《一元一次方程》PPT课件
合集下载
《一元一次方程》PPT优秀课件
![《一元一次方程》PPT优秀课件](https://img.taocdn.com/s3/m/a5b9ee31f11dc281e53a580216fc700abb685291.png)
列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题从比算较式方到便方.程是数
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
2024人教版七年级上册数学第五单元《一元一次方程》课件PPT
![2024人教版七年级上册数学第五单元《一元一次方程》课件PPT](https://img.taocdn.com/s3/m/781923b6370cba1aa8114431b90d6c85ec3a889d.png)
C.4x=5(x+4)
D.4(x+4)=5x
例3:如图,轩轩将一个正方形纸片剪去一个宽为4 cm的长条后,
再从剩下的长方形纸片上剪去一个宽为5 cm的长条(图中阴影部
分).若分两次剪下的长条面积正好相等,则每一个长条的面积
为多少?为解决这个问题,轩轩设正方形的边长为x cm,根据题
意,可列方程为( ) A
情境导入
同学们,你们知道老师的年龄吗? 我是4月出生的,我年龄的2倍减去2,正好是我出生的那个月总天数 的2倍. 请你们猜猜我的年龄是多少?
年龄是31岁
故事导入
同学们,你们知道丢番图是谁吗? 丢番图是古希腊数学家,人们对他的生平事迹知道的很少, 但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程. 上帝赐予他的童年占六分之一,又过了十二分之一他两颊长出来胡须,再过七分 之一,点燃了新婚的蜡烛,五年之后喜得贵子,可怜迟到的宁馨儿,享年仅其父 之半便入黄泉,悲伤只有用数字研究去弥补,又过四年,他也走完了人生的旅 途.——出自《希腊诗文选》 你能求出丢番图去世时的年龄吗?
【题型二】根据实际问题列方程
例2:根据下列条件列出方程: (1)一个数x比它的 23大45 :_____x_-__23_x_=__45; (2)一个数x的一半比它的3倍大4:___12_x_-__3_x_=__4_; (3)一个数x比它的平方小24:____x_2-__x_=__2_4__; (4)一个数x的40%与25的差等于30:____4_0_%_x_-__2_5_=_3_0.
6是等式,但不是方程
2x-6=6等
-3y=10等
注:判断一个式 子是不是方程:
知识点2:列方程(难点)
《一元一次方程》PPT教学课文课件
![《一元一次方程》PPT教学课文课件](https://img.taocdn.com/s3/m/66c8bcf009a1284ac850ad02de80d4d8d15a0107.png)
巩固练习
练习
六
根据下列问题,设未知数,列出方程:
1 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000 m?
2 甲种铅笔每支 0.3 元,乙种铅笔每支 0.6 元,用 9 元钱买了两
种铅笔共 20 支,两种铅笔各买了多少支?
巩固练习
练习
六
1 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000 m?
引例
问题
一辆客车和一辆卡车同时从 A 地出发沿同一公路同方向行驶,客车的行
驶速度是 70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早 1 h 经过 B 地.
A,B 两地间的路程是多少?
问题
一辆客车和一辆卡车同时从 A 地出发沿同一公路同方向行驶,客车的行
驶速度是 70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早 1 h 经过 B 地.
+ =5
2 + 5
=6
6 2 + 5 + 1 = 0
3、一元一次方程
只含一个未知数(元),未知数的次数都是1,等号两边都
是整式,这样的方程叫做一元一次方程.
特点:
①只有一个未知数.
②未知数的次数都是1
③等号两边都是整式(分母中不含未知数)
④含未知数的项的系数不为0.
练习
三
判断下列式子是否为一元一次方程?
计算机的使用时间达到规定的检修时间2450 h?
1、什么是方程?
2、什么是等式?
1、方程-----含有未知数的等式
2、等式-----含有“=”的式子(左右式子要相等)
等号两边分别叫等式左边和等式右边
练习
一元一次方程ppt课件
![一元一次方程ppt课件](https://img.taocdn.com/s3/m/d759722fae1ffc4ffe4733687e21af45b307fef4.png)
学生分享解题思路及经验
分享解题思路
学生分享自己在解题过程中的思 路和方法,帮助其他学生拓宽解
题思路。
交流解题经验
学生交流自己在解题过程中遇到 的困难和经验,促进彼此之间的
学习和进步。
互相评价
学生之间互相评价彼此的解题思 路和方法,提出改进意见和建议
,共同提高解题能力。
06
总结回顾与作业布置
关键知识点总结回顾
绝对值方程分类
根据未知数系数正负性, 将含绝对值一元一次方程 分为两类。
去除绝对值符号
分别探讨两类方程如何去 除绝对值符号,化为一般 形式一元一次方程求解。
含参数一元一次方程解法
参数方程概念
引入参数方程概念,解释 参数对方程解的影响。
参数分类讨论
针对不同参数取值情况, 对方程进行分类讨论,总 结各类情况下解的特点。
02
一元一次方程解法
等式性质法
等式性质
等式两边同时加上或减去同一个数,等式仍然成立。
解法步骤
通过运用等式性质,将方程中的未知数项移至等式一侧,常数项移至另一侧,从 而解出未知数。
移项法
移项原理
将方程中的未知数项和常数项分别移至等式两侧,使未知数 项系数化为1。
解法步骤
运用移项原理,逐步将方程中的未知数项和常数项分别移至 等式两侧,从而求解出未知数。
合并同类项法
合并同类项原理
将方程中相同未知数项的系数进行相加或相减,简化方程形式。
解法步骤
通过合并同类项,将方程中的未知数项系数化为1,常数项进行相应计算,从而解出未知数。
03
实际问题中一元一次方程应用
行程问题
路程=速度×时间
通过具体实例,展示如何用一元一次方 程解决行程问题,包括相遇问题、追及 问题等。
一元一次方程-ppt课件
![一元一次方程-ppt课件](https://img.taocdn.com/s3/m/f403e0943086bceb19e8b8f67c1cfad6185fe958.png)
一元一次方程的应用
问题
方程
解
在10元的基础上,每增加一桶, x+10+(x-1)×2=29
x=9
油的成本增加2元,一共用了
29元,求一桶油的成本。
两列火车相向而行,第一列速
120t+80t=800
t=4
度是每小时120公里,第二列
是每小时80公里,相距800公
里,求两列火车相遇需要多久。
一元一次方程解法的归纳
一元一次方程-ppt课件
本次课程将介绍一元一次方程的基本知识、求解方法及其应用。
一元一次方程定义
定义
一元一次方程是形如ax+b=0的方程,其中a和b 是已知数,x是未知数。
基本形式
ax+b=0
解一元一次方程
1
步骤1 :移项
将b移到方程左侧,得到ax=-b。
2
步骤2 :消元
将a除到x的一侧,得到x=-b/a。
题目3
2(x-3)=4x+5 解:x=-7
结尾
本次课程为您介绍了一元一次方程的基本知识和实际应用,希望能够对您的 学习或工作有所帮助。
1
移项法
将未知量和常数移到一侧,化简成ax=b的形式,再求解。
2
消元法
将未知量消去,化简成k=b/a的形式,再求解。
课堂练习
难点分析
1 多步骤
解一元一次方程需要掌握多种方法,且需要多个步骤的计算。
2 容易出错
对未知数和常数的计算容易出现错误,需要细心。
3 应用难度大
将实际问题转化为一元一次方程需要较高的抽象和数学能力。
3
步骤3 :检验
将解代入原方程,检验是否正确。
《一元一次方程》PPT优质课件
![《一元一次方程》PPT优质课件](https://img.taocdn.com/s3/m/fe38d1d25ff7ba0d4a7302768e9951e79b8969b9.png)
D、3x+1=2属于一元一次方程,故此选项正确.
故选:D.
课堂练习
2.已知x =1是关于x的方程2-ax = x+a的解,则a的值是(
1
3
A.2
B.-1 C. 2 D.1
)
【答案】A
【分析】把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.
【详解】
解:把x=1代入方程2-ax=x+a 得:2-a=1+a,
故答案是:﹣2.
课堂练习
4.一个两位数,个位上的数是1,十位上的数是x,把1与x对调,新两位
数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?
客车行驶的时间可表示为: 70 ℎ
时间=路程/速度
卡车行驶的时间可表示为:
ℎ
60
而小汽车比大货车早1h经过B地,也就是大货车行驶时间
比小汽车多 1 h。
=1
‒
60
70
新知探究
比较用算术方法和列方程解题的特点?
用算术方法解
用方程解
未知数不参加列式
未知数用字母表示来列式
根据题中的已知数和未知数间的关
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
02
新 课 导 入
新知探究
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70 km/h,卡车的
行驶速度是60 km/h,客车比卡车早1 h到达B地. A,B两地间的路程是多少?
A
B
你会用算术方法解决这个问题吗?
B.3x+1>2
)
C.y=2x+1 D.3x+1=2
故选:D.
课堂练习
2.已知x =1是关于x的方程2-ax = x+a的解,则a的值是(
1
3
A.2
B.-1 C. 2 D.1
)
【答案】A
【分析】把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.
【详解】
解:把x=1代入方程2-ax=x+a 得:2-a=1+a,
故答案是:﹣2.
课堂练习
4.一个两位数,个位上的数是1,十位上的数是x,把1与x对调,新两位
数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?
客车行驶的时间可表示为: 70 ℎ
时间=路程/速度
卡车行驶的时间可表示为:
ℎ
60
而小汽车比大货车早1h经过B地,也就是大货车行驶时间
比小汽车多 1 h。
=1
‒
60
70
新知探究
比较用算术方法和列方程解题的特点?
用算术方法解
用方程解
未知数不参加列式
未知数用字母表示来列式
根据题中的已知数和未知数间的关
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
02
新 课 导 入
新知探究
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70 km/h,卡车的
行驶速度是60 km/h,客车比卡车早1 h到达B地. A,B两地间的路程是多少?
A
B
你会用算术方法解决这个问题吗?
B.3x+1>2
)
C.y=2x+1 D.3x+1=2
5.2 一元一次方程课件(共20张PPT)
![5.2 一元一次方程课件(共20张PPT)](https://img.taocdn.com/s3/m/19ba3e21a36925c52cc58bd63186bceb19e8ed33.png)
同学们再见!
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
一元一次方程ppt课件
![一元一次方程ppt课件](https://img.taocdn.com/s3/m/93caa735f342336c1eb91a37f111f18582d00c78.png)
计算精度要求
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
一元一次方程 课件ppt
![一元一次方程 课件ppt](https://img.taocdn.com/s3/m/4fb19170590216fc700abb68a98271fe910eaf2a.png)
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
《一元一次方程》课件
![《一元一次方程》课件](https://img.taocdn.com/s3/m/610bbd5dfe00bed5b9f3f90f76c66137ef064f46.png)
解释
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、判断下列哪些是一元一次方程?哪些不是?为什 么?
1) 5x = 0
2) 1+3x
3) y2 = 4+y
4) 3m+2 = 1-n
7)1 2 x
5) x = 6
6)2X-1=0
2 、 若2xn-1-3=8是一元一次方程,则n的值为( )
怎样求方程4+3(x-1)=64的解呢? 利用一下表格中的步骤,估算这个方程的解,并检验
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
第一次估算 第二次估算 第三次估算 第四次估算
X(次) 10
纸片数(片) 31
与64片比较 少了
用两边逼的方法你能找到方程的解吗?与同学交流。
(X+25)米
你有
X
办法吗?
米
3.某长方形足球场周长为310米,长和宽之差为 25米,这个足球场的长与宽分别是多少米?
如果设这个足球场的宽为X米,那 么长为(X+25)米。由此可以得到方 程: 2[χ+(χ+25。)]=310
观察方程 : 3X+4=34 , 40+15X=100 3X+1=64, 4+3(X-1)=64
他们有什么共同特点?
这些方程 只含有一个未知数,并且未知数的次数都是1
,
像这样的方程叫做
注意:方程:有未知数的等式。 一元:一个未知数,未知数可以是x,y.z等。 一次:未知数的指数是1.
你能举出一元一次方程的例子吗?
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
61、你既然期望辉煌伟大的一生,那 么就应 该从今 天起, 以毫不 动摇的 决心和 坚定不 移的信 念,凭 自己的 智慧和 毅力, 去创造 你和人 类的快 乐。 62、能够岿然不动,坚持正见,度过 难关的 人是不 多的。 ——雨 果一种 耗费精 神的情 绪,后 悔造物 之前, 必先造 人。 43、富人靠资本赚钱,穷人靠知识致 富。 44、顾客后还有顾客,服务的开始才 是销售 的开始 。
1、叙述等式的两个基本性质: 2、用公式表示等式的两个基本性质:
1、方程:__含__有__未_知__数__的__等__式_。_______________。
2、方程的解:_使_方__程__左__右__两_边__相__等__的__未_知__数__的__值__。
3 、方程3x-2=x+2的解( A ) A 2 B -1.5 C 1.5 D -2
4、小颖种了一株树苗,开始时树苗高为40厘米,栽种 后每周升高约15厘米,大约几周后树苗长高到100 厘米? 40+15x=100
40cm
x 周
100cm
第二次
第三次
第一次
我们来做一次剪纸片的实验。拿一张纸,第一次将它剪成4片, 第二次再将其中的一片剪成更小的4片,继续这样减下去,如图:
(1) 第1次 ,第2次 ,第3次,第4次,第5次,······分别共 剪得多少张纸片?
么m=_____-1____.
6.某班学生为灾区共捐款131元,比每人平均2元还多出 35元,设这个班的学生有x人,根据题意列方程 _____2_X_+_3_5_=_1_3_1__________,估算出x的值为_4_8____。
1、课本P158习题7.2 第1题。 2、完成随堂的互动和练习册内容。
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
次数 1 2 3 4 5 …
纸片数 4 7 10 13 16 …
(2)如果剪了x次(x为正整数),那么共剪得多少张纸片? 你是怎样得到的?与同学交流。
第一种表达式:3x+1第二种表达式:4+3(x-1)
(3)如果剪得的纸片共64片,一共剪了多少次?你怎么解决?
3x+1=64 或 4+3(x-1)=64
你能估算它的长和宽吗?
1、一元一次方程的概念、识别一元一次方程; 2、用估算的数学思想方法解决问题; 3、应用方程思想解决实际问题。
4下列方程是一元一次方程的是(A )
A 2x-1=0 B 2x-y=3
C x2-16=0 D 4(x-1)=2(3y+1)
5. 已知 m 1x m 1 ,0是关于x的一元一次方程,那
45、生活犹如万花筒,喜怒哀乐,酸 甜苦辣 ,相依 相随, 无须过 于在意 ,人生 如梦看 淡一切 ,看淡 曾经的 伤痛, 好好珍 惜自己 、善待 自己。 46、有志者自有千计万计,无志者只 感千难 万难。 47、苟利国家生死以,岂因祸福避趋 之。 48、不要等待机会,而要创造机会。
49、如梦醒来,暮色已降,豁然开朗 ,欣然 归家。 痴幻也 好,感 悟也罢 ,在这 青春的 飞扬的 年华, 亦是一 份收获 。犹思 “花开 不是为 了花落 ,而是 为了更 加灿烂 。 50、人活着要呼吸。呼者,出一口气 ;吸者 ,争一 口气。 51、如果我不坚强,那就等着别人来 嘲笑。