新版高考物理 专题七 选考模块 第1讲 分子动理论、气体及热力学定律学案.doc

合集下载

7分子动理论 气体及热力学定律

7分子动理论 气体及热力学定律

【解析】选A。分子引力与分子斥力不是一对作用力和反作用
力,它们的大小不一定相等,选项B错误;氢气分子和氧气分子的
摩尔质量不同,所以1 g氢气和1 g氧气含有的分子数不同,选项
C错误;布朗运动只有在显微镜下才能看到,直接用肉眼是看不
到的,从阳光中看到的尘埃的运动是物体的机械运动,选项D错
误;摩尔数就是表示物质的量,A正确。
变化规律:r=r0时,分子间作用力f=0;r<r0时,f为斥力;r>r0
时,f为引力。
(2)根据分子间作用力的方向,可判断分子间作用力的做功情况, 进一步判断分子势能的变化规律:r=r0时,分子势能Ep最小; r<r0时,Ep随r减小而增大;r>r0时,Ep随r增大而增大。
【解析】选B。当r=r0时引力与斥力的合力为零,即分子力为
零,A、D错;当分子间的距离大于或小于r0时,分子力做负功,分 子势能增加,r=r0时分子势能最小,B对,C错。
【解题悟道】
分子动理论的三个核心规律
(1)分子模型、分子数:
①分子模型:球模型:V= 4 πR3,立方体模型:V=a3。
②分子数:N=nNA=
m N A= V N A。 Mm Vm
3
(2)分子运动:分子做永不停息的无规则运动,温度越高,分子 的无规则运动越剧烈。
【解析】选A、D、E。闭合开关后,电阻丝发热加热气体,温度
升高,气体的分子平均动能增加,气体的内能增加,选项A正确、
B错误;绝热活塞K缓慢且无摩擦地向右移动,气体对外做功,气
体的压强不变,体积增大,电阻丝放出的热量等于气体对外所做
的功和增加的内能,选项C错误、D正确;由于气体分子平均动能 变大,平均每次的撞击力变大,又由于气体压强不变,气体对器 壁单位面积的撞击力不变,故气体分子单位时间内对器壁单位 面积撞击次数减少,E正确。

高中物理分子动理论教案

高中物理分子动理论教案

高中物理分子动理论教案教学目标:1. 了解分子动理论的基本概念和原理2. 掌握分子动理论在物质状态变化中的应用3. 能够解释气体压强、温度、体积之间的关系教学重点:1. 分子动理论的概念和原理2. 气体状态方程中的分子动理论应用教学难点:1. 理解分子运动对物质性质的影响2. 掌握气体状态方程的推导过程和应用教学过程:一、导入(5分钟)1. 引入分子动理论的概念,让学生思考物质是由什么组成的。

2. 提出问题:为什么物质会呈现不同的状态?二、讲解分子动理论(15分钟)1. 讲解分子动理论的基本内容:分子间的运动和碰撞对物质性质的影响。

2. 讲解分子速度、能量与温度的关系。

三、实验展示(10分钟)1. 进行实验,展示不同状态的分子之间运动的差异。

2. 利用模型演示分子间的碰撞和能量传递过程。

四、气体状态方程的应用(15分钟)1. 讲解气体分子动理论和气体状态方程之间的关系。

2. 分析气体压强、体积和温度之间的关系。

五、课堂练习(10分钟)1. 学生做练习,加深对分子动理论和气体状态方程的理解。

2. 点评答案,纠正错误。

六、概括总结(5分钟)1. 总结分子动理论的重要性和应用。

2. 强化气体的分子动理论与状态方程的联系。

七、课堂作业(5分钟)1. 布置作业:阅读相关资料,了解更多有关分子动理论的内容。

2. 提醒学生复习本节课所学内容。

教学反思:本节课内容较抽象,需要借助实验和模型来直观展示分子运动的过程。

教师应注重引导学生思考,在理解概念的基础上进行延伸和应用。

同时,要注重与学生的互动,及时解答他们提出的问题,帮助他们更好地理解和掌握知识。

高考物理二轮复习专题七选考模块第讲分子动理论气体及热力学定律突破练.doc

高考物理二轮复习专题七选考模块第讲分子动理论气体及热力学定律突破练.doc

第1讲 分子动理论、气体及热力学定律[限训练·通高考] 科学设题 拿下高考高分(45分钟)1.(1)(2018·陕西汉中高三一模)以下说法正确的是________.A .晶体一定具有规则的形状且有各向异性的特征B .液体的分子势能与液体的体积有关C .水的饱和汽压随温度变化而变化D .组成固体、液体、气体的物质分子依照一定的规律在空间整齐地排列成“空间点阵”E .分子质量不同的两种气体,温度相同时,其分子的平均动能一定相同(2)如图,用质量m =1 kg 的绝热活塞在绝热汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦力忽略不计,开始时活塞距离汽缸底部的高度h 1=0.5 m ,气体的温度t 1=27 ℃.现用汽缸内一电热丝(未画出)给气体缓慢加热,加热至t 2=267 ℃,活塞缓慢上升到距离汽缸底某一高度h 2处,此过程中被封闭气体增加的内能增加ΔU =400 J .已知大气压强p 0=1.0×105 Pa ,重力加速度g 取10 m/s 2,活塞横截面积S =5.0×10-4 m 2,求:①初始时汽缸内气体的压强p 1和缓慢加热后活塞距离汽缸底部的高度h 2; ②此过程中汽缸内气体吸收的热量Q .解析:(1)单晶体一定具有规则的形状,且有各向异性的特征,而多晶体的物理性质表现为各向同性,选项A 错误;分子势能的产生是由于分子间存在作用力,微观上分子间距离的变化引起宏观上体积的变化,分子间作用力变化,分子势能才变化,选项B 正确;水的饱和汽压随温度的变化而变化,温度越高,饱和汽压越大,选项C 正确;只有晶体的分子依照一定的规律在空间整齐地排列成“空间点阵”,选项D 错误;温度是分子平均动能的标志,分子质量不同的两种气体,温度相同时,其分子的平均动能一定相同,选项E 正确.(2)①开始时,活塞受力平衡,有p 0S +mg =p 1S解得p 1=p 0+mg S =1.2×105 Pa气体做等压变化,根据盖—吕萨克定律可得h1ST1=h2ST2解得h2=0.9 m②气体在膨胀过程中外界对气体做功为W=-p1ΔV=-1.2×105×(0.9-0.5)×5×10-4 J=-24 J由热力学第一定律ΔU=W+Q解得Q=ΔU-W=400 J-(-24)J=424 J答案:(1)BCE(2)①0.9 m②424 J2.(1)一定质量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态,其p-T图象如图所示.下列判断正确的是________.A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最小E.b和c两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数不同(2)一定质量的理想气体被活塞封闭在竖直放置的圆柱形汽缸内.汽缸壁导热良好,活塞可沿汽缸壁无摩擦地滑动.开始时气体压强为p,活塞下表面相对于汽缸底部的高度为h,外界的温度为T0.现取质量为m的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h4.若此后外界的温度变为T,求重新达到平衡后气体的体积.已知外界大气的压强始终保持不变,重力加速度大小为g.解析:(1)因为pVT=C,从图中可以看出,a→b过程pT不变,则体积V不变,因此a→b过程外力做功W=0,气体温度升高,则ΔU>0,根据热力学第一定律ΔU=Q+W可知Q>0,即气体吸收热量,A正确;b→c过程气体温度不变,ΔU=0,但气体压强减小,由pVT=C知V增大,气体对外做功,W<0,由ΔU=Q+W可知Q>0,即气体吸收热量,B错误;c→a过程气体压强不变,温度降低,则ΔU<0,由pVT=C知V减小,外界对气体做功,W>0,由ΔU=W+Q可知|W |<|Q |,C 错误;状态a 温度最低,而温度是分子平均动能的标志,D 正确;b →c 过程体积增大了,容器内分子数密度减小,温度不变,分子平均动能不变,因此容器壁单位面积单位时间受到分子撞击的次数减少了,E 正确.(2)设汽缸的横截面积为S ,沙子倒在活塞上后,对气体产生的压强为Δp ,由玻意耳定律得phS =(p +Δp )(h -14h )S ①解得Δp =13p ②外界的温度变为T 后,设活塞距底面的高度为h ′.根据盖—吕萨克定律得-14T0=h′S T ③解得h ′=3T 4T0h ④据题意可得Δp =mg S ⑤气体最后的体积为V =Sh ′⑥联立②④⑤⑥式得V =9mghT 4pT0.答案:(1)ADE (2)9mghT 4pT03.(1)关于固体、液体和气体,下列说法正确的是________.A .固体中的分子是静止的,液体、气体中的分子是运动的B .液体表面层中分子间的相互作用力表现为引力C .液体的蒸发现象在任何温度下都能发生D .汽化现象是液体分子间因相互排斥而发生的E .在有的物态变化中虽然物质吸收热量但温度却不升高(2)如图所示,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度 l =10.0 cm ,B 侧水银面比A 侧的高h =3.0 cm.现将开关K 打开,从U形管中放出部分水银,当两侧水银面的高度差为h 1=10.0 cm 时将开关K 关闭.已知大气压强p 0=75.0 cmHg.①求放出部分水银后,A侧空气柱的长度;②此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度.解析:(1)无论固体、液体还是气体,其内部分子都在永不停息地做无规则运动,A错误;当分子间距离为r0时,分子间的引力和斥力相等,液体表面层的分子比较稀疏,分子间距离大于r0,所以分子间作用力表现为引力,B正确;蒸发只发生在液体表面,在任何温度下都能发生,C正确;汽化是物质从液态变成气态的过程,汽化分为蒸发和沸腾两种情况,不是分子间的相互排斥产生的,D错误;冰在熔化过程中吸收热量但温度不升高,E正确.(2)①以cmHg为压强单位.设A侧空气柱长度l=10.0 cm时的压强为p;当两侧水银面的高度差为h1=10.0 cm时,空气柱的长度为l1,压强为p1.由玻意耳定律得pl=p1l1①由力学平衡条件得p=p0+h②打开开关K放出水银的过程中,B侧水银面处的压强始终为p0,而A侧水银面处的压强随空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A侧水银面h1为止.由力学平衡条件有p1=p0-h1③联立①②③式,并代入题给数据得l1=12.0 cm④②当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2.由玻意耳定律得pl=p2l2⑤由力学平衡条件有p2=p0⑥联立②⑤⑥式,并代入题给数据得l2=10.4 cm⑦设注入的水银在管内的长度为Δh,依题意得Δh=2(l1-l2)+h1⑧联立④⑦⑧式,并代入题给数据得Δh=13.2 cm.答案:(1)BCE(2)①12.0 cm②13.2 cm4.(1)下列说法正确的是________.A.布朗运动虽不是分子运动,但它证明了组成固体颗粒的分子在做无规则运动B.液体表面分子间距离大于液体内部分子间的距离C.扩散现象可以在液体、气体中进行,不能在固体中发生D.随着分子间距增大,分子间引力和斥力均减小,分子势能不一定减小E.气体体积不变时,温度越高,单位时间内容器壁单位面积受到气体分子撞击的次数越多(2)如图甲所示,开口向上、内壁光滑的圆柱形汽缸竖直放置,在汽缸P、Q两处设有卡口,使厚度不计的活塞只能在P、Q之间运动.开始时活塞停在Q处,温度为300 K,现缓慢加热缸内气体,直至活塞运动到P处,整个过程中的p -V 图线如图乙所示.设外界大气压强p0=1.0×105Pa.①说出图乙中气体状态的变化过程、卡口Q下方气体的体积以及两卡口之间的汽缸的体积;②求活塞刚离开Q处时气体的温度以及缸内气体的最高温度.解析:(1)布朗运动是悬浮在液体中固体颗粒的运动,而固体颗粒是由大量颗粒分子组成的,固体颗粒的运动是所有颗粒分子整体在运动,不能证明组成固体颗粒的分子在做无规则运动,故A错误;液体表面分子比较稀疏,故液体表面分子间距离大于内部分子之间距离,故B正确;扩散现象可以在液体、气体中进行,也能在固体中发生,故C错误;分子间距离增大时,分子间的引力和斥力都减小,但是分子势能的变化却不一定,如分子之间距离从小于r0位置开始增大,则分子势能先减小后增大,故D正确;由pVT=C可知,气体体积不变时,温度越高,气体的压强越大,由于单位体积内气体分子数不变,分子平均动能增大,所以单位时间内容器壁单位面积受到气体分子撞击的次数越多,故E正确.(2)①从题图乙可以看出,气体先做等容变化,然后做等压变化,最后做等容变化,由题图乙可知,卡口Q下方气体的体积V0=1.0×10-3 m3两卡口之间的汽缸的体积ΔV=1.2×10-3 m3-1.0×10-3 m3=0.2×10-3 m3.②从题图乙可以看出开始时缸内气体的压强为9 10p0活塞刚离开Q 处时,气体压强p 2=1.2×105 Pa由查理定律有910p0300=p2273+t2解得t 2=127 ℃设活塞最终移动到P 处,由理想气体状态方程有910p0V0300=1.5p0×1.2V0273+t3解得t 3=327 ℃.答案:(1)BDE (2)①气体先做等容变化,然后做等压变化,最后做等容变化 1.0×10-3 m 3 0.2×10-3 m 3 ②127 ℃ 327 ℃5.(1)关于一定量的气体,下列说法正确的是________.A .气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和B .只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低C .在完全失重的情况下,气体对容器壁的压强为零D .气体从外界吸收热量,其内能一定增加E .气体在等压膨胀过程中温度一定升高(2)在一端封闭、内径均匀的光滑直玻璃管内,有一段长为l =16 cm 的水银柱封闭着一定质量的理想气体,当玻璃管水平放置达到平衡时如图甲所示,被封闭气柱的长度l 1=23 cm ;当管口向上竖直放置时,如图乙所示,被封闭气柱的长度l 2=19 cm.已知重力加速度g 取10 m/s 2,不计温度的变化.求:①大气压强p 0(用cmHg 表示);②当玻璃管开口向上以a =5 m/s 2的加速度匀加速上升时,水银柱和玻璃管相对静止时被封闭气柱的长度.解析:(1)气体的体积指的是该气体的分子所能到达的空间的体积,A 正确;根据气体温度的微观意义可知,B正确;在完全失重的情况下,分子运动不停息,气体对容器壁的压强不为零,C 错误;若气体在从外界吸收热量的同时对外界做功,则气体的内能不一定增加,D 错误;气体在等压膨胀过程中,根据盖—吕萨克定律知,体积增大,温度升高,E 正确.(2)①由玻意耳定律可得p 0l 1S =(p 0+l )l 2S解得p 0=76 cmHg.②当玻璃管加速上升时,设封闭气体的压强为p ,气柱的长度为l 3,液柱质量为m ,对液柱,由牛顿第二定律可得pS -p 0S -mg =ma ,又mg S =16 cmHg ,解得p =p 0+mg +ma S=100 cmHg , 由玻意耳定律可得p 0l 1S =pl 3S解得l 3=17.48 cm.答案:(1)ABE(2)①76 cmHg ②17.48 cm。

专题7分子动理论 气体及热力学定律

专题7分子动理论 气体及热力学定律

过程中没有漏气,求活塞下推的距离。
【解析】以cmHg为压强单位,在活塞下推前,玻璃管下部空气
柱的压强为 p1=p0+ p l
2
设活塞下推后, 下部空气柱的压强为p1′, 由玻意耳定律得 p1l1=p1′l1′
如图,设活塞下推距离为Δl,
则此时玻璃管上部空气柱的长度为
l3′=l3+l1-l1′-Δl 设此时玻璃管上部空气柱的压强为p3′,则
【解析】选C。根据热力学第二定律可知,热机不可能从单一
热源吸收热量全部用来做功而不引起其他变化,因此,热机的 效率不可能达到100%,选项A错误;做功是通过能量转化改变 系统的内能,热传递是通过能量的转移改变系统的内能,选项 B错误;温度是表示热运动的物理量,热传递过程中达到热平 衡时,温度相同,选项C正确;单个分子的运动是无规则的, 大量分子的运动表现出统计规律,选项D错误。
E.气体在等压膨胀过程中温度一定升高
【解析】选A、B、E。气体的体积指的是该气体的分子所能到
达的空间的体积,因为气体分子之间有很大的空隙,不是所有 分子体积之和,选项A正确;温度是大量气体分子平均动能的 标志,反映了物体内分子热运动的剧烈程度,选项 B正确;气 体压强是大量分子无规则热运动对器壁的碰撞产生的,与失重 无关,选项C错误;气体从外界吸收热量,如果气体对外做 功,其内能可能减小,选项D错误;根据 pV =常量可知,在等
②分子势能。 减小 。 a.分子力做正功,分子势能_____ 增大 。 b.分子力做负功,分子势能_____ 最小 ,但不一定是零。 c.当分子间距为r0时,分子势能_____
2.固体、液体和气体:
(1)晶体和非晶体。
比较
形状 熔点 特性
晶体 单晶体

专题七 第1讲 分子动理论、气体及热力学定律

专题七  第1讲 分子动理论、气体及热力学定律
做真题•明考向 建体系•记要点 研考向•提能力 限训练•通高考 首页 上页 下页 尾页
真题再做
解析:(1)过程①中,气体由a到b,体积V
不变、T升高,则压强增大,A错; 过程②中,气体由b到c,体积V变大,对外 界做功,B对; 过程④中,气体由d到e,温度T降低,内能ΔU减小,体积V不变,
气体不做功,根据热力学第一定律 ΔU=Q+W得Q<0,即气体
温度均为T0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚
好到达b处.求此时汽缸内气体的温度以及在此过程中气体 对外所做的功.重力加速度大小为g.
做真题•明考向 建体系•记要点 研考向•提能力 限训练•通高考 首页 上页 下页 尾页
真题再做
解析:(1)气体的内能不考虑气体自身重力的影响,故气体的 内能不包括气体分子的重力势能,A错;实际气体的内能包 括气体的分子动能和分子势能两部分,B、E对;气体整体源自B.过程②中气体对外界做正功
C.过程④中气体从外界吸收了热量 D.状态c、d的内能相等 E.状态d的压强比状态b的压强小
做真题•明考向
建体系•记要点
研考向•提能力
限训练•通高考
首页
上页 下页
尾页
真题再做
(2)如图, 容积为 V 的汽缸由导热材料制成, 面积为 S 的活塞将汽缸分成容积相等的上下两部分,汽缸 上部通过细管与装有某种液体的容器相连,细管上 有一阀门 K.开始时, K 关闭, 汽缸内上下两部分气 体的压强均为 p0.现将 K 打开,容器内的液体缓慢 V 地流入汽缸,当流入的液体体积为 时,将 K 关闭,活塞平衡时 8 V 其下方气体的体积减小了 .不计活塞的质量和体积,外界温度保 6 持不变,重力加速度大小为 g.求流入汽缸内液体的质量.

高考物理二轮复习第1部分专题7选考部分第1讲分子动理论气体及热力学定律教案

高考物理二轮复习第1部分专题7选考部分第1讲分子动理论气体及热力学定律教案

高考物理二轮复习第1部分专题7选考部分第1讲分子动理论气体及热力学定律教案[高考统计·定方向] (教师授课资源)考点考向五年考情汇总1.分子动理论内能考向1.分子动理论2019·全国卷Ⅲ T33(1)2015·全国卷Ⅱ T33(1)考向2.内能2018·全国卷Ⅱ T33(1)2016·全国卷Ⅲ T33(1)2.固体、液体气体分子的运动特点考向1.固体、液体2015·全国卷Ⅰ T33(1)考向2.气体分子的运动特点2019·全国卷Ⅰ T33(1)2019·全国卷Ⅱ T33(1)2017·全国卷Ⅰ T33(1)3.热力学定律考向1.热力学定律的理解与应用2017·全国卷Ⅱ T33(1)2016·全国卷Ⅰ T33(1)考向2.热力学定律与气体实验定律结合2018·全国卷Ⅰ T33(1)2018·全国卷Ⅲ T33(1)2017·全国卷Ⅲ T33(1)2016·全国卷Ⅱ T33(1)4.气体实验定律和理想气体状态方程考向1.只涉及一部分气体的问题2019·全国卷Ⅰ T33(2)2019·全国卷Ⅲ T33(2)2018·全国卷Ⅱ T33(2)考向2.涉及多部分气体相联系的问题2019·全国卷Ⅱ T33(2)2018·全国卷Ⅰ T33(2)2018·全国卷Ⅲ T33(2)2017·全国卷Ⅰ T33(2)2017·全国卷Ⅲ T33(2)考向3.气体变质量问题2017·全国卷Ⅱ T33(2)分子动理论内能(5年4考)从近五年的高考可以看出,本考点单独考查的机会不多,多数情况下和其它考点综合考查。

题型为选择题或填空题,难度不大,复习时应侧重对基本概念和规律的识记和理解。

1.(2019·全国卷Ⅲ·T 33(1))用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是_____________。

专题检测卷(15) 专题七分子动理论 气体及热力学定律

专题检测卷(15)  专题七分子动理论 气体及热力学定律

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

专题检测卷(十五)分子动理论气体及热力学定律(45分钟100分)1.(20分)(2013·启东二模)(1)一密封气球中装有一定质量的理想气体,现使环境压强不变、气体温度缓慢升高。

对于气体在此过程中的下列说法,正确的是( )A.气球中气体分子间的作用力增大B.气球中气体每个分子的速率都增大C.气球内壁单位面积上受到的压力不变D.气球中气体吸收的热量等于气体增加的内能(2)一个装有一定质量气体的密闭容器,27℃时容器内气体压强为1.0×105Pa,已知当内、外气压压强差超过3.0×104Pa时该容器将破裂。

在外界大气压为1.0×105Pa的环境中,把该容器降温到-33℃(容器容积的变化忽略不计,且容器内气体可视为理想气体)。

求:①此时容器内气体的压强大小;②容器是否会破裂?2.(20分)(2013·铁岭二模)(1)关于热学的知识,下列叙述正确的是( )A.分子间的作用力表现为引力时,若分子间的距离增大,则分子力减小,分子势能增大B.对于一定种类的大量气体分子,在一定温度时,处于一定速率范围内的分子数所占百分比是确定的C.我们可以利用高科技手段,将流散到周围环境中的内能重新收集起来加以利用而不引起其他变化D.气体的状态变化时,若温度升高,则每个气体分子的平均动能增加(2)如图所示,两端开口、粗细均匀的足够长玻璃管插在大水银槽中,管的上部有一定长度的水银,两段空气柱被封闭在左右两侧的竖直管中。

开启上部连通左右水银的阀门A,当温度为300K平衡时水银的位置如图所示,其中左侧空气柱长度L1=50cm,左侧空气柱底部的水银面与水银槽液面高度差为h2=5cm,左右两侧顶部的水银面的高度差为h1=5cm,大气压为75cmHg。

求:①右管内气柱的长度L2。

2023届高考物理知识网络分子动理论 热和功 气体复习教案

2023届高考物理知识网络分子动理论 热和功 气体复习教案

2023届高考物理知识网络分子动理论热和功气体复习教案热学是物理学的重要组成部分.本章的核心内容是研究热现象的两种观点:分子动理论观点(微观)和能量观点(宏观).把握重点、解决难点的关键在于:透过现象看本质的思维能力的培养;通过对各种热现象的充分了解,把握各种热现象;运用已有知识对各种热现象的分析解释,实现对未知领域的探索研究.能的转化与守恒定律是自然界普遍适用的规律.将分子动理论与能的观点有机结合起来,研究热现象的各类问题,是解决重点、难点的关键所在.本章及相关知识网络专题一分子动理论【考点透析】一、本专题考点:本专题为Ⅰ类要求。

二、理解和掌握的内容1.物质是由大量的分子组成的⑴分子很小,设想分子为球体形状,用油膜法可粗略地测出分子的直径d=v/s(v是油滴的体积,s是水面上形成的单分子油膜的面积,d为分子直径),其数量级为10-10m.⑵阿佛伽德罗常数:1mol的任何物质含有的微粒数相同,这个数叫阿佛伽德罗常数,它和物质的摩尔质量是联系宏观物理量(物体的质量、体积)与微观物理量(分子质量、分子体积)的桥梁.深刻理解它们的物理意义,对研究解决各类具体问题有特别重要的作用.2.分子的热运动这个要点的实验基础是布朗运动和扩散现象⑴布朗运动是悬浮在液体或气体中的固体微粒的运动,是永不停息的无规则运动.其规律是:颗粒越小,运动越明显;温度越高,运动越激烈.布朗运动是液体分子永不停息地做无规则热运动的间接反映;是微观分子热运动造成的宏观现象.⑵扩散现象是分子永不停息的无规则的热运动的直接表现.温度越高,扩散进行的越快.扩散具有方向性:从分子密度较大的区域向密度较小的区域扩散.3.分子间的相互作用力⑴分子间同时存在着相互作用的引力和斥力,其合力叫分子力.⑵分子间的引力和斥力都随分子间的距离增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快.⑶分子力的特点:①r=r0时(r0数量级约为10-10m),f引=f斥,分子力F=0②rr0时,f引>f斥,分子表现为引力④r>10r0时,f引,f斥迅速减小,趋近于零,可以认为分子力F=04.难点释疑有同学认为“在较暗的房间里,有阳光射进来后可以观察到悬浮在空气中的尘埃在不停的运动,称为布朗运动.”这是错误的,因为布朗运动是在液体和气体中通过显微镜观察到的,直接用眼睛看到的微粒运动现象都不是布朗运动.用眼睛直接看到,微粒已经很大了.各个方向空气分子对它的撞击力的合力几乎为零,而它的运动主要是由于自身重力和环境中气流的影响.布朗运动既不是分子的运动,也不是眼睛直接观察到的微粒运动,做布朗运动的微粒,其线度应在二者之间.【例题精析】例1用M表示某物质的摩尔质量,m表示分子质量,ρ表示物质密度,V表示摩尔体积,v0表示分子体积,NA表示阿佛伽德罗常数,那么反映这些量之间关系的下列式子中一定正确的有()①NA=v0/V②NA=V/v0③V=M/ρ④m=M/NAA.①③B.②④C.①④D.③④解析:对于固体与液体忽略分子间的距离,分子是一个挨一个排列的.②③④选项都正确;但对于气体来讲,分子间距离很大,②不正确.本题所给物质的状态不确定,因此一定正确的是D.思考拓宽:⑴上题中所给物质若为固体,根据题目条件确定单位体积的分子个数.⑵上题中这种物质若是气态,根据题目条件确定;单位体积的分子数.⑶上题中这种物质若是气态,根据题目条件确定该气体分子间的平均距离.⑷横向发散:已知铜的密度为8.9×103kg/m3,原子量为64,通过估算可知铜中每个原子所占有的体积为:()(1995年全国高考题).A.8×10-24m3B.1×10-26m3C.1×10-29m3D.7×10-6m3例2分子间的作用力有引力(f引)和斥力(f斥),则()A.f引和f斥是同时存在的B.f引总是大于f斥,其合力总表现为引力C.分子间距离越小,f引越小,f斥越大D.分子间距离越小,f引越大,f斥越小解析:根据分子动理论,分子间的引力和斥力总是同是存在的.当分子间距离等于平衡距离时,引力和斥力相平衡,表现出的分子力为零;当分子间距离小于平衡距离时,斥力大于引力,分子力表现为斥力;当分子间距离大于平衡距离时,引力大于斥力,分子力表现为引力.分子引力与斥力总是随分子间距离的减小而增大,随分子间距离的增大而减小,本题答案选A.【能力提升】Ⅰ知识与技能1.关于分子动理论,下列说法中正确的是()A.用油膜法测出一般分子直径的数量级是10-10mB.布朗运动的激烈程度与温度有关系,温度为0℃时,布朗运动停止C.分子间同时存在着引力和斥力,引力随分子间距离增大而增大,斥力随分子间距离的增大而减小2.布朗运动主要说明了()A.液体是由分子组成的B.液体分子不停地做无规则的运动C.液体分子间有空隙D.液体分子间有相互作用力3.下面证明分子间存在引力和斥力的实验,哪个是正确的()A.两块铅压紧以后能连在一起,说明分子间有引力B.一般高压气体难被压缩,说明分子间有斥力C.破碎的玻璃不能拼接在一起,是由于分子间存在斥力4.用油膜法测出分子直径后,要测定阿佛伽德罗常数,只需知道油滴的()A.摩尔质量B.摩尔体积C.体积D.密度5.只要知道下列哪一组物理量,就可以估算出气体分子间的平均距离()A.阿佛伽德罗常数,该气体的摩尔质量和密度B.阿佛伽德罗常数,该气体的摩尔质量和质量C.阿佛伽德罗常数,该气体的质量和体积D.该气体的密度.体积和摩尔质量Ⅱ能力与素质6.在“利用油膜法估测分子大小”的实验中,将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液.测出1cm3溶液有n=50滴.取一滴溶液,滴在水面上,随着酒精溶于水.油酸在水面上形成面积s=0.2m2的单分子油膜.试估算油酸分子的大小.7.空气在标准状况下,分子间的距离为.专题二热和功【考点透析】一、本专题考点:本专题为Ⅰ类要求。

高考物理二轮复习专题七选修模块1分子动理论气体及热力学定律课件

高考物理二轮复习专题七选修模块1分子动理论气体及热力学定律课件

(13)外界对系统做功,其内能一定增加.(×) (14)一定质量的理想气体发生绝热膨胀时,其内能不变.(×) (15)一定质量的理想气体,在等压膨胀过程中,气体分子的平均 动能增大.(√) (16)热量能够自发地从高温物体传导到低温物体,但不能自发地 从低温物体传导到高温物体.(√) (17)自然界进行的涉及热现象的宏观过程都具有方向性,是不可 逆的.(√)
3.固体、液体和气体
4.热力学第一定律公式 ΔU=Q+W 符号的规定
物理量 功 W
热量 Q 内能的改变 ΔU
取正值 外界对物 物体从外界 物体的内能增加
“+” 体做功 吸收热量
取负值 物体对外 物体向外界 物体的内能减少
“-” 界做功 放出热量
5.热力学第二定律的两种表述 (1)不可能使热量由低温物体传递到高温物体,而不引起其他变 化. (2)不可能从单一热源吸收热量并把它全部用来对外做功,而不 引起其他变化.
(1)若缓慢升高环境温度,使活塞缓慢移到一 侧汽缸的底部,求此时的环境温度;
(2)若保持温度不变,用竖直向下的力缓慢推 活塞 b,在活塞 b 由开始运动到汽缸底部过程中, 求向下推力的最大值.
4.(2019·课标Ⅰ,33(1))某容器中的空气被光滑活塞封住,容器 和活塞绝热性能良好,空气可视为理想气体,初始时容器中空气的 温度与外界相同,压强大于外界.现使活塞缓慢移动,直至容器中 的空气压强与外界相同.此时,容器中空气的温度________(填“高 于”“低于”或“等于”)外界温度,容器中空气的密度________(填 “大于”“小于”或“等于”)外界空气的密度.
气体的性质、热
分子动理论的相关
Ⅰ卷 33T
科学思维
力学定律
内容,涉及分子力、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲分子动理论、气体及热力学定律网络构建[规律方法]1.模型法此类方法在估算分子的直径中常常用到(1)球体模型(适用于固体、液体):一个分子体积V0=43π(d2)3=16πd3,d为分子的直径。

(2)立方体模型(适用于气体):一个分子占据的平均空间V0=d3,d为分子的间距。

2.宏观量与微观量的转换桥梁3.“能量守恒法”物体内能的变化是通过做功与热传递来实现的,深刻理解功在能量转化过程中的作用,才能深刻理解热力学第一定律,应用能量守恒来分析有关热学的问题。

4.注意“三看”、“三想”(1)看到“绝热过程”,想到Q=0,则W=ΔU。

(2)看到“等容过程”,想到W=0,则Q=ΔU。

(3)看到“等温过程”,想到ΔU=0,则W+Q=0。

热学基础知识与气体实验定律的组合【典例】(2018·全国卷Ⅱ,33)(1)(5分)对于实际的气体,下列说法正确的是________。

(填正确答案标号。

选对1个得2分,选对2个得4分,选对3个得5分。

每选错1个扣3分,最低得分为0分)A.气体的内能包括气体分子的重力势能B.气体的内能包括气体分子之间相互作用的势能C.气体的内能包括气体整体运动的动能D.气体的体积变化时,其内能可能不变E.气体的内能包括气体分子热运动的动能(2)(10分)如图1,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a 距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体。

已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦。

开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0。

现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处。

求此时汽缸内气体的温度以及在此过程中气体对外所做的功。

重力加速度大小为g。

图1解析 (1)实际气体的内能包括气体分子间相互作用的势能和分子热运动的动能,当气体体积变化时影响的是气体的分子势能,内能可能不变,所以B 、D 、E 正确,A 、C 错误。

(2)开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动。

设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有 p 0T 0=p 1T 1① 根据力的平衡条件有p 1S =p 0S +mg ②联立①②式可得T 1=⎝ ⎛⎭⎪⎫1+mg p 0S T 0③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2。

根据盖-吕萨克定律有V 1T 1=V 2T 2④ 式中V 1=SH ⑤V 2=S (H +h )⑥联立③④⑤⑥式解得T 2=⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0⑦ 从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为W =(p 0S +mg )h ⑧答案 (1)BDE (2)⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0 (p 0S +mg )h1.(1)(5分)下列说法正确的是________。

(填正确答案标号。

选对1个得2分,选对2个得4分,选对3个得5分。

每选错1个扣3分,最低得分为0分)A.外界对气体做功,气体的内能不一定增加B.气体在等温膨胀的过程中一定从外界吸收了热量C.机械能不可能全部转化为内能,内能也不可能全部转化为机械能D.理想气体的温度变化时,其分子平均动能和分子间势能也随之改变E.已知阿伏加德罗常数和某物质的摩尔质量,一定可以求出该物质的分子质量(2)(10分)如图2所示为竖直放置的粗细相同的导热性能良好的U形管,该U形管左端封闭,右端开口,管内用密度为ρ的液体密封了一定质量的气体A、B(可视为理想气体)。

气体A 上方液体高度为h1,气体B下端与气体A下端的高度差为h2,大气压强为p0,重力加速度为g。

图2(ⅰ)求气体B的压强p B;(ⅱ)若开始时气体A所占管的空间高度为h,现增加气体A上方的液体,使其高度变为2h1,求后来气体A所占管的空间高度h′。

解析(1)外界对气体做功的同时,气体向外放热,且放出的热量大于外界对气体做的功,气体内能减少,选项A正确;气体在等温膨胀的过程中,对外界做功,而内能不变,则一定吸收了热量,选项B正确;机械能可以全部转化为内能,由热力学第二定律可知,内能不可能全部转化为机械能,选项C错误;理想气体的温度变化时,其分子平均动能也随之改变,理想气体不考虑分子势能,选项D错误;已知阿伏加德罗常数和摩尔质量,由m=MN A可求出分子质量,选项E正确。

(2)(ⅰ)对气体A有p A=p0+ρgh1对气体B有p B+ρgh2=p A解得p B=p0+ρg(h1-h2)(ⅱ)当气体A上方液体的高度变为2h1后,气体A的压强变为p A′=p0+2ρgh1由玻意耳定律可得p A Sh=p A′Sh′解得h′=p0+ρgh1p0+2ρgh1h答案(1)ABE (2)(ⅰ)p0+ρg(h1-h2)(ⅱ)p0+ρgh1p0+2ρgh1h2.(1)(5分)如图3为分子间的作用力与分子间距离的关系曲线,正值表示斥力,负值表示引力,则下列关于分子间作用力和分子势能的说法正确的是________。

(填正确答案标号。

选对1个得2分,选对2个得4分,选对3个得5分。

每选错1个扣3分,最低得分为0分)图3A.当分子间的距离r>r0时,分子间作用力表现为引力B.当r<r0且分子间的距离减小时,对分子间的斥力影响更大C.当分子间的距离增大时,分子间作用力会做负功,分子势能增大D.当分子间的距离r=r0时,分子势能最小E.若取分子间的距离无穷大时的分子势能为零,则分子间的距离r=r0时分子势能也为零(2)(10分)生活中给车胎打气的过程可以用如图4所示的简化装置进行模拟,图中装置A为打气筒,其下端有两个单向阀门K1、K2,容器B相当于车胎,两者之间有一根体积不计的细管连接。

已知活塞的横截面积为S=15 cm2,质量不计,与装置A的摩擦不计。

B的容积V B =5 L,打气前装置A内和容器B内的气体压强都等于大气压强p0=1.0×105 Pa。

假设在保持装置内气体温度不变的情况下进行打气,将活塞从图中C处用力向下推至筒底,把气体压入容器B,然后再把活塞提到C处,如此反复。

若活塞在C处时距气筒底部L=40 cm,把空气看成理想气体处理。

图4(ⅰ)求活塞如此反复打气25次后,容器B内气体的压强;(ⅱ)在打第26次时,活塞要向下移动多大距离才能将空气压入容器B内?此时推动活塞的推力F至少多大?解析(1)当分子间的距离r>r0时,分子间的引力大于斥力,分子间作用力表现为引力,选项A正确;由题图可以看出当r<r0且分子间的距离减小时,分子间的斥力随分子间距离变化较明显,选项B正确;当分子间的距离增大时,分子间作用力可能会做正功,也可能做负功,主要看初始时是r<r0还是r>r0,选项C错误;分子间作用力做正功,分子势能减少,分子间作用力做负功,分子势能增加,当分子间的距离r=r0时,分子间作用力等于零,无论分子间距离增大还是减小,分子间作用力都做负功,所以r=r0时分子势能最小但不为零,选项D正确,E错误。

(2)(ⅰ)因打气过程中气体的温度保持不变,所以根据玻意耳定律有p0(V B+25·SL)=pV B解得p=4.0×105 Pa(ⅱ)设活塞向下移动的距离为L′时气筒内的压强等于容器B内的压强,则p0SL=p(L-L′)S解得L′=30 cm设此时推动活塞的推力为F,对活塞受力分析,有p0S+F=pS解得F=450 N答案(1)ABD (2)(ⅰ)4.0×105 Pa (ⅱ)450 N3.(1)(5分)关于布朗运动和扩散现象,下列说法正确的是________。

(填正确答案标号。

选对1个得2分,选对2个得4分,选对3个得5分。

每选错1个扣3分,最低得分为0分)A.布朗运动就是液体分子的热运动B.液体中的扩散现象是由液体的对流形成的C.悬浮在液体中的微粒越小,布朗运动越明显D.靠近梅花就能闻到梅花的香味属于扩散现象E.温度越高,布朗运动越显著,扩散得越快(2)(10分)如图5所示,一定质量的理想气体从A状态经过一系列的变化,最终变为状态D,已知气体在A状态时的压强为p0,求气体在状态C时的压强和体积及在状态B时的温度。

图5解析 (1)布朗运动是悬浮微粒的无规则运动,间接反映了液体分子运动的无规则性,故选项A 错误;液体中的扩散现象不是由液体的对流形成的,是液体分子无规则运动产生的,故选项B 错误;悬浮在液体中的微粒越小,在某一瞬间跟它相撞的液体分子数越少,撞击作用的不平衡性就表现得越明显,因而布朗运动越明显,故选项C 正确;靠近梅花能闻到梅花的香味,是因为梅花释放的香气分子在空气中不断扩散,故选项D 正确;温度越高,分子运动越剧烈,液体分子对悬浮颗粒的撞击越不平衡,布朗运动越显著,温度越高,分子运动越剧烈,扩散进行得越快,故选项E 正确。

(2)由题图可知,气体在状态A 、D 时温度相同,设在状态D 时气体压强为p ,则由玻意耳定律得p 0V 0=p ·3V 0解得p =p 03 设在状态B 时气体的温度为T B ,气体从状态A 到状态B 是等压变化,则由盖—吕萨克定律得 V 0T 0=2V 0T B解得T B =2T 0气体从状态B 到状态C 是等温变化,所以气体在状态C 时的温度T C =T B =2T 0气体从状态C 到状态D 是等压变化,所以气体在状态C 时的压强p =p 03设在状态C 时气体的体积为V C由盖—吕萨克定律得3V 0T 0=V C 2T 0解得V C =6V 0答案 (1)CDE (2)p 036V 0 2T 0 热力学定律与气体实验定律的组合【典例1】 (2018·全国卷Ⅰ,33)(1)(5分)如图6,一定质量的理想气体从状态a 开始,经历过程①、②、③、④到达状态e 。

对此气体,下列说法正确的是________(选对1个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分)。

图6A.过程①中气体的压强逐渐减小B.过程②中气体对外界做正功C.过程④中气体从外界吸收了热量D.状态c 、d 的内能相等E.状态d 的压强比状态b 的压强小(2)(10分)如图7,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。

开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0。

现将K 打开,容器内的液体缓慢地流入汽缸,当流入 的液体体积为V 8时,将K 关闭,活塞平衡时其下方气体的体积减小了V6。

相关文档
最新文档