西安益新中学初一下学期数学期末试卷带答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安益新中学初一下学期数学期末试卷带答案
一、选择题
1.下列运算中,正确的是( )
A .(ab 2)2=a 2b 4
B .a 2+a 2=2a 4
C .a 2•a 3=a 6
D .a 6÷a 3=a 2
2.下列运算正确的是( )
A .236a a a ⋅=
B .222()ab a b =
C .()325a a =
D .623a a a ÷=
3.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1; B .m=5,n=1; C .m=3,n=-1;
D .m=5,n=-1; 4.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )
A .56°
B .62°
C .66°
D .68° 5.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3
C .5y 3•3y 2=15y 5
D .a +a 2=a 3
6.下列各式中,能用平方差公式计算的是( )
A .(p +q )(p +q )
B .(p ﹣q )(p ﹣q )
C .(p +q )(p ﹣q )
D .(p +q )(﹣p ﹣q ) 7.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )
A .
B .
C .
D .
8.如图,下列条件:
13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )
A .5个
B .4个
C .3个
D .2个 9.下列运算正确的是( ) A .a 2·a 3=a 6
B .a 5+a 3=a 8
C .(a 3)2=a 5
D .a 5÷a 5=1 10.若25a =,23b =,则232a b -等于( )
A .2725
B .109
C .35
D .2527
二、填空题
11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.
12.已知等腰三角形的两边长分别为4和8,则它的周长是_______.
13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .
14.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.
15.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____. 16.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.
17.一个n 边形的内角和是它外角和的6倍,则n =_______.
18.已知m 为正整数,且关于x ,y 的二元一次方程组210320
mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.
19.分解因式:m 2﹣9=_____.
20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.
三、解答题
21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.
22.已知a+b=2,ab=-1,求下面代数式的值:
(1)a 2+b 2;(2)(a-b )2.
23.如图,已知:点A C 、、B 不在同一条直线,AD
BE . (1)求证:180B C A ∠+∠-∠=︒.
(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;
(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,
QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.
24.因式分解:
(1)x 4﹣16;
(2)2ax 2﹣4axy +2ay 2.
25.因式分解:
(1)12abc ﹣9a 2b ;
(2)a 2﹣25;
(3)x 3﹣2x 2y +xy 2;
(4)m 2(x ﹣y )﹣(x ﹣y ).
26.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.
27.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =
12,b =﹣2. 28.已知1502x x +
-=,求值; (1)221x x +
(2)1x x
-
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.
【详解】
解:A 、(ab 2)2=a 2b 4,故此选项正确;
B 、a 2+a 2=2a 2,故此选项错误;
C 、a 2•a 3=a 5,故此选项错误;
D 、a 6÷a 3=a 3,故此选项错误;
故选:A.
【点睛】
此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.
2.B
解析:B
【解析】
A.235 a a a ⋅=,故本选项错误;
B. ()222ab a b =,故本选项正确;
C. ()326a a =,故本选项错误;
D. 624a a a ÷=,故本选项错误。
故选B.
3.A
解析:A
【解析】
先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n )=2x 2
+4x-nx-2n ,
又∵(x+2)(2x-n)=2x 2+mx-2,
∴2x 2+(4-n)x-2n=2x 2+mx-2,
∴m=3,n=1.
“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算. 4.D
解析:D
【解析】
【分析】
两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.
【详解】
根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得: 2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.
故选D .
【点睛】
注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.
解析:C
【分析】
根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】
解:A、(a2b)3=a6b3,故A错误;
B、a6÷a2=a4,故B错误;
C、5y3•3y2=15y5,故C正确;
D、a和a2不是同类项,不能合并,故D错误;
故选:C.
【点睛】
此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.
6.C
解析:C
【分析】
利用完全平方公式和平方差公式对各选项进行判断.
【详解】
(p+q)(p+q)=(p+q)2=p2+2pq+q2;
(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;
(p+q)(p﹣q)=p2﹣q2;
(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.
故选:C.
【点睛】
本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.7.A
解析:A
【解析】
【分析】
利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.
【详解】
A、可以通过平移得到,故此选项正确;
B、可以通过旋转得到,故此选项错误;
C、是位似图形,故此选项错误;
D、可以通过轴对称得到,故此选项错误;
故选A.
【点睛】
本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.8.B
【分析】
根据平行线的判定定理对各小题进行逐一判断即可.
【详解】
解:①∵∠1=∠3,∴l 1∥l 2,故本小题正确;
②∵∠2+∠4=180°,∴l 1∥l 2,故本小题正确;
③∵∠4=∠5,∴l 1∥l 2,故本小题正确;
④∠2=∠3不能判定l 1∥l 2,故本小题错误;
⑤∵∠6=∠2+∠3,∴l 1∥l 2,故本小题正确.
故选B .
【点睛】
本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.
9.D
解析:D
【分析】
通过幂的运算公式进行计算即可得到结果.
【详解】
A .23235a a a a +==,故A 错误;
B .538a a a +
≠,故B 错误; C .()2
3326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;
故选:D .
【点睛】
本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.
10.D
解析:D
【分析】
根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.
【详解】
222233332(2)5252=2(2)327
a a a
b b b -=== 故选:D
【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,
(0m
m n
n a a a a
-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).
二、填空题
11.100
【分析】
利用完全平方公式解答.
【详解】
解:原式=(10.1﹣0.1)2=102=100.
故答案是:100.
【点睛】
本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(
解析:100
【分析】
利用完全平方公式解答.
【详解】
解:原式=(10.1﹣0.1)2=102=100.
故答案是:100.
【点睛】
本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.20
【分析】
分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.
【详解】
当腰长是4cm时,三角形的三边是4、4、8,
∵4+4=8,
∴不满足三角形的三边关系,
当腰长是8
解析:20
【分析】
分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.
【详解】
当腰长是4cm时,三角形的三边是4、4、8,
∵4+4=8,
∴不满足三角形的三边关系,
当腰长是8cm时,三角形的三边是8、8、4,
∴三角形的周长是8+8+4=20.
故答案为:20
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
13.12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
解析:12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
14.4×10-5
【解析】
试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n 的相反数就是几.
考点:科学计数法
解析:
【解析】
试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.
考点:科学计数法
15.【分析】
先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.
【详解】
解:
故答案为
此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3
- 【分析】
先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.
【详解】
解:()20202019133⎛⎫-⋅- ⎪⎝⎭
()2019
201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣
⎦ 1.3
=- 故答案为1.3
-
【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.
16.【分析】
先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.
【详解】
解:
而上式不含项,
,
故答案为:
【点睛】
本题考查的是多项式的乘法运算,同时
解析:2.-
【分析】
先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.
【详解】
解:()()232212222x x px px x px x px +-+=+++--
()()32222px p x p x =+++--
而上式不含2x 项,
20p ∴+=,
2,p ∴=-
故答案为: 2.-
【点睛】
本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.
17.14
【分析】
根据多边形的内角和公式及外角和列出等式,解出n 即可.
【详解】
多边形的外角和为:360°,
多边形的内角和公式为:(n-2)×180°,
根据题意得:(n-2)×180=360×6
解析:14
【分析】
根据多边形的内角和公式及外角和列出等式,解出n 即可.
【详解】
多边形的外角和为:360°,
多边形的内角和公式为:(n-2)×180°,
根据题意得:(n-2)×180=360×6,
解得:n=14,
故答案为:14.
【点睛】
本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.
18.【分析】
先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;
【详解】
解:,
把①②式相加得到:,
即: ,
要二元一次方程组有整数解,
即为整数,
又∵为正整数,
故
解析:2
【分析】
先把二元一次方程组210320mx y x y +=⎧⎨
-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;
【详解】
解:210320mx y x y +=⎧⎨-=⎩
①②, 把①②式相加得到:310+=mx x , 即:103x m =
+ , 要二元一次方程组210320mx y x y +=⎧⎨
-=⎩有整数解, 即103
x m =+为整数, 又∵m 为正整数,
故m=2, 此时10223
x ==+,3y = , 故,x y 均为整数,
故答案为:2;
【点睛】
本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;
19.(m+3)(m ﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b )(a ﹣b ).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m ﹣3).
故答案为
解析:(m +3)(m ﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为:(m+3)(m﹣3).
【点睛】
此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.
20.12
【分析】
对所求代数式运用平方差公式进行因式分解,然后整体代入求值.
【详解】
解:∵a+b=4,a﹣b=1,
∴(a+1)2﹣(b﹣1)2
=(a+1+b﹣1)(a+1﹣b+1)
=(a+b
解析:12
【分析】
对所求代数式运用平方差公式进行因式分解,然后整体代入求值.
【详解】
解:∵a+b=4,a﹣b=1,
∴(a+1)2﹣(b﹣1)2
=(a+1+b﹣1)(a+1﹣b+1)
=(a+b)(a﹣b+2)
=4×(1+2)
=12.
故答案是:12.
【点睛】
本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.三、解答题
21.70°
【分析】
由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出
CD∥EF,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出
∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG∥BC,利用“两直线平行,同位角相等”可得出∠ADG的度数,在△ADG中,利用三角形内角和定理即可求出∠AGD的度数.
【详解】
解:∵CD ⊥AB ,EF ⊥AB ,
∴∠CDF =∠EFB =90°,
∴CD ∥EF ,
∴∠DCB =∠1.
∵∠1=∠2,
∴∠DCB =∠2,
∴DG ∥BC ,
∴∠ADG =∠B =45°.
又∵在△ADG 中,∠A =65°,∠ADG =45°,
∴∠AGD =180°﹣∠A ﹣∠ADG =70°
【点睛】
本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.
22.(1)6;(2)8.
【分析】
(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;
(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.
【详解】
解:(1)当a+b=2,ab=-1时,
原式=(a+b )2-2ab
=22-2×(-1)
=4+2
=6;
(2)当a+b=2,ab=-1时,
原式=(a+b )2-4ab
=22-4×(-1)
=4+4
=8.
【点睛】
本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.
23.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2
【分析】
(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出
1()2
AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案;
(3)由(2)的结论可得出12
CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.
【详解】
解:(1)过点C 作CF AD ,则//BE CF ,
∵//CF AD BE
∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠ ∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,
∵QM AD ,//BE QM
∴,AQM NAD BQM EBQ ∠=∠∠=∠
∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线
∴11,22
NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2
ABQ BQM AQM CBE CAD ∠=∠-∠=
∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒
(3)∵//AC QB
∴11,22
AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠
∴11801802ACB ACP CBE ∠=︒-∠=︒-
∠ ∵2180C AQB ∠+∠=︒ ∴12
CAD CBE ∠=∠ ∵QP PB ⊥
∴180CBE CAD ∠+∠=︒
∴60,120CAD CBE ∠=︒∠=︒ ∴11801202
ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.
故答案为:1:2:2.
【点睛】
本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.
24.(1)2(4)(2)(2)x x x ++- (2)2
2()a x y -
【分析】
(1)原式利用平方差公式分解即可;
(2)原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:(1)原式=(x 2+4)(x 2﹣4)
=(x 2+4)(x +2)(x ﹣2);
(2)原式=2a (x 2﹣2xy +y 2)
=2a (x ﹣y )2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
25.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)
【分析】
(1)由题意原式直接提取公因式即可;
(2)根据题意原式利用平方差公式分解即可;
(3)由题意原式提取公因式,再利用完全平方公式分解即可;
(4)根据题意原式提取公因式,再利用平方差公式分解即可.
【详解】
解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );
(2)a 2﹣25=(a +5)(a ﹣5);
(3)x 3﹣2x 2y +xy 2
=x (x 2﹣2xy +y 2)
=x (x ﹣y )2;
(4)m 2(x ﹣y )﹣(x ﹣y )
=(x ﹣y )(m 2﹣1)
=(x ﹣y )(m +1)(m ﹣1).
【点睛】
本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.
26.23x x +-;1-
【分析】
先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.
【详解】
解:原式222221343x x x x x x x =-+-++-=+-
将2x =-代入,原式2
(2)(2)34231=-+--=--=-.
【点睛】
本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.
27.4ab+10b 2;36.
【解析】
【分析】
先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.
【详解】
原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)
=4a 2+4ab +b 2﹣4a 2+9b 2
=4ab +10b 2 当a 12=
,b =﹣2时,原式=412
⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.
28.(1)
174;(2)32± 【分析】
(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;
(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.
【详解】
解:(1)由题:152
x x +=,
21254x x ⎛⎫∴+= ⎪⎝
⎭ 即2212524
x x ++=, 221174
x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝
⎭ 132
x x ∴-=± 【点睛】
此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.。