大学物理参考习题2-2
大学物理习题答案解析第二章

第二章牛顿定律2 -1如图(a)所示,质量为m的物体用平行于斜面的细线联络置于圆滑的斜面上,若斜面向左方作加速运动 ,当物体刚离开斜面时,它的加快度的大小为()(A) gsin θ(B) gcos θ(C) gtan θ(D) gcot θ剖析与解当物体走开斜面瞬时 ,斜面对物体的支持力消逝为零,物体在绳索拉力 F T (其方向仍可认为平行于斜面 )和重力作用下产平生行水平面向左的加快度a,如图 (b) 所示 ,由其可解得合外力为 mgcot θ,应选 (D).求解的重点是正确剖析物体刚走开斜面瞬时的物体受力状况和状态特点.2 -2 用水平力 F N把一个物体压着靠在粗拙的竖直墙面上保持静止.当 F N渐渐增大时 ,物体所受的静摩擦力 F f的大小 ()(A)不为零 ,但保持不变(B)随 F N成正比地增大(C)开始随 F N增大 ,达到某一最大值后 ,就保持不变(D)没法确立剖析与解与滑动摩擦力不一样的是 ,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加 ,但详细大小则取决于被作用物体的运动状态.由题意知 ,物体向来保持静止状态 ,故静摩擦力与重力大小相等 ,方向相反 ,并保持不变 ,应选 (A) .2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A)不得小于(C)不得大于μgR (B) 一定等于μgRμgR (D) 还应由汽车的质量m 决定剖析与解由题意知 ,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只好由路面与轮胎间的静摩擦力供给,能够供给的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为 v=μRg.所以只需汽车转弯时的实质速率不大于此值,均能保证不侧向打滑.应选 (C) .2 -4 一物体沿固定圆弧形圆滑轨道由静止下滑,在下滑过程中 ,则 ( )(A)它的加快度方向永久指向圆心,其速率保持不变(B)它遇到的轨道的作使劲的大小不停增加(C)它遇到的合外力大小变化 ,方向永久指向圆心(D)它遇到的合外力大小不变 ,其速率不停增加剖析与解 由图可知 ,物体在下滑过程中遇到大小和方向不变的重力以实时辰指向圆轨道中心的轨 道支持力 F N 作用 ,其合外力方向并不是指向圆心 ,其大小和方向均与物体所在地点有关.重力的切向分 量 (m g cos θ) 使物体的速率将会不停增加 ( 由机械能守恒亦可判断 ),则物体作圆周运动的向心力 (又称法向力 )将不停增大 ,由轨道法向方向上的动力学方程F Nmgsin θ mv 2可判断 ,随 θ 角的不停增R大过程 ,轨道支持力 F N 也将不停增大 ,因而可知应选 (B) .2 -5 图 (a)示系统置于以 a = 1/4 g 的加快度上涨的起落机内 ,A 、B 两物体质量相同均为 m,A 所在的桌面是水平的 ,绳索和定滑轮质量均不计 ,若忽视滑轮轴上和桌面上的摩擦,其实不计空气阻力 ,则绳中张力为 ( )(A) 58 mg (B) 12 mg (C) mg (D) 2 mg剖析与解此题可考虑对 A 、B 两物体加上惯性力后 ,以电梯这个非惯性参照系进行求解. 此时 A 、B两物体受力状况如图 (b)所示 ,图中 a ′为 A 、B 两物体相对电梯的加快度 ,ma ′为惯性力. 对 A 、B 两物体 应用牛顿第二定律 ,可解得 F = 5/8 mg .应选 (A) .T议论 关于习题 2 -5 这种种类的物理问题 ,常常从非惯性参照系 (此题为电梯 )察看到的运动图像较为 明确 ,但因为牛顿定律只合用于惯性参照系,故从非惯性参照系求解力学识题时,一定对物体加上一个虚构的惯性力.如以地面为惯性参照系求解,则两物体的加快度 a A 和a B 均应付地而言 ,此题中 a A 和 a 的大小与方向均不相同.此中 aA 应斜向上.对 a A 、a 、a 和a ′之间还要用到相对运动规律 ,求解BB过程较繁.有兴趣的读者不如自己试试试看.2 -6 图示一斜面 ,倾角为 α,底边 AB 长为 l = 2.1 m,质量为 m 的物体从题 2 -6 图斜面顶端由静止开始向下滑动 ,斜面的摩擦因数为 μ= 0.14 .试问 ,当 α为何值时 ,物体在斜面上下滑的时间最短? 其数值为多少?剖析动力学识题一般分为两类:(1) 已知物体受力争其运动状况;(2) 已知物体的运动状况来剖析其所受的力.自然,在一个详细题目中,这两类问题并没有截然的界线,且都是以加快度作为中介,把动力学方程和运动学规律联系起来.此题重点在列出动力学和运动学方程后,解出倾角与时间的函数关系α= f(t),而后运用对 t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点 O 位于斜面极点,则由牛顿第二定律有mgsin α mgμcosαma(1) 又物体在斜面上作匀变速直线运动,故有l 1 at2 1g sin α μcosαt 2cosα 2 2则t2l(2) gcosαsin α μcosα为使下滑的时间最短,可令dt0 ,由式(2)有dα则可得此时sin αsin α μcosαcosαcosα μsin α0 tan 2α 1 , 49oμt 2l 0.99 sgcosαsin α μcosα2 -7 工地上有一吊车 ,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为 m 2 k g,乙块= 2.00 10×1质量为 m2= 1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种状况下,钢丝绳所受的张力以及乙块对甲块的作使劲:(1) 两物块以 10.0 m ·s-2的加快度上涨; (2) 两物块以 1.0 m s·-2的加快度上涨.从此题的结果,你能领会到起吊重物时一定迟缓加快的道理吗?剖析预制板、吊车框架、钢丝等可视为一组物体.办理动力学识题往常采纳“隔绝体”的方法物体所受的各样作使劲 ,在所选定的惯性系中列出它们各自的动力学方程.依据连结体中物体的多少可列出相应数量的方程式.联合各物体之间的互相作用和联系 ,可解决物体的运动或互相作使劲.,剖析解按题意 ,可分别取吊车(含甲、乙 )和乙作为隔绝体,画示力争 ,并取竖直向上为Oy 轴正方向 (如图所示 ).当框架以加快度 a 上涨时 ,有FT-(m1 + m )g =(m + m )a (1)2 1 2FN2- m g = m a (2)2 2解上述方程 ,得F = 1 2 (3)TFN2 =m (g + a) (4) 2(1)当整个装置以加快度 a = 10 m ·s-2上涨时 ,由式 (3) 可得绳所受张力的值为FT=10×3 N乙对甲的作使劲为N2 N2 2(g + a) =3F′=-F = -m 10× N(2)当整个装置以加快度 a = 1 m·s-2上涨时 ,得绳张力的值为FT=10×3 N此时 ,乙对甲的作使劲则为F′ N2=103× N由上述计算可见,在起吊相同重量的物体时,因为起吊加快度不一样 ,绳中所受张力也不一样,加快度大 ,绳中张力也大.所以,起吊重物时一定迟缓加快,以保证起吊过程的安全.2 -8 如图 (a)所示 ,已知两物体 A、 B 的质量均为 m = 3.0kg 物体 A 以加快度 a = 1.0 m ·s-2 运动 ,求物体 B 与桌面间的摩擦力. (滑轮与连结绳的质量不计)剖析该题为连结体问题 ,相同可用隔绝体法求解.剖析时应注意到绳中张力大小到处相等是有条件的 ,即一定在绳的质量和伸长可忽视、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不一样的.解分别对物体和滑轮作受力剖析[图(b)].由牛顿定律分别对物体 A 、B 及滑轮列动力学方程,有m A g -F T=m A a (1)F′1 -Ff= m B a′(2)TF′ -2FT1= 0 (3)T考虑到 mTTT1 T,a ′= 2a,可联立解得物体与桌面的摩擦力A =mB =m, F =F′ ,F = F′1F f mg m 4m a7.2 N2议论动力学识题的一般解题步骤可分为:(1) 剖析题意 ,确立研究对象,剖析受力 ,选定坐标; (2) 根据物理的定理和定律列出原始方程组; (3) 解方程组 ,得出文字结果; (4) 查对量纲 ,再代入数据 ,计算出结果来.2 -9 质量为m′的长平板 A 以速度v′在圆滑平面上作直线运动,现将质量为m 的木块 B 轻轻安稳地放在长平板上 ,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板获得共同速度?剖析当木块 B 安稳地轻轻放至运动着的平板 A 上时 ,木块的初速度可视为零,因为它与平板之间速度的差别而存在滑动摩擦力,该力将改变它们的运动状态.依据牛顿定律可获得它们各自相对地面的加快度.换以平板为参照系来剖析,此时 ,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动 ,其加快度为相对加快度,按运动学公式即可解得.该题也可应用第三章所叙述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变成木块和平板一同运动的动能,而它们的共同速度可依据动量定理求得.又因为系统内只有摩擦力作功,依据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板挪动的距离即可求出.解 1 以地面为参照系 ,在摩擦力 Ff=μmg的作用下 ,依据牛顿定律分别对木块、平板列出动力学方程F f=μ mg=ma1F ′f=-F f= m′a2a1和 a2分别是木块和木板相对地面参照系的加快度.若以木板为参照系,木块相对平板的加快度 a = a1+ a2 ,木块相对平板以初速度- v ′作匀减速运动直至最后停止.由运动学规律有2- v′= 2as由上述各式可得木块有关于平板所挪动的距离为sm v 22 μg m m解 2 以木块和平板为系统 ,它们之间一对摩擦力作的总功为W =F f(s +l ) -F fl=μ mgs式中 l 为平板相对地面挪动的距离.因为系统在水平方向上不受外力,当木块放至平板上时,依据动量守恒定律,有m′v′= (m′+ m) v″由系统的动能定理 ,有μmgs 1 m v 2 1 m m v 22 2由上述各式可得sm v 22 μg m m2 -10 如图 (a)所示 ,在一只半径为 R 的半球形碗内 ,有一粒质量为 m 的小钢球 ,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时 ,它距碗底有多高?剖析保持钢球在水平面内作匀角速度转动时,一定使钢球遇到一与向心加快度相对应的力(向心力 ), 而该力是由碗内壁对球的支持力 F N的分力来供给的 ,因为支持力 F N一直垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示 Oxy 坐标 ,列出动力学方程 ,即可求解钢球距碗底的高度.解取钢球为隔绝体 ,其受力剖析如图 (b) 所示.在图示坐标中列动力学方程F N sin θ ma n mRω2sin θ(1)F N cosθ mg (2)且有由上述各式可解得钢球距碗底的高度为R h cos θ(3)Rgh Rω2可见 ,h 随 ω的变化而变化.2 -11 火车转弯时需要较大的向心力,假如两条铁轨都在同一水平面内 (内轨、外轨等高 ),这个向心力只好由外轨供给 ,也就是说外轨会遇到车轮对它很大的向外侧压力 ,这是很危险的.所以 ,对应于火车的速率及转弯处的曲率半径,一定使外轨适合地超出内轨,称为外轨超高.现有一质量为m 的火车 ,以速率 v 沿半径为 R 的圆弧轨道转弯 ,已知路面倾角为 θ,试求: (1) 在此条件下 ,火车速率 v 0 为多大时 ,才能使车轮对铁轨内外轨的侧压力均为零?(2) 假如火车的速率 v ≠v 0 ,则车轮对铁轨的侧压力为多少?剖析如题所述 ,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平重量F N sin θ 提供 (式中 θ角为路面倾角 ).从而不会对内外轨产生挤压. 与其对应的是火车转弯时一定以规定的速率v 0行驶.当火车行驶速率 v ≠v 0 时,则会产生两种状况: 如下图 ,如 v > v 0 时 ,外轨将会对车轮产生斜向 内的侧压力 F 1 ,以赔偿原向心力的不足,如 v < v 0时 ,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消剩余的向心力 ,不论哪一种状况火车都将对外轨或内轨产生挤压. 由此可知 ,铁路部门为何会在每个铁轨的转弯处规准时速 ,从而保证行车安全.解 (1) 以火车为研究对象 ,成立如下图坐标系.据剖析 ,由牛顿定律有F N sin θ mv 2(1)RF N cos θ mg 0(2)解 (1)(2) 两式可得火车转弯时规定速率为v 0gRtan θ(2) 当 v > v 0 时 ,依据剖析有F N sin θ F 1cos θ m v2(3)RF N cos θ F 1sin θ mg 0(4)解 (3)(4) 两式 ,可得外轨侧压力为F 1 m v 2cos θ gsin θR当 v < v 0 时,依据剖析有2F N sin θ F 2cos θ mv(5)RF N cos θ F 2sin θ mg(6)解 (5)(6) 两式 ,可得内轨侧压力为F 2 m gsin θ v 2cos θR2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为 m,圆筒半径为 R,演员骑摩托车在直壁上以速率 v 作匀速圆周螺旋运动 ,每绕一周上涨距离为 h,如下图.求壁对演员和摩托车的作使劲.剖析 杂技演员 (连同摩托车 )的运动能够当作一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹睁开后,相当于如图 (b)所示的斜面. 把演员的运动速度分解为图示的 v 1 和 v 2 两个重量 ,明显 v 1是竖直向上作匀速直线运动的分速度 ,而 v 2则是绕圆筒壁作水平圆周运动的分速度,此中向心力由筒壁对演员的支持力F N 的水平重量 F N2 供给 ,而竖直重量 F N1则与重力相均衡.如图 (c) 所示 ,此中 φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力 的大小和方向解 设杂技演员连同摩托车整体为研究对象 ,据 (b)(c)两图应有FN1mg 0(1) F N 2m v 2(2)Rv 2vcos θ v2πR(3)R 2 h 22πF NF N 21 F N 2 2(4)以式 (3) 代入式 (2),得22 22 2m4π R v4π RmF N 222222v2(5)RhR 4πRh 4π将式 (1) 和式 (5)代入式 (4),可求出圆筒壁对杂技演员的作使劲( 即支承力 )大小为2222224πRF NFN1F N 2 m g2 2 v2h4πR与壁的夹角 φ为FN 222arctan4πRv2arctan2 2FN 14πRh g议论 表演飞车走壁时 , 演员一定控制好运动速度,行车路线以及摩托车的方向 ,以保证三者之间知足解题用到的各个力学规律.2 -13 一质点沿 x 轴运动 ,其受力如下图 ,设 t = 0 时 ,v 0= 5m ·s-1,x 0= 2 m, 质点质量 m = 1kg, 试求该 质点 7s末的速度和地点坐标.剖析 第一应由题图求得两个时间段的 F(t)函数 ,从而求得相应的加快度函数,运用积分方法求解题目所问 ,积分时应注意积分上下限的取值应与两时间段相应的时辰相对应. 解 由题图得F t2t, 0 t 5s 35 5t,5s t 7s由牛顿定律可得两时间段质点的加快度分别为a 2t , 0 t 5sa 35 5t , 5s t 7s对 0 < t < 5s 时间段 ,由 adv 得dtvd tv 0 adtv积分后得 v 5 t 2再由 vdx 得dtxt dxvdtx 0积分后得 x 2 5t1 t 33将 t = 5s 代入 ,得 v 5= 30 m ·s-1 和 x 5 = 68.7 m 对 5s< t <7s 时间段 ,用相同方法有vtdva 2dtv 0 5 s得v 35t2xt再由dx vdtx5 5 s得x =23 -82.5t +将 t =7s代入分别得 v 7= 40 m ·s -1 和 x 7 = 142 m2 -14 一质量为 10 kg 的质点在力 F 的作用下沿 x 轴作直线运动 ,已知 F =120t + 40,式中 F 的单位为 N, t 的单位的s.在 t = 0 时 ,质点位于 x =5.0 m 处 ,其速度 v 0 =6.0 m ·s-1 .求质点在随意时辰的速度和地点.剖析 这是在变力作用下的动力学识题. 因为力是时间的函数 ,而加快度 a = dv/dt,这时 ,动力学方程就成为速度对时间的一阶微分方程 ,解此微分方程可得质点的速度v (t);由速度的定义 v =dx /d t,用积分的方法可求出质点的地点.解 因加快度 a = dv/dt,在直线运动中 ,依据牛顿运动定律有120t40m dvdt依照质点运动的初始条件 ,即t 0 = 0 时 v 0 = 6.0 m s·-1 ,运用分别变量法对上式积分,得vt4.0 dtdv 0 vv =2又因 v = dx /dt,并由质点运动的初始条件: t 0 = 0 时 x 0 = 5.0 m,对上式分别变量后积分 ,有xt6.0t 2dtdxx 0x =2 +2.0 t 32 -15 轻型飞机连同驾驶员总质量为10×3 kg .飞机以 55.0 m s·-1 的速率在水平跑道上着陆后,驾驶员开始制动 ,若阻力与时间成正比 ,比率系数 α= 5.0 ×102 N ·s -1,空气对飞机升力不计 ,求: (1) 10 s后飞机的速率; (2) 飞机着陆后 10s内滑行的距离.剖析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动. 其水平方向所受制动力 F 为变力 ,且是时间的函数.在求速率和距离时,可依据动力学方程和运动学规律,采纳分别变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有 Fma mdvαtαt dtdtvdt vmv 0得v v 0α t 22m所以 ,飞机着陆 10s后的速率为v = 30 m s· -1xt α t 2 dt又dxv 0x02m故飞机着陆后 10s内所滑行的距离s x x 0 v 0tα t 3 467 m6m2 -16 质量为 m 的跳水运动员 ,从 10.0 m 高台上由静止跳下落入水中.高台距水面距离为 h .把跳水运动员视为质点 ,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为 bv 2 ,此中 b 为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求: (1)运动员在水中的速率v 与 y的函数关系;(2) 如 b/m=-1 , 跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1 /10?(假设跳水运动员在水中的浮力与所受的重力大小恰巧相等)剖析该题能够分为两个过程,入水前是自由落体运动,入水后 ,物体受重力 P、浮力 F 和水的阻力 F f的作用 ,其协力是一变力 ,所以 ,物体作变加快运动.固然物体的受力剖析比较简单 ,可是 ,因为变力是速度的函数(在有些问题中变力是时间、地点的函数 ),对这种问题列出动力学方程其实不复杂 ,但要从它计算出物体运动的地点和速度就比较困难了.往常需要采纳积分的方法去解所列出的微分方程.这也成认识题过程中的难点.在解方程的过程中 ,特别需要注意到积分变量的一致和初始条件确实定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P -F f-F =ma由题意 P = F、 F f= bv2 ,而a = dv /dt = v (d v /dy),代入上式后得-bv2= mv (d v /dy)考虑到初始条件 y0=0 时 , v0 2gh ,对上式积分,有mv dvtdy0b v0 vv v0e by / m 2ghe by / m(2) 将已知条件 b/m = 0.4 m -1 ,v =0 代入上式 ,则得y m ln v 5.76 mb v0*2 -17 直升飞机的螺旋桨由两个对称的叶片构成.每一叶片的质量m= 136 kg,长 l = 3.66 m.求当它的转速 n= 320 r/min 时 ,两个叶片根部的张力.(设叶片是宽度必定、厚度平均的薄片)剖析 螺旋桨旋转时 ,叶片上各点的加快度不一样,在其各部分双侧的张力也不一样;因为叶片的质量是连续散布的 ,在求叶片根部的张力时 ,可选用叶片上一小段 ,剖析其受力 ,列出动力学方程 ,而后采纳积分的方法求解.解 设叶片根部为原点 O,沿叶片背叛原点 O 的方向为正向 ,距原点 O 为 r 处的长为 dr 一小段叶片 ,其 双侧对它的拉力分别为 F T(r) 与 F T (r + dr ).叶片转动时 ,该小段叶片作圆周运动 ,由牛顿定律有dF T F T rF T r drmω2 rdrl因为 r =l 时外侧 F T = 0,所以有t dF Tlm ω2F T rl r drrF T m ω2 2r 22πmn 22r 2rll2ll上式中取 r =0,即得叶片根部的张力F T 0 =10×5 N负号表示张力方向与坐标方向相反.2 -18 一质量为 m 的小球最先位于如图 (a)所示的 A 点 ,而后沿半径为 r 的圆滑圆轨道 ADCB 下滑.试求小球抵达点 C 时的角速度和对圆轨道的作使劲.剖析 该题可由牛顿第二定律求解. 在取自然坐标的状况下 ,沿圆弧方向的加快度就是切向加快度a ,t与其相对应的外力 F 是重力的切向重量 mgsin α,而与法向加快度 a n 相对应的外力是支持力 F N 和重力t的法向重量 mgcos α.由此 ,可分别列出切向和法向的动力学方程F = mdv/dt 和F n =ma n .因为小球在t滑动过程中加快度不是恒定的 ,所以 ,需应用积分求解 ,为使运算简易 ,可变换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度 ,方法比较简易.但它不可以直接给出小球与圆弧表面之间的作使劲.解 小球在运动过程中遇到重力 P 和圆轨道对它的支持力 F N .取图 (b) 所示的自然坐标系,由牛顿定律得F tmgsin α mdv(1)dtF n F Nmgcos α mmv 2(2)R由 vdsr α r α运动到点 C 的始末条件 ,进行积分 ,有d ,得 dtd ,代入式 (1),并依据小球从点 Adtdtvvαv 0d90org sin αd αv v得v2rgcos α则小球在点 C 的角速度为ωv2 cos α/rr g由式 (2)得F Nm mv 2 mgcos α 3mgcos αr由此可得小球对圆轨道的作使劲为F NF N 3mgcos α负号表示 F ′N 与 e n 反向.2 -19 圆滑的水平桌面上搁置一半径为 R 的固定圆环 ,物体紧贴环的内侧作圆周运动 ,其摩擦因数为μ,开始时物体的速率为 v 0 ,求: (1) t 时辰物体的速率; (2) 当物体速率从 v 0减少到 12 v 0时 ,物体所经历的时间及经过的行程.剖析运动学与动力学之间的联系是以加快度为桥梁的,因此 ,可先剖析动力学识题.物体在作圆周运动的过程中,促进其运动状态发生变化的是圆环内侧对物体的支持力 F N和环与物体之间的摩擦力 F f,而摩擦力大小与正压力 F N′成正比 ,且F N与F N′又是作使劲与反作使劲 ,这样 ,便可经过它们把切向和法向两个加快度联系起来了 ,从而可用运动学的积分关系式求解速率和行程.解 (1) 设物体质量为 m,取图中所示的自然坐标 ,按牛顿定律 ,有mv2F N ma nRdvF f ma tdt由剖析中可知,摩擦力的大小 Ff=μF ,由上述各式可得N2μv dvR dt取初始条件 t =0 时 v =v 0 ,并对上式进行积分,有t R v dvdt20 μ v0 vv Rv0R v0μt(2)当物体的速率从 v 0减少到 1/2v 0时 ,由上式可得所需的时间为tRμv0物体在这段时间内所经过的行程t stRv0dt vdtv0μt0 RsRln 2μ2 -20 质量为 45.0 kg 的物体 ,由地面以初速 60.0 m·s-1 竖直向上发射 ,物体遇到空气的阻力为 F r=kv, 且 k = 0.03 N/( m-1最大高度为多少?s· ). (1) 求物体发射到最大高度所需的时间.(2)剖析物体在发射过程中 ,同时遇到重力和空气阻力的作用,其协力是速率v 的一次函数 ,动力学方程是速率的一阶微分方程,求解时 ,只需采纳分别变量的数学方法即可.可是,在求解高度时 ,则一定将时间变量经过速度定义式变换为地点变量后求解 ,并注意到物体上涨至最大高度时 ,速率应为零.解 (1) 物体在空中受重力 mg 和空气阻力 F r = kv 作用而减速.由牛顿定律得mg k mdv(1)vdt依据始末条件对上式积分,有t vddtmvvv 0mg kvtmln 1 kv 06.11 skmgdv dv(2) 利用v 的关系代入式 (1),可得dtdydvmg kv mv分别变量后积分y 0dyv 0mvdvmgkv故m mg ln 1kv 0 v 0183 mykmgkv 0 和 y 2议论 如不考虑空气阻力 ,则物体向上作匀减速运动.由公式tv 0 分别算得 t ≈s和g2gy ≈184 m,均比实质值略大一些.2 -21 一物体自地球表面以速率 v 0 竖直上抛.假设空气对物体阻力的值为F r = kmv 2 ,此中 m 为物体的质量 ,k 为常量.试求: (1) 该物体能上涨的高度; (2)物体返回地面时速度的值. (设重力加快度为常量. )剖析因为空气对物体的阻力一直与物体运动的方向相反 ,所以 ,物体在上抛过程中所受重力 P 和阻力 F r 的方向相同;而下落过程中 ,所受重力 P 和阻力 Fr 的方向则相反.又因阻力是变力 ,在解动力学方程时 ,需用积分的方法.解 分别对物体上抛、 下落时作受力剖析 ,以地面为原点 ,竖直向上为 y 轴 (如下图 ) .(1) 物体在上抛过程中 ,依据牛顿定律有mg km 2 m dv m vdvv dt dy 依照初始条件对上式积分,有y 0 v ddy v2v0 g kvy 1ln g kv 2 2k g kv02物体抵达最高处时, v = 0,故有hymax 1 ln g kv 022k g (2)物体下落过程中 ,有2vdvmg kmv m对上式积分 ,有ydy 0vdv0 v0 g k2vkv 2 1/ 2v则v0 1g2 -22 质量为 m 的摩托车 ,在恒定的牵引力 F 的作用下工作 ,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m.试计算从静止加快到mv /2所需的时间以及所走过的行程.剖析该题依旧是运用动力学方程求解变力作用下的速度和地点的问题,求解方法与前两题相像,只是在解题过程中一定想法求出阻力系数k.因为阻力 Fr = kv2 ,且 F r又与恒力 F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加快度为零 ,此时速度达到最大.所以,依据速度最大值可求出阻力系数来.但在求摩托车所走行程时,需对变量作变换.解设摩托车沿 x 轴正方向运动 ,在牵引力 F 和阻力 F r同时作用下 ,由牛顿定律有F k 2 m dv(1)v dt当加快度 a = dv/dt = 0 时,摩托车的速率最大,所以可得k=F/v m2 (2) 由式 (1) 和式 (2)可得依据始末条件对式(3)积分 ,有t mdtFF 1 v 2 m dv (3)v m2 dt1v m v2 12 dv1 2v m则tmv m ln3 dvmvdv 2F(3)积分 ,有又因式 (3) 中 m,再利用始末条件对式dtdxxmdxF 1v m v212 dv0 12v m则xmv m2ln40.144 mv m 22F3F*2 -23 飞机下降时 ,以 v 0 的水平速度下落伍自由滑行,滑行时期飞机遇到的空气阻力 F 1= -k 1 v 2, 升力F 2= k 2 v 2, 此中 v 为飞机的滑行速度 ,两个系数之比 k 1/ k 2 称为飞机的升阻比.实验表示,物体在流体中运动时 ,所受阻力与速度的关系与多种要素有关 ,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有 F ∝ v,而在速度较大或流体密度较大的有 F ∝ v 2 ,需要精准计算时则应由实验测定.此题中因为飞机速率较大,故取 F ∝v 2 作为计算依照.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实质上已成为飞机跑道长度设计的依照之一.剖析 如下图 ,飞机触地后滑行时期遇到 5 个力作用 ,此中 F 1 为空气阻力 , F 2 为空气升力 , F 3 为跑道作用于飞机的摩擦力 , 很明显飞机是在合外力为变力的状况下作减速运动 ,列出牛顿第二定律方程 后 ,用运动学第二类问题的有关规律解题.因为作用于飞机的合外力为速度 v 的函数 ,所求的又是飞机 滑行距离 x,所以比较简易方法是直接对牛顿第二定律方程中的积分变量dt 进行代换 ,将 dt 用dx取代 ,获得一个有关 v 和 x 的微分方程 ,分别变量后再作积分.v解 取飞机滑行方向为 x 的正方向 ,着陆点为坐标原点,如下图 ,依据牛顿第二定律有F N k 1v 2m dv(1)k 2v 2dtF Nmg 0(2)将式 (2)代入式 (1),并整理得μmg k μkv 2m dvm dv12dt v dx分别变量并积分 ,有vm dvv2dxμmgk 1 μk 2v 0v得飞机滑行距离xm ln μmg k 1 μk 2 v 2(3)2 k 1 μk 2 μmg考虑飞机着陆瞬时有 F N = 0 和v = v 0 ,应有 k 2v 02= mg,将其代入 (3)式 ,可得飞机滑行距离 x 的另一表达。
大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理课后习题(第二章)

第二章 能量守恒 动量守恒选择题2-1 有一劲度系数为k 的弹簧(质量忽略不计),垂直放置,下端悬挂一质量为m 的小球.现使弹簧为原长,而小球恰好与地面接触.今将弹簧上端缓慢地提起,直到小球刚脱离地面为止,在上提过程中外力做的功为 ( A )(A)222m g k ; (B)222m g k ;(C) 224m g k; (D) 224m g k.2-2 一弹簧长00.5m l =,劲度系数为k ,上端挂在天花板上,当下端吊一小盘后,长度变为10.6m l =.然后在盘中放一物体,使弹簧长度变为20.8m l =.放物后,在弹簧伸长的过程中,弹性力所做的功为 ( C )(A) 0.80.6d kx x -⎰; (B) 0.80.6d kx x ⎰;(C) 0.30.1d kx x -⎰; (D) 0.80.1d kx x ⎰.2-3 如图所示,一单摆在点A 和点A '之间往复运动,就点A 、点B 和点C 三位置比较,重力做功的功率最大位置为 ( B )(A) 点A ; (B) 点B ; (C) 点C ; (D) 三点都一样.2-4 今有质量分别为1m 、2m 和3m 的三个质点,彼此相距分别为12r 、23r 和31r .则它之间的引力势能总和为 ( A )(A) 233112122331m m m m m m G r r r ⎛⎫-++ ⎪⎝⎭; (B) 233112122331m m m m m m G r r r ⎛⎫++ ⎪⎝⎭; (C) 2331121223312m m m m m m G r r r ⎛⎫-++⎪⎝⎭; (D) 2331121223312m m m m m m G r r r ⎛⎫++ ⎪⎝⎭.2-5 有下列几种情况:(1) 物体自由落下,由物体和地球组成的系统; (2) 使物体均匀上升,由物体和地球组成的系统;(3) 子弹射入放在光滑水平面上的木块,由子弹和木块组成的系统; (4) 物体沿光滑斜坡向上滑动,由物体和地球组成的系统.机械能守恒的有 ( C )(A) (1)、(3); (B) (2)、(4); (C) (1)、(4); (D) (1)、(2).2-6 质量分别为m 和4m 的两个质点,沿一直线相向运动.它们的动能分别为E 和4E ,它们的总动量的大小为 ( C )(A)(C)-.2-7 质量为m 的小球,以水平速度v 与竖直的墙壁作完全弹性碰撞.以小球的初速度v的方向为O x 轴的正方向,则此过程中小球动量的增量为 ( D ) (A) m i v ; (B) 0; (C) 2m i v ; (D) 2m -i v .2-8 如图所示,质量为1k g 的弹性小球,自某高度水平抛出,落地时与地面发生完全弹性碰撞.已知在抛出1s 后又跳回原高度,而且速度的大小和方向和刚抛出时相同.在小球与地面碰撞的过程中,地面给它的冲量的大小和方向为 ( A )(A) 19.8kg m s -⋅⋅,垂直地面向上;19.8kg m s-⋅⋅,垂直地面向上;(C) 119.6kg m s -⋅⋅,垂直地面向上; (D) 14.9kg m s-⋅⋅,与水平面成o45角.2-9 一炮弹由于特殊原因,在弹道最高点处突然炸成两块,如果其中一块做自由落体下落,则另一块的着地点 ( A )(A) 比原来更远; (B) 比原来更近; (C) 仍和原来一样; (D) 条件不足,不能判定.2-10 在下列陈述中,正确的是 ( A ) (A) 物体的动量不变,动能也不变; (B) 物体的动能不变,动量也不变; (C) 物体的动量变化,动能也一定变化; (D) 物体的动能变化,动量却不一定也变化.2-11 如图所示,一光滑圆弧形槽m '放置于光滑的水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力,对这一过程,下列陈述正确的为 ( C )(A) 由m 和m '组成的系统动量守恒; (B) 由m 和m '组成的系统机械能守恒; (C) 由m 、m '和地球组成的系统机械能守恒; (D) m 对m '的正压力恒不作功.2-12 如图所示,质量为20g 的子弹,以1400m s-⋅的速率沿图示方向射入一原来静止的、质量为980g 的摆中.摆线不可伸缩,质量忽略不计.子弹射入后,摆的速度为 ( A )(A) 14m s -⋅; (B) 18m s -⋅; (C) 12m s -⋅; (D) 11.79m s -⋅. 计算题2-13 用力推物体,使物体沿O x 轴正方向前进,力在O x 轴上的分量为510x F x =+式中x 的单位为m ,x F 的单位为N .求当物体由0x =移到4m x =时,力所做的功.解 在物体由0x =移到4m x =的过程中,力所做的功为()214d 510d 100J x x x A F x x x ==+=⎰⎰2-14 一个不遵守胡克定律的弹簧,它的弹性力F 与形变x 的关系为3F kx b x =--式中,411.1610N m k -=⨯⋅,531.610N mb -=⨯⋅,求弹簧变形由10.2m x =到20.3mx =时,弹性力所做的功.解 在弹簧变形由1x 到2x 的过程中,弹性力所做的功为221132244212111d ()d ()()24x x x x A F x kx b x F x k x x b x x ==-+=----⎰⎰将10.2m x =和20.3m x =代入上式,可得2244212142254411()()2411 1.1610(0.30.2) 1.6010(0.30.2)J 550J24A k x x b x x =----⎡⎤=-⨯⨯⨯--⨯⨯⨯-=-⎢⎥⎣⎦2-15 如果子弹穿入墙壁时,所受的阻力与穿入的深度h 成正比,证明当子弹的初速度增大为原来的2倍时,子弹进入墙壁的深度也增大2倍.证 在穿进墙壁后,子弹所受的阻力为F kh =-,式中k 为常数.设子弹进入墙壁的最大深度为m h ,则在子弹穿入过程中,阻力做的功为m 2m 01d 2h A kh h kh =-=-⎰子弹在最大深度m h 时的速度为零.由外力的功等于始末二状态之间的动能的增量,有22m ax 01122kh k -=-v式中0v 是子弹的初速度,即子弹与墙壁接触瞬间的速度.k 和子弹质量m 均为常数,因此子弹的初速度0v 和子弹进入墙壁的最大深度m h 成正比,子弹的初速度增大为原来的2倍时,子弹进入墙壁的最大深度也增大为原来的2倍.2-16 如图所示,一质量为4k g 的小球,从高度3m h =处落下,使弹簧受到压缩.假定弹簧的质量与小球相比可以略去不计,弹簧的劲度系数1500N m k -=⋅.求弹簧被压缩的最大距离.解 小球从开始下落,到弹簧达到最大压缩x 量为止,下落距离为h x +.这期间, 由小球、弹簧和地球组成的系统机械能守恒.由于小球的动能增量为零,因此21()02kx m g h x -+=即2220m g m g x x h kk--=将2249.80.1568500m g k⨯⨯==,3m h =代入上式,可解得0.769m x =2-17 测定矿车的阻力因数μ(即阻力与矿车对轨道正压力的比值)的设施如图所示.测定时使矿车自高度h 处从静止开始下滑,滑过一段水平距离2l 后停下.已知坡底的长度为1l ,证明12h l l μ=+.证 设矿车质量为m ,则矿车在坡道上下滑时所受的正压力大小为co s m g θ.式中θ为斜面与水平面的夹角.由功能原理,矿车所受的力在全过程中所做的功,等于其始末二状态之间的动能增量,而动能的增量为零,于是2co s 0co s l m g h m g m g l μθμθ--=由此可得12()h l l μ=+2-18 一颗子弹由枪口射出时速率为0v ,当子弹在枪筒内被加速时,它所受的合外力为F a bt =-式中a 、b 为常量.(1) 设子弹走到枪口处,所受的合力刚好为零,求子弹走完枪筒全长所需的时间; (2) 求子弹所受的冲量; (3) 求子弹的质量.解 (1) 子弹走到枪口处,所受的合力刚好为零:00F a bt =-=由此可得子弹走完枪筒全长所需的时间为0a t b=(2) 在[]00,t ,子弹所受的冲量为022200011()d ()222t a aaI a b t t a t b t ab bb b=-=-=-=⎰(3) 由动量原理I m =∆v ,而子弹的初速度为零,于是有0I =m v由此可得子弹的质量为2I a b ==m v v2-19 一质量为m 的质点,在O xy 平面上运动,其位置矢量为cos sin a t b t ωω=+r i j求从0t =到π2t ω=时间内,质点所受的合外力的冲量.解 质点的速度为d sin co s d a t b t tωωωω==-+r i j v0t =时, 质点的速度为1b ω=j vπ2t ω=时, 质点的速度为2ππsin co s 22a b a ωωωωωωω=-+=-i j i v由动量原理, 在0t =到π2t ω=时间内质点所受的合外力的冲量为21m m m a m b ωω=-=--I i j v v2-20 有一横截面积为20.2m S =的直角弯管,水平放置,如图所示.管中流过流速为13.0m s-=⋅v 的水.求弯管所受力的大小和方向.解 d m 的水转过直角,经历的时间为∆l t =v,式中l 为弯管14圆弧的长度;动量改变的大小为d m ,方向与水平成o45角.由动量定理,弯管给d m 的水的平均作用力的大小为2d d d d m m m F l tl===∆v圆弧弯管长度的水的质量为d m mS l ρ==⎰.这么多的水转过直角,弯管所给的平均作用力的大小为2223231100.20 3.0N 2.5510NS l F S ll====⨯⨯⨯=⨯v v v方向与水平成o45角,斜向上.此力的反作用力即为水管所受的力,大小为32.5510N F '=⨯方向与水平成o45角,斜向下.2-21 水力采煤是利用水枪在高压下喷出来的强力水柱,冲击煤层而使煤层破裂.设所用水枪的直径为30m m ,水速为160m s-⋅,水柱与煤层表面垂直,如图所示.水柱在冲击煤层后,沿煤层表面对称地向四周散开.求水柱作用在煤层上的力.解 设水在煤层表面均匀四散,则煤层所受的合力在沿煤层表面的方向上的分量为零.在t ∆时间内,有质量为m tS ρ=∆v 的水到达煤层表面.式中v 为水速, S 为水柱截面积.在垂直于煤层的方向上,其动量的变化为()2x m tS ρ∆=-∆v v由动量定理,()x x F t m ∆=∆v ,可求得水柱所受的冲力在垂直于煤层的方向上的分量为x F S ρ=-2v水柱作用在煤层上的力是x F i 的反作用力,垂直指向煤层,大小为2432π 3.01011060N 2545N 4F S ρ-⨯⨯'==⨯⨯⨯=2v2-22 在铁轨上,有一质量为40t 的车辆,其速度为11.5m s -⋅,它和前面的一辆质量为35t 的静止车辆挂接.挂接后,它们以同一速度前进.求:(1) 挂接后的速率;(2) 质量为35t 的车辆受到的冲量. 解 (1) 由动量守恒定律,有21122()m m m m +=+v v v式中11 1.5m s -=⋅v 是140t m =的车辆的初速度,20=v 是230t m =的车辆的初速度;v 是两辆车一起运动的速度.由此可得311113124010 1.5m s0.8m s(4035)10m m m --⨯⨯==⋅=⋅++⨯v v(2) 质量为235t m =的车辆受到的冲量等于其动量的增量:34235100.8N s 2.8010N s I m ==⨯⨯⋅=⨯⋅v2-23 一个质量为60kg 的人,以12.0m s -⋅速率跳上一辆以11.0m s -⋅的速率运动的小车.小车的质量为180k g .(1) 如果人从小车后面跳上去,求人和小车的共同速度 (2) 如果人从小车前面跳上去,求人和小车的共同速度. 解 以小车前进方向为正方向.由动量守恒定律121122()m m m m +=+v v v式中v 是人和小车的共同速度, 1v 是人的速率, 12 1.0m s -=⋅v 是小车的速率. 由上式可得112212m m m m +=+v v v(1) 如果人从小车后面跳上去,则人的速度11 2.0m s -=⋅v ,人和小车的共同运动的速度为1111221260 2.0180 1.0m s1.25m s(60180)m m m m --+⨯+⨯==⋅=⋅++v v v(2) 如果人从小车前面跳上去,则人的速度11 2.0m s -=-⋅v ,人和小车的共同运动的速度为1111221260( 2.0)180 1.0m s0.25m s(60180)m m m m --+⨯-+⨯==⋅=⋅++v v v2-24 一炮弹竖直向上发射,初速度为0v .在发射后经过时间t ,在空中自动爆炸.假定炮弹爆炸后分成质量相等的A 、B 、C 三块碎片.其中A 块的速度为零, B 、C 两块的速度大小相同,且B 块的方向与水平成α角.求B 、C 两块碎片的速度大小和C 块的方向.解 临爆炸前,炮弹的速度在竖直方向,大小为0g t =-v v .其方向可能竖直向上,亦可能竖直向下.设炮弹的质量为m ,爆炸后瞬时B 、C 两块的速度分别为B v 和C v .由动量守恒定律B C 1133m m m +=v v v图示为速度竖直向上时的动量守恒的矢量图,图中π2βα=-.若速度竖直向下,亦可作出相似的动量守恒的矢量图.由于B 、C 两块的速度大小相同,即B C =v v ,因此动量守恒的矢量图为等腰三角形,C v 与竖直面的夹角亦为β,与水平面的夹角亦为α;与B v 之间的夹角为π2α-,且B C 11sin sin 33m m m αα+=v v v将0g t =-v v 和B C =v v 代入,即可求得B 、C 两块碎片的速度大小为0B C 32sin g t α-==v v v2-25 如图所示,有一空气锤,质量为200kg m =,由高度0.45m h =处受工作气缸中压缩空气的压力及重力的作用而落下,摩擦阻力可以忽略.已知工作气缸内压缩空气对锤头的平均压力37.0010N F =⨯,锤头与工件的碰撞时间为0.010s t =,求锤头锻打工件时的平均冲力.解 设锤头到达工件,与工件接触瞬时的速度为v .由功能原理,有21()2F m g h m +=v由此可得=v这时,汽缸内的压强已经很小,对锤头的压力可以忽略.锤头锻打工件时的过程中,受到的向上的平均冲力为1F .以竖直向下为正方向,由动量原理,有()1Fm g t m -+∆=-v可得1F 的大小为15200 2009.8N 1.29010N0.010m F m g m gt ⎛⎫=+=⎪∆⎝⎭⎛⎫=⨯⨯=⨯ ⎪ ⎪⎝⎭v工件所受的打击力是1F 的反作用力,平均大小亦为51.29010N ⨯,方向竖直向下.若不忽略汽缸内的压缩空气对锤头的压力,且认为大小亦为37.0010N F =⨯,则有()1F F m g t m '-++∆=-v由此可得锤头和工件所受的打击力的平均大小()53511 1.290107.0010N1.3610N F F F '=+=⨯+⨯=⨯2-26 两个形状相同质量均为m '弧形光滑导轨A 和B ,放在光滑地板上,且在同一竖直平面内,A 和B 的下端均和地板相切,如图所示.今有一质量为m 的小物体,由静止从高度为0h 的A 的顶端下滑,求m 在B 导轨上上升的最大高度.解 设小物体下滑至地面时,物体速度为v ,导轨A 的速度为A v .在小物体下滑的过程中,小物体、导轨A 和地球组成的系统机械能守恒,有22A 01122m m m g h '+=v v小物体和导轨A 组成的系统在水平方向上动量守恒,有A 0m m '+=v v联立解此二方程,可得=v设小物体沿导轨B 上升的最大高度为h ,此时二者一起运动的速度为B v .在小物体上升的过程中,小物体、导轨B 和地球组成的系统机械能守恒,有221B 11()22m m g h m m '=++v v小物体和导轨B 组成的系统在水平方向上动量守恒,有B ()m m m '=+v v联立解此二方程,可得22()m h m m g'='+v将=v 代入上式,可得20m h h m m '⎛⎫= ⎪'+⎝⎭。
大学物理习题2

(C )无论q 是正是负金属球都下移。
(D )无论q 是正是负金属球都不动图1 图2 图32.已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度如图2所示,则板外两侧的电场强度的大小为:( ) (A )02εσ=E ; (B )02εσ=E ; (C )0εσ=E ; (D )02εσdE = 3.真空中一半径为R 的未带电的导体球,在离球心O 的距离为a (a >R )处放一点电荷q ,设无穷远处电势为0,如图3所示,则导体球的电势为( )。
(A )Rq 04πε (B )aq 04πε (C )()04q a R πε- (D )⎪⎭⎫⎝⎛-R a q1140πε 二、填空题1.在电量为+q 的点电荷电场中放入一不带电的金属球,从球心O 到点电荷所在处的矢径为r,则金属球的感应电荷净电量q ′= ,这些感应电荷在球心O 处建立的电场强度E= 。
2.一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如右图所示,则图中P 点的电场强度Ep = ;若用导线将A 和B 连接起来,则A 球的电势U= 。
(设无穷远处电势为零)3.在静电场中有一立方形均匀导体,边长为a ,如图所示。
知立方导体中心O 处的电势为0U ,则立方体顶点A 的电势为 。
4. 有两个大小不相同的金属球,大球直径是小球的两倍,大球带电,小球不带电,两者相距很远.今用细长导线将两者相连,在忽略导线的影响下,大球与小球的带电之比为 。
三、计算题1.三个平行金属板A 、B 、C ,面积均为S =200平方厘米,A 、B间相距d 1 = 4毫米,A 、C间相距d 2 = 2毫米,B 和C 两板都接地。
如果使A 板带正电q = 73.010-⨯库仑,求:(1)B 、C 板上感应电荷。
(2)A 板电势。
Bo A Pr Ar Cr B qoR2. 有两个同轴圆柱面,内圆柱面半径为R1,电势为U1,外圆柱面半径为R2,电势为U2,求两圆柱面间距轴线垂直距离为r1和r2两点的电势差.练习14 静电场中的电介质班级姓名学号一、选择题1. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷.(C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.2.在空气平行板电容器中,平行地插上一块各向同性均匀电介质板。
大学物理课后习题2第二章答案

(B) aA>0 , aB<0.
(C) aA<0 , aB>0.
(D) aA<0 , aB=0. F
B
A
x
答案:(D)。
题 2.1(5)图
2.2 填空题 (1) 质量为 m 的小球,用轻绳 AB、BC 连接,如图所示,其中 AB 水平.剪断绳 AB 前后的瞬间,绳 BC 中的张力比 T : T′=____________.
说
法
中
:
()
(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
答案:(C)。
(4) 一质量为 M 的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻
轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将
()
(A) 保持静止.
(B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
受的合力为 F =( a bt )N( a,b 为常数),其中 t 以秒为单位:(1)假设子弹运行
到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的
冲量;(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有
F (a bt) 0 ,得 t a b
(2)子弹所受的冲量
,
物体与水平面间的摩擦系数为
。
答案: v2 ; 2s
v2 . 2gs
(5) 在光滑的水平面内有两个物体 A 和 B,已知 mA=2mB。(a)物体 A 以一定的动
能 Ek 与 静 止 的 物 体 B 发 生 完 全 弹 性 碰 撞 , 则 碰 撞 后 两 物 体 的 总 动 能
大学物理第二章质点动力学习题答案

习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
大学物理2习题参考答案

题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理练习题2(动力学)

大学物理练习题2:“力学—动力学”一、填空题1、一质量为m 的小球,当它以速率ν做匀速直线运动时,受到的合力大小等于 0 ;当它以加速度a做匀变速直线运动时,受到的合力大小等于ma ;当它做自由落体运动时,受到的合力大小等于mg 。
2、质量为m 的汽车,驶过曲率半径为R 的拱桥时速率为v ,当汽车驶过如右图所示的位置时,它对桥面的压力大小为=N F R m v m g 2-。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m k ev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k 00+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
5、一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω。
设它所受阻力矩与转动角速度成正比,即ωk M -=(k 为正的常数),则圆盘的角速度为20ω时其角加速度α=J k 20ω-;圆盘的角速度从0ω变为20ω时所需的时间为2ln k J 。
二、选择题 1、汽车急转弯时人往往要向外倾倒,从地面上的观察者看来,是何种缘故造成的?(C )。
A 、离心力;B 、离心惯性力;C 、惯性;D 、无法确定。
2、下述说法中,正确的是( D )。
A 、在两个相互垂直的恒力作用下,物体可以作匀速直线运动;B 、在两个相互垂直的恒力作用下,物体可以作匀速率曲线运动;C 、在方向和大小都随时间变化的力的作用下,物体作匀速直线运动;D 、在方向和大小都不随时间变化的力的作用下,物体作匀加速运动。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
4、完全相同的甲乙二船静止于水库中,一人从甲船跳到乙船上,不计水的阻力,则( C )。
大物书后习题答案整理(杨晓峰版)-习题02

m 200
2
a dv dv a.dt
dt
8 dv
t5 dt
0
02
t 16 s 5
v
dx dt
dx dv
. dv dt
a.
dx dv
8vdv
x
a.dx
0
0
1 v
2
2
|80
x5 .dx
02
x 1 64 32m 2
习题 2-6 解答: 两边同时积分:
a F m
v
dx dt
dx dv
故对于 m2 物体进行分析 T - m2g = 0 = m2a
可得到
a2 0
(2)如图 B 剪短绳瞬间,弹簧来不及发生变化: T = (m1 +m2 )g G1 = m1g T G1 m1a1 a1 g (方向竖直向上) m2g m2a a2 g (方向竖直向下)
习题 2-3 解答:
(1)
F cos N 0
(2)
把(1)代入(2)式:
F
Mg cos sin
(3)
若 角为负角,相应的F力则为推力,由(3)式可以看出所需的推力值比拉力大(
ma
a
g
对于 M :
F ma Ma F (M m)a
F
(M
m)
g
习题 2-12 解答:
设质点在 A 点时的速度为零,则在 A/2 处时速度的大小为:
f
k
x2
m dv dt
m dv dx
dx dt
mv
dv dx
k
dx x2
mvdv
A/2
kdx
A
x2
v v
大学物理实验习题-2

⼤学物理实验习题-2绪论部分⼀、选择题1、依据获得测量结果⽅法的不同,测量可分两⼤类,即()A:多次测量和单次测量B:等精度测量和不等精度测量C:直接测量和间接测量D:以上三种分类都正确2、以下哪个不属于物理实验()A:利⽤卷尺测量物体的长度B:利⽤弹簧秤称⼩铁块的重量C:伽⾥略的斜塔实验D:爱因斯坦发现光的粒⼦性3、对⼀物理量进⾏等精度多次测量()A:误差的平⽅和为最⼩B:测量值(或误差)⼀定遵从正态分布C:测量值(或误差)⼀定遵从均匀分布D:其算术平均值是误差为零的值4、对⼀物理量进⾏多次等精度测量,其⽬的是()A:消除系统误差B:消除随机误差C:减⼩系统误差D:减⼩随机误差5、以下说法正确的是()A:多次测量可以减⼩随机误差B:多次测量可以消除随机误差C:多次测量可以减⼩系统误差D:多次测量可以消除系统误差6、对⼀物理量进⾏等精度多次测量,其算术平均值是()A:真值B:最接近真值的值C:误差最⼤的值D:误差为零的值7、测量结果的标准表达式为X=X±U,其含义为()A:被测量必定等于(x-U)或(x+U)B:被测量可能等于(x-U)或(x+U)C:被测量必定在(x-U)和(x+U)之间D:被测量以⼀定概率落在(x-U)或(x+U)之间8、下列测量结果中,准确度最⾼的是()A :1L =102.3±0.2 ㎝B :2L =103.52±0.05㎝C :3L =1.246±0.005㎝D :4L =0.0056±0.0002㎝9、对某测量对象进⾏多次测量,测量结果为)(x u x x c ±=,其中)()()(22x u x u x u B A c += ,()(x u A 、)(x u B 分别为其A 类不确定度、B 类不确定度。
问被测量的真值落在)](),([x u x x u x c c +-范围内概率为()A .68.3%B .95%C .57.7%D .100%10、对某测量对象进⾏单次测量,测量结果为)(x u x x c ±=,其中)()(x u x u B c ==3A,)(x u B 为其B 类不确定度。
大学物理第2章 质点动力学习题(含解答)

第2章质点动力学习题解答2-1 如图所示,电梯作加速度大小为a 运动。
物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。
解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F +=2-2 如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。
该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。
解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。
ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =Θ,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3 一质点质量为2.0kg ,在Oxy 平面内运动,•其所受合力j t i t F ρρρ232+=(SI ),0=t 时,速度j v ρρ20=(SI ),位矢i r ρρ20=。
求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s 时质点的速度和位矢。
解:j t i t m Fa ρρρρ+==223 223t a x =,00=x v ,20=x ⎰⎰=tv x dt t dv x0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a ρρρ+=(2)j t i t v ρρρ)22(223++=,1=t s 时,j i v ρρρ2521+= j t t i t r ρρρ)26()28(34+++=,1=t s 时,j i r ρρρ613817+=2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。
练习2大学物理习题及答案

的损失为
4 17
m02r
2
。
J1
1 2
mr
2
J2
1 2
mr 2
8mr 2
B A
角动量守恒 J10 J2
E1
1 2
J102
又:
E2
1 2
J
2
2
E E2 E1
0 r 2r
6题图
三、计算题:
1.以30N·m的恒力矩作用在有固定轴的飞轮上,在10s内飞轮的转速 由零增大到5rad/s,此时移去该力矩,飞轮因摩擦力矩的作用经90s 而停止,试计算此飞轮对其固定轴的轴)转动。开始 时棒与水平成60°角并处于静止状态。无初转速地
l o•
60
释放以后,棒、球组成的系统绕O轴转动,系统
2题图
绕O轴转动惯量J=
3 4
ml
2,释放后,当棒转到水
m
J miri2
平位置时,系统受到的合外力矩M=
1 2
mgl,角
2g
m(
l 2
)2
解:
N1
1
T3
a1
T1' T1
M1g
m1 g
T3'
2 N2
M2g
T2'
T2 a2
m2 g
分析受力,设定各物的加速 度方向,如图
物块: m2g T2 m2a2 T1 m1g m1a1
滑轮: T3r T1'r J1
T2'r T3'r J1
N1
1
T3
a1
中国石油大学物理2-2第18章习题详细答案

习题1818-3. 当波长为3000Å的光照射在某金属表面时,光电子的能量范围从0到4.0⨯10-19J 。
在做上述光电效应实验时遏止电压是多大?此金属的红限频率是多大?[解] 由Einstien 光电效应方程()02max 21νν-=h mv 2max 2max 02121mv hc mv h h -=-=λνν19191910626.2100.410626.6---⨯=⨯-⨯=红限频率 Hz 1097.3140⨯=ν 遏止电压a U 满足 J 100.421192max a -⨯==mv eU 所以 V 5.2106.1100.41919a a =⨯⨯==--e eU U18-4. 习题18-4图中所示为一次光电效应实验中得出的遏止电压随入射光频率变化的实验曲线。
(1)求证对不同的金属材料,AB 线的斜率相同; (2)由图上数据求出普朗克常量h 的值。
[解] (1) 由Einstien 光电效应方程得 A h U e -=νa 即 eA e h U -=νa 仅A 与金属材料有关,故斜率eh与材料无关。
(2)()s V 100.4100.50.100.21514⋅⨯=⨯-=-e h 所以s J 104.6106.1100.4341915⋅⨯=⨯⨯⨯=---h18-5. 波长为λ的单色光照射某金属M 表面产生光电效应,发射的光电子(电量绝对值为e,质量为m )经狭缝s 后垂直进入磁感应强度为B 的均匀× × ×× × × × × ×× × ××B习题18-5图磁场,如习题18-5图所示。
今已测出电子在该磁场中作圆运动的最大半径为R ,求(1)金属材料的逸出功; (2)遏止电势差。
解:设光电子获得的速度为v,电子在磁场中的半径R 可表示为:eB mv R =设金属材料的逸出功为W 0,根据光电效应方程,有2021mv W chh +==λν 联立上面二式可得,W 0=()mReB chW 2-20λ=(2)由()mReB mv eU 22122== ()mRB e U 22=18-6. 在康普顿散射中,入射光子的波长为0.03Å,反冲电子的速度为光速的60%。
大学物理习题2第二篇

v
v p
/
O2
vp
=1/4.
H2
(C) 图中b表示氧气分子的速率分布曲线;v p
O2
/
vp
=1/4.
H2
(D) 图中b表示氧气分子的速率分布曲线;v p
O2
/
vp
=4.
H2
第二册
热学
8
浙江理工大学理学院物理系
制作:石永锋
10、在一容积不变的封闭容器内理想气体分子的平均速率若提 高为原来的2倍,则
制作:石永锋
32、在大气中有一绝热气缸,其中装有一定量 的理想气体,然后用电炉徐徐供热(如图所示), 使活塞(无摩擦地)缓慢上升.在此过程中,以下 物理量将如何变化?(选用“变大”、“变小”、 “不变”填空)
(1) 气体压强______不__变______; (2) 气体分子平均动能___变__大____; (3) 气体内能___变__大____.
第二册
热学
28
浙江理工大学理学院物理系
制作:石永锋
30、要使一热力学系统的内能增加,可以通过_外__界__对__系__统_作__功__ 或_向__系__统__传__递__热__量___两种方式,或者两种方式兼用来完成.
热力学系统的状态发生变化时,其内能的改变量只决定于 ___始__末__两__个__状__态___,而与___所__经__历___的__过__程____无关。
5 N12
kT+N2
3 2
kT.
第二册
热学
1
浙江理工大学理学院物理系
制作:石永锋
3、关于温度的意义,有下列几种说法:
(1) 气体的温度是分子平均平动动能的量度.
大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)习题解答第一章质点运动学1-1(1)质点t时刻位矢为:r(3t5)i12t23t4j(m)(2)第一秒内位移r1(某1某0)i(y1y0)j3(10)i12(10)23(110)j3i3.5j(m)(3)前4秒内平均速度Vr1t4(12i20j)3i5j(m1)(4)速度Vdr3i(t3)j(m1dt)∴V43i(43)j3i7j(m1)A;/。
(5)前4秒平均加速度aVV4V0734jj(m2t40)(6)加速度adVdtj(m2)a4j(m2)1-2vd某dtt33t22某d某vdtc14t4t32tc当t=2时某=4代入求证c=-12即某14t4t32t12vt33t22adv3t2dt6t将t=3代入证某41134(m)v356(m1)a345(m2)1-3(1)由运动方程某4t22t消去t得轨迹方程y3某(y3)20(2)1秒时间坐标和位矢方向为某14m[4,5]m:tgy某1.25,51.3(3)第1秒内的位移和平均速度分别为y15mr1(40)i(53)j4i2j(m)r1V4i2j(m1)t(4)质点的速度与加速度分别为drV8i2j,dtdVa8idt故t=1时的速度和加速度分别为V18i2jm1,a18im21-4该星云飞行时间为9.4610152.741096.5910172.091010a73.9310即该星云是2.091010年前和我们银河系分离的.1-5实验车的加速度为v1600103a2.47102m/225(g)t36001.80基本上未超过25g.1.80内实验车跑的距离为v1600103t1.80400(m)2236001-6(1)设第一块石头扔出后t秒未被第二块击中,则hv0t12gt2代入已知数得11115t9.8t22解此方程,可得二解为t11.84,t11.22第一块石头上升到顶点所用的时间为tmv10/g15/9.81.53由于t1tm,这对应于第一块石头回落时与第二块相碰;又由于t1tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于hv20(t1t1)1g(t1t1)22所以hv2011g(t1t1)2119.8(1.841)222t1t11.84117.2m/同理.2v20h11g(t1t1)2119.8(1.221)2221.221t1t151.1(m/)(2)由于t21.3t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为h12g(t)21119.8(1.841.3)2v201t2tt2121.841.323.0(m/)1-7以l表示从船到定滑轮的绳长,则v0dl/dt.由图可知l2h2于是得船的速度为vdldl2h2dtl2h2dtv0习题1-7图负号表示船在水面上向岸靠近.船的加速度为advdldtvdlh2v20dll2h20dt3负号表示a的方向指向岸边,因而船向岸边加速运动.1-8所求位数为2r42n2r42(6104)2gg0.16029.841051-9物体A下降的加速度(如图所示)为a2h20.40.2m/2t222此加速度也等于轮缘上一点在t3时的切向加速度,即at0.2(m/2)在t3时的法向加速度为av2(att)2R(0.23)2n1.00.36(m/2R)习题1-9图习题1-10图1-10a1.2m/2,t00.5,h01.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为3v0at01.20.50.6(m/)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为hv0t12gt2电梯下降的距离为hv0t12at2又h0hh1(ga)t22由此得t2h021.50.59ga9.81.2而小球相对地面下落的距离为hv0t12gt20.60.599.80.5922.06m1-11v风地v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是同一矢量.可知(a)v风人画出速度矢量合成图(a)又v风地12图必是底角为45的等腰直角三角形,所以,风向应为西北风,风速为v风地4.23(m1)v0人地co452v0人地1-12(1)t(2)2L2LvvLL2vLtt1t22vuvuvu222Lu1vv1习题1-11图(3)u由东习题1-12图tt1t2LL,如图所示风速vv向西,由速度合成可得飞机对地速度vuv,则Vv2u2.t2L2L22vvu2Luv1v2证毕1-13(1)设船相对岸的速度为V(如图所示),由速度合成得VuVV的大小由图1.7示可得VVcouco习题1-13图4即VcoVuco323332而Vinuin21船达到B点所需时间tAB两点之距SDctgOBDD1000()VVincoin12D将式(1)、(2)代入可得SD(33)1268(m)(2)由D1103tVinuin船到对岸所需最短时间由极值条件决定dt1du1in2co0即co0,/2故船头应与岸垂直,航时最短.将值代入(3)式得最短航时为3t110minuin/2110320.5103500()(3)设OBl,则lDVDDu2V22inuVcoVinuin欲使l最短,应满足极值条件.dlDu2V22uVcoduacoainuVin2ain2au2V22uVco0简化后可得2u2V2coauVco10即co2a136co10解此方程得co23co12348.2故船头与岸成48.2,则航距最短.将值代入(4)式得最小航程为2lu2v22uvco10002232223minDu1co23221231.5103m1.5(km)AB两点最短距离为52SminlminD21.511.12(km)第二章质点动力学2-1(1)对木箱,由牛顿第二定律,在某向:Fmincofma某0y向:NFmininMg0还有fma某N习题2-1图木箱将要被推动的情况下如图所示,解以上三式可得要推动木箱所需力F的最小值为FminMgcoin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为FminkMgcokin(2)在上面Fmin的表示式中,如果coin0,则Fmin,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是coin0由此得的最小值为arctan12-2(1)对小球,由牛顿第二定律某向:TcoNinmay向:TinNcomg0联立解此二式,可得Tm(acogin)0.5(2co309.8in30)3.32(N)Nm(gcoain)0.5(9.8co302in30 )3.74(N)由牛顿第三定律,小球对斜面的压力NN3.74(N)(2)小球刚要脱离斜面时N=0,习题2-2图则上面牛顿第二定律方程为Tcoma,Tinmg由此二式可解得ag/tan9.8/tan3017.0m/22-3要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。
大学物理b2习题集(含规范标准答案)

大学物理B2习题(一、电磁学部分1、如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度和电势.2、一半径为R的均匀带电半圆环,电荷线密度为 ,求换新处O点的电场强度和电势。
3、实验证明,地球表面上方电场不为0,晴天大气电场的平均场强约为120V/m,方向向下,这意味着地球表面上有多少过剩电荷?试以每平方厘米的额外电子数表示。
(526.6410/cm ⨯个)解 设想地球表面为一均匀带电球面,总面积为S ,则它所总电量为00d Sq E S ES εε=⋅=⎰⎰单位面积带电量为 E Sq0εσ==单位面积上的额外电子数为19120106.11201085.8--⨯⨯⨯===e Ee n εσ92526.6410/m 6.6410/cm =⨯=⨯4、地球表面上方电场方向向下,大小可能随高度变化,设在地面上方100m 高处场强为150N/C ,300m 高处场强为100N/C ,试由高斯定理求在这两个高度之间的平均体电荷密度,以多余的或缺少的电子数密度表示。
(缺少,721.3810/m ⨯个)5、如图所示,电量1q 均匀分布在半径为1R 的球面上,电量2q 均匀分布在同心的半径为2R 的球面上,2R >1R 。
(1)利用高斯定理求出r <1R ,1R <r <2R ,r >2R 区域的电场强度 (2)若r >2R 区域的电场强度为零,则?1=qq ,1q 与2q 同号还是异号?6、二个无限长同轴圆筒半径分别为1R 和2R ,单位长度带电量分别为λ+和λ-。
求内筒的内部、两筒间及外筒外部的电场分布。
解 由对称性分析可知,E分布具有轴对称性,即与圆柱轴线距离相等的同轴圆柱面上各点场强大小相等,方向均沿径向。
如解用图,作半径为r ,高度为h 、与两圆柱面同轴的圆柱形高斯面,则穿过圆柱面上下底的电通量为零,穿过整个高斯面的电通量等于穿过圆柱形侧面的电通量。
大学物理第2章质点动力学习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)v s g u ∴=-把式(2)代入式(1)得,()222200.1983v v u v v-==+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
习题2-2图Ao B r DCT α解:如图所示()1212minmax sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少。