聚类分析及MATLAB应用
matlab在科学计算中的应用
![matlab在科学计算中的应用](https://img.taocdn.com/s3/m/bf7cee5d6ad97f192279168884868762caaebbed.png)
MATLAB在科学计算中的应用非常广泛,主要包括以下方面:
1. 数值计算和数据分析:MATLAB提供了丰富的数值计算和数据分析工具箱,包括向量、矩阵、多维数组、函数和数据可视化等功能,可以用于求解线性代数、常微分方程、偏微分方程、统计分析等问题。
2. 机器学习和数据挖掘:MATLAB提供了机器学习和数据挖掘工具箱,包括支持向量机、随机森林、神经网络等算法,可以用于分类、回归、聚类等任务。
3. 信号处理和图像处理:MATLAB提供了信号处理和图像处理工具箱,可以用于信号滤波、频谱分析、图像增强、图像处理等任务。
4. 控制系统设计和仿真:MATLAB提供了控制系统工具箱,可以用于设计和仿真各种控制系统,包括PID控制、模糊控制、神经网络控制等。
5. 计算机视觉和机器人技术:MATLAB提供了计算机视觉和机器人技术工具箱,可以用于图像处理、目标检测、跟踪、机器人运动规划等任务。
总之,MATLAB在科学计算中的应用非常广泛,可以帮助科学家和工程师解决各种复杂的数学和工程问题,提高工作效率和精度。
利用Matlab进行数据聚类与分类的方法
![利用Matlab进行数据聚类与分类的方法](https://img.taocdn.com/s3/m/c16b9c374b7302768e9951e79b89680203d86b87.png)
利用Matlab进行数据聚类与分类的方法导言在当今大数据时代,处理和分析庞大的数据成为许多领域的重要任务,而数据聚类与分类是其中重要的一环。
Matlab作为一种功能强大的编程语言和工具,在数据聚类与分类方面具有广泛的应用。
本文将介绍利用Matlab进行数据聚类与分类的常用方法和技巧。
一、数据聚类的概念与方法1.1 数据聚类的定义数据聚类是指将具有相似特征的数据对象自动分成若干组的过程,旨在将相似的数据归为一类,不相似的数据分开。
1.2 常用的数据聚类方法- K-means聚类算法:K-means是一种常见且简单的数据聚类方法,通过迭代优化的方式将数据划分成K个簇。
- 层次聚类算法:层次聚类是一种基于树形结构的聚类方法,它将数据逐步合并或分裂,直到得到最终的聚类结果。
- 密度聚类算法:密度聚类根据数据点的密度特征进行聚类,能够有效地发现任意形状和大小的聚类簇。
- 谱聚类算法:谱聚类结合图论的思想,通过计算数据的拉普拉斯矩阵特征向量,将数据聚类成多个划分。
二、利用Matlab进行数据聚类2.1 准备工作在使用Matlab进行数据聚类之前,需要准备好数据集。
通常,数据集需要进行预处理,包括数据清洗、特征选择和降维等步骤。
2.2 K-means聚类利用Matlab的统计工具箱,可以轻松实现K-means聚类算法。
首先,将数据集读入Matlab并进行必要的归一化处理。
然后,使用kmeans函数运行K-means聚类算法,指定聚类的簇数K和迭代次数等参数。
最后,根据聚类结果进行数据可视化或进一步的分析。
2.3 层次聚类Matlab中的cluster函数提供了层次聚类的功能。
将数据集转换为距离矩阵,然后调用cluster函数即可实现层次聚类。
该函数支持不同的聚类算法和距离度量方法,用户可以根据具体需求进行调整。
2.4 密度聚类实现密度聚类可以使用Matlab中的DBSCAN函数。
DBSCAN是一种基于密度的聚类算法,它通过确定数据点的领域密度来判定是否为核心对象,并通过核心对象的连接性将数据点分为不同的簇。
在Matlab中如何进行数据聚类分析
![在Matlab中如何进行数据聚类分析](https://img.taocdn.com/s3/m/60917ec0fbb069dc5022aaea998fcc22bdd14368.png)
在Matlab中如何进行数据聚类分析数据聚类分析是一种常用的数据处理方法,在各个领域都有广泛的应用。
在Matlab中,数据聚类分析相对简单且易于实现。
本文将介绍在Matlab中如何进行数据聚类分析的基本步骤和常用的聚类算法,并通过实例演示其具体操作。
一、数据预处理在进行数据聚类分析之前,通常需要对原始数据进行预处理以保证聚类的准确性。
首先,要对数据进行标准化,使得不同维度的特征具有相同的范围和重要性。
常见的标准化方法有z-score标准化和min-max标准化。
其次,要对数据进行降维处理,以便对高维数据进行分析。
常见的降维方法有主成分分析(PCA)和线性判别分析(LDA)等。
最后,要对数据进行异常值处理,去除可能对聚类结果产生干扰的异常值。
二、选择聚类算法在Matlab中,有多种聚类算法可供选择,如K-means聚类、层次聚类、密度聚类等。
不同的聚类算法适用于不同的数据情况和分析目的。
在选择聚类算法时,应根据数据的特点、分析目的和算法的优缺点进行综合考虑。
下面将以K-means聚类算法为例进行演示。
三、K-means聚类算法实例演示K-means聚类算法是一种简单且常用的聚类算法。
其基本思想是通过迭代计算,将数据样本划分为K个簇,使得同一簇内的样本相似度较高,不同簇之间的相似度较低。
现假设有一组二维数据集,要对其进行聚类分析。
```matlab% 生成随机数据X = [randn(100,2)+ones(100,2); randn(100,2)-ones(100,2)];% K-means聚类K = 2; % 设置簇的个数[idx, C] = kmeans(X, K); % 进行聚类分析% 绘制聚类结果figure;plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12);hold on;plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12);plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3);legend('Cluster 1','Cluster 2','Centroids','Location','NW');title 'Cluster Assignments and Centroids';hold off;```上述代码中,通过`randn`函数生成了一个含有200个样本的二维数据集X,然后利用`kmeans`函数进行聚类计算,得到了每个样本属于的簇的索引`idx`和簇的中心点坐标`C`。
利用Matlab软件实现聚类分析
![利用Matlab软件实现聚类分析](https://img.taocdn.com/s3/m/25ec05c458f5f61fb736660c.png)
§8.利用Matlab和SPSS软件实现聚类分析1. 用Matlab编程实现运用Matlab中的一些基本矩阵计算方法,通过自己编程实现聚类算法,在此只讨论根据最短距离规则聚类的方法。
调用函数:min1.m——求矩阵最小值,返回最小值所在行和列以及值的大小min2.m——比较两数大小,返回较小值std1.m——用极差标准化法标准化矩阵ds1.m——用绝对值距离法求距离矩阵cluster.m——应用最短距离聚类法进行聚类分析print1.m——调用各子函数,显示聚类结果聚类分析算法假设距离矩阵为vector,a阶,矩阵中最大值为max,令矩阵上三角元素等于max聚类次数=a-1,以下步骤作a-1次循环:求改变后矩阵的阶数,计作c求矩阵最小值,返回最小值所在行e和列f以及值的大小gfor l=1:c,为vector(c+1,l)赋值,产生新类令第c+1列元素,第e行和第f行所有元素为,第e列和第f列所有元素为max源程序如下:%std1.m,用极差标准化法标准化矩阵function std=std1(vector)max=max(vector); %对列求最大值min=min(vector);[a,b]=size(vector); %矩阵大小,a为行数,b为列数for i=1:afor j=1:bstd(i,j)= (vector(i,j)-min(j))/(max(j)-min(j));endend%ds1.m,用绝对值法求距离function d=ds1(vector);[a,b]=size(vector);d=zeros(a);for i=1:afor j=1:afor k=1:bd(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k));endendendfprintf('绝对值距离矩阵如下:\n');disp(d)%min1.m,求矩阵中最小值,并返回行列数及其值function [v1,v2,v3]=min1(vector);%v1为行数,v2为列数,v3为其值[v,v2]=min(min(vector'));[v,v1]=min(min(vector));v3=min(min(vector));%min2.m,比较两数大小,返回较小的值function v1=min(v2,v3);if v2>v3v1=v3;elsev1=v2;end%cluster.m,最短距离聚类法function result=cluster(vector);[a,b]=size(vector);max=max(max(vector));for i=1:afor j=i:bvector(i,j)=max;endend;for k=1:(b-1)[c,d]=size(vector);fprintf('第%g次聚类:\n',k);[e,f,g]=min1(vector);fprintf('最小值=%g,将第%g区和第%g区并为一类,记作G%g\n\n',g,e,f,c+1);for l=1:cif l<=min2(e,f)vector(c+1,l)=min2(vector(e,l),vector(f,l));elsevector(c+1,l)=min2(vector(l,e),vector(l,f));endend;vector(1:c+1,c+1)=max;vector(1:c+1,e)=max;vector(1:c+1,f)=max;vector(e,1:c+1)=max;vector(f,1:c+1)=max;end%print1,调用各子函数function print=print1(filename,a,b); %a为地区个数,b为指标数fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=std1(vector)v2=ds1(v1);cluster(v2);%输出结果print1('fname',9,7)2.直接调用Matlab函数实现2.1调用函数层次聚类法(Hierarchical Clustering)的计算步骤:①计算n个样本两两间的距离{d ij},记D②构造n个类,每个类只包含一个样本;③合并距离最近的两类为一新类;④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);⑤画聚类图;⑥决定类的个数和类;Matlab软件对系统聚类法的实现(调用函数说明):cluster 从连接输出(linkage)中创建聚类clusterdata 从数据集合(x)中创建聚类dendrogram 画系统树状图linkage 连接数据集中的目标为二元群的层次树pdist计算数据集合中两两元素间的距离(向量) squareform 将距离的输出向量形式定格为矩阵形式zscore 对数据矩阵X 进行标准化处理各种命令解释⑴T = clusterdata(X, cutoff)其中X为数据矩阵,cutoff是创建聚类的临界值。
具有部分已知信息的数据聚类及其MATLAB实现
![具有部分已知信息的数据聚类及其MATLAB实现](https://img.taocdn.com/s3/m/2476e615fc4ffe473368ab22.png)
l l
沈 洁 , 姜 琴 :具 有部 分 已知 信 息 的数 据 聚 类及 其 MAT A 实现 L B
如 果 3ir 使 得 db = 0 则 有 ,, C ’ ,
=
P 3: ( . 3 6 3 0 3 . . 5 2 0 3 ) 6 8 2 , . 5 7 5 7 4, . 7 5 ( b 6)
=
{[ ) 客( 器
[ 稿 日期 ]O 8 9 6 收 2 O —0 —2 [ 者简 介]沈 作 洁 (9 4 )女 , 北 丹 江 口人 , 阳 师 范 高 等 专科 学校 数 学 系副 教 授 , 士 , 要 从 事 应 用 数 学 、 16一 , 湖 郧 硕 主 模
糊 信 息 处理 等 方 面 的研 究.
20 0 8年 1 2月
郧 阳 师 范 高等 专科 学校 学报
J u n l fYu y n a h r l g o r a n a g Te c e sCo l e o e
De . 20 c 08
第 2 卷 第 6期 8
Vo1 2 No .8 .6
具 有 部 分 已知 信 息 的数 据 聚 类及 其 MATL AB实 现
进行软划分 .ae Z d h提 出 的 模 糊集 理 论 为这 种 软划 分 提供
七
其 中 ‰ ( ≤ i c1 1 ≤ , ≤ ≤ ) 表示 第 个 样 本 Xj 属
= 11 , ≤ ≤ () 2
了有 力 的 分 析 工 具 , 们 开 始 用 模 糊 的 方 法 来 处 理 聚 类 问 人 题 , 称之 为 模 糊 聚 类 分 析 . 于 模 糊 聚 类 得 到 了 样 本 属 并 由 于 各 个 类 别 的 不 确 定 性 程 度 . 达 了样 本 类 属 的 中 介 性 , 表
matlab曲线聚类
![matlab曲线聚类](https://img.taocdn.com/s3/m/a549037c366baf1ffc4ffe4733687e21af45ff9b.png)
matlab曲线聚类
在MATLAB中进行曲线聚类,通常涉及以下步骤:
1.数据预处理:首先,对曲线数据进行预处理,包括去除异常值、平滑处理等,以便更好地反映数据的真实特征。
2.特征提取:从预处理后的数据中提取与聚类相关的特征。
对于曲线数据,可以考虑提取曲线的形状、趋势、周期性等特征。
3.聚类算法选择:根据所提取的特征,选择合适的聚类算法。
常见的聚类算法包括K-means、层次聚类、DBSCAN等。
对于曲线聚类,可能需要考虑算法的曲线拟合能力。
4.聚类参数设置:根据所选的聚类算法,设置合适的参数。
例如,对于K-means算法,需要选择簇的数量和初始聚类中心。
5.聚类执行:使用MATLAB中的聚类函数(如kmeans)对提取的特征进行聚类。
这通常涉及到计算距离矩阵、执行聚类操作等步骤。
6.结果评估:对聚类结果进行评估,包括计算聚类效果指标(如轮廓系数、Davies-Bouldin指数等)以及可视化聚类结果,以便更好地理解数据的分布和聚类效果。
需要注意的是,曲线聚类是一个相对复杂的问题,可能需要针对具体应用场景进行定制化的设计和优化。
同时,MATLAB提供了丰富的工具和函数库,可以帮助用户更方便地进行曲线聚类分析。
Matlab中的时间序列分类和聚类分析技术
![Matlab中的时间序列分类和聚类分析技术](https://img.taocdn.com/s3/m/879dbd095b8102d276a20029bd64783e08127d64.png)
Matlab中的时间序列分类和聚类分析技术时间序列分析是一种用于处理以时间为基准的数据的统计学方法。
通过对时间序列数据进行分类和聚类分析,可以帮助我们发现数据之间的模式、趋势和关联,从而提供对未来趋势的预测和决策支持。
在Matlab中,我们可以利用丰富的时间序列分析工具包来进行这些分析,如金融时间序列分析、信号处理、天气预测等。
一、时间序列分类分析时间序列分类分析是将时间序列数据按照一定的规则分类到不同的类别中。
这可以帮助我们识别不同时间序列之间的差异和相似性,进而在分类、预测和决策等应用中发挥作用。
1. 特征提取在进行时间序列分类之前,首先需要从原始数据中提取出一些有意义的特征。
常用的特征提取方法包括傅里叶变换、小波变换、自回归模型参数等。
在Matlab 中,我们可以使用fft函数进行傅里叶变换,cwt函数进行连续小波变换,arima函数进行自回归模型估计等。
提取出的特征可以用来表征时间序列的统计性质、频谱信息以及自相关性等。
2. 数据预处理在进行时间序列分类之前,通常需要对数据进行预处理,以消除噪声、缺失值和异常值等对分类结果的影响。
这可以通过平滑、插值、滤波等方法实现。
在Matlab中,我们可以使用smooth函数进行平滑处理,interp1函数进行插值处理,filter函数进行滤波处理等。
3. 分类模型建立在特征提取和数据预处理之后,我们可以利用已有的分类算法或建立自己的分类模型来进行时间序列分类。
常用的分类算法包括支持向量机、最近邻、决策树等。
在Matlab中,我们可以使用fitcsvm函数进行支持向量机分类,fitcknn函数进行最近邻分类,fitctree函数进行决策树分类等。
二、时间序列聚类分析时间序列聚类分析是将时间序列数据按照相似度进行分组。
不同于分类分析,聚类分析不需要提前指定类别,而是根据数据的相似性自动进行分组。
1. 相似度度量在时间序列聚类分析中,选择合适的相似度度量方法对数据进行比较是非常重要的。
在Matlab中如何进行数据聚类分析
![在Matlab中如何进行数据聚类分析](https://img.taocdn.com/s3/m/2a618112ec630b1c59eef8c75fbfc77da269979b.png)
在Matlab中如何进行数据聚类分析在Matlab中进行数据聚类分析的方法主要包括准备数据、选择合适的聚类算法、执行聚类算法、评估聚类结果等步骤。
下面将详细介绍在Matlab中进行数据聚类分析的步骤。
一、准备数据在进行数据聚类分析之前,首先需要准备好要进行聚类的数据。
数据可以是一个矩阵,每一行表示一个样本,每一列表示一个特征。
需要确保数据的格式正确,没有缺失值或异常值。
数据的准备也包括数据的预处理,如归一化、标准化等。
二、选择合适的聚类算法根据数据的特点和实际问题的要求,选择合适的聚类算法是非常重要的。
常用的聚类算法包括K均值聚类、层次聚类、密度聚类等。
不同的算法适用于不同的数据类型和聚类目标。
在Matlab中,可以使用内置的聚类算法函数,如kmeans、dbscan等,也可以使用第三方工具包,如matlab-bgl、cluster等。
三、执行聚类算法在选择好聚类算法之后,可以在Matlab中调用相应的聚类函数进行聚类分析。
以下以K均值聚类为例进行说明。
假设数据矩阵为X,聚类的类别数为K,可以按照以下步骤进行聚类:1. 调用kmeans函数进行聚类:```matlab[idx, centers] = kmeans(X, K);```其中,idx是每个样本的所属类别标签,centers是各个类别的中心点。
2. 可以通过绘制散点图来展示聚类结果:```matlabgscatter(X(:,1), X(:,2), idx);```其中,X(:,1)和X(:,2)表示数据矩阵中的两个特征,idx表示聚类结果。
四、评估聚类结果聚类结果的质量评估是判断聚类算法好坏的重要指标之一。
在Matlab中,可以使用内置的聚类评估函数来评估聚类结果。
以下以轮廓系数为例进行评估:1. 调用silhouette函数计算轮廓系数:```matlabs = silhouette(X, idx);```其中,X是数据矩阵,idx是聚类结果。
用matlab做聚类分析
![用matlab做聚类分析](https://img.taocdn.com/s3/m/545b4c2a7375a417866f8f70.png)
用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。
下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。
clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。
输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。
Cutoff 参数X是n p为阈值。
(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。
matlab识别一组数据之间差异的方法
![matlab识别一组数据之间差异的方法](https://img.taocdn.com/s3/m/45901aa85ff7ba0d4a7302768e9951e79b89691b.png)
一、概述在数据分析领域,识别一组数据之间的差异是非常重要的。
对数据进行差异分析有助于找出不同数据之间的模式和规律,帮助我们更好地理解数据。
MATLAB作为一种强大的数据分析工具,提供了多种方法用于识别数据之间的差异。
本文将介绍一些常用的方法,帮助读者更好地运用MATLAB进行数据差异分析。
二、基本统计方法1. 均值比较均值比较是一种常见的数据差异分析方法。
在MATLAB中,可以使用t检验或者方差分析来进行均值比较。
通过计算不同样本的均值和方差,可以判断它们之间的差异是否具有显著性。
2. 相关性分析相关性分析用于研究两个或多个变量之间的相关性程度。
在MATLAB 中,可以使用相关系数或者协方差矩阵来进行相关性分析。
相关性分析可以帮助我们了解不同变量之间的相关性,从而识别数据之间的差异。
三、数据可视化方法1. 箱线图箱线图是一种常用的数据可视化方法,用于展示一组数据的分布情况。
在MATLAB中,可以使用boxplot函数来绘制箱线图。
通过观察不同数据的箱线图,可以直观地看出它们之间的差异。
2. 散点图散点图是一种展示两个变量之间关系的图表。
在MATLAB中,可以使用scatter函数来绘制散点图。
通过观察不同数据的散点图,可以发现它们之间的差异或者关联。
3. 直方图直方图用于展示一组数据的分布情况。
在MATLAB中,可以使用histogram函数来绘制直方图。
通过比较不同数据的直方图,可以发现它们之间的差异。
四、机器学习方法1. 聚类分析聚类分析是一种无监督学习方法,用于将相似的数据点分组到同一类别中。
在MATLAB中,可以使用k-means聚类算法来进行聚类分析。
通过聚类分析,可以将数据分为不同的类别,从而帮助我们识别数据之间的差异。
2. 主成分分析主成分分析是一种降维技术,用于发现数据集中的模式和结构。
在MATLAB中,可以使用pca函数来进行主成分分析。
通过主成分分析,可以找出数据中的主要特征,帮助我们识别数据之间的差异。
matlab在工程数学中的应用
![matlab在工程数学中的应用](https://img.taocdn.com/s3/m/01500c6cbf23482fb4daa58da0116c175f0e1eee.png)
matlab在工程数学中的应用
MATLAB是一种数学软件,可以在工程和科学领域提供广泛的功能和工具,包括数值计算、数据分析、可视化和算法开发等。
以下是一些 MATLAB 在工程数学中的应用:
1. 数值计算:MATLAB 是一种强大的数值计算工具,可以进行各
种数值计算,包括线性代数、微积分、微分方程、概率统计等。
许多工程问题都可以使用 MATLAB 进行数值求解。
2. 数据分析:MATLAB 具有强大的数据分析工具,可以进行各种
数据可视化和统计分析,如数据探索、回归分析、聚类分析等。
在工程中,MATLAB 可用于数据挖掘、机器学习和人工智能等相关应用。
3. 可视化:MATLAB 提供了各种可视化工具,可以创建各种类型
的图形和图表,如折线图、散点图、柱状图、饼图等,用于表达各种数据和概念。
在工程中,MATLAB 可用于绘制图形、展示数据和模拟仿真。
4. 算法开发:MATLAB 是一种科学计算软件,可以用于开发各种
算法和模型。
在工程中,MATLAB 可用于算法设计和优化、数学模型建立和求解等。
5. 工程仿真:MATLAB 可以用于建立各种工程系统的仿真模型,
如电路、机械、流体等。
在工程中,MATLAB 可用于模拟实验、分析和优化等。
MATLAB 是一种功能强大的数学软件,在工程和科学领域有着广
泛的应用。
Matlab中的聚类分析与聚类算法详解
![Matlab中的聚类分析与聚类算法详解](https://img.taocdn.com/s3/m/bb04374ff56527d3240c844769eae009591ba272.png)
Matlab中的聚类分析与聚类算法详解绪论数据分析是现代科学和工程领域中非常重要的一项技术。
随着互联网和物联网技术的发展,数据的规模和复杂度不断增加,数据分析越来越成为解决实际问题的关键。
聚类分析是一种常用的数据分析技术,它通过将数据样本划分成具有相似性的组或簇,从而揭示数据的内在结构和模式。
在Matlab中,聚类分析功能强大且易于使用,提供了多种聚类算法,如K-means、层次聚类等。
本文将详细介绍Matlab 中的聚类分析方法及其算法。
一、K-means算法K-means算法是聚类分析中最经典且最常用的算法之一。
它将数据样本划分成K个簇,并迭代地优化簇的中心,使得簇内的样本与簇中心的距离最小化。
在Matlab中,使用kmeans函数可以轻松实现K-means算法。
K-means算法的步骤如下:1. 随机选择K个样本作为初始的K个簇中心。
2. 计算每个样本与簇中心的距离,将样本分配到离其最近的簇。
3. 更新每个簇的中心,即计算簇内所有样本的平均值。
4. 重复步骤2和步骤3,直到簇中心不再变化或达到迭代次数。
K-means算法的优点是简单、高效,并且可以处理大规模数据。
但是,它对初始簇中心的选择敏感,容易陷入局部最优解。
二、层次聚类算法层次聚类算法是另一种常见的聚类分析方法。
它通过计算样本之间的相似性,逐步合并或划分样本,构建聚类层次结构。
在Matlab中,使用clusterdata函数可以实现层次聚类算法。
层次聚类算法的步骤如下:1. 将每个样本作为一个初始簇。
2. 计算任意两个簇之间的相似性,常用的相似性度量包括欧氏距离、相关系数等。
3. 合并相似性最高的两个簇,得到新的簇。
4. 重复步骤2和步骤3,直到所有样本被合并为一个簇或达到设定的簇数。
层次聚类算法的优点是可以得到聚类层次结构,方便分析和可视化。
然而,它对数据规模较大时计算复杂度较高。
三、谱聚类算法谱聚类算法是一种基于图论的聚类方法,在处理复杂数据时具有较好的性能。
Matlab中的聚类分析方法与应用案例
![Matlab中的聚类分析方法与应用案例](https://img.taocdn.com/s3/m/e7113c78a9956bec0975f46527d3240c8547a172.png)
Matlab中的聚类分析方法与应用案例1. 引言聚类分析是一种常用的数据分析方法,它通过将相似的数据点分组,将不同的数据点划分到不同的类别中,从而帮助我们理解和发现数据中的隐藏模式和结构。
Matlab作为一种强大的数据处理和分析工具,提供了多种聚类分析方法和函数,使得我们可以方便地进行聚类分析并获得有价值的结果。
本文将介绍一些常用的Matlab聚类方法,并通过应用案例展示其实际应用价值。
2. K均值聚类K均值聚类是一种经典的聚类算法,它将数据点划分到离其最近的K个质心所表示的聚类中。
Matlab提供了kmeans函数,可以方便地进行K均值聚类分析。
以鸢尾花数据集为例,我们可以使用kmeans函数对花萼长度和花萼宽度两个特征进行聚类分析,并将结果可视化展示出来。
通过观察不同颜色的点的分布,我们可以清晰地看到K均值聚类所得到的三个类别。
3. 层次聚类层次聚类是一种将数据点逐步进行聚类的方法,它可以通过距离或相似性来度量不同数据点之间的关系。
Matlab提供了linkage函数用于计算数据点之间的距离,并可以通过dendrogram函数将层次聚类过程可视化。
我们以信用卡用户数据集为例,该数据集包含了不同用户的信用卡消费金额和还款金额等信息。
使用层次聚类分析方法,我们可以将数据点划分到不同的聚类中,并通过绘制树状图来展示不同聚类之间的关系。
4. 密度聚类密度聚类是一种基于数据点之间密度的聚类方法,它可以发现任意形状的聚类,并对噪声数据点进行抑制。
Matlab提供了DBSCAN函数用于密度聚类分析。
我们以人脸识别数据集为例,该数据集包含了不同人脸的特征点坐标。
通过密度聚类分析,我们可以将不同人脸识别为不同的聚类,并可以通过绘制散点图的方式展示聚类结果。
通过观察散点图,我们可以发现密度聚类方法能够有效地将不同人脸进行分组,并区分出异常数据点。
5. 非负矩阵分解聚类非负矩阵分解聚类是一种基于非负矩阵分解的聚类方法,它可以发现数据集中的潜在特征,并将数据点划分到不同的聚类中。
Matlab中的聚类分析工具简介
![Matlab中的聚类分析工具简介](https://img.taocdn.com/s3/m/ccaa96af6aec0975f46527d3240c844768eaa072.png)
Matlab中的聚类分析工具简介聚类分析作为一种常用的数据分析方法,在不同领域和应用中发挥着重要的作用。
而Matlab作为一种支持数值计算和数据可视化的软件,为用户提供了方便且强大的聚类分析工具。
本文将介绍Matlab中几个常用的聚类分析工具及其使用方法。
一、K-means聚类分析工具K-means是一种常见的划分聚类算法,它的基本思想是将n个样本划分为K个不相交的簇,以使得簇内的样本之间的相似度最大化,而簇间的相似度最小化。
在Matlab中,我们可以使用`kmeans`函数来实现K-means聚类分析。
使用`kmeans`函数时,我们需要提供待聚类的样本数据矩阵以及聚类的簇数K作为输入参数。
函数将返回每个样本所属的簇的索引,以及簇的中心点坐标。
我们可以根据簇的索引和中心点坐标进行进一步的分析和可视化。
二、层次聚类分析工具层次聚类是一种基于距离的聚类算法,其基本思想是根据样本之间的相似性将它们逐步地合并为更大的簇,从而形成一个层次化的聚类结果。
在Matlab中,我们可以使用`linkage`函数和`cluster`函数来实现层次聚类分析。
首先,我们可以使用`linkage`函数计算样本之间的距离,并得到一个距离矩阵。
然后,我们可以使用`cluster`函数基于距离矩阵进行聚类,指定簇数或者距离阈值。
该函数将返回每个样本所属的簇的索引。
通过层次聚类分析工具,我们可以获得一个层次化的聚类结果,以及聚类过程中形成的类别树图。
这些结果可以帮助我们更好地理解数据的相似性和结构。
三、密度聚类分析工具与划分和层次聚类不同,密度聚类不依赖于簇的形状和个数的先验知识,而是通过找寻高密度区域来划分数据。
在Matlab中,我们可以使用`dbscan`函数来实现基于密度的聚类分析。
`dbscan`函数需要提供待聚类的样本数据矩阵、邻域半径和邻域密度阈值作为输入参数。
函数将返回每个样本所属的簇的索引,以及噪音点的索引。
密度聚类可以有效地处理数据中的噪音和离群点,并且适用于各种形状和密度不均的数据集。
模糊聚类分析及matlab程序实现
![模糊聚类分析及matlab程序实现](https://img.taocdn.com/s3/m/c9b3b4d6b14e852458fb5766.png)
模糊聚类分析及matlab 程序实现采用模糊数学语言对按一定的要求进行描述和分类的数学方法称为模糊聚类分析。
聚类分析主要经过标定和聚类两步骤。
【1】 1 标定(建立模糊相似矩阵)城市居民食品零售价格,第t 时刻第i 种食品的零售价记为),(t i x 。
相似矩阵R 的构建方法:NTV 法设时间序列),(j i A 表示食品i 在时间t 的价格,其中i=1,2…42;t=1,2…39。
∑∑==--=mk jk ik m k jk ik x xx x j i R 11),max (1),((其中i,j,k=1,2…42,m=39) 42*42),(j i R R = 2 聚类2.1 计算R 的传递闭包:对模糊相似矩阵R,依次用平方法计算,2R ,4R ,…,t2R ,…,当第一次出现k k k R R R =*时,则称k R 为传递闭包。
【1】2.2 开始聚类:【2】 (1)令T={1,2,3…42},取)1(xi T ∈ ,令X 、Q 为空集;(2)令0=j ;(3)若λ>=),(j xi R 且X x j ∉,则令}{j X X ⋃=,}{j Q Q ⋃=;(4)1+=j j ;(5)若n j <,返回(1);(6)若Q 为空集,怎输出聚类x,X -T T =;(7))1(xi Q =,}{xi Q Q -=,返回(2)。
设置不同的置信水平λ值,就可以得到不同的分类。
Matlab 程序实现:A=data;[N M] = size(A);for i = 1:Nfor j = 1:NR(i,j)=abs(1-sum(abs(A(i,:)-A(j,:)))/sum(max([A(i,:);A(j,:)])));endendfor j=1:42for i=1:42y(i,j)=0;for k=1:42mn(k)=min(R(i,k),R(k,j));endy(i,j)=max(mn);endendnumda=[1 0.9 0.95 0.85 0.8 0.75 0.55 0.7 0.655 0.65 0.6 0.55 0.5 0.45 0.454 0.4 0.45 0.3 0.35 0.255 0.25 0.2 0.15 0.1];for i=1:42TT(i)=i;endfor i=1:length(numda)disp ('当分类系数是');disp(numda(i));a=numda(i);T=TT;disp ('分类为');while 1if ~isempty(T)xi=T(1);endX=[];Q=[];while 1for j=1:42if (y(xi,j)>=a)&isempty(intersect(X,j))X=union(X,j);Q(length(Q)+1)=j;endendif isempty(Q)disp(X);breakelsexi=Q(1);Q(1)=[];endendT=setdiff(T,X); if isempty(T) breakendendend。
MATLAB统计分析工具箱的使用指导
![MATLAB统计分析工具箱的使用指导](https://img.taocdn.com/s3/m/79e6178d64ce0508763231126edb6f1aff007188.png)
MATLAB统计分析工具箱的使用指导一、引言MATLAB是一种广泛应用于科学研究和工程领域的高级计算机语言和交互式环境。
而统计分析工具箱则为MATLAB提供了丰富的统计分析功能和工具。
本文将介绍MATLAB统计分析工具箱的基本使用方法,以帮助读者更好地了解和运用这一功能强大的工具。
二、数据导入与预处理在进行统计分析之前,首先需要将数据导入到MATLAB环境中。
对于文本文件、Excel文件等常见的数据格式,MATLAB提供了便捷的导入函数,如"readtable"和"xlsread"等。
同时,MATLAB还支持导入来自数据库、网络和其他数据源的数据。
一旦数据导入成功,接下来就可以进行数据预处理。
数据预处理主要包括数据清洗、异常值处理、缺失值处理等。
在MATLAB中,可以利用统计分析工具箱提供的函数进行数据预处理。
例如,使用"fillmissing"可以填补缺失值,使用"rmoutliers"可以剔除异常值。
三、描述性统计分析描述性统计分析是对数据进行初步的探索性分析,以获取对数据分布、集中趋势和离散程度等方面的认识。
在MATLAB中,可以使用统计分析工具箱提供的函数进行描述性统计分析。
例如,使用"summary"可以得到数据的基本统计量(如均值、标准差等),使用"histogram"可以绘制直方图来观察数据分布。
四、假设检验与推断统计分析假设检验与推断统计分析是通过样本数据推断总体特征的一类统计方法。
在MATLAB中,可以使用统计分析工具箱提供的函数进行假设检验与推断统计分析。
例如,使用"ttest"可以进行单样本t检验,使用"anova"可以进行方差分析。
五、回归分析与预测回归分析是建立数学模型来描述因变量与自变量之间关系的统计方法。
在MATLAB中,可以使用统计分析工具箱提供的函数进行回归分析与预测。
使用MATLAB进行聚类分析和特征提取
![使用MATLAB进行聚类分析和特征提取](https://img.taocdn.com/s3/m/ffca79347dd184254b35eefdc8d376eeafaa1746.png)
使用MATLAB进行聚类分析和特征提取聚类分析和特征提取是数据科学和机器学习领域中的两个重要任务。
聚类分析用于将数据按照相似性进行分类,特征提取则是从原始数据中提取出具有代表性的特征。
在本文中,我们将介绍如何使用MATLAB工具包进行聚类分析和特征提取的实践操作。
一、引言聚类分析和特征提取是数据科学中的两个关键技术,它们广泛应用于各个领域,如生物信息学、图像处理、自然语言处理等。
聚类分析可以帮助我们将数据按照相似性进行分组,从而更好地理解和解释数据。
特征提取则可以帮助我们从大量的原始数据中提取出具有代表性的特征,从而降低数据维度和加快处理速度。
二、聚类分析在进行聚类分析之前,我们首先需要定义数据集和距离度量。
数据集可以是一个矩阵,每一行表示一个数据点,每一列表示一个特征。
而距离度量可以是欧氏距离、曼哈顿距离等。
在MATLAB中,我们可以使用pdist函数来计算两个数据点之间的距离。
然后,我们可以使用聚类算法来执行聚类分析。
常用的聚类算法有K均值、层次聚类等。
在MATLAB中,可以使用kmeans函数来执行K均值聚类。
这个函数会将数据集划分成指定数量的簇,并且返回每个数据点所属的簇标签。
另外,MATLAB还提供了evalclusters函数来自动选择最佳的聚类数目。
该函数通过计算不同聚类数目下的评估指标,如轮廓系数、Davies-Bouldin指数等,来确定最优的聚类数目。
三、特征提取在进行特征提取之前,我们需要先了解常见的特征提取方法。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)等。
在MATLAB中,我们可以使用pca函数来执行主成分分析。
主成分分析通过线性变换将原始数据投影到一个新的坐标系中,使得新的坐标系下的数据具有最大的方差。
这样可以降低数据的维度,并且保留了数据的主要信息。
另外,我们还可以使用分类算法来进行特征提取。
分类算法可以通过学习样本数据的特征和标签之间的关系,来提取出具有代表性的特征。
在Matlab中实现数据聚类和聚类分析的方法
![在Matlab中实现数据聚类和聚类分析的方法](https://img.taocdn.com/s3/m/d2312332773231126edb6f1aff00bed5b8f37368.png)
在Matlab中实现数据聚类和聚类分析的方法在Matlab中实现数据聚类和聚类分析数据聚类和聚类分析是在数据挖掘和机器学习领域中非常重要的技术。
它们能够帮助我们将相似的数据点分组,从而揭示出数据之间的内在关系和模式。
在Matlab中,有多种方法可以实现数据聚类和聚类分析,本文将介绍其中的一些常用方法。
首先,我们需要导入数据。
在Matlab中,可以使用`readtable`函数来读取.csv 或.txt文件中的数据。
如果数据是存储在Excel文件中,可以使用`xlsread`函数来读取数据。
另外,也可以手动将数据存储在一个变量中。
在进行聚类之前,我们需要对数据进行预处理。
在预处理阶段,常见的操作包括数据去噪、数据标准化、缺失值处理等。
Matlab提供了一系列函数来实现这些操作,例如`Smooth`函数用于平滑数据,`zscore`函数用于数据标准化。
完成数据预处理后,我们可以开始进行聚类算法的选择和运行。
在Matlab中,有多种聚类算法可供选择,如K-means聚类算法、层次聚类算法、高斯混合模型等。
这些算法各有特点,可根据实际问题选择。
在选择了合适的聚类算法后,我们可以使用相应的函数进行聚类。
以K-means聚类算法为例,可以使用`kmeans`函数来进行聚类操作。
聚类完成后,我们需要进行聚类结果的评估和分析。
在Matlab中,可以使用一些评估指标来度量聚类效果,如聚类轮廓系数、Davies–Bouldin指数等。
这些指标能够帮助我们评估聚类结果的紧密度和分离度。
此外,我们还可以使用可视化工具来展示聚类结果,如散点图、热力图等。
Matlab提供了许多绘图函数用于可视化,如`scatter`函数可以绘制散点图,`heatmap`函数可以绘制热力图。
除了单一的聚类算法外,我们还可以将多个聚类算法进行组合,形成集成聚类模型。
集成聚类模型能够充分发挥各种聚类算法的优势,提高聚类效果。
在Matlab中,可以使用`fitensemble`函数来构建集成聚类模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析人类认识世界往往首先将被认识的对象进行分类,聚类分析是研究分类问题的多元数据分析方法,是数值分类学中的一支。
多元数据形成数据矩阵,见下表1。
在数据矩阵中,共有n个样品x1,x2,…,xn(列向),p个指标(行向)。
聚类分析有两种类型:按样品聚类或按变量(指标)聚类。
表1 数据矩阵聚类分析的基本思想是在样品之间定义距离,在变量之间定义相似系数,距离或相似系数代表样品或变量之间的相似程度。
按相似程度的大小,将样品(或变量)逐一归类,关系密切的类聚到一个小的分类单位,然后逐步扩大,使得关系疏远的聚合到一个大的分类单位,直到所有的样品(或变量)都聚集完毕,形成一个表示亲疏关系的谱系图,依次按照某些要求对样品(或变量)进行分类。
一、分类统计量----距离与相似系数1.样品间的相似性度量----距离用样品点之间的距离来衡量各样品之间的相似性程度(或靠近程度)。
设(,)i j d x x 是样品 ,i j x x 之间的距离,一般要求它满足下列条件:1)(,)0,(,)0;2)(,)(,);3)(,)(,)(,).i j i j i j i j j i i j i k k j d x x d x x x x d x x d x x d x x d x x d x x ≥=⇔==≤+且在聚类分析中,有些距离不满足3),我们在广义的角度上仍称它为距离。
1.1 欧氏距离1221(,)()pi j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑1.2 绝对距离1(,)||pi j ik jk k d x x x x ==-∑1.3 Minkowski 距离11(,)()pmm i j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑1.4 Chebyshev 距离1(,)max ||i j ik jk k pd x x x x ≤≤=-1.5 方差加权距离12221()(,)pik jk i j k k x x d x x s =⎡⎤-=⎢⎥⎢⎥⎣⎦∑ 其中 221111,().1n n ik k ik k i i x x s x x n n ====--∑∑ 1.6 马氏距离112(,)()()Ti j i j i j d x x x x S x x -⎡⎤=--⎣⎦其中 S 是由样品12,,...,,...,j n x x x x 算得的协方差矩阵:1111,()()1n n T i i i i i x x S x x x x n n ====---∑∑ 样品聚类通常称为Q 型聚类,其出发点是距离矩阵。
2.变量间的相似性度量----相似系数当对p 个指标变量进行聚类时,用相似系数来衡量变量之间的相似程度(或关联程度)。
一般地,若 c αβ表示变量,αβx x 之间的相似系数,应满足:1)||11;2)1(0);3).c c c x cx c c c αβαααβαβαββα≤==±⇔=≠=且 c αβ的绝对值越接近于1,说明变量 ,αβx x 的关联越大。
相似系数中最常用的是相关系数与夹角余弦。
2.1 相关系数变量,αβx x 之间的相关系数定义为:()(),niix x x x s r ααββαβ--==∑事实上,r αβ是变量,αβx x 的观测值1212(,,...,)(,,...,)T T n n x x x x x x αααβββ与之间的相关系数。
2.2 夹角余弦变量,αβx x 的观测值 1212(,,...,)(,,...,)T T n n x x x x x x αααβββ与,其夹角余弦定义为:niix x c αβαβ=∑变量聚类通常称为 R 型聚类。
在 R 型聚类中,相似系数矩阵 C 是出发点,相似系数矩阵可以是相关矩阵,也可以是夹角余弦矩阵。
二、谱系聚类法这里所介绍的是样品的谱系聚类法。
1.类间距离定义为简单起见,以i ,j 分别表示样品,i j x x ,以d ij 简记i ,j 之间的距离(,)i j d x x 。
G p ,G q 分别表示两个类,设它们分别含有n p ,n q 个样品。
若类G p 中有样品12,,...,pn x x x ,则其均值11pn p ii px xn ==∑称为类 G p 的重心。
类G p 与G q 之间的距离记为 D pq ,有多种多样定义方式。
1.1 最短距离,min p qpq ij i G j G D d ∈∈=1.2 最长距离,max p qpq ij i G j G D d ∈∈=1.3 类平均距离1p qpq iji G j G p qD dn n ∈∈=∑∑1.4 重心距离(,)pq p q D d x x =1.5 离差平方和距离2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式按照谱系聚类法的思想,先将样品聚合成小类,在逐步扩大为大类。
设类 G r 由类G p 、G q 合并所得,则G r 包含n r =n p +n q 个样品。
问题:由G p ,G q 与其它类G k (k ≠p,q)的距离计算G r 与G k (k ≠p,q )的距离,即建立类间距离的递推公式。
2.1 最短距离min{,}rk pk qk D D D =2.2 最长距离max{,}rk pk qk D D D =2.3 类平均距离p q rk pk qk rrn n D D D n n =+2.4 重心距离2222p qp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅2.5 离差平方和距离2222p k q k krkpkqk pqr kr kr k n n n n n D D D D n n n n n n ++=+-+++ 3.谱系聚类法的步骤谱系聚类法的步骤如下:Step1 n 个样品开始时作为 n 个类,计算两两之间的距离,构成一个对称距离矩阵:121212(0)120...0......0n n n n d d d d D d d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦此时,D pq =d pq ;Step2 选择 D (0)中的非对角线上的最小元素,设这个最小元素是 D pq 。
此时,G p ={x p },G q ={x q }。
将G p ,G q 合并成一个新类 G r ={G p ,G q }。
在 D (0)中消去G p 和G q 所对应的行与列,并加入有新类G r 与剩下的其它未聚合的类间的距离所组成的一行和一列,得到一个新的距离矩阵D (1),它是n-1阶方阵;Step3 从 D (1)出发重复 Step2 的作法得 D (2),再由D (2)出发重复上述步骤,直到n 个样品聚为1个大类为止;注意: 在合并过程中要记下合并样品的编号及两类合并时的水平(即距离)并绘制聚类谱系图。
4.谱系聚类法的统计量用谱系聚类法聚类时,聚多少类合适,这是一个实际的问题。
一个较好的聚类应该在类内阁样品尽可能相似的前提下,使得类的个数尽可能少。
这里需要考虑谱系距离用到的统计量,利用它们,可以在一定程度上判别聚多少类为合适。
4.1 R 2统计量设谱系得第 G 层共有G 个类,定义11()(),n GTi i G k i k T x x x x P S ===--=∑∑其中 11()(),,knTk i k i k i k i G i S x x x x x x x n ∈==--=∑∑为G k 的重心,S k 越小,说明G k 中各样品越相似。
定义 R 2 统计量如下:21/G R P T =-R 2总是随着分类数目的减少而减小,可以从R 2值的变化看n 个样品分成几类最合适。
比如,分为5类以前各类的R 2减小较缓慢;假定分为5类时,R 2=0.85,而下一次合并,即分为4类时R 2减小较快,如R 2=0.35,则认为分为5类较合适。
4.2 半偏相关统计量这一统计量与离差平方和距离有关。
设类 G p ,G q 的离差平方和分别是()(),()(),pqT T p ip i p q iq i q i G i G S xx x x S xx x x ∈∈=--=--∑∑将 G p ,G q 合并成G r 后的离差平方和为()(),rT r i r i r i G S x x x x ∈=--∑合并后的离差平方和增量为2()()p qp qT pq r p q p q p q p q rrn n n n W S S S x x x x x x n n ++=--=--=-定义半偏相关统计量为:/pq SPRSQ W T =SPRSQ 是上一步R 2值与该步R 2值的差值,当SPRSQ 值越大时,说明上一次合并效果越好。
4.3 伪F 统计量伪F 统计量 PSF 是()/(1)/()G G T P G PSF P n G --=-PSF 值越大表示这些观测可显著地分为 G 个类。
4.4 伪 t 2 统计量设S p ,S q ,W pq 的含义如前所述,定义伪 t 2 统计量为2()/(2)pqp q p q W PST S S n n =++-PST2大,说明合并G p ,G q 为G r 后,使得离差平方和的增量W pq 相对于原G p ,G q 的类内离差平方和大。
这表明合并的两个类G p ,G q 是很分开的,也就是上一次聚类效果较好。
三、快速聚类法参见:范金城,梅长林. 数据分析(P228-241).北京:科学出版社。
聚类分析课堂例题为了研究世界各国森林、草原资源的分布规律,共抽取了21个国家的数据,每个国家4项指标,原始数据见下表1。
使用该原始数据对国别进行聚类分析。
表1 抽样数据表Matlab 解答Matlab提供了两种方法进行聚类分析。
一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。
1.Matlab中相关函数介绍1.1 pdist函数调用格式:Y=pdist(X,’metric’)说明:用‘metric’指定的方法计算X 数据矩阵中对象之间的距离。
’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。
metric’取值如下:‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;‘minkowski’:明可夫斯基距离;‘cosine’:‘correlation’:‘hamming’:‘jaccard’:‘chebychev’:Chebychev距离。