最新一元一次方程的复习课(公开课)PPT课件
合集下载
人教版七上数学.1一元一次方程课件(共37张)
![人教版七上数学.1一元一次方程课件(共37张)](https://img.taocdn.com/s3/m/4cd556bb9a89680203d8ce2f0066f5335a8167f9.png)
你能解释这些方程中等号两边各表示什 么意思吗?体会列方程所根据的相等关系.
(来自教材)
总结
知2-讲
分析实际问题中的数量关系,利用其中的相等关 系列出方程.
知2-练
1 列等式表示: (1)比a大5的数等于8; (2)b的三分之一等于9; (3)x的2倍与10的和等于18; (4)x的三分之一减y的差等于6; (5)比a的3倍大5的数等于a的4倍; (6)比b的一半小7的数等于a与b的和.
(1)a+5=8;
(2) 1 b=9;
3
(3)2x+10=18;
(4) 1 x-y=6;
3
(5)3a+5=4a;
(6) 1 b-7=a+b.
2
(来自教材)
2 根据下列条件能列出方程的是( D ) A.a与5的和的3倍 B.甲数的3倍与乙数的2倍的和 C.a与b的差的15% D.一个数的5倍是18
知2-练
知识点 3 一元一次方程
知3-讲
定义 只含有一个未知数(元),未知数的次数都是1, 等号两边都是整式的方程叫做一元一次方程.
知3-讲
一元一次方程
1、只含有一个未知数 2、未知数的最高次数是1次 3、等号的两边都是整式
知3-讲
例3 下列方程,哪些是一元一次方程?
(1) 1 x+y=1-2y; (2)7x+5=7(x-2);
知4-讲
1.使方程中等号左右两边相等的未知数的值,就是 这个方程的解.
2.求方程的解的过程叫做解方程.
例5 下列说法中正确的是( C )
A.y=4是方程y+4=0的解
B.x=0.000 1是方程200x=2的解
C.t=3是方程|t|-3=0的解
D.x=1是方程
x 2
(来自教材)
总结
知2-讲
分析实际问题中的数量关系,利用其中的相等关 系列出方程.
知2-练
1 列等式表示: (1)比a大5的数等于8; (2)b的三分之一等于9; (3)x的2倍与10的和等于18; (4)x的三分之一减y的差等于6; (5)比a的3倍大5的数等于a的4倍; (6)比b的一半小7的数等于a与b的和.
(1)a+5=8;
(2) 1 b=9;
3
(3)2x+10=18;
(4) 1 x-y=6;
3
(5)3a+5=4a;
(6) 1 b-7=a+b.
2
(来自教材)
2 根据下列条件能列出方程的是( D ) A.a与5的和的3倍 B.甲数的3倍与乙数的2倍的和 C.a与b的差的15% D.一个数的5倍是18
知2-练
知识点 3 一元一次方程
知3-讲
定义 只含有一个未知数(元),未知数的次数都是1, 等号两边都是整式的方程叫做一元一次方程.
知3-讲
一元一次方程
1、只含有一个未知数 2、未知数的最高次数是1次 3、等号的两边都是整式
知3-讲
例3 下列方程,哪些是一元一次方程?
(1) 1 x+y=1-2y; (2)7x+5=7(x-2);
知4-讲
1.使方程中等号左右两边相等的未知数的值,就是 这个方程的解.
2.求方程的解的过程叫做解方程.
例5 下列说法中正确的是( C )
A.y=4是方程y+4=0的解
B.x=0.000 1是方程200x=2的解
C.t=3是方程|t|-3=0的解
D.x=1是方程
x 2
人教版七年级数学上册第三章一元一次方程小结与复习优秀公开课课件
![人教版七年级数学上册第三章一元一次方程小结与复习优秀公开课课件](https://img.taocdn.com/s3/m/35dc1812777f5acfa1c7aa00b52acfc788eb9f77.png)
3、等式的对称性:调换等式的两边的位置,等式仍相等。如果a=b那 么b=a
(三)、解一元一次方程的一般步骤: (1)去分母:方程两边都乘各分母的最小公倍数,别漏乘. (2)去括号:注意括号前的系数与符号.
(3) 移项:把含有未知数的项移到方程的左边,常数项移到方程右边, 移项注意要改变符号.
(4)合并同类项:把方程化成 ax = b (a≠0)的情势. (5)系数化为1:方程两边同除以 x 的系数,得x=m 的情势.
= 商品进价+商品进价×利润率
= 商品进价×(1+利润率).
学习探究
一、小组交流(交流前面学习中遗忘或者有困难的知识点及方法)
二、基础演练
1、下列方程中,是一元一次方程的是(B)
A. X²-4x=3
B. X=0
C.x+2y=1
D.
1
X-1=
x
2、方程2x+a-4=0的解是x=-2,则a等于( D ) A. -8 B. 0 C. 2 D. 8
审题是基础,找等量关 系是关键.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
解题过程要书写出来的步骤是设、列、解、答。
2.常见的几种方程类型及等量关系: (1)行程问题中基本量之间关系 : 路程=速度×时间.
① 相遇问题: 全路程=甲走的路程+乙走的路程;
② 追及问题: 甲为快者,被追路程=甲走路程-乙走路程;
解:设他这个月用电 x 度,根据题意得: 0.50×100+0.65×(200-100)+0.75×(x-200) = 310, 解得 x = 460.
答:他这个月用电 460 度.
谢谢观看
Thank You
(三)、解一元一次方程的一般步骤: (1)去分母:方程两边都乘各分母的最小公倍数,别漏乘. (2)去括号:注意括号前的系数与符号.
(3) 移项:把含有未知数的项移到方程的左边,常数项移到方程右边, 移项注意要改变符号.
(4)合并同类项:把方程化成 ax = b (a≠0)的情势. (5)系数化为1:方程两边同除以 x 的系数,得x=m 的情势.
= 商品进价+商品进价×利润率
= 商品进价×(1+利润率).
学习探究
一、小组交流(交流前面学习中遗忘或者有困难的知识点及方法)
二、基础演练
1、下列方程中,是一元一次方程的是(B)
A. X²-4x=3
B. X=0
C.x+2y=1
D.
1
X-1=
x
2、方程2x+a-4=0的解是x=-2,则a等于( D ) A. -8 B. 0 C. 2 D. 8
审题是基础,找等量关 系是关键.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
解题过程要书写出来的步骤是设、列、解、答。
2.常见的几种方程类型及等量关系: (1)行程问题中基本量之间关系 : 路程=速度×时间.
① 相遇问题: 全路程=甲走的路程+乙走的路程;
② 追及问题: 甲为快者,被追路程=甲走路程-乙走路程;
解:设他这个月用电 x 度,根据题意得: 0.50×100+0.65×(200-100)+0.75×(x-200) = 310, 解得 x = 460.
答:他这个月用电 460 度.
谢谢观看
Thank You
北师大版七年级上册数学第五章一元一次方程复习课课件(21张PPT)
![北师大版七年级上册数学第五章一元一次方程复习课课件(21张PPT)](https://img.taocdn.com/s3/m/9e455ca9a58da0116c1749db.png)
12/24/2019
解一解:
4x 8(x 2) 1 40 40
解:
去分母,得 4x 8(x 2) 40
去括号,得 4x 8x 16 40
移项,得 4x 8x 40 16
合并同类项,得 系数化为1,得
12x 24 x2
12/24/2019
指出解方程
(1) 2(x-2)-3=9(1-x)
(2) 2x 5 3x 2 1x 5x 2 0.2
12/24/2019
四、方程ax=b的解的情况
练习:
1、关于x的方程mx-1=5x+3n有无数多个解, 那么分别求出m、n的值.
2、已经关于x的一元一次方程kx=4-x的解为 正整数,求k的整数值.
合并同 运用有理数的加法法则,把
类项 方程变为ax=b(a≠0 ) 的 1)把系数相加
最简形式
2)字母和字母的指数不变
系数化 将方程两边都除以未知
为1
数系数a,得解x=b/a
解的分子,分母位置 不要颠倒
1、试一试
大家判断一下,下列方程的变形是否正确?
为什么?
(1) 由3 x 5,得x 5 3 ; (×)
12/24/2019
列方程解应用题常见的类型
1. 和、差、倍、分问题 6. 数字问题
2. 等积变形问题 3. 调配问题 4. 比例分配问题 5.工程问题
7.行程问题 8.销售中的利润问题 9.储蓄问题 10.年龄问题
列方程解应用题时,先弄清题目是属于上面所 述的哪种类型的问题,再设出末知数,根据各种类型 的数量关系列出方程即可解决问题.
练习4: A、B两车分别停靠在相距115 千米的甲、乙两地,A车每小时行50千 米,B车每小时行30千米,A车出发1.5 小时后B车再出发。 (1)若两车相向而行,请问B车行了多 长时间后与A车相遇? (2)若两车相向而行,请问B车行了多 长时间后两车相距10千米?
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
![解一元一次方程课件(共20张PPT)人教版初中数学七年级上册](https://img.taocdn.com/s3/m/09edef13842458fb770bf78a6529647d272834c7.png)
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
一元一次方程的解法复习课件公开课
![一元一次方程的解法复习课件公开课](https://img.taocdn.com/s3/m/b28ef021e45c3b3566ec8b49.png)
移项,得:8 x - 10 x - 6 x = -3 - 1 + 4 - 1
合并同类项,得: - 8x = -1
化系数为1,得: x
=
1 8
判断
3、下列方程变形有没有错,若错, 错在哪里?
4方程:3z - 4 - 3.5 = 0.01- 3z ,
0.02
0.03
去分母得:
3003z - 4- 350 6 = 200(0.01 - 3z)
(1)5y+8=9y移项得5y-9y=8; (2)2x+3=x-1移项得2x-x=3-1; (3)3x-12-2x=4x-3移项得 3x-2x+4x=-12-3.
判断
2、下列方程变形有没有错,若错,错在哪里?
(1)5(y+8)-2 =4y 去括号得 5y+8-2=4y; (2)2x-3(3x-2)=x-1 去括号2x-9x-2=x-1;
3、去分母时(1)勿漏乘不含分母的 项(2)分子是多项式时,去掉分母要 添上括号
4、勿跳步,勿忘判断符号,常检验
比一比,谁正确 解方程
15x - 1- 3 + 2x = 7
2y - y -1 = 2 - y + 3
2
4
3 2 y +1 + 10 y +1 = 1- 1- 2 y
4
6
3
(4) 1 (x +15) = 1 - 1 (x - 7)
5
23
(5) x + 5 - x + 5 = x + 3 - x - 2
5
32
(6) 2x - 1.6 - 3x = 31x + 8
0.3 0.6
3
拓展:
解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课
![解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课](https://img.taocdn.com/s3/m/e67b4cab9f3143323968011ca300a6c30c22f136.png)
(2)2x+3=x-1移项得2x-x=3-1; 2x-x=-3-1
火眼金睛 (3)3x-12-2x=4x-3移项得
3x-2x+4x=-12-3. 3x-2x-4x=12-3 (4)5(y+8)-2 =4y
去括号得 5y+8-2=4y; 5y+40-2=4y
火眼金睛
(5)2x-3(3x-2)=x-1
等式性质2
先去小括号,再去中 括号,最终去大括号
乘法分配律
把具有未知数旳项都移到方 程旳一边,其他旳项移到方 程旳另一边(记住:移项要 变号)
等式性质1
把方程化为ax=b (a≠0)旳形式
乘法分配律
在方程两边都除以未知数旳 等式性质2
系数,得到方程旳解x= a
注意事项
不要漏乘不含分母旳项,分子是 一种整体,去分母后应加括号
选苹果 游戏
规则:每个苹果上旳数字代表该类题旳分值, 其中必答题是每个小组必须作答,答对得1分, 答错得0分;抢答题只有两道,答对得2分, 答错倒扣1分;挑战题只有一道,答对得3分, 答错倒扣2分。
1
必答题
2
抢答题
3
挑战题
火眼金睛 1、下列解方程旳过程有无错,若错,错在哪里?
(1)5y+8=9y移项得5y-9y=8; 5y-9y=-8
1、不要漏乘括号内旳各项 2、注意“+”、“-”号旳变化
移项要变号
系数相加,字母 及其指数不变 不要把分子分母旳位 置颠倒
2、解一元一项
例:一元一次方程 3Y 1 1 5Y 7
4
6
去分母,得:( 3 3Y3(3Y1-)1)-112=22((55YY-7)7)
例:方程3X+20=4X-25+5
火眼金睛 (3)3x-12-2x=4x-3移项得
3x-2x+4x=-12-3. 3x-2x-4x=12-3 (4)5(y+8)-2 =4y
去括号得 5y+8-2=4y; 5y+40-2=4y
火眼金睛
(5)2x-3(3x-2)=x-1
等式性质2
先去小括号,再去中 括号,最终去大括号
乘法分配律
把具有未知数旳项都移到方 程旳一边,其他旳项移到方 程旳另一边(记住:移项要 变号)
等式性质1
把方程化为ax=b (a≠0)旳形式
乘法分配律
在方程两边都除以未知数旳 等式性质2
系数,得到方程旳解x= a
注意事项
不要漏乘不含分母旳项,分子是 一种整体,去分母后应加括号
选苹果 游戏
规则:每个苹果上旳数字代表该类题旳分值, 其中必答题是每个小组必须作答,答对得1分, 答错得0分;抢答题只有两道,答对得2分, 答错倒扣1分;挑战题只有一道,答对得3分, 答错倒扣2分。
1
必答题
2
抢答题
3
挑战题
火眼金睛 1、下列解方程旳过程有无错,若错,错在哪里?
(1)5y+8=9y移项得5y-9y=8; 5y-9y=-8
1、不要漏乘括号内旳各项 2、注意“+”、“-”号旳变化
移项要变号
系数相加,字母 及其指数不变 不要把分子分母旳位 置颠倒
2、解一元一项
例:一元一次方程 3Y 1 1 5Y 7
4
6
去分母,得:( 3 3Y3(3Y1-)1)-112=22((55YY-7)7)
例:方程3X+20=4X-25+5
5.2 一元一次方程课件(共20张PPT)
![5.2 一元一次方程课件(共20张PPT)](https://img.taocdn.com/s3/m/19ba3e21a36925c52cc58bd63186bceb19e8ed33.png)
同学们再见!
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
《一元一次不等式》ppt全文课件
![《一元一次不等式》ppt全文课件](https://img.taocdn.com/s3/m/be8434cf227916888586d731.png)
-16 0
《一元一次不等式》上课实用课件(P PT优秀 课件)
3.课堂练习
2(x 5) 3( x 5)
解:去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25 这个不等式的解集在数轴上的表示:
《一元一次不等式》上课实用课件(P PT优秀 课件)
《一元一次不等式》上课实用课件(P PT优秀 课件)
5.布置作业 教材 习题9.2 第1、2、3题
《一元一次不等式》上课实用课件(P PT优秀 课件)
问题4 解一元一次不等式和解一元一次方程 有哪些相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简形式.
不同之处: (1)解法依据不同:解一元一次不等式的依据是不 等式的性质,解一元一次方程的依据是等式的性质. (2)最简形式不同,一元一次不等式的最简形式是 x>a或x<a ,一元一次方程的最简形式是x=a.
(1) 2(1 x) 3
解:去括号,得 移项,得
合并同类项,得
系数化为1,得
2 2x 3 2x 3 2
2x 1 x 1
2
《一元一次不等式》上课实用课件(P PT优秀 课件)
《一元一次不等式》上课实用课件(P PT优秀 课件)
例 解下列不等式,并在数轴上表示解集:
(2) 2 x 2x 1
2
3
例 解下列不等式,并在数轴上表示解集:
(1) 2(1 x) 3
问题(1) 解一元一次不等式的目标是什么? 问题(2) 你能类比一元一次方程的步骤,解这个不等式吗?
一元一次方程复习课课件
![一元一次方程复习课课件](https://img.taocdn.com/s3/m/739384ec9b89680203d82513.png)
解:3(3x 2) 5( x 2)
9x 6 5x 10 9x 5x 10 6
4 x 16 x4
2y 5 3 y 1 (2) 6 4
解: 2 y 5 33 2
y 12
4 y 10 9 3 y 12
4 y 3 y 12 10 9 y 13
(1)
2 1 0 x
(2)7 x 6 y
0
(3)
3x 0
x2 x2
(4) x
2ห้องสมุดไป่ตู้
2x 1 0
(5)
(6) 2 y 3 12
2、大家判断一下,下列方程的变形是否正确
为什么?
由3 x 5, 得x 5 3 ; (×) 7 (2) 由7 x 4, 得x ; (×) 4 1 (3) 由 y 0, 得y 2 ; (×) 2 (4) 由3 x 2, 得x 2 3 . (×)
解:2x=5+1,2x=6,x=3.把x=3代入得: a=2
动手做一做
1. 若 3 x 4 n7 5 0 是一元一次方程, 则 n 2
。
2. 若 x 1 是方程 3 ax x 2 x 5 a 2004 的解,则代数式 a 1
。
解方程:
(1)
3x 2 x 2 5 3
未知数 的值叫方程的解。 2、使方程 左右 两边的值相等的 3、将方程的某些项 变号 后,从方程的一边移到另一边的变 形叫移项,移项的依据是 等式的基本性质1 。 4、解方程的一般步骤 去分母 去括号 (3) 移项 (4)合并同类项(5) 系数化为1 . (1) (2)
练一练:
1、判断下列各式哪些是一元一次方程?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合并同类项,得
12x24
系数化为1,得
x2
指出解方程
X-1 2
=
4x+2 5
-2(x-1)
过程中
所有的错误,并加以改正.
错
解: 去分母,得 5x-1=8x+4-2(x-1)
在
去括号,得 5x-1=8x+4-2x-2
哪
移项,得 8x+5x+2x=4-2+1
合并,得
15x =3
里
系数化为1,得
x =5
复习难点 一元一次方程的应用.
什么是方程?什么是一元一次方程?什么是方程的 解?什么是解方程?
解方程的一般步骤是什么?要注意 哪些问题? 在列方程解决实际问题中,一般步骤是什么?你认 为最关键的是哪一步?
一、方程的有关概念
1.方程:含有未知数的等式叫做方程. 2.一元一次方程的概念:只含有_一___个未知数,未知 数的次数都是__1__,等号两边都是__整__式__,这样的方程叫 做一元一次方程. 3.方程的解:使方程左右两边的值相等的未知数的值 叫做方程的解,方程的解,也叫它的根. 4.解方程:求方程解的过程叫做解方程.
2
5
2、方程 x3 12x 去分母后可得--( B )
2
6
A. 3 x-3 =1+2 x ,B. 3 x-9 =1+2 x , C. 3 x-3 =2+2 x ,D. 3 x-12=2+4 x ;
解一解:
4x8(x2) 1 40 40
解:
去分母,得 4x8(x2)40
去括号,得4x8x1 640
移项,得 4x8xБайду номын сангаас 0 16
?
我们大家一起来做, 看谁最快最准确!
解下列方程:
1.) 2(x-2)-3=9(1-x) 第一,第五,第六排 做1题
2.) 2x53x21 第二排 做 2题
6
8
3 .)1 xx -3 x -14 .) x 1 2 x 5 x 2 4 2 0 .2
第三排 , 第四排 做 3.4题
列一元一次方程解应用题的步骤
分析:本息和=本金+利息
妈妈过生 日,小新准 备去银行拿 出自己的压 岁钱给妈妈 买一份礼物。
解:设小新存入压岁钱为x元 那么小新存入1年后可拿出(x+1.4%x)元,
x+1.4%x = 202.8
解得,x = 200
答:小新存入压岁钱为200元。
(3)商场正在搞活动,为了吸引消费者, 商场将进价为80元的毛衣按标价8折销售, 仍可获20元的利润,你知道小新买毛衣用 了多少钱吗?你能说出毛衣的标价吗?
练一练:
.判断下列各等式哪些是一元一次方程:
(1)3-2=1 (2)3x+y=2y+x
(3) 2x-4=0
(4 s=0.5ab
(5) x-4=x2
练习题
一填空题
1 、 一 个 数 x 的 2 倍 减 去 7 的 差 , 得 36 , 列 方 程 为
___2__x_-_7__=_3__6;
2、方程5 x – 6 = 0的解是x =__1_.2_____; 3、若x=-3是方程
方程的步骤
解一元一次方程的一般步骤
变形名称 去分母 去括号
注意事项
防止漏乘(尤其不含分母项),注意分子 添括号;
注意变号,防止漏乘;
移
项
合并同类项 (ax=b)
系数化“1”
移项要变号; 计算要仔细,不要出差错; 分清分子和分母
练习
41、x 1 x 方程去分母得:_5___x__-_1__0___=___2_x
解:设妈妈的年龄为x岁,那么小新的 年龄为(55- x)岁,根据题意得,
x= 3(55- x)- 5 解得 x=40
2018年1月 15 日 是小新妈 妈的生日,于 是一早小新爸 爸让小新去买 一些生日蜡烛。
答:小新得买40根蜡烛才刚刚好。
(2) 小新的压岁钱已存了1年, 已知银行的年利率为1.4%,这次 小新共拿出202.8元,你能知道小 新存入的压岁钱是多少吗?
(1)审 (2)设 (3)列 (4)解 (5)验
(6)答
情景一:2018年1月 15 日 是小新妈妈的生日, 于是一早小新爸爸让小新去买一些生日蜡烛。
情景二:妈妈过生日,小新准备去银行拿出自己的压 岁钱给妈妈买一份礼物
情景三:来到商场,小新决定给妈妈买一件 她最喜爱的毛衣
情景四: 一会儿,爸爸做饭去了,到十一点了, 妈妈下班了,小新于是立即骑车找妈妈去了。
(1)已知小新与妈妈的年龄和是55岁,妈妈的年 龄又比小新的年龄的3倍小5岁,那么小新得买 多少根蜡烛才刚刚好呢? (2) 小新的压岁钱已存了1年,已知银行的年利 率为1.4%,这次小新共拿出202.8元,你能知道 小新存入的压岁钱是多少吗?
(3)商场正在搞活动,为了吸引消费者,商场将 进价为80元的毛衣按标价8折销售,仍可获20元 的利润,你知道小新买毛衣用了多少钱吗?你 能说出毛衣的标价吗?
A. 1 , B. -1 , C. 5 , D. -5 ;
3、下列不是一元一次方程的是--------------------
(D )
A 4 x-1 = 2 x , B 3x-2 x = 7 ,
C x-2 = 0 ,
D x=y;
二.若方程 3x4m-7+5=0 是一元一次
方程,则 m= 2 .
解一元一次
x+a=4的解,则a的值是 7 ;
二、选择题
1、方程 3x -5 = 7+2 x 移项后得-------------(D )
A. 3x-2 x = 7-5 ,B. 3x+2 x = 7-5 , C. 3x+2 x = 7+5 ,D. 3x-2 x = 7+5 ;
2、方程 x -a = 7 的解是x =2,则a = --------(D )
(4)妈妈的工厂距离小新家3千米,已知小新 骑车的速度是4千米/时,妈妈骑车的速度是6千 米/时,他们在途中相遇需要多长时间呢?
(1)已知小新与妈妈的年龄和 是55岁,妈妈的年龄又比小新的 年龄的3倍小5岁,那么小新得买 多少根蜡烛才刚刚好呢?
分析:妈妈的年龄+小新的年龄=55岁 妈妈的年龄=小新的年龄×3 - 5
一元一次方程的复习课(公 开课)
一元一次方程
同学们,学完本章内容后,你对本章 的知识结构和知识要点以及知识运用等方 面掌握得怎么样?还有哪些疑点?下面大 家一起来走进本章的复习课堂,进行查漏 补缺,完善本章的知识体系.
一元一次方程
复习目标 (1)通过对本章的复习和小结,形成完整的知识 结构. (2)通过对本章的复习和小结,熟练掌握解一元 一次方程的基本思路和步骤. (3)通过本章小结,学会运用方程思想和方法解 决一些简单的实际问题. 复习重点 一元一次方程的解法.