七年级数学《整式的加减》教案范文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学《整式的加减》教案范文
整式的加减就是单项式和多项式的加减,可利用去括号法则和合并同类项来完成。

接下来是小编为大家整理的七年级数学《整式的加减》教案范文,希望大家喜欢!
七年级数学《整式的加减》教案范文一
数学活动
一、内容和内容解析
1.内容
活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;
活动2 探究月历中数之间所蕴含的关系和变化规律.
2.内容解析
本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.
两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.
基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.
二、教材解析
本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.
本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.
三、教学目标和目标解析
1.教学目标
(1)用整式和整式的加减运算表示实际问题中的数量关系;
(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;
(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.
2.目标解析
达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的
个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;
目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;
达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.
四、教学问题诊断分析
本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.
本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.
五、教学支持条件分析
根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正
方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.
六、教学过程设计
1.数学活动1
问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.
图1
(1)如果图形中含有n个三角形,需要多少根火柴棍?
(2)当图形中含有2012个三角形时,需要多少根火柴棍?
师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.
学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.
在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.
①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得
三角形个数1 2 3 4 … n 火柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.
②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.
③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得
三角形个数1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.
④从火柴棍的根数与三角形的个数的对应关系观察可得
三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+1 9=4×2+1 … n×2+1 表达式:2n+1.
⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得
三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.
七年级数学《整式的加减》教案范文二
教学目标
【知识与技能】
理解同类项的概念,在具体情景中,认识同类项.
【过程与方法】
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.
【情感、态度与价值观】
初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.
教学重难点
【重点】理解同类项的概念.
【难点】根据同类项的概念在多项式中找同类项.
教学过程
一、复习引入
师:同学们,在上新课之前,我们先来做几个题目.
1.教师读题,指名回答.
(1)5个人+8个人= ;?
(2)5只羊+8只羊= .?
2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.
要求学生观察归为一类的式子,思考它们有什么共同的特征.
请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.
二、讲授新课
1.同类项的定义:
师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项) (教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.
三、例题讲解
教师读题,指名回答.
【例1】判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.
(1)3x与3mx是同类项.( )
(2)2ab与-5ab是同类项.( )
(3)3x2y与-yx2是同类项.( )
(4)5ab2与-2ab2c是同类项.( )
(5)23与32是同类项.( )
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于
同类项.一部分学生可能会单看指数不同,误认为不是同类项) 【例2】游戏.
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.
要求出题同学尽可能使自己的题目与众不同.
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.
【例3】指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;
(2)3x2y-2xy2+xy2-yx2.
【答案】(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.
(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.
【例4】k取何值时,3xky与-x2y是同类项?
【答案】要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.
【例5】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)
通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.
四、课堂练习
请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正) 【答案】改变2ab2c3的系数即可,与其本身也是同类项.
五、课堂小结
理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.
第2课时合并同类项
教学目标
【知识与技能】
理解合并同类项的概念,掌握合并同类项的法则.
【过程与方法】
经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.
【情感、态度与价值观】
在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.
教学重难点
【重点】正确合并同类项.
【难点】找出同类项并正确的合并.
教学过程
一、情境引入
师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:
(1)他们两次共买了多少本软面抄和多少支水笔?。

相关文档
最新文档