角形两腰所在直线的方程分别为0与x 7y 4 0,原点在等腰三角形的底边上, 则底边所在直线的斜率为(12.如图, h、J、I3是同一平面内的三条平行直线, h与12间的距离是1 ,12与13间的距离是2,正三角形ABC的三顶点分别在11、12、13上, 则"ABC的边长是A . 2 .'3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13•与直线7x 24y 5平行,并且距离等于3的直线方程是14 •若直线m被两平行线11 : x y 1 0与12 : x y 3 0所截得的线段的长为2 2 ,则m的倾斜角可以是:①15o:②30°:③45°:④60°:⑤75°,其中正确答案的序号是 ____________ .(写出所有正确答案的序号)15. 已知A(1, 2), B(3, 4),直线11: x 0, I2 : y 0 和13 : x 3y 1 0 .设R 是h(i 1, 2, 3)上与A、B两点距离平方和最小的点,贝U △ RP2B的面积是 ________ .16. 如图,在平面直角坐标系x°y中,设三角形ABC 的顶点分别为A(0,a), B(b,0),C(c,0),点P(0, p)在线段AO上的一点(异于端点),这里a, b,c, p均为非零实数,设直线BP,CP分别与边AC, AB交于点E,F,某同学已正确求得直线OE的方程为(1 l)x (1 l)y 0,b c p a 请你完成直线OF的方程:( )x (—1)y 0.P a三、解答题17. ( 10分)已知三角形ABC的顶点是A(-1, -1),B (3, 1) ,C (1 , 6).直线L 平行于AB , 且分别交AC,BC于E,F,三角形CEF的面积1是三角形CAB面积的—.求直线L的方程.418. ( 12分)过点(2,3 )的直线L被两平行直线L i:2 x—5 y +9 = 0与L 2:2 x—5 y—7 = 0所截线段AE的中点恰在直线x—4 y—1 = 0上,求直线L的方程.19. (12分)已知点A的坐标为(4,4),直线I的方程为3x+ y —2= 0,求:(1)点A关于直线I的对称点A'的坐标;(2)直线I关于点A的对称直线I的方程.20. (12 分)在△ABC 中,A ( m, 2) , B (-3, -1) , C (5, 1),若BC 的中点M 到AB 的距离大于M到AC的距离,试求实数m的取值范围.21. (12分)光线从A (-3, 4)点出发,至U x轴上的点B后,被x轴反射到y轴上的C 点,又被y轴反射,这时反射光线恰好过 D (-1, 6)点,求直线BC的方程.22. (12分)有定点P (6, 4)及定直线l:y=4x,点Q是在直线I上第一象限内的点,直线PQ 交x 轴的正半轴于 M ,则点Q 在什么位置时,△OMQ 的面积最小?参考答案、选择题1.选A.垂直于x 轴的直线斜率不存在;倾斜角的范围是0, n ;两直线斜率相等,它们可能平行,也可能垂直;直线 y=kx+b 与y 轴相交,交点的纵坐标叫直线在 y 轴上的截距.2.选 C . k 1 3,Qk 1 k 23 1, k 233. 选 C . ya c x , k a0,- 0 , 所以通过第- -、三、四象限 .b bb b4.选 D. 由 ax+by-1=0, 得ya x 1当x=0时,1 1 y= ; 1,得 b=-1bb b b又,3x y ,3 0的倾斜角为60,所以 a、、3, a .3.b5.B.选由两直线平行,得 a =-0. 5,所以直线方程为 x-0.5y+2=0,当x=0时,y=4;当 y=0 时,x=-2.故 4+(-2)=2.6. 选 B.由方程(a+3) x+(2a-1)y+7=0,得:(x+2y ) a+3x-y+7=0 ,故 x+2y=0 且 3x-y+7=0. 解得x=-2, y=1.即该直线恒过(-2, 1)点,则恒过第二象限.7.选A.当a 0时,两直线重合,不合题意;当a 0时,「丄,解之得a 丄.a 2a21(不符合题意舍去),所以k 3. 310. 选B.根据题意可知点 P 在线段4x+3y=0( — 14<x — y < 7)上,有线段过原点,故点P 到原点最短距离为零,最远距离为点 P ( 6,8)到原点距离且距离为 10,故选B.11.选A.l 「x y 2 0飞 1 , l 2:x 7y 4 0,k 2扌,设底边所在直线的斜率为&选D.设对称点为(a , b ),则依题意,0,解得:1,a 2,b 2.9 .选A .设底面所在直线斜率为k ,则由到角公式得1 k1 ( 1) k 十,解得k1 - kk ,由题意,13与11所成的角等于12与11所成的角,于是有:k i k k k 2 k 1 7k 1 1 k 1k 1 __k 2k k~1 ~7~3,再将A 、B 、C 、D 代入验证得正确答案是 A.12.选D .过点C 作l 2的垂线l 4,以l 2、14为x 轴、y 轴建立平面直角坐标系. 设A(a,1)、二、填空题13. 设所求直线方程为7x+24y+C=0,由两平行线间的距离公式得: 解得C=-80或70. 【答案】7x 24y 80 0 或 7x 24y 70 014.两平行线间的距离为 d |3 1| 2 ,由图知直线m 与l 1的夹角为30° ,丨1的倾斜J1 1角为45°,所以直线 m 的倾斜角等于30 ° +45° =75 °或45° -30° =15 ° .故填写①⑤.【答案】①⑤15. 设R(0,b), F 2(a,0),丘仪。
高中数学必修2第三章测试题及答案汇编
高中数学必修2第三章测试题一、选择题1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23-D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )27 4. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( )A m =-3,n =10B m =3,n =10C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|,则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A (-2,1)B (2,1)C (1,-2)D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定10.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=011.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 .12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .16. ①求平行于直线3x+4y-12=0,且与它的 17.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值.②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.18.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6(m ∈R ,m ≠-1),根据下列条件分别求m 的值:①l 在x 轴上的截距是-3;②斜率为1.19.已知△ABC 的三顶点是A (-1,-1),B (3,1),C (1,6).直线l 平行于AB ,交AC ,BC 分别于E ,F ,△CEF 的面积是△CAB 面积的41.求直线l 的方程.20.一直线被两直线l 1:4x +y +6=0,l 2:3x -5y -6=0截得的线段的中点恰好是坐标原点,求该直线方程.21.直线l 过点(1,2)和第一、二、四象限,若直线l 的横截距与纵截距之和为6,求直线l 的方程.15、求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且与直线012=--y x 平行的直线方程;16、已知直线L :y=2x-1,求点P (3 ,4)关于直线L 的对称点。
北师大版高中数学必修第二册第三章测试题及答案
北师大版高中数学必修第二册第三章测试题及答案一、选择题1.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN 从1000提升至8000,则C 大约增加了(lg 20.3010≈)( ) A. 10%B. 30%C. 60%D. 90%2.酒驾是严重危害交通安全的违法行为.根据规定:100mL 血液中酒精含量达到[20,80)mg 的驾驶员即为酒后驾车,80mg 及以上为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.6mg/mL ,若在停止喝酒后,他血液中酒精含量会以每小时30%的速度减少,要想安全驾驶,那么他至少经过( ) A. 2小时B. 4小时C. 6小时D. 8小时3.2020年6月17日15时19分,星期三,酒泉卫星发射中心,我国成功发射长征二号丁运载火箭,并成功将高分九号03星、皮星三号A 星和德五号卫星送入预定轨道,携三星入轨,全程发射获得圆满成功,祖国威武.已知火箭的最大速度v (单位:km/s )和燃料质量M (单位:kg ),火箭质量m (单位:kg )的函数关系是:2000ln 1Mv m ⎛⎫=+⎪⎝⎭,若已知火箭的质量为3100公斤,燃料质量为310吨,则此时v 的值为多少(参考数值为ln 20.69≈;ln101 4.62≈)( ) A. 13.8B. 9240C. 9.24D. 13804.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为V 甲和V 乙(如图所示),那么对于图中给定的t 和1t,下列判断中一定正确的是( )A. 在1t 时刻,两车的位置相同B. 1t 时刻后,甲车在乙车后面C. 在0t 时刻,两车的位置相同D. 在0t 时刻,甲车在乙车前面5.已知光通过一块玻璃,强度要损失10%.那么要使光的强度减弱到原来的14以下,则至少需要通过这样的玻璃(参考数据:lg30.477,lg 20.301≈≈)( ) A. 12块B. 13块C. 14块D. 15块6.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100①,水温(C)y ︒与时间(min)t 近似满足一次函数关系;①用开水将热饮冲泡后在室温下放置,温度(C)y ︒与时间(min)t 近似满足函数的关系式为101802t ay b-⎛⎫=+ ⎪⎝⎭(,a b 为常数), 通常这种热饮在40①时,口感最佳,某天室温为20①时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为A. 35 minB. 30minC. 25 minD. 20 min7.一种药在病人血液中的量保持1500mg以上才有效,而低于500mg病人就有危险.现给某病人注射了这种药2500mg,如果药在血液中以每小时20%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过()小时向病人的血液补充这种药,才能保持疗效.(附:1g20.301=,1g30.4771=,答案采取四舍五入精确到0.1h)A. 2.3小时B. 3.5小时C. 5.6小时D. 8.8小时8.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入-支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法:(1)图2的建议是:减少支出,提高票价;(2)图2的建议是:减少支出,票价不变;(3)图3的建议是:减少支出,提高票价;(4)图3的建议是:支出不变,提高票价; 上面说法中正确的是( ) A. (1)(3)B. (1)(4)C. (2)(4)D. (2)(3)9.根据有关资料,围棋状态空间复杂度的上限M 约为3612,而可观测宇宙中普通物质的原子总数N约为8010.则下列各数中与MN 最接近的是( )(参考数据:lg2≈0.30) (A )1030(B )1028 (C )1036 (D )109310.向杯中匀速注水时,如果杯中水面的高度h 随时间t 变化的图象如图所示,则杯子的形状为( )A B C D11.下表是某次测量中两个变量x ,y 的一组数据,若将y 表示为x 的函数,则最有可能的函数模型是( )A .一次函数模型 B.二次函数模型 C .指数函数模型 D .对数函数模型12.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是B .结余最高的月份是月份C .与月份的收入的变化率与至月份的收入的变化率相同D .前个月的平均收入为万元 二、填空题13.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站___________km 处14.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg 20.3010=,lg30.4771=)15.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;①在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.(注:结余=收入支出)3:17124564016.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg/L )随时间t (单位:h )的变化关系为2204tC t =+,则经过_______h 后池水中药品的浓度达到最大.三、解答题17.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油22360x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.18.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元)。
高中数学必修2第三章测试(含答案)
第三章测试(时间:120分钟 总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下命题:①任意一条直线有唯一的倾斜角;②一条直线的倾斜角可以为-30°;③倾斜角为0°的直线只有一条,即x 轴;④按照直线的倾斜角的概念,直线集合与集合{α|0°≤α<180°}建立了一一对应的关系.正确的命题的个数是( )A .1B .2C .3D .4解析:仅有①正确,其它均错. 答案:A2.过点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y 等于( ) A .1 B .-1 C .5D .-5 解析:由题意可知,y +34-2=tan135°=-1,∴y =-5.答案:D3.已知点P (x ,-4)在点A (0,8)和B (-4,0)的连线上,则x 的值为( ) A .2 B .-2 C .-6D .-8解析:由A (0,8)和B (-4,0)得直线AB 的方程为x -4+y8=1,又点(x ,-4)在该直线上,∴x-4+-48=1,∴x =-6. 答案:C4.如果点(5,a )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则整数a 的值为( )A .5B .4C .-5D .-4解析:由题意可知(5,a )到两平行线间距离之和等于两平行线间的距离,∴|30-8a +1|62+82+|30-8a +10|62+82=|10-1|62+82|31-8a |+|40-8a |=9,把选项代入知,a =4,(a =5舍去).答案:B5.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( ) A .2x +y -12=0B .2x +y -12=0或2x -5y =0C .x -2y -1=0D .x +2y -9=0或2x -5y =0 解析:解法1:验证知,D 为所求.解法2:当直线过原点时,设y =kx ,代入点(5,2)求得k =25,∴y =25x ,即2x -5y =0;当直线不过原点时,可设方程为x 2a +y a =1,代入点(5,2)求得a =92∴方程为x +2y -9=0.故所求方程为x +2y -9=0或2x -5y =0. 答案:D6.直线2x -y +k =0与4x -2y +1=0的位置关系是( ) A .平行 B .不平行C .平行或重合D .既不平行又不重合解析:因为2x -y +k =0与4x -2y +1=0可变形为y =2x +k 和y =2x +12,所以当k =12时,两直线重合;当k ≠12时,两直线平行.故应选C.答案:C7.已知直线y =ax -2和y =(a +2)x +1垂直,则a 等于( ) A .2 B .1 C .0 D .-1 解析:由题意知a (a +2)=-1. 解得a =-1. 答案:D8.已知点A (x 1,y 1),B (x 2,y 2)在斜率为k 的直线上,若|AB |=a ,则|y 2-y 1|等于( ) A .|ak | B .a 1+k 2 C.a 1+k2D.a |k |1+k2解析:设AB 的方程为y =kx +b ,则a =|AB |=(x 2-x 1)2+(y 2-y 1)2=⎝⎛⎭⎫1+1k 2|y 2-y 1|, ∴|y 2-y 1|=a |k |1+k2.答案:D9.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( )解析:当a >0时,由y =ax 可知,C 、D 错误;又由y =x +a 又知A 、B 也不正确.当a <0时,由y =ax 可知A 、B 错误,又由y =x +a 可知D 也不正确.答案:C10.已知直线l :x sin θ+y cos θ=1,点(1,cos θ)到l 的距离为14,且0≤θ≤π2,则θ等于( )A.π12B.π6 C.π4D.π3解析:由点到直线的距离公式可得|sin θ+cos 2θ-1|sin 2θ+cos 2θ=14,即|sin θ-sin 2θ|=14,经验证知,θ=π6满足题意. 答案:B11.一条线段的长是5,它的一个端点A (2,1),另一个端点B 的横坐标是-1,则B 的纵坐标是( )A .-3B .5C .-3或5D .-5或3解析:设B 的坐标为(-1,y ), 由题意得(-1-2)2+(y -1)2=52, ∴(y -1)2=16,∴y =5或y =-3. 答案:C12.若A (-4,2),B (6,-4),C (12,6),D (2,12),下面四个结论正确的个数是( ) ①AB ∥CD ②AB ⊥AD ③|AC |=|BD | ④AC ⊥BD A .1个 B .2个 C .3个D .4个解析:①k AB =-4-26+4=-35,k CD =12-62-12=-35,∴AB ∥CD .②k AB =-35,k AD =12-22+4=53,∵k AB ·k AD =-1,∴AB ⊥AD .③|AC |=(12+4)2+(6-2)2=272,|BD |=(2-6)2+(12+4)2=272. ∴|AC |=|BD |.④k AC =6-212+4=14,k BD =12+42-6=-4,∵k AC ·k BD =-1,∴AC ⊥BD .综上知,①、②、③、④均正确.故选D. 答案:D二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上) 13.已知A (a,3),B (3,3a +3)两点间的距离是5,则a 的值为________. 解析:(3-a )2+(3a +3-3)2=5, 即(3-a )2+9a 2=25,解得a =-1或85.答案:-1或8514.两条平行直线分别过点A (6,2)和B (-3,-1),各自绕A ,B 旋转.若这两条平行线距离取最大时,两直线方程是________.解析:根据题意,当这两条直线平行旋转到与直线AB 垂直时,距离取得最大值. ∵k AB =13,∴两直线分别为y -2=-3(x -6)和y +1=-3(x +3), 即3x +y -20=0和3x +y +10=0. 答案:3x +y -20=0,3x +y +10=015.已知直线l 1与直线l 2:x -3y +6=0平行,与两坐标轴围成的三角形面积为8,则直线l 1的方程为________.解析:∵l 1与l 2平行,故可设l 1的方程为x -3y +m =0.与两坐标轴的交点(0,m3,(-m,0).由题意可得:12|-m ×m3|=8.∴m =43或m =-4 3. 答案:x -3y ±43=016.设点P 在直线x +3y =0上,且P 到原点的距离与P 到直线x +3y -2=0的距离相等,则点P 坐标是________.解析:∵点P 在直线x +3y =0上,可设P 的坐标为(-3a ,a ). 依题意可得(-3a )2+a 2=|-3a +3a -2|12+32,化简得:10a 2=410∴a =±15. 故P 的坐标为⎝⎛⎭⎫-35,15或⎝⎛⎭⎫35,-15.答案:⎝⎛⎭⎫35,-15或⎝⎛⎭⎫-35,15三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知点A (1,4),B (4,0),在x 轴上的点M 与B 的距离等于点A ,B 之间的距离,求点M 的坐标.解:因为点M 在x 轴上,所以设M (x,0),则 |x -4|=(4-1)2+(0-4)2=5, ∴x =9或x =-1. 所以M (9,0)或(-1,0).18.(12分)直线l 在两坐标轴上的截距相等,且点P (4,3)到直线l 的距离为32,求直线l 的方程.解:(1)当所求直线经过坐标原点时,设其方程为y =kx ,由点到直线的距离公式可得 32=|4k -3|1+k2,解k =-6±3214.故所求直线的方程为y =(-6±3214)x . (2)当直线不经过坐标原点时,设所求直线为x a +ya =1,即x +y -a =0.由题意可得|4+3-a |2=3 2.解a =1或a =13.故所求直线的方程为x +y -1=0或x +y -13=0.综上可知,所求直线的方程为y =⎝⎛⎭⎫-6±3214x 或x +y -1=0或x +y -13=0. 19.(12分)当m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. (1)倾斜角为π4;(2)在x 轴上的截距为1. 解:(1)倾斜角为π4,则斜率为1.∴-2m 2+m -3m 2-m =1,解得m =1或m =-1.当m =1时,m 2-m =0,不符合题意.当m =-1时,直线方程为2x -2y -5=0符合题意, ∴m =-1.(2)当y =0时,x =4m -12m 2+m -3=1,解得m =-12或m =2.当m =-12或m =2时都符合题意,∴m =-12或m =2.20.(12分)求经过直线l 1:3x +4y +5=0与l 2:2x -3y -8=0的交点M ,且满足下列条件的直线方程.(1)经过原点;(2)与直线2x +y +5=0平行; (3)与直线2x +y +5=0垂直. 解:由⎩⎪⎨⎪⎧3x +4y +5=02x -3y -8=0得交点M 的坐标为(1,-2).(1)直线过原点,可得直线方程为2x +y =0.(2)直线与2x +y +5=0平行,可设为2x +y +m =0,代入M (1,-2),得m =0, ∴直线方程为2x +y =0. (3)直线与2x +y +5=0垂直, ∴斜率为k =12,又过点M (1,-2),故所求方程为y +2=12(x -1),即x -2y -5=0.21.(12分)已知两条直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a 和b 的值.(1)求直线l 1过点(-3,-1),并且直线l 1与直线l 2垂直; (2)直线l 1与l 2平行,并且坐标原点到l 1、l 2的距离相等. 解:(1)∵l 1⊥l 2, ∴(a -1)a +(-b )×1=0 即a 2-a -b =0① 又点(-3,-1)在l 1上 ∴-3a +b +4=0②由①②解得a =2,b =2.(2)∵l 1∥l 2,且l 2的斜率为1-a ,∴l 1的斜率也存在,即b ≠0. ∴a b =1-a .∴b =a 1-a (a ≠1), 故l 1、l 2的方程分别可以表示为 l 1:(a -1)x +y +4(a -1)a =0,l 2:(a -1)x +y +a1-a =0.∵原点到l 1和l 2的距离相等. ∴4|a -1a |=|a1-a|, 解得a =2或a =23因此⎩⎪⎨⎪⎧a =2,b =-2,或⎩⎪⎨⎪⎧a =23,b =2.22.(12分)等腰直角三角形斜边所在直线的方程是3x -y =0,一条直角边所在的直线l 的斜率为12,且经过点(4,-2),且此三角形的面积为10,求此直角三角形的直角顶点的坐标.解:设直角顶点为C ,C 到直线y =3x 的距离为d . 则12·d ·2d =10,∴d =10. 又l 的斜率为12,∴l 的方程为y +2=12(x -4),即x -2y -8=0.设l ′是与直线y =3x 平行且距离为10的直线, 则l ′与l 的交点就是C 点, 设l ′的方程是3x -y +m =0, 则|m |10=10,∴m =±10,∴l ′的方程是3x -y ±10=0, 由方程组⎩⎪⎨⎪⎧x -2y -8=0,3x -y -10=0,及⎩⎪⎨⎪⎧x -2y -8=0,3x -y +10=0,得C 点坐标是⎝⎛⎭⎫125,-145或⎝⎛-285,-345.。
(完整版)高一数学必修2第三章测试题及答案解析
数学必修二第三章综合检测题一、选择题1.若直线过点 (1,2),(4,2+3)则此直线的倾斜角是 ( )A .30°B.45° C. 60° D.90°2.若三点 A(3,1),B(-2, b),C(8,11)在同素来线上,则实数 b 等于 ()A .2 B.3 C.9 D.- 93.过点 (1,2),且倾斜角为 30°的直线方程是 ( )3A .y+2=3 (x+1) B.y-2= 3(x-1)C. 3x-3y+6- 3=0D. 3x-y+2- 3=04.直线 3x-2y+5=0 与直线 x+3y+10=0 的地址关系是 ( )A .订交B.平行C.重合D.异面5.直线 mx-y+2m+1=0 经过必然点,则该定点的坐标为 ( )A .(-2,1) B.(2,1) C.(1,- 2) D.(1,2)6.已知 ab<0,bc<0,则直线 ax+by+c= 0 经过 ( )A .第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限7.点 P(2,5)到直线 y=- 3x 的距离 d 等于 ( )A .0 B. 2 3+52-2 3+5D. - 2 3-5C. 2 28.与直线 y=- 2x+3 平行,且与直线 y=3x+4 交于 x 轴上的同一点的直线方程是 ()1A .y=- 2x+4 B.y=2x+48 1 8C.y=- 2x-3 D.y=2x-39.两条直线 y=ax-2 与 y=(a+2)x+1 互相垂直,则 a 等于 ( )A .2 B.1 C.0 D.- 110.已知等腰直角三角形 ABC 的斜边所在的直线是3x-y+2=0,直角极点是 C(3,- 2),则两条直角边 AC,BC 的方程是 ( ) A.3x-y+5=0,x+2y-7=0B.2x+y-4=0,x-2y-7=0C.2x-y+4=0,2x+y-7=0D.3x-2y-2=0,2x-y+2=011.设点 A(2,- 3),B(- 3,- 2),直线 l 过点 P(1,1)且与线段AB 订交,则 l 的斜率 k 的取值范围是 ( )A .≥3或 k≤- 4 B.- 4≤k≤3 k4 4 3C.-4≤k≤4D.以上都不对12.在坐标平面内,与点A(1,2)距离为 1,且与点 B(3,1)距离为2 的直线共有( )A .1 条B.2 条C.3 条D.4 条二、填空题13.已知点 A(-1,2),B(-4,6),则 |AB|等于 ________.14.平行直线 l 1:x-y+1=0 与 l2:3x-3y+1=0 的距离等于________.15.若直线 l 经过点 P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线 l 的方程为 ________或________.16.若直线 m 被两平行线 l 1:x-y+1=0 与 l 2:x-y+3=0 所截得的线段的长为 2 2,则 m 的倾斜角可以是① 15° ②30° ③45°④60° ⑤75°,其中正确答案的序号是 ________. (写出所有正确答案的序号 )三、解答题 (解答应写出文字说明,证明过程或演算步骤 )17.求经过点 A(-2,3),B(4,- 1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(1)当 a 为何值时,直线l 1:y=- x+2a 与直线 l 2:y=(a2-2)x+2 平行?(2)当 a 为何值时,直线 l1:y=(2a-1)x+3 与直线 l2:y=4x-3垂直?19.在△ ABC 中,已知点 A(5,-2),B(7,3),且边 AC 的中点 M 在y 轴上,边 BC 的中点 N 在 x 轴上,求:(1)极点 C 的坐标;(2)直线 MN 的方程.20.过点 P(3,0)作素来线,使它夹在两直线l1:2x-y-2=0 和l2:x+y+3=0 之间的线段 AB 恰被 P 点均分,求此直线方程.21.已知△ ABC 的三个极点 A(4,-6),B(-4,0),C(-1,4),求(1)AC 边上的高 BD 所在直线方程;(2)BC 边的垂直均分线EF 所在直线方程;(3)AB 边的中线的方程.22.当 m 为何值时,直线 (2m2+m-3)x+(m2-m)y=4m-1.(1)倾斜角为 45°;(2)在 x 轴上的截距为 1.数学必修二第三章综合检测题 1A斜率 =2+ 3 -2= 3,∴倾斜角为 30°. k 4-1 3b - 11 11- 1 2 D由条件知 k BC =k AC ,∴ -2-8= - ,∴ b =- 9.8 33C由直线方程的点斜式得 y -2=tan30 (x °-1), 整理得 3x -3y +6- 3=0.4A ∵A 1B 2-A 2B 1=3×3-1×(-2)=11≠0,∴这两条直线订交. 5A 直线变形为 m(x +2)-(y -1)=0,故无论 m 取何值,点 (-2,1)都在此直线上。
新人教版高中数学必修第二册第三单元《立体几何初步》检测(包含答案解析)(4)
一、选择题1.设m ,n 是两条异面直线,下列命题中正确的是( )A .过m 且与n 平行的平面有且只有一个B .过m 且与n 垂直的平面有且只有一个C .m 与n 所成的角的范围是()0,πD .过空间一点P 与m 、n 均平行的平面有且只有一个2.已知直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,则异面直线1AB 和1BC 所成的角的大小是( ).A .π6B .π4C .π3D .π23.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<<B .αβγ<<C .γβα<<D .βγα<< 4.已知l ,m 是两条不同的直线,α是一个平面,且//l α,则下列选项正确的是( ) A .若//l m ,则//m αB .若//m α,则//l mC .若l m ⊥,则m α⊥D .若m α⊥,则l m ⊥ 5.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+6.已知某正三棱锥侧棱与底面所成角的余弦值为1919,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( )A .49B .19C .925D .1257.如图所示,在正方体1111ABCD A B C D -中,O 是11B D 的中点,直线1A C 交平面11AB D 于点M ,则下列结论正确的是( )A .,,A M O 三点共线B .1,,,A M O A 不共面C .,,,A M C O 不共面D .1,,,B B O M 共面8.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π9.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥βB .若α⊥β,n ∥α,则n ⊥βC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β10.如图,已知正方体1111ABCD A B C D -,Q 为棱1AA 的中点,P 为棱1CC 的动点,设直线m 为平面BDP 与平面11B D P 的交线,直线n 为平面ABCD 与平面11B D Q 的交线,下列结论中错误的是( )A .//m 平面11B D QB .平面PBD 与平面11B D P 不垂直C .平面PBD 与平面11B D Q 可能平行 D .直线m 与直线n 可能不平行 11.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .261cmC .61cmD .234cm 12.一个几何体的三视图如图所示,则该几何体的表面积为( )A .186+B .206+C .2010+D .1810+ 13.已知三棱锥S ABC -的体积为4,且4AC =,2224SA BC +=,30ACB ∠=︒,则三棱锥S ABC -的表面积为( )A .103B .123C .76或123D .96或103 14.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能 二、解答题15.如图1,在等腰梯形ABCD 中,CE 、DF 是梯形的高,2AF BE ==,22CD =,现将ADF 、BCE 分别沿DF 、CE 折起,得一简单组合体11A B CDEF ,如图所示,点A 、B 分别折起到1A 、1B ,11//A B EF ,11=2A B EF ,已知点P 为11A B 的中点.(1)求证:PE ⊥平面1B CE ;(2)若1CE =,求二面角1D B C E --的正弦值.16.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.(1)求证:1//AD 平面EMN ;(2)求异面直线1AD 与BE 所成角的余弦值.17.如图,已知AB 是圆O 的直径,2AB =,C 是圆O 上一点,且AC BC =,6PA =,22=PC ,10PB =.(1)求证:平面PBC ⊥平面PAC ;(2)求三棱锥P ABC -的体积. 18.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 19.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且PCD 是边长为2的等边三角形,四边形ABCD 是矩形,22BC =,M 为BC 的中点.(1)证明:AM PM ⊥;(2)求二面角P AM D --的大小;(3)求点D 到平面APM 的距离.20.如图,在四棱锥P ABCD -中,ABCD 为菱形,PA ⊥平面ABCD ,连接AC ,BD 交于点O ,6AC =,8BD =,E 是棱PC 上的动点,连接DE .(1)求证:平面BDE ⊥平面PAC ;(2)当BED 面积的最小值是6时,求此时点E 到底面ABCD 的距离.21.如图1,矩形ABCD ,1,2,AB BC ==点E 为AD 的中点,将ABE △沿直线BE 折起至平面PBE ⊥平面BCDE (如图2),点M 在线段PD 上,//PB 平面CEM .(1)求证:2MP DM =;(2)求二面角B PE C --的大小;(3)若在棱,PB PE 分别取中点,F G ,试判断点M 与平面CFG 的关系,并说明理由. 22.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ;(2)求三棱锥B MNC -的高.23.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ;(Ⅱ)求三棱锥A PFB -的体积;24.如图所示,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为17点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.25.如图,已知四棱锥的底面是正方形,且边长为4cm ,侧棱长都相等,E 为BC 的中点,高为PO ,且30OPE ∠=︒,求该四棱锥的侧面积和表面积.26.如图甲,边长为2的正方形ABCD 中,E 是AB 边的中点,F 是BC 边上的一点,对角线AC 分别交DE 、DF 于M 、N 两点,将DAE ∆及DCF ∆折起,使A 、C 重合于G 点,构成如图乙所示的几何体.(1)求证:GD EF ⊥;(2)若EF ∥平面GMN ,求三棱锥G EFD -的体积G EFD V -.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在A 中,过m 上一点作n 的平行线,只能作一条l ,l 与m 是相交关系,故确定一平面与n 平行;在B 中,只有当m 与n 垂直时才能;在C 中,两异面直线所成的角的范围是0,2π⎛⎫ ⎪⎝⎭; 在D 中,当点P 与m ,n 中一条确定的平面与另一条直线平行时,满足条件的平面就不存在.【详解】在A 中,过m 上一点P 作n 的平行直线l ,m l P ⋂=,由公理三的推论可得m 与l 确定唯一的平面α,l ⊂α,n ⊄α,故//n α.故A 正确.在B 中,设过m 的平面为β,若n ⊥β,则n ⊥m ,故若m 与n 不垂直,则不存在过m 的平面β与n 垂直,故B 不正确.在C 中,根据异面直线所成角的定义可知,两异面直线所成的角的范围是0,2π⎛⎫ ⎪⎝⎭,故C 不正确.在D 中,当点P 与m ,n 中一条确定的平面与另一条直线平行时,满足条件的平面就不存在,故D 不正确.故选:A .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题. 2.D解析:D【分析】连结1A B ,可证1A B ⊥平面11A BC ,从而可到异面直线1AB 和1BC 所成的角为直角,故可得正确的选项.【详解】连结1A B ,1AA ⊥面,ABC 平面111//A B C 面ABC ,1AA ∴⊥平面111A B C11A C ⊂平面111111,A B C AA AC ∴⊥ ABC 与111A B C △是全等三角形,AB AC ⊥1111A B A C ∴⊥111111,A B AA A AC ⋂=∴⊥平面11AA B B又1AB ⊂平面11AA B B ,111AC AB ∴⊥矩形11AA B B 中,1AA AB =∴四边形11AA B B 为正方形,可得11A B AB ⊥11111A B AC A AB ⋂=∴⊥,平面11A BC 结合1BC ⊂平面11A BC ,可得11AB BC ⊥,即异面直线1AB 与1BC 所成角为2π 故选:D【点睛】在求异面直线所成角时可以将异面直线通过平行线转化到共面直线,然后构造三角形,求得直线夹角.本题通过补全图形,判定线面的垂直关系,得证线线垂直关系,求得异面直线夹角为2π. 3.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AEBE E =. 所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥. 所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,2233BO BE ==,2AB = 所以3cos 3BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠, 在CFD △中,3,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯, 即31=90cos cos =33αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题. 4.D解析:D【分析】根据空间中直线与平面平行与垂直的相关性质依次判断各个选项可得结果.【详解】对于A ,若//l m ,此时//m α或m α⊂,A 错误;对于B ,若//m α,此时l 与m 可能平行、相交或异面,B 错误;对于C ,若l m ⊥,此时m 与平面α可能平行或相交,C 错误;对于D ,若m α⊥,则m 垂直于α内任意直线,必垂直于l 的平行线,则l m ⊥,D 正确. 故选:D .【点睛】本题考查空间中线线关系、线面关系相关命题的辨析,考查学生对于平行与垂直相关性质和定理掌握的熟练程度,属于基础题.5.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.6.C解析:C【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35r R =,最后求出球2O 与球1O 的表面积之比即可. 【详解】如图,取ABC 的外心O ,连接PO ,AO ,则PO 必过1O ,2O ,且PO ⊥平面ABC ,可知PAO ∠为侧棱与底面所成的角,即219cos PAO =∠. 取AB 的中点M ,连接PM ,MC .设圆1O ,2O 的半径分别为R ,r ,令2OA =,则19PA =,23AB =,3AM =,1OM =,所以214r OM PO PM ==,即24PO r =,从而145PO r r R r R =++=+, 所以1154R R PO r R ==+,则35r R =, 所以球2O 与球1O 的表面积之比为925.故选:C.【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题. 7.A解析:A【分析】连接11,A C AC ,利用两个平面的公共点在一条直线上可判断点共线.【详解】连接11,A C AC ,则11//A C AC ,11,,,A C C A ∴四点共面,1A C ∴⊂平面11ACC A ,1M AC ∈,M ∴∈平面11ACC A ,M ∈平面11AB D ,∴点M 在平面11ACC A 与平面11AB D 的交线上,同理点O 在平面11ACC A 与平面11AB D 的交线上,,,A M O ∴三点共线,故A 正确;,,A M O 三点共线,且直线与直线外一点可确定一个平面,1,,,A M O A ∴四点共面,,,,A M C O 四点共面,故B ,C 错误;1BB 平面11AB D ,OM ⊂平面11AB D ,1B ∈平面11AB D 且1B OM ,1BB ∴和OM 是异面直线,1,,,B B O M ∴四点不共面,故D 错误.故选:A.【点睛】本题主要考查空间中点的共线问题,此类题一般证明这些点同在两个不同的平面内,根据两平面的公共点在一条直线上即可判断.8.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心. 因为22333322⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形,所以12==O B DO 1212===O E O E OO .2,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.9.D解析:D【分析】根据直线、平面平行垂直的关系进行判断.【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误;在D 中,若m ⊥α,m ⊥β,则α∥β,∴若n ⊥α,则n ⊥β,故D 正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.10.D解析:D【分析】在正方体1111ABCD A B C D -中,可得11//BD B D ,根据线面平行的判定定理和性质定理可得11////m BD B D ,可判断选项A 结论;分别取11,BD B D 中点1,O O ,连1,OP O P ,则1OPO ∠为平面PBD 与平面11B D P 的平面角,判断1OPO ∠是否为直角,即可判断选项B 的结论;若P 为1CC 中点时,可证平面PBD 与平面11B D Q 平行,即可判断选项C 的结论;根据面面平行的性质定理可得11//n B D ,即可判断选项D 的结论.【详解】在正方体1111ABCD A B C D -中,四边形11BB D D 为矩形,11//,BD B D BD ∴⊂平面PBD ,11B D ⊄平面PBD ,11//B D 平面PBD ,11B D ⊂平面11B D P ,平面BDP 与平面1111////P B D m m B D BD =∴,选项A ,11//,m B D m ⊄平面11B D Q ,11B D ⊂平面11B D Q ,//m 平面11B D Q ,选项A 结论正确;选项B ,分别取11,BD B D 中点1,O O ,连11,,OP O P OO ,设正方体的边长为2,设CP h =, 则22114,4(2)BP DP h B P D P h ==+==+-,,PO BD PO m ∴⊥⊥,同理1PO m ⊥,1OPO ∴∠为平面PBD 与平面11B D P 的平面角,在1OO P △中,22222112,2(2),4OP h O P h OO =+=+-=,22211OP O P OO +>,1OPO ∴∠不是直角,所以平面PBD 与平面11B D P 不垂直,选项B 结论正确;选项C ,若P 为1CC 中点,取1BB 中点E 连1,C E QE ,则1//C E BP ,又Q 为棱1AA 的中点,1111//,QE C D QE C D ∴=,四边形11C D QE 为平行四边形,1111//,//,D Q C E D Q BP D Q ∴∴⊄面PBD ,BP ⊂平面PBD ,1//D Q ∴平面PBD ,同理11//B D 平面PBD ,1111111,,B D D Q D B D D Q =⊂平面11B D Q ,∴平面//PBD 平面11B D Q ,选项C 结论正确;选项D ,在正方体中,平面//ABCD 平面1111D C B A ,平面ABCD 平面11B D Q n =,平面1111A B C D 平面1111B Q D B D =11//,//n B D n m ∴∴,选项D 结论不正确.故选:D .【点睛】本题考查空间线、面位置关系,涉及到线线平行、线面平行、面面平行、面面垂直的判定,掌握平行、垂直的判定定理和性质定理是解题的关键,属于中档题.11.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 12.B解析:B【分析】根据所给三视图,还原出空间几何体,即可求得几何体的表面积.【详解】根据三视图,还原空间几何体如下图所示:在正方体中,去掉三棱锥111B A C M -,正方体的棱长为2,M 为1BB 的中点,则111111111B MC A B C A B M A C M S S S S S S =---+正方体()()22211116212221222522222⎛⎫=⨯-⨯⨯-⨯⨯-⨯⨯+⨯⨯- ⎪ ⎪⎝⎭206=+,故选:B.【点睛】 本题考查了空间几何体三视图的简单应用,关键是能够正确还原出空间几何体,属于中档题.13.B解析:B【分析】设h 为底面ABC 上的高,,SA m BC n ==,根据体积可得12nh =,结合222m n mn +≥及基本不等式等号成立条件,可得12m n h ===,进而可得SA ⊥面ABC ,再通过计算求出每个面的面积即可.【详解】解:如图:h 为底面ABC 上的高,设,SA m BC n ==,则1114sin 304332S ABC ABC V S h n h -==⨯⨯⨯⨯︒⨯=, 得12nh =, ,12m h mn ≥∴≥,又22242m n mn =+≥,得12mn ≤,所以12mn =,故12m n h ===,SA ∴⊥面ABC ,在ABC 中22341224124AB =+-⨯=,则2AB =, 在Rt ABS 中22124SB =+=,在Rt ACS 中121628SC =+=所以在SBC 中,222SC SB BC =+,则SBC 为直角三角形,三棱锥S ABC -的表面积11111=223+423+423+423=12322222S ⨯⨯⨯⨯⨯⨯⨯⨯⨯. 故选:B.【点睛】本题考查棱锥表面积的计算,关键是通过基本不等式的等号成立条件得到SA ⊥面ABC ,是中档题.14.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A AAD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.二、解答题15.(1)证明见解析(2)306【分析】(1)利用22211EP EB PB +=可得1PE EB ⊥,又根据CE ⊥平面1PEB 可得CE PE ⊥,再根据直线与平面垂直的判定定理可证PE ⊥平面1B CE ;(2)过E 作1EG CB ⊥,垂足为G ,连PG ,可得1CB PG ⊥,可得PEG ∠为二面角1D B C E --的平面角,在直角三角形PEG 中计算可得结果.【详解】(1)因为点P 为11A B 的中点,11=2A B EF ,11//A B EF ,所以EF 与1A P 平行且相等,所以四边形1FEPA 为平行四边形,所以12EP A F AF ===,又12EB EB ==,1111222PB A B EF CD ====, 所以22211EP EB PB +=,所以1PE EB ⊥, 因为1,CE EF CE EB ⊥⊥,1EFEB E =, 所以CE ⊥平面1PEB ,所以CE PE ⊥,因为1CE EB E =,所以PE ⊥平面1B CE ,(2)过E 作1EG CB ⊥,垂足为G ,连PG , 因为PE ⊥平面1B CE ,所以1PE CB ⊥,又PEEG E =, 所以1CB ⊥平面PEG ,所以1CB PG ⊥,所以PEG ∠为二面角1D B C E --的平面角,因为1CE =,12EB =,所以2211145CB CE CB =+=+= 所以112555CE EB EG CB ⋅===,所以22430455PG PE EG =+=+=, 所以sin EP PGE PG ∠==230=30=. 【点睛】关键点点睛:利用定义法求二面角的关键是作出二面角的一个平面角,本题利用PE ⊥平面1B CE ,过垂足点E 作棱1CB 的垂线EG ,连PG ,则可得PEG ∠为二面角1D B C E --的平面角.16.(1)证明见解析(2)8585【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果.【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =,所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN ,所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅175********+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.17.(1)证明见解析;(2. 【分析】(1)根据已知条件证明BC ⊥平面PAC ,再根据面面垂直的判定定理证明出平面PBC ⊥平面PAC ;(2)由(1)的分析可知:BC ⊥平面PAC ,由此得到三棱锥 P ABC -的体积计算公式为13PACSBC ⋅⋅,结合线段BC 的长度以及PACS求解出结果.【详解】(1)因为AB 是圆O 的直径,所以BC AC ⊥.在Rt ABC 中,2AB =,AC BC =,所以AC BC ==因为在PCB 中,PB ==PC BC =222PB PC BC =+,所以BC PC ⊥.又 PC AC C ⋂=,所以BC ⊥平面PAC . 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAC .(2)由(1)知BC ⊥平面PAC ,所以BC 是三棱锥 B PAC -的高.在 PAC 中,AC =PA ==PC222268AC PA PC ∴+=+==,即PAC △是直角三角形.1122PACSAC PA ∴=⋅==.11333P ABC B PAC PACV V SBC --∴==⋅⋅==. 【点睛】关键点点睛:解答本题的第二问的关键是通过变换三棱锥的顶点位置,使三棱锥能较容易得到对应的高和底面积,从而求解出体积.18.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥,AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE , AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =, AF ∴⊥平面DEB ,DB ⊂平面DEB , AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =,当D AEB V -最大时,即AEBS最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则11112213232C DBE E CBD V V h --==⨯=⨯⨯⨯⨯,解得:h = 【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.19.(1)证明见解析;(2)45;(3)3. 【分析】(1)取CD 的中点E ,连接PE 、EM 、EA ,根据面面垂直的性质可知PE ⊥平面ABCD ,从而AM PE ⊥,由勾股定理可求得AM EM ⊥,又PE EM E =,满足线面垂直的判定定理则AM ⊥平面PEM ,根据线面垂直的性质可知AM PM ⊥; (2)由(Ⅰ)可知EM AM ⊥,PMAM ⊥,根据二面角平面角的定义可知PME ∠是二面角P AM D --的平面角,然后在三角形PME 中求出此角即可;(3)设D 点到平面PAM 的距离为d ,连接DM ,则根据等体积得P ADM D PAM V V --=,建立关于d 的等式解之即可得到点D 到平面PAM 的距离. 【详解】(1)取CD 的中点E ,连接PE 、EM 、EA .PCD 为正三角形,PE CD ∴⊥,平面PCD ⊥平面ABCD ,PE ∴⊥平面ABCDAM PE ∴⊥四边形ABCD 是矩形ADE ∴、ECM 、ABM 均为直角三角形由勾股定理可求得:3EM =,6AM =3AE =222EM AM AE ∴+=AM EM ∴⊥又PEEM E AM =∴⊥平面PEMAM PM ∴⊥(2)由(1)可知EM AM ⊥,PMAM ⊥PME ∴∠是二面角P AM D --的平面角3tan 13PE PME EM ∴∠=== 45PME ∴∠=︒∴二面角P AM D --为45︒(3)设D 点到平面PAM 的距离为d ,连接DM ,则 P ADM D PAM V V --=,∴11··33ADMPAMS PE S d =而1·222ADMSAD CD == 在Rt PEM 中,由勾股定理可求得6PM =1·32PAMSAM PM ∴==,所以:11223333d ⨯=⨯⨯26d ∴即点D 到平面PAM 26. 【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法:找→作→证→指→求;(2)向量法:利用向量中点到平面的距离公式求解;(3)等体积法:根据体积相等求出点到平面的距离.20.(1)证明见解析;(2)334. 【分析】(1)根据线面垂直的判定定理可证得BD ⊥平面PAC ,再由面面垂直的判定定理可得证.(2)由(1)知BD ⊥平面PAC ,根据三角形的面积公式求得()min 32OE =,作//EH PA 交AC 于H ,可得EH ⊥平面ABCD ,从而求得点E 到底面ABCD 的距离. 【详解】(1)证明:∵四边形ABCD 是菱形,∴AC BD ⊥.PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥.又PA AC A =,∴BD ⊥平面PAC ,又BD ⊂平面BDE ,∴平面BDE ⊥平面PAC .(2)解:如图(1),连接OE ,由(1)知BD ⊥平面PAC ,OE ⊂平面PAC .BD OE ∴⊥.∵8BD =,由()min 162BDE S BD OE =⋅⋅=△,得()min 32OE =,∵当OE PC ⊥时,OE 取到最小值32,此时2222333322CE OC OE ⎛⎫=-=-= ⎪⎝⎭. 作//EH PA 交AC 于H ,∵PA ⊥平面ABCD ,∴EH ⊥平面ABCD , 如图(2),由334OE CE EH OC ⋅==,得点E 到底面ABCD 的距离33.【点睛】本题考查线面垂直的判定和面面垂直的判定定理,以及求点到面的距离,关键在于逐一满足判定定理所需的条件,在求点到面的距离时,可以采用几何法,由题目的条件直接过已知点作出面的垂线,运用求解三角形的知识,求点到面的距离,属于中档题. 21.(1)证明见解析;(2)90;(3)M ∈平面CFG ,理由见解析. 【分析】(1)设BD EC O ⋂=,连接MO ,由线面平行的性质可得//PB MO ,可得MD OD MP OB =,由//ED BC 可得12OD ED OB BC ==,即可证明; (2)取BE 中点Q ,连接PQ ,通过面面垂直的性质可得PQ ⊥平面BCDE ,进而可得PQ EC ⊥,再由EC BE ⊥可得EC ⊥平面PBE ,即平面PBE ⊥平面PEC ,即得出结果;(3)延长ED 到N ,使ED DN =,连接,,CN PN GN ,证明//FG CN ,可得,,,F C N G 确定平面FCNG ,判断M 是PEN △的重心,可得M ∈平面CFG .【详解】(1)设BD EC O ⋂=,连接MO ,//PB 平面CEM ,PB ⊂平面PBD ,平面PBD 平面CEM MO =,//PB MO ∴,MD ODMP OB∴=, //ED BC ,12OD ED OB BC ∴==, 12MD MP ∴=,即2MP DM =; (2)取BE 中点Q ,连接PQ ,PB PE =,PQ BE ∴⊥,又平面PBE ⊥平面BCDE ,PQ ∴⊥平面BCDE ,EC ⊂平面BCDE ,PQ EC ∴⊥,2BE EC ==2BC =,满足222BE EC BC +=,EC BE ∴⊥, PQ BE Q ⋂=,EC ∴⊥平面PBE ,EC ⊂平面PEC ,∴平面PBE ⊥平面PEC ,∴二面角B PE C --的大小为90;(3)延长ED 到N ,使ED DN =,连接,,CN PN GN ,,F G 分别是,PB PE 的中点,//FG BE ∴,2BC ED =,BC EN ∴=,//BC EN , ∴四边形BCNE 是平行四边形,//BE CN ∴, //FG CN ∴,则,,,F C N G 确定平面FCNG , PEN 中,PD 是EN 边中线,且:2:1PM MD =, M ∴是PEN △的重心,又GN 为PE 边的中线,则M 在GN 上, ∴M ∈平面CFG . 【点睛】 关键点睛:(1)本问考查线段比例关系的证明,解题的关键是由平行得出比例关系,利用等量替换求解;(2)本问考查二面角的求解,解题的关键是证明平面PBE ⊥平面PEC ,从而得出二面角为90;(3)本问考查平面的性质,解题的关键是作出恰当的辅助线,延长ED 到N ,使ED DN =,通过//FG CN 得出,,,F C N G 确定平面FCNG ,再通过M 是PEN △的重心得出M 在GN 上. 22.(1)证明见解析;(2)2. 【详解】(1)取PD 的中点G ,连接NG ,AG ,如图所示:因为G ,N 分别为PD ,PC 的中点,所以//GN CD ,1=2GN CD . 又因为M 为AB 的中点,所以//AM CD ,1=2AM CD . 所以//AM GN ,=AM GN ,四边形AMNG 为平行四边形, 所以//AG MN .又因为PM ===MC ===所以PM MC =,则MN PC ⊥.又因为AD PA =,G 为PD 中点,所以AG PD ⊥. 又因为//AG MN ,所以MN PD ⊥.所以MN PD MN PCMN PC PD P ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面PCD . 又MN ⊂平面MPC ,所以平面MPC ⊥平面PCD . (2)设点B 到平面MNC 的距离为h , 因为B MNC N MBC V V --=,所以111332MNC MBC S h S PA ⋅=⋅△△.因为12MBC S BC MB =⋅⋅=△,112MN AG PD ====,NC ===所以122MNC S MN NC =⋅⋅=△所以1132322h ⨯⨯=⨯2h =. 【点睛】关键点点睛:本题主要考查了面面垂直的证明和三棱锥的高,属于中档题,其中等体积转化B MNC N MBC V V --=为解决本题的关键. 23.(Ⅰ)证明见解析;(Ⅱ. 【分析】(Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论; (Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB , ∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点, ∴//OG AB ,而OG ⊂/平面PAB ,AB 平面PAB ,∴//OG 平面PAB ,又OGOF O =∴平面//OFG 平面PAB ,即//FG 平面PAB .(Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形, ∴BD AO ⊥,又AD DB D =,∴AO ⊥平面PDB ,而F 为PD 的中点,∴1111322sin 60224433A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯=. 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法; (2)补形法; (3)等体积法.24.(1)证明见解析;(2)18. 【分析】(1)利用线面直线与平面平行的性质定理,分别证得GH ∥BC 和EF ∥BC ,即可证得GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK ,分别证得PO ⊥AC 和PO ⊥BD ,进而得到GK 是梯形GEFH 的高,结合梯形的面积,即可求解. 【详解】(1)因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC , 又因为BC ∥平面GEFH ,BC ⊂平面ABCD ,且平面ABCD ∩平面GEFH =EF ,所以EF ∥BC , 所以GH ∥EF .(2)如图所示,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK . 因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD ,又BD ∩AC =O ,且AC ,BD 都在底面内,所以PO ⊥底面ABCD ,又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH , 因为平面PBD ∩平面GEFH =GK ,所以PO ∥GK ,且GK ⊥底面ABCD .从而GK ⊥EF .所以GK 是梯形GEFH 的高, 由AB =8,EB =2,得EB ∶AB =KB ∶DB =1:4,从而KB =14DB =12OB ,即K 为OB 的中点,再由PO ∥GK ,得GK =12PO ,即G 是PB 的中点,且GH =12BC =4, 由已知可得OB =42,PO =2268326PB OB -=-=,所以GK =3, 故四边形GEFH 的面积S =2GH EF +·GK =482+×3=18.【点睛】本题主要考查了线面平行的判定与性质定理,以及正棱锥的结构特征和截面面积的计算,其中解答中熟记线面平行的判定定理和性质定理,以及正棱锥的结构特征,结合梯形的面积公式求解是解答的关键,着重考查推理与运算能力. 25.()232cm ,()248cm【分析】根据直角三角形边角关系得出PE ,结合三角形面积公式得到侧面面积和表面积. 【详解】 如图,2,30OE cm OPE ︒=∠=,∴在Rt POE 中,4sin 30OEPE ︒==. PB PC =,E 为BC 的中点,()21,8cm 2PBC PE BC S BC PE ∴⊥=⋅⋅=侧棱长都相等,()2432cm PBCS S∴==侧,()2321648cm S =+=全【点睛】棱柱、棱锥、棱台的表面积就是各个面的面积之和,因此,我们可以利用平面图形求面积的方法求立体图形的表面积. 26.(1)证明见解析;(2)13;【分析】(1)想要证明线线垂直,就得先证明线面垂直,由于E ,F 两点都是中点,故想到取中点,构造两组线线垂直,由线面垂直的判定定理知,平面DGH ,由线面垂直的性质知,GD EF ⊥;(2)求解三棱锥的体积问题,我们通常采用等体积法,将已知的三棱锥转变成一个我们容易求解的三棱锥来求解,由于本题中,所以,平面GEF ,显然,三棱锥的高解决了,故有G EFD V -=D GEF V -=13【详解】证明:取EF 的中点为H,连接DH,GH ,在中,GE=GF ,H 是中点,,在中,DE=DF ,H 是中点, 故,,所以平面DGH ,即GD EF ⊥.(2)EF ∥平面GMN 知,F 是BC 边上的中点,故有GE GF ⊥, 在直角三角形GEF 中,GE=GF=1,故EF=,又因为,所以,平面GEF ,故此时三棱锥的高为DG ,值是2,G EFD V -=D GEF V -=13。
人教版高中数学必修第二册第三单元《立体几何初步》检测卷(有答案解析)
一、选择题1.设m ,n 是不同的直线,α,β,γ是三个不同的平面,有以下四个命题: ①若m α⊥,n β⊥,//αβ,则//m n ;②若m αγ=,n βγ=,//m n ,则//αβ;③若γα⊥,γβ⊥,则//αβ.④若//αβ,//βγ,m α⊥,则m γ⊥;其中正确命题的序号是( )A .①③B .②③C .③④D .①④ 2.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( ) A .323π B .86π C .36π D .323π 3.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若33SA AB ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .724.正三棱柱有一个半径为3cm 的内切球,则此棱柱的体积是( ).A .393cmB .354cmC .327cmD .3183cm 5.如图,在长方体1111ABCD A B C D -中,若,,,EFGH 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD6.已知平面α,β,γ和直线l ,下列命题中错误的是( )A .若αβ⊥,//βγ,则αγ⊥B .若αβ⊥,则存在l α⊂,使得//l βC .若a γ⊥,βγ⊥,l αβ=,则l γ⊥D .若αβ⊥,//l α,则l β⊥7.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π8.三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A .13B .2C .3D .239.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥βB .若α⊥β,n ∥α,则n ⊥βC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β10.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45其中所有正确结论的编号是( )A .①③B .①②④C .③④D .②③④ 11.边长为2的正方形ABCD 沿对角线AC 折叠使得ACD 垂直于底面ABC ,则点C到平面ABD 的距离为( )A .263B .233C .223D .6312.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .261cmC .61cmD .234cm14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.(1)求证:1//AD 平面EMN ;(2)求异面直线1AD 与BE 所成角的余弦值.16.如图,直三棱柱ABC -A 1B 1C 1中,AA 1=2,A 1C =25,AB =2,∠BAC =60°.(1)求三棱锥A 1-ABC 的表面积;(2)证明:在线段A 1C 上存在点M ,使得AC ⊥BM ,并求1A M MC的值. 17.如图所示,在四棱锥P ABCD -中,90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,PA ⊥平面ABCD ,E 为PD 中点,2AC =.(1)求证://AE 平面PBC .(2)若四面体PABC 的体积为33,求PCD 的面积. 18.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2ABCB ==,求三棱柱111ABC A B C -的体积S . 19.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AC BC ⊥,1AC BC CC ==,E ,F 分别为11A B ,BC 的中点.(Ⅰ)求证:1AC C F ⊥;(Ⅱ)求证:BE ∥平面11AC F ;(Ⅲ)在棱1CC 上是否存在一点G ,使得平面1B EG ⊥平面11AC F ?说明理由. 20.如图在Rt ABC △中,点M ,N 分别在线段AB ,AC 上,且//MN BC ,AB BC =,2AM MB =.若将AMN 沿MN 折起到PMN 的位置,使得60PMB ∠=︒.(1)求证:平面PBN ⊥平面BCNM ;(2)在棱PC 上是否存在点G ,使得//GN 平面PBM ?说明理由.21.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ︒∠=,PAD △为正三角形,且E ,F 分别为AD ,PC 的中点.(Ⅰ)求证://DF 平面PEB ;(Ⅱ)求证:BC ⊥平面PEB .22.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB 2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;23.如图,在直三棱柱111ABC A B C -中,E ,F 分别为11A C 和BC 的中点.(1)求证://EF 平面11AA B B ;(2)若13AA =,23AB =,求EF 与平面ABC 所成的角.24.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.25.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线45DBP ∠=,求四棱锥P ABCD -的体积.26.如图甲,边长为2的正方形ABCD 中,E 是AB 边的中点,F 是BC 边上的一点,对角线AC 分别交DE 、DF 于M 、N 两点,将DAE ∆及DCF ∆折起,使A 、C 重合于G 点,构成如图乙所示的几何体.(1)求证:GD EF ⊥;(2)若EF ∥平面GMN ,求三棱锥G EFD -的体积G EFD V -.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据空间线面位置关系的性质和判定定理判断或举出反例说明.【详解】对①,根据垂直于两个平行平面中一个平面的直线与另一个平面也垂直,以及垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,当三个平面,,αβγ两两垂直时,显然结论不成立,故③错误.对④,∵////αβγ,当m α⊥时,m γ⊥,故④正确.故选:D.【点睛】该题考查空间线面位置关系的判断,属于中档题目. 2.D解析:D【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可.【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=,所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题. 3.C解析:C【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥.又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥.易知AE =ED =在Rt AED ∆中,222AE ED AD +=,即22233()x y x y +++=+,化简得3xy =.在Rt SED ∆中,SE =ED ==.所以12SED S SE ED ∆=⋅=.因为22108336x x +≥=,当且仅当x =2y =时等号成立,所以92SED S ∆≥=. 故选:C.【点睛】 本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.4.B解析:B【分析】由题意知正三棱柱的高为,可得底面正三角形的边长为6cm ,即得到底面三角形的面积,代入棱柱的体积公式求解即可.【详解】∵的内切球,则正三棱柱的高为,,设底面正三角形的边长为a cm,则123a ⨯=6a =cm ,∴正三棱柱的底面面积为16622⨯⨯⨯=2,故此正三棱柱的体积V =54=cm 3.故选:B .【点睛】本题考查棱柱的体积的求法,考查几何体的内切球的性质,属于基础题.5.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题. 6.D解析:D【分析】根据面面垂直的判定定理即可判断A 正确;根据线面平行的判定定理可知B 正确; 根据面面垂直的性质定理可知C 正确;根据线面垂直的判定定理可知D 错误.【详解】对于A ,因为αβ⊥,所以存在直线a ⊂α,使a ⊥β,又β∥γ,所以a ⊥γ,有α⊥γ,正确;对于B ,α⊥β,设α∩β=m ,则在平面α内存在不同于直线m 的直线l ,满足l ∥m ,根据线面平行的判定定理可知,l ∥β,正确;对于C ,过直线l 上任意一点作直线m ⊥γ,根据面面垂直的性质定理可知,m 既在平面α又在平面β内,所以直线l 与直线m 重合,即有l ⊥γ,正确;对于D ,若α⊥β,l ∥α,则l ⊥β不一定成立,D 错误.故选:D .【点睛】本题主要考查线面位置关系的判断,考查学生的逻辑推理能力,属于中档题.7.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心. 因为22333322⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO 12132===O E O E OO . ()223153=2⎛⎫+⎪ ⎪⎝⎭15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.8.D解析:D【分析】连接DN ,取DN 的中点O ,连接MO ,BO ,得出BMO ∠(或其补角)是异面直线BM 与AN 所成的角,根据长度关系求出BMO ∠(或其补角)的余弦值即可.【详解】连接DN ,取DN 的中点O ,连接MO ,BO ,∵M 是AD 的中点,∴MO ∥AN ,∴BMO ∠(或其补角)是异面直线BM 与AN 所成的角.设三棱锥A -BCD 的所有棱长为2, 则2213AN BM DN ===- 则13122MO AN NO DN ====, 则223714BO BN NO =+=+= 在BMO ∠中,由余弦定理得222373244cos 233232BM MO BO BMO BM MO +-+-∠===⋅⨯⨯, ∴异面直线BM 与AN 所成角的余弦值为23. 【点睛】 本题主要考查异面直线的夹角,解题的关键是正确找出异面直线所对应的夹角,属于中档题.9.D解析:D【分析】根据直线、平面平行垂直的关系进行判断.【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误;在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误;在D 中,若m ⊥α,m ⊥β,则α∥β,∴若n ⊥α,则n ⊥β,故D 正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.10.B解析:B【分析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④.【详解】截面PQMN 是正方形,PQ MN ∴//,又MN ⊂平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂平面ABC ,平面ABC 平面ADC AC = PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确;由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN ,得AC //平面PQMN ,则②正确;由PQ AC //,PQ MN //,得AC MN //, 所以AC AD MN DN=, 同理可证BD AD PN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等, 则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角,由正方形PQMN 知45MPN ∠=︒,则④正确.故选:B.【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.11.A解析:A取AC 的中点O ,连接DO 和BO ,由等腰三角形的性质得出DO AC ⊥,可求出DO 和BO 的长,再由平面ACD ⊥平面ABC ,根据面面垂直的性质可得DO ⊥平面ABC ,进而得到DO OB ⊥,利用勾股定理即可求出BD ,最后利用等体积法得出C ABD D ABC V V --=,进而求出点C 到平面ABD 的距离.【详解】解:取AC 的中点O ,连接DO 和BO ,则DO AC ⊥,BO AC ⊥,由于四边形ABCD 是边长为2的正方形,2AD CD AB BC ∴====, 则222222AC =+=,()22222DO BO ==-=,由题知,平面ACD ⊥平面ABC ,且交线为AC ,而DO ⊂平面ACD ,则DO ⊥平面ABC ,又BO ⊂平面ABC ,所以DO BO ⊥,∴在Rt BOD 中,()()22222BD =+=,∴ABD △是等边三角形,则122sin 6032ABD S =⨯⨯⨯=△, 则在Rt ABC 中,12222ABC S =⨯⨯=, 设点C 到平面ABD 的距离为d , 则C ABD D ABC V V --=,即1133ABD ABC S d S DO ⋅=⋅△△, 即:1132233d ⨯=⨯⨯,解得:263d =, 即点C 到平面ABD 的距离为26. 故选:A.本题考查利用等体积法求点到面的距离,还涉及面面垂直的性质和棱锥的体积公式,考查推理证明和运算能力.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2885 【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果.【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =,所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN ,所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅175********+-⨯⨯885=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)6+23+26;(2)证明见解析;13. 【分析】 (1)可先证明1A B ⊂平面1A AB 得出1BC A B ⊥,即可求出三棱锥A 1-ABC 各个面的面积,得出表面积;(2)在平面ABC 内,过点B 作BN AC ⊥,垂足为N ,过N 作1//MN A A 交1A A 于M ,连接BM ,即可得出.【详解】(1)2,4,=60=23AB AC BAC BC BC AB ==∠∴∴⊥,,,1A A ⊥平面ABC ,BC ⊆平面ABC ,1BC AA ∴⊥,1A A AB A =,BC ∴⊥平面1A AB ,1A B ⊂平面1A AB ,1BC A B ∴⊥,112223262A BC S∴=⨯⨯=, 1=232ABC S AB BC ∴⋅⋅=,111==22A AB S A A AB ⋅,111=42A AC S A A AC =⋅, 则表面积=6+23+26S ;(2)证明:在平面ABC 内,过点B 作BN AC ⊥,垂足为N ,过N 作1//MN A A 交1A A 于M ,连接BM ,1A A ⊥AC ,1//MN A A ,AC MN ∴⊥,MN BN N =,∴AC ⊥平面MBN .又BM ⊂平面MBN ,∴AC BM ⊥.在直角BAN 中,cos 1, 3.=∠==-=AN AB BAC NC AC AN111//.3,∴==A M AN MN A A MC NC 【点睛】 本题考查三棱柱表面积的求解,解题的关键是得出1BC A B ⊥以便求出各个面的面积,考查点的存在性问题,解题关键是正确利用线面垂直关系作出辅助线.17.(1)证明见解析;(2)27. 【分析】 (1)取CD 中点F ,连接EF ,AF ,利用面面平行的判定定理证明平面//AEF 平面PBC ,再用面面平行的性质可得//AE 平面PBC ;(2)根据体积求出PA ,过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,求出PQ 和CD 后,根据三角形面积公式可求得结果.【详解】(1)取CD 中点F ,连接EF ,AF ,则//EF PC ,又120BCD AFD ∠=∠=︒,∴//BC AF ,∴平面//AEF 平面PBC ,∴//AE 平面PBC .(2)因为90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,2AC =,所以1,3BC AB ==由已知得:113323P ABC V AB BC PA -=⋅⋅⋅=,即11331323PA ⨯⨯⨯⨯=, 可得2PA =.过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,∵PA ⊥平面ABCD ,∴PA AQ ⊥,PA CD ⊥,∴CD PQ ⊥,ACD △中,2AC =,90CAD ∠=,30ADC ∠=,∴4CD =,23AD =,22334AC AD AQ CD ⋅⨯===, 222237PQ PA AQ =+=+=,∴11742722PCD S PQ CD =⋅=⨯⨯=△. 【点睛】 关键点点睛:掌握面面平行的判定定理和面面平行的性质是解题关键. 18.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ; (2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,3CE ∴=1123322S AB CE ⨯⨯⨯=底面积==1CEA 中,3CE =13EA =16AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.19.(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)在棱1CC 上存在点G ,且G 为1CC 的中点.理由见解析.【分析】(Ⅰ)在三棱柱111ABC A B C -中,由侧棱垂直于底面,可得1CC ⊥平面ABC ,则1CC AC ⊥,再由AC BC ⊥,结合线面垂直的判定可得AC ⊥平面11BCC B .从而得到1AC C F ⊥;(Ⅱ)取11A C 的中点H ,连结EH ,FH .可得//EH BF ,且EH BF =.则四边形BEHF 为平行四边形,则//BE FH .再由线面平行的判定可得//BE 平面11AC F ; (Ⅲ)在棱1CC 上存在点G ,且G 为1CC 的中点.连接EG ,1GB .首先证明△11B C G ≅△1C CF .可得11190C CF B GC ∠+∠=︒,则11B G C F ⊥.由(Ⅰ)可得AC ⊥平面11BB C C ,得到11A C ⊥平面11BB C C .即111AC B G ⊥.由线面垂直的判定可得1B G ⊥平面11AC F .进一步得到平面1B EG ⊥平面11AC F .【详解】解:(Ⅰ)在三棱柱111ABC A B C -中,因为侧棱垂直于底面,所以1CC ⊥平面ABC . 又AC ⊂平面ABC所以1CC AC ⊥.因为AC BC ⊥,1CC BC C ⋂=,1CC ⊥平面11BCC B ,BC ⊂平面11BCC B 所以AC ⊥平面11BCC B .因为1C F ⊂平面11BCC B ,所以1AC C F ⊥.(Ⅱ)取11A C 中点H ,连结EH ,FH .则EH //11B C ,且1112EH B C =, 又因为BF //11B C ,且1112BF B C =,所以EH //BF ,且EH BF =.所四边形BEHF 为平行四边形.所以BE //FH .又BE ⊄平面11AC F ,FH⊂平面11AC F ,所以BE //平面11AC F(Ⅲ)在棱1CC 上存在点G ,且G 为1CC 的中点.连接1,EG GB .在正方形11BB C C 中,因为F 为BC 中点,所以△11B C G ≌△1C CF .所以11190C CF B GC ∠+∠=︒.所以11B G C F ⊥.由(Ⅰ)可得AC ⊥平面11BB C C ,因为11AC//A C ,所以11A C ⊥平面11BB C C .因为1B G ⊂平面11BB C C ,所以111AC B G ⊥.因为1111AC C F C =,11A C ⊂平面11AC F ,1C F ⊂平面11AC F .所以1B G ⊥平面11AC F .因为1B G ⊂平面1B EG ,所以平面1B EG ⊥平面11AC F .【点睛】本题考查直线与平面、平面与平面垂直的判定,考查空间想象能力与思维能力,考查数学转化思想方法与数形结合的解题思想方法.20.(1)证明见解析;(2)存在,理由见解析.【分析】(1)证明PB BM ⊥,由线面垂直证明MN PB ⊥,然后由线面垂直的判定定理可得线面垂直,然后有面面垂直;(2)过点N 作//NH BM ,交BC 于点H ,再过点H 作GH //PB ,交PC 于点G ,可得两个线面平行,从而得面面平行,于是可得//GN 平面PMB ,同时得出13CG CP =. 【详解】解:(1)在Rt ABC △中,由AB BC =可知,BC AB ⊥.因为//MN BC ,所以MN AB ⊥.翻折后垂直关系没变,仍有MN PM ⊥,MN BM ⊥.又PM BM M ⋂=,所以MN ⊥平面PBM ,PB ⊂平面PBM ,则MN PB ⊥, 又60PMB ∠=︒,可令2PM =,则1BM=,由余弦定理得3PB =. 所以222PB BM PM +=,即PB BM ⊥. 又因为BM MN M =,所以PB ⊥平面BCNM .又因为PB ⊂平面PBM ,所以平面PBM ⊥平面BCNM .(2)在PC 上是存在一点G ,当13CG CP =时,使得//GN 平面PMB . 证明如下:过点N 作//NH BM ,交BC 于点H ,则四边形BMNH 是平行四边形, 且2MN BH ==,1CH =. 又由NH ⊄平面PBM ,BM ⊂平面PBM 知,//NH 平面PBM .再过点H 作GH //PB ,交PC 于点G ,则13CH CG CB CP ==. 又由GH ⊄平面GHN ,PB ⊂平面PBM 知,//GH 平面PBM .又NH ⊂面GHN ,GH ⊂面GHN ,GH HN H ⋂=,所以平面//GHN 平面PBM .又GN ⊂平面PBM ,所以//GN 平面PBM .【点睛】关键点点睛:本题考查证明面面垂直,线面平行,解题方法根据面面垂直的判定定理证明垂直,根据面面平行的性质定理证明线面平行.要注意立体几何中证明平行与垂直的方法很多,解题时注意线线、线面、面面平行(垂直)间的相互转化.21.(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)取PB 中点G ,可证得四边形DEGF 是平行四边形,进而可得//DF EG ,最后可证//DF 平面PEB ;(Ⅱ)由条件可得PE AD ⊥,BE AD ⊥,进而由线面垂直的判定定理得出结论.【详解】(Ⅰ)取PB 中点G ,因为F 是PC 中点,∴//FG BC ,且12FG BC =, ∵E 是AD 的中点,则//DE BC ,且12DE BC =,∴//FG DE ,且FG DE =, ∴四边形DEGF 是平行四边形,∴//DF EG ,又∵DF ⊄平面PEB ,EG ⊂平面PEB ,∴//DF 平面PEB ;(Ⅱ)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥,∵四边形ABCD 为菱形,60BAD ︒∠=,∴正三角形BAD 中,BE AD ⊥,∵PE BE E ⋂=,∴AD ⊥平面PEB ,∵//AD BC ,∴BC ⊥平面PEB .【点睛】方法点睛:本题考查线面平行、线面垂直的判定,解题关键是熟记线面平行和线面垂直的判定定理,以及定理成立时的条件,考查空间想象能力,属于常考题.22.(1)证明见解析;(2)6;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC,∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=6. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=,解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.23.(1)证明见解析;(2)60°.【分析】(1)取AB 中点D ,连结1A D 、DF ,推导出四边形1DFEA 是平行四边形,从而1//A D EF ,由此能证明//EF 平面AA 11B B . (2)取AC 中点H ,连结HF ,则EFH ∠为EF 与面ABC 所成角,由此能求出EF 与平面ABC 所成的角.【详解】(1)取AB 中点D ,连结1A D 、DF ,在ABC ∆中,D 、F 为中点,1//2DF AC =∴, 又11//A C AC ,且11112A E AC =,1//DF A E =∴,∴四边形1DFEA 是平行四边形,1//A D EF ∴,1A D ∴⊂平面11AA B B ,EF ⊂/平面11AA B B ,//EF ∴平面AA 11B B .(2)取AC 中点H ,连结HF ,1//EH AA ,1AA ⊥面ABC ,EH ∴⊥面ABC ,EFH ∴∠为EF 与面ABC 所成角,在Rt EHF ∆中,3FH =,13EH AA ==,tan 3tan 603HFE ∴∠===︒,60HFE ∴∠=︒,EF ∴与平面ABC 所成的角为60︒.【点睛】 本题考查线面平行的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、空间想象能力、数形结合思想,是中档题. 24.(1)证明见解析;(2)14 【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----===,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -,与三棱锥D QBC -的体积相等,即1111313232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯⨯⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=. 【点睛】 本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用25.(1)证明见解析;(2)43. 【分析】(1)证明AC BD ⊥,PD AC ⊥,结合线面垂直的判定定理得出AC ⊥平面PBD ; (2)求出菱形ABCD 的面积,结合PD ⊥平面ABCD ,利用棱锥的体积公式得出四棱锥P ABCD -的体积.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥.又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥.又PD BD D ⋂=,PD ⊂平面PBD ,BD ⊂平面PBD ,故AC ⊥平面PBD ;(2)因为45DBP ∠=,PD ⊥平面ABCD因此2BD PD ==.又2AB AD ==所以菱形ABCD 的面积为sin6023S AB AD =⋅⋅=故四棱锥P ABCD -的体积14333V S PD =⋅=. 【点睛】本题主要考查了证明线面垂直以及求棱锥的体积,属于中档题.26.(1)证明见解析;(2)13; 【分析】(1)想要证明线线垂直,就得先证明线面垂直,由于E ,F 两点都是中点,故想到取中点,构造两组线线垂直,由线面垂直的判定定理知,平面DGH ,由线面垂直的性质知,GD EF ⊥;(2)求解三棱锥的体积问题,我们通常采用等体积法,将已知的三棱锥转变成一个我们容易求解的三棱锥来求解,由于本题中,所以,平面GEF ,显然,三棱锥的高解决了,故有G EFD V -=D GEF V -=13【详解】证明:取EF 的中点为H,连接DH,GH ,在中,GE=GF ,H 是中点,, 在中,DE=DF ,H 是中点, 故,, 所以平面DGH ,即GD EF ⊥. (2)EF ∥平面GMN 知,F 是BC 边上的中点,故有GE GF ⊥, 在直角三角形GEF 中,GE=GF=1,故EF=, 又因为, 所以,平面GEF ,故此时三棱锥的高为DG ,值是2, G EFD V -=D GEF V -=13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三单元测试(4)一、知识要点: 1. 倾斜角与斜率2. 直线方程式的5种形式:点斜式、斜截式、两点式、截距式、一般式(注意用前四种方程的条件及一般式与其它形式转化的条件)3.两条直线平行、垂直的条件(与斜率及系数的关系)4.距离公式:两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式 5. 对称问题(点对称、轴对称) 二、基础知识练习:1. 直线倾斜角的取值范围___________,直线斜率的定义公式_____________, 过两点P 1(x 1,y 1), P 2(x 2,y 2)的斜率公式______________,斜率的取值范围______________.2.x=1的倾斜角为__________,直线310x ++=的倾斜角是__________,90α=o时的斜率_________.3. 直线方程的点斜式方程_________________,直线方程的斜截式方程_________________,直线方程的两点式方程_________________,直线方程的截距式方程_________________,直线方程的一般式方程_______________,与x 轴垂直的直线方程___________,与y 轴垂直的直线方程___________.4.已知直线111222:,:l y k x b l y k x b =+=+,若1l ∥2l ,则__________________,若1l ⊥2l ,则______________;已知直线11112222:0,:0l A x B y C l A x B y C ++=++=,若1l ∥2l ,则_________________,若1l 、2l 重合,则__________________,若1l ⊥2l ,则______________. 5. 与:0l Ax By C ++=平行的直线可设为______________,与:0l Ax By C ++=垂直的直线可设为____________________.6.直线:(2)50,l m x y n +-+-=当l 过原点O 时,,m n 的取值分别是 ; 当//l x 轴且相距为5时,,m n 的取值分别为 .7.若(1,2),(4,1),(,2)A B C m --三点共线,则m 的值为 .8. 平面上任意两点111222(,),(,)P x y P x y 的距离公式__________________________, 点000(,)P x y 到直线:0l Ax By C ++=的距离d=_________________,两条平行直线1:0l Ax By C ++=与2:0l Ax By C ++=间的距离为d=________________.9. 过点()2,4A ,且在两坐标轴上截距相等的直线方程是_________________. 10.两平行直线3x+4y-12=0和6x+8y+6=0间的距离是________________.三、典例解析例1.下列命题正确的有 :①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应; ②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大; ③过两点A(1,2),B(m,-5)的直线可以用两点式表示; ④过点(1,1),且斜率为1的直线的方程为111y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.例 2.若直线062:1=++y ax l 与直线01)1(:22=-+-+a y a x l ,则12l l 与相交时,a_________;21//l l 时,a=__________;这时它们之间的距离是________;21l l ⊥时,a=________ .例3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行; (2)经过点Q(-1,3)且与直线x+2y-1=0垂直; (3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;(5) 经过点N(-1,3)且在x 轴的截距与它在y 轴上的截距的和为零.例4.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B (1)求△AOB 面积为4时l 的方程;(2)求l 在两轴上截距之和为 322时l 的方程。
例5.已知△ABC 的两个顶点A(-10,2),B(6,4), 垂心是H(5,2),求顶点C 的坐标.四、练习巩固1.直线L :ax+4my+3a=0 (m ≠0)过点(1 , -1),那么L 的斜率为 ( )A .41B .-4C . -41D .42.两平行直线分别过(1,5),(-2,1)两点,设两直线间的距离为d ,则 ( )A .d=3B .d=4C .3≤d ≤4D .0<d ≤53.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( )A.1条 B.2条 C.3条 D.4条4.等腰ABC ∆的三个顶点的坐标是A(-3,4),B(-5,0)C(-1,0),则BC 边的中线AD 的方程( )A. x=-3B.y=-3C.x=-3(40≤≤y )D.y=-3 (51x -≤≤-) 5.如果直线012=-+ay x 与直线01)13(=---ay x a 平行,则a 等于 ( )A .0B .61C .0或1D .0或61 6.已知直线l 过点P(5,10),且原点到它的距离为5,则直线l 的方程为 .7.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 .8.经过点(0,1)P -作直线l ,若直线l 与连接(1,2),(2,1)A B -的线段没有公共点,则直线l 的斜率k 的取值范围为 .9.直线01)2(:05)1(:21=-++=+-+my x m l y m mx l 与互相垂直,则m 的值是 . 10.已知直线l 与直线3x+4y -7=0平行,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程。
11.设直线l 的方程为()()062123222=+--++--m y m m x m m ,根据下列条件求m 的值.(1)直线l 的斜率为1; (2)直线l 经过定点()P 1,1--.直线与方程之综合应用一、基础知识练习:1.点P(a,b) 关于原点对称的点是_________,关于x 轴对称的点是_________,关于y 轴对称的点是_________,关于直线=y x 对称的点是_________,关于直线=-y x 对称的点是_________,关于直线=x m 对称的点是_________,关于直线=y n 对称的点是_________.2.直线Ax+By+C=0关于原点对称的直线方程是______________;它关于x 轴对称的直线方程是______________;它关于y 轴对称的直线方程_______________;它关于直线=y x 对称的直线方程______________.它关于直线=-y x 对称的直线方程______________.3. 若11112222:0,:0l A x B y C l A x B y C ++=++=相交,则过1l 、2l 的交点的直线系方程为________________________________________________.4.经过原点且经过直线+-=++=12l :3x 4y 20,l :2x y 20交点的直线方程是_______________.5. 已知点A(1,1)和点B(3,3),则在x 轴上必存在一点P ,使得从A 出发的入射光线经过点P 反射后经过点B ,点P 的坐标为__________. 二、典例解析例1.过点)3,1(作直线l ,若l 经过点)0,(a 和),0(b ,且*∈N b a 、,则可作出的l 的条数为( )A. 1B. 2C. 3D. 多于3例2.已知两直线++=11a x b y 10和++=22a x b y 10都通过点P(2,3),求经过两点111222Q (a ,b ),Q (a ,b )的直线方程.例3.从点A(4,1)-出发的一束光线l ,经过直线1l :x y 30-+=反射,反射光线恰好通过点B(1,6),求入射光线l 所在的直线方程.例4.已知直线012:=+-y x l 和点A (-1,2)、B (0,3),试在l 上找一点P ,使得PB PA +的值最小,并求出这个最小值。
例5.过点(2,3)的直线l 被两平行直线12:2590,:2570l x y l x y -+=--=所截得线段AB 的中点恰好在直线410x y --=上,求直线l 的方程.三、练习巩固1.直线,031=-+-k y kx 当k 变动时,所有直线都过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)2.过点(1,3)且与原点距离为1的直线有 ( )A.3条B. 2条C. 1条D. 0条 3.到x 轴、y 轴和直线02=++y x 的距离相等的点有 ( ) A.1个 B.2个 C.3个 D.4个4. 如果直线02=+-y ax 与直线03=--b y x 关于直线0=-y x 对称,则( )A. 31=a , 6=b B. 31=a , 6-=b C. 3=a 2-=b D. 3=a , 6=b5.已知点M (4,2)与N (2,4)关于直线l 对称,则直线l 的方程为 ( )A .06=++y xB .06=-+y xC .0=+y xD .0=-y x6.设三条直线0123201832,06232=+-=+-=++y mx y m x y x 和围成直角三角形,则m 的取值是 ( )A .01或±B .或094-C .941,0或--D .941-或- 7.与两平行直线:1l :;093=+-y x l 2:330x y --=等距离的直线方程为 .8.直线l 方程为08)2()23(=+-++y m x m ,若直线不过第二象限,则m 的取值范围是 . 9.一束光线从点(1,1)A -出发,经x 轴反射到点(2,3)O ,光线经过的最短路程是10.已知03=-+y x ,则22)1()2(++-y x 的最小值等于 ; 11.已知132=-n m ,则直线5=+ny mx 必然过定点___________.12.△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程 为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.13.已知直线012:=+-y x l 和点O (0,0)、M (0,3),试在l 上找一点P ,使得PO PM -的值最大,并求出这个最大值。