三视图体积
常见几何体三视图及表面积体积公式

【2017 北京,理 7】某四棱锥的三视图如图所示, 则该四棱锥的最长棱的长度为
---
7.(2016 年四川高考)已知三棱锥的四个面都是腰 长为 2 的等腰三角形,该三棱锥的正视图如图所 示,则该三棱锥的体积是__________.
---
6(. 2016 年北京高考)某三棱锥的三视图如图所示, 则该三棱锥的体积为( )
(单位:cm),则该几何体的表面积是
cm2,
体积是 cm3.
---
【2017 山东,理 13】由一个长方体和两个 1 圆柱体 4
构成的几何体的三视图如右图,则该几何体的体积 为.
---
【2012 全国,理 7】如图,网 格纸上小正方形的边长为 1,粗线画出的 是某几何体的三视图,则此几何体的体积为( )
---
【2017 浙江,3】某几何体的三视图如图所示(单 位:cm),则该几何体的体积(单位:cm3)是
---
【2013 课标全国Ⅰ,理 8】某几何体的三视图如图所示,则该几何体的 体积图,某几何体的三视图是三个半径相 等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是 283π,则它的表面积是
---
【2017 课标 1,理 7】某多面体的三视图如图所示, 其中正视图和左视图都由正方形和等腰直角三角形 组成,正方形的边长为 2,俯视图为等腰直角三角 形.该多面体的各个面中有若干个是梯形,这些梯形 的面积之和为
---
【2017 课标 II,理 4】如图,网格纸上小正方形的 边长为 1,粗实线画出的是某几何体的三视图,该 几何体由一平面将一圆柱截去一部分所得,则该几 何体的体 积为( )
---
5.(2016 年天津高考)已知一个四棱锥的底面是平 行四边形,该四棱锥的三视图如图所示(单位:m), 则该四棱锥的体积为_______m3.
利用三视图求几何体的表面积与体积

圆锥的表面积:S圆锥 r(rl)
圆台的表面积: S(r 2 r '2 r l r 'l) 圆台
球的表面积:
S 4R2 球
柱体的体积:V Sh
柱
锥体的体积: V 1Sh
锥3
台体的体积:V1(S S'SS')h
台3
球的体积:
4R3
V
球
3
例1.已知一几何体的三视图如下图,试求其表面积与 体积.
1
1
长对正 高平齐 宽相等
正视图
侧视图
俯视图
(2)所求多面体的体积
V V 长 方 体 V 三 棱 锥 4 4 6 1 3 1 2 2 2 2 2 8 3 4 c m 3
长对正 高平齐 宽相等
练习
一个几何体的正视图为一个三角形,则这个几何体可能是下列 几何体中的_______(填入所有可能的几何体前的编号) ①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左) 视图分别如右图所示,则该几何体的俯视图为:
1
主视图
侧视图
2
2 236cm2, 3cm3
俯视图
直观图
长对正 高平齐 宽相等
练习 长对正 高平齐 宽相等
已知某个几何体的三视图如图(主视图中的弧线是半圆),
根据图中标出的尺寸(单位:cm),可得这个几何体的体积
A 是() Leabharlann m3 .1A.8
B.8 2
3
3 2
C.12
D.12 2
3
2 主视图
侧视图
2
俯视图
练习
如右图为一个几何体的三视图,尺寸如图所示,则该几何
高中数学讲义:三视图——几何体的体积问题

三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。
对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。
(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。
然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。
二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。
北京四中网校数学高考总复习:立几结构、三视图、体积

数学高考总复习:立几结构、三视图、体积编稿:林景飞责编:严春梅一、知识网络:二、高考考点:1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.3. 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4. 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5. 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).三、知识要点梳理:知识点一:空间几何体的结构结构特征物例图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.六角螺帽圆柱(1)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体;(2)两底面相互平行;(3)侧面的母线平行于圆柱的轴;(4)侧面展开图是矩形。
大厅的圆形柱知识点二:三视图与直观图1、投影:(1)平行投影与中心投影(其中的线与线的位置关系)由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影。
把光线叫做投影线,把留下物体影子的屏幕叫做投影面。
把光由点向外散射形成的投影,叫做中心投影,中心投影的投影线是由同一点发射出来的;把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投影线是平行的。
(2)正投影与斜投影(其中的线与面的位置关系)在平行投影中,投影线正对着投影面(即投影线垂直于投影面)叫做正投影,否则叫做斜投影。
在平行投影之下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小是完全相同的。
2、三视图“视图”是将物体按正投影法向投影面投射时所得到的投影图,通常选择三种正投影来把握几何体的形状和大小.(1)光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图(有的书称为主视图);(2)光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图(有的书称为左视图);(3)光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图.(4)几何体的正视图、侧视图、俯视图统称为几何体的三视图。
人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积

2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6
3 4
10 2
2
cm
D. 18
75 2
3
解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=
300
240
1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.
知识卡片-由三视图确定几何体的体积和面积

由三视图确定几何体的体积和面积能量储备先根据三种视图想象物体的形状,再把所想象的物体的三种视图画出来,如果所想象的物体的三种视图与已知的三种视图完全一致,就说明想象出的物体形状是正确的。
通关宝典★ 基础方法点方法点:解决此类问题的方法是先根据三种视图的主要轮廓线推测几何体的具体形状,再根据几何体的相关性质对问题进行求解例1:如图5221所示是一个包装盒的三种视图,则这个包装盒的体积是( ) A .1 000π cm 3 B .1 500π cm 3C .2 000π cm 3D .4 000π cm 3解析:根据三种视图不难判断出包装盒是圆柱,并且圆柱的高为20cm ,底面直径为20cm ,根据圆柱的体积公式求解即可。
圆柱的底面积为π·(202)2=100π(cm 2), 则圆柱的体积为100π×20=2 000π(cm 3)。
答案:C ,例2:一个长方体的三视图如图539所示,则这个长方体的体积为( )A .30B .15C .45D .20解析:观察图形可知,该长方体的长为3,宽为2,高为5,故此长方体的体积为3×2×5=30.答案:A★★易混易误点易混易误点: 确定几何体形状例:在工地上,工人师傅用小推车运送砂浆,已知小推车(如图4215所示)车厢的主视图和左视图如图4216所示,请你算一算,这辆小推车一趟能运多少体积的砂浆?解:梯形面积为(100+50)÷2×40=3 000(cm²),3000×50=150000(cm³)=0.15(m³)答:这辆小推车一趟能运0.15 m³的砂浆.分析:根据题图中的数据及实物图,可以把小车车厢看作是前侧面(注意标注的方向)与后侧面都是梯形(上底长100 cm、下底长50 cm、高40 cm)、高为50 cm的四棱柱.蓄势待发考前攻略三视图的计算常与侧面展开图、面积、体积等内容联系起来,一般是根据视图所提供的数据计算原几何体的体积或面积.完胜关卡。
三视图求解技巧

三视图求解技巧通过三视图求立体图形的表面积和体积1、主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
2、三视图的一些性质主视图和左视图如果都是三角形的必然是椎体,要么是棱锥要么是圆锥。
还有两种特殊的情况:1、棱锥和半圆锥的组合体。
2、半圆锥。
到底如何如确定就是通过俯视图观察。
(1)若俯视图是三角形时,就是三棱锥。
(2)若俯视图是多边形时,就是多棱锥。
(3)若俯视图是半圆和三角形时,就是是棱锥和半圆锥的组合体。
(4)若俯视图是半圆时,就是半圆锥。
(5)注意虚线和实线的意义,虚线代表的是看不到的线,实线代表的是能看的见得都是一种平行投影所创造出来的。
3、三视图求体积时候,先观察主视图和侧视图,注意主视图和侧视图的高一定都是一样的,并且肯定是立体图形的高,先通过观察判定图形到底是什么立体图形,看看到底是棱锥,棱柱,还是组合体,通常的组合体都是较为简单的组合体,无需过多考虑。
(1)如果是棱锥的话,就看俯视图是什么图形,判定后算出俯视图的面积即可,应用体积公式。
(2)如果是棱柱的话,同样看俯视图的图形,求出面积,应用公式即可。
(3)如果是组合体,要分辨出是哪两种规则图形的组合,分别算出体积相加即可。
4、三视图求表面积的时候解题步骤先利用原先判定的方法来判定立体几何图形到底是什么形状的,注意:如果是组合体的时候一定不要你忘了组合体重合的部分是要去掉的。
关键就是考到棱锥时候怎么还原棱锥的图。
首先俯视图肯定是底面图形,关键是找到顶点在哪里,若底面图形内部有一条实线,则顶点投影一定在实线与底面图形边的交点上。
若底面图形内部有多条实线,则顶点投影一定是几个实线的交点,根据投影点找出顶点即可,图形完成。
若底面图形内部没有实线,则顶点的投影就在地面图形的边上面,具体在哪里结合主视图和左视图即可。
若底面图形内部没有实线,则顶点的投影就在地面图形的边上面,并且主视图和侧视图都是直角三角形时候,则顶点的投影一定在底面图形的端点位置。
三视图与体积、表面积(例、练及答案)

专题十三:三视图与体积、表面积(例、练及答案)1.由三视图求面积例1:一个几何体的三视图如图所示,则该几何体的表面积为_________.2.由三视图求体积例2:某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A .4B .C .D .8练习一、单选题1.某几何体的三视图如图所示,若该几何体的表面积为 ,则俯视图中圆的半径为()A .1B .2C .3D .42.正方体中,为棱的中点(如图)用过点的平面截去该正方体的上半部分,则剩余几何体的左视图为()A .B .C .D .3.如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为()A .B .C .D .44.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为()1111ABCD A B C D E 1AA 1B E D 、、2367276A .B .C .D .5.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥......的外接球的表面积等于()A .B .C .D .6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为()A .B .C .D .7.一个四棱锥的三视图如图所示,则该几何体的表面积为())21+π21⎫+π⎪⎪⎝⎭122⎫+π⎪⎪⎝⎭12⎫π⎪⎪⎝⎭34π32π17π172π32π16π36π72πA .B .C .D .8.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,,,且,则此三棱锥外接球表面积的最小值为()A .B .C .D .9.在四棱锥中,底面,底面为正方形,,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A .B .C .D.10.如图,画出的是某四棱锥的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()6+8+6+8+a b ()520,02a b a b +=>>174π214π4π5πP ABCD -PA ⊥ABCD ABCD PA AB =12131415A .15B .16C .D .11.某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为()A .B .C .12D .12.如图为一个多面体的三视图,则该多面体的体积为()A .B .7C .D .二、填空题13.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.5035339438320322323314.已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为_______与_______.15.某四棱锥的三视图如图所示,则该四棱锥的体积为_________.16.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为__________.参考答案1.【答案】【解析】由三视图可得该几何体由一个半球和一个圆锥组成,其表面积为半球面积和圆锥侧面积的和.球的半径为3, ∴半球的面积,圆锥的底面半径为3,母线长为5,∴圆锥的侧面积为,∴表面积为.2.【答案】D【解析】由于长方体被平面所截,∴很难直接求出几何体的体积,可以考虑沿着截面再接上一个一模一样的几何体, 从而拼成了一个长方体,∵长方体由两个完全一样的几何体拼成, ∴所求体积为长方体体积的一半。
根据几何体三视图求表面积、体积专题

根据展开图求体积面积专练
例1.如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.小正方形的棱长为2cm,求表面积
例2.2.如图所示是一个由若干个相同的小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出它从正面和从左面看到的平面图形.小正方形的棱长为1cm,求表面积
例3.例2.由10个大小相同的正方体搭成的几何体如图所示,请在网格中画出从正面看,从左面看,从上面看得到的平面图形.小正方形的棱长为3cm,求表面积
2.小康利用7个大小相同的小正方体搭成了一个如图所示的几何体.(1)请在图中画出这个几何体从正面、左面、上面看到的形状图;(2)若每个小正方体的棱长均为3cm,求这个几何体的表面积.
例3.一个无盖的长方体包装盒展开后如图所示(单位:cm),a,b,c分别是长方体的长宽高.(1)求长方体的高c;(2)求长方体的容积.
4.诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.
5.某种产品的形状是长方体,长为8cm,它的展开图如图.(1)求长方体的体积;
(2)请为厂家设计一种包装纸箱,使每箱能装8件这种产品,要求设计时不计空隙且该纸箱所用材料最少(纸箱的表面积最小),并请求出你设计的纸箱的表面积.
6.如图,是一个几何体分别从正面、左面、上面看的形状图.(1)该几何体名称是;(2)根据图中给的信息,求该几何体的表面积和体积.
7.从正面、左面、上面看到的圆柱的形状图如图所示.(计算结果用π表示)(1)求这个圆柱的表面积;(2)求这个圆柱的体积.。
高考数学 高频考点归类分析 由三视图判别立体图形和表面积、体积的计算(真题为例)

典型例题:例1. (2012年全国课标卷理5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为【 】()A 6 ()B 9 ()C 12 ()D 18【答案】B 。
【考点】由三视图判断几何体。
【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3。
因此此几何体的体积为:11633932V =⨯⨯⨯⨯=。
故选B 。
例2. (2012年北京市理5分)某三梭锥的三视图如图所示,该三梭锥的表面积是【 】 A. 2865+ B. 3065+ C. 56125+ D. 60125+【答案】 B 。
【考点】三棱锥的三视图问题。
【解析】如下图所示。
图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。
本题所求表面积应为三棱锥四个面的面积之和。
利用垂直关系、等腰三角形的性质和三角形面积公式,可得:()1S =234=102⋅+⋅底,()()()22111S =234=10S =45=10S =25415=65222⋅+⋅⋅⋅⋅⋅-后左右,,这里有两个直角三角形,一个等腰三角形。
∴该三梭锥的表面积是3065+。
故选B 。
例3. (2012年广东省理5分)某几何体的三视图如图所示,它的体积为【 】A .12π B.45π C.57π D.81π 【答案】C 。
【考点】由三视图求体积。
【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,几何体的直观图如图所示。
圆锥的高221534PO 几何体的体积1=9594573V V V 圆柱圆锥。
故选C 。
例4. (2012年广东省文5分)某几何体的三视图如图所示,它的体积为【 】A . 72πB . 48πC . 30πD . 24π 【答案】C 。
【考点】由三视图求体积。
【解析】由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4, 则它的体积2311434330323V V V πππ=+=⋅⋅+⋅⋅=半球体圆锥。
高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
人教版九年级数学全册教案附教学反思:29.2 第3课时 由三视图确定几何体的面积或体积

29.2 三视图第3课时 由三视图确定几何体的面积或体积1.能根据三视图求几何体的侧面积、表面积和体积等;(重点)2.解决实际生活中与面积、体积等方面有关的实际问题.(难点)一、情境导入已知某混凝土管道的三视图,你能根据三视图确定浇灌每段这种管道所需混凝土的体积吗(π=3.14)?二、合作探究探究点:由三视图确定几何体的面积或体积【类型一】 由三视图求几何体的侧面积已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm ,从上面看的圆的直径为4cm ,求这个几何体的侧面积(结果保留π).解析:(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的侧面积即可.解:(1)该几何体是圆柱;(2)∵从正面看的长为10cm ,从上面看的圆的直径为4cm ,∴该圆柱的底面直径为4cm ,高为10cm ,∴该几何体的侧面积为2πrh =2π×2×10=40π(cm 2).方法总结:解题时要明确侧面积的计算方法,即圆柱侧面积=底面周长×圆柱高. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 由三视图求几何体的表面积如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.解析:先由三视图得到两个长方体的长,宽,高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.解:根据三视图可得:上面的长方体长6mm,高6mm,宽3mm,下面的长方体长10mm,宽8mm,高3mm,这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=268+108=376(mm2).答:这个几何体的表面积是376mm2.方法总结:由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律—“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.注意:求解组合体的表面积时重叠部分不应计算在内.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】由三视图求几何体的体积某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积(参考公式:V球=43πR3).解析:由已知中的三视图,我们可以判断出该几何体的形状为下部是底面半径为1,高为1的圆柱,上部是半径为1的14球组成的组成体,代入圆柱体积公式和球的体积公式,即可得到答案.解:由已知可得该几何体是一个下部为圆柱,上部为14球的组合体.由三视图可得,下部圆柱的底面半径为1,高为1,则V圆柱=π,上部14球的半径为1,则V14球=13π,故此几何体的体积为错误!.方法总结:由三视图求几何体的体积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律“长对正,高平齐,宽相等”确定几何体的长、宽、高等相关数据值.再根据相关公式计算几何体各部分的体积并求和.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型四】由三视图确定几何体面积或体积的实际应用杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8g/cm3,1kg防锈漆可以涂4m2的铁器面,三视图单位为cm)?解析:从主视图和左视图可以看出这个几何体是由前后两部分组成的,呈一个T字形状.故可以把该几何体看成两个长方体来计算.解:∵工件的体积为(30×10+10×10)×20=8000cm3,∴重量为8000×7.8=62400(g)=62.4(kg),∴铸造5000件工件需生铁5000×62.4=312000(kg)=312(t).∵一件工件的表面积为2×(30×20+20×20+10×30+10×10)=2800cm2=0.28m2.∴涂完全部工件需防锈漆5000×0.28÷4=350(kg).方法总结:本题主要考查了由三视图确定几何体和求几何体的面积;关键是得到几何体的形状,得到所求的等量关系的相对应的值.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.由三视图求几何体的侧面积;2.由三视图求几何体的表面积;3.由三视图求几何体的体积.题的根本,通过具体的例题,让学生进行练习,巩固学习效果.。
三视图与体积面积计算

如图,直三棱柱的侧棱长和底面边长均为2,正视 图和俯视图如图所示,则其侧视图的面积为 ()
.
答案:C
3.若一个底面是正三角形的三棱柱的正视图如 图所示,则其侧面积等于( )
A. C.2 3
答案:D
B.2 D.6 3
4.一个几何体的三视图如图所示,则这个几何 体的体积等于( )
A.12
切 入 点 : 利 用 直 截 面 面 积 与 侧 棱 的 积 求 侧 面 积 ; 或 用 “ 分 解 法 ” 求 出 各 侧 面 面 积 , 从 而 得 全 面 积 . 运 用 此 法 的 关 键 在 于 证 明 侧 面 BC C 1B 1是 矩 形 .
解析:如图,作BD AA1于D,连接CD. 可证BAD≌CAD. CDA BDA 90,即AA1 CD. 而BD CD D, AA1 平面BCD,即平面BCD为直截面.
变 式 1(2 0 10 广 东 卷 )如 右 图 , ABC为 正 三 角 形 , AA / /BB / / C C , C C 平 面 A B C , 且 3A A B B C C A B, 则 多 面 体 A B C A B C 的 正 视 图 ( 也
称 主 视 图 )是
易知BD CD 4 sin60 2 3.
1 S侧 c直截面 l (2 3 2 3 4) 8
32 32 3,
S全 2S底 S侧 40 3 32.
2
S BCD
1 2
4
(2
3)2 22 4
2,
V S BCD AA1 4 2 8 32.
例 3 半 径 为 R 的 球 有 一 个 内 接 圆 柱 , 这 个 圆 柱 的 底 面 半 径 为 何 值 时 , 它 的 侧 面 积 最 大 ? 最 大 值 是 多 少 ?
利用三视图求表面积和体积

练习 长对正 高平齐 宽相等
若某几何体的三视图(单位: cm)如图所示,则此几何体 的体积是
若某空间几何体的
三视图如图所示,
2
2
则该几何体的体积是
1
1.如图所示,三棱锥P ABC的侧棱的长度 均为1,且侧棱间的夹角均为40o , 动点M在棱 PB上移动,动点N在棱PC上移动,求 AM MN NA的最小值.
D' G
F
E D
A
6
C' 2
B'
4
2 2
C
4
B
正视图
侧视图
长对正 高平齐 宽相等
正视图
侧视图
俯视图
(2)所求多面体的体积
V
V长方体
V三棱锥
446
1 3
1 2
2
2
2
284 3
cm3
长对正 高平齐 宽相等
练习
一个几何体的正视图为一个三角形,则这个几何体可能是下列 几何体中的_______(填入所有可能的几何体前的编号) ①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左) 视图分别如右图所示,则该几何体的俯视图为:
2.如图,圆柱OO1的地面半径为2,高为4,点
P为母线B
B1的中点,A
OB
2
,试问一只
蚂蚁从点A沿圆柱侧面爬到P点的最小距离.
1
A.8
B.8 2
3
3 2
C.12
D.12 2
3
2 主视图
侧视图
2
俯视图
练习
如右图为一个几何体的三视图,尺寸如图所示,则该几何
利用三视图求几何体的表面积和体积

6
5
由三视图求几何体的体积和表面积的思路
1、由三视图确定几何体的形状 (1)由俯视图确定几何体的底面 (2)根据正视图或侧视图确定几何体侧棱与侧面特征,调整 实线和虚线所对应的棱、面的位置 (3)确定几何体直观图形状 2、由题目中的数据进行代入公式求解
布置作业:
《优化设计》p22-基础巩固3,4,6,7 P24例2,变式训练2, P25-基础巩固7,9
积等于
.
解析:该几何体如图所示,挖去的圆锥的母线长为
62 22 2 10
则圆锥的侧面积等于 4 10 圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面 积为 22 4 ,所以组合体的表面积
为 4 10 24 4 4 10 28 .
答案: 4 10 28
题型二:三视图有关的体积计算
1 3Байду номын сангаас
(S
SS' S')h
题型一:三视图有关面积计算
例1.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )
A.72 B.66 C.60 D.30
解析:由所给三视图可知该几何体为一个三棱柱,且底面为
直角三角形,直角边长分别为3和4,斜边长为5,三棱柱的高为5,
如图所示,所以表面积为
2
温故知新
1、三视图
画三视图的三大原则
正俯一样长,正侧一样高,侧俯一样宽
温故知新
面积
圆柱的表面积:S圆柱 2r(r l) 圆锥的表面积:S圆锥 r(r l) 圆台的表面积:S圆台 (r 2 r'2 rl r'l)
体积
柱体的体积:V柱 Sh
锥体的体积:V锥
1 Sh 3
台体的体积:V台
§8.1 空间几何体的三视图、表面积与体积(讲解部分)

在已知图形中过点O作z轴垂直于平面xOy,在直观图中画出对应的z'轴,垂 直于平面x'O'y',已知图形中平行于z轴的线段,在直观图中平行于z'轴且 ⑩ 长度不变 .
考点二 空间几何体的体积
名称
体积
柱体 锥体
V=Sh
1
V= 3Sh
台体
1
V= 3(S+S'+ SS' )h
球体
4
V=3 πR3
考点三 空间几何体的表面积
112.5.
(2)包装盒子的体积V=(a-2x)(b-2x)x=x[ab-2(a+b)x+4x2],x∈
0,
b 2
,b≤60,V=x
[ab-2(a+b)x+4x2]≤x(ab-4 ab x+4x2)=x(3 600-240x+4x2)=4x3-240x2+3 600x.当
且仅当a=b=60时等号成立,设f(x)=4x3-240x2+3 600x,x∈(0,30),则f '(x)=12(x-
②半径:r= a2 b2 c2 (a,b,c为长方体的长、宽、高).
2
(2)正方体的外接球、内切球及与各条棱都相切的球:
①外接球:球心是正方体的中心,半径r= 3 a(a为正方体的棱长);
2
②内切球:球心是正方体的中心,半径r= a (a为正方体的棱长);
2
③与各条棱都相切的球:球心是正方体的中心,半径r= 2 a(a为正方体的棱
考点清单
考点一 三视图与直观图
1.多面体的结构特征
名称
棱柱
棱锥
棱台
图形
结构特征 (1)有两个面互相平行,其余各个 有一个面(即底面)是多边 用一个平行于棱锥底面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知正四棱锥P ABCD -43
,则此棱锥的内切球与外接球的半径之比为( ) 2.如图所示,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA 2AB ==,1BC =,
AC 11ACC A ,则此三棱柱的侧(左)视图的面积为( )
3.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是23π3,则这个三棱柱的体积是( )
4.已知ABC △的平面直观图'''A B C △是边长为a 的正三角形,那么原ABC △的面积为( )
5.球O 的一个截面圆的圆心为M ,圆M OM 的长度为球O 的半径的一半,则球O 的表面积为( )
6.如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱1111AA A B C ⊥平面,主视图是边长为2的正方形,则该三棱柱的左视图的周长为( )
7.一个几何体的三视图如图所示,其中正视图、俯视图中的圆以及侧视图中的圆弧的半径都相等,侧视图中的两条半径互相垂直,若该几何体的体积是π,则它的表面积是( )
8.若一几何体的正视图与侧视图均为边长是1的正方形,则下列图形一定不是该几何体的俯视图的是( )
9.某几何体的三视图如图所示,则它的体积是( )
10.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为( )
11.某几何体的三视图如图所示。
图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )
12.已知三棱锥P ABC -,在底面ABC ∆中,60A ∠=︒,BC =,PA ⊥面ABC ,2PA =,则此三棱锥的外接球的体积为( )
17.某三棱锥的三视图如图所示,该三棱锥的表面积是()
13.某三棱锥的三视图如图所示,该三棱锥的表面积是()
14.如图,一个几何体的三视图分别为两个等腰直角三角形和一个边长为2的正方形及其一条对角线,则该几何体的侧面积为()
15.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()
16.已知某三棱锥的三视图如图所示,正视图和俯视图都是等腰直角三角形,则该三棱锥中
最长的棱长为( )
17.一个几何体的三视图如图所示,若其正视图,侧视图面积都是
,且一个角为的菱形,俯视图为正方形,则该几何体的体积为.
18.长方体的一个顶点上的三条棱长分别为3,4,5,则体对角线长为.
19.某几何体的三视图如图所示,则该几何体的外接球表面积是__________.
2
30
60。