北师大版小升初数学解决问题解答应用题练习试题(精编版)带答案解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版小升初数学解决问题解答应用题练习试题(精编版)带答案解析(1)
一、北师大小学数学解决问题六年级下册应用题
1.小明骑行去奶奶家,下表是他记录的已走路程和剩余路程情况。
已走路程/千米246810
剩余路程/千米1816141210
2.下面是一个小区的平面图。
请根据图中信息完成以下问题(列比例式解答)。
(1)如果小区中设计一条480m长的公路,在图上应该画多长?
(2)一个长方形住宅区在图上长1cm,宽0.5cm,它的实际占地面积是多少平方米?3.一个卷筒纸(如下图),内芯需要多大面积的硬纸壳?这卷纸的实际体积是多少?
4.操作实践,动手动脑。
(1)画出三角形AOB关于直线MN对称的图形。
(2)若B点的位置可以用(x,y)表示,则A点的位置为________。
(3)画出三角形AOB绕点A逆时针旋转90°后的图形。
5.新民小区有个圆柱形喷泉池,喷泉池底面半径10米,深0.8米。
(1)这个喷泉池的容积是多少立方米?
(2)喷泉池的侧面与底面粉刷了水泥,粉刷水泥的面积是多少平方米?
6.一顶帽子(如下图),上面是圆柱形,用黑布做;帽檐部分是一个圆环,用红布做。
做这顶帽子,哪种颜色的布用得多?(单位:cm)
7.如下图,圆柱形钢柱有多高?(单位:cm,结果保留整数)
8.向阳小学食堂买来1800千克面粉,5天吃了150千克。
照这样计算,这些面粉共能吃多少天?(用比例的知识解答)
9.在一张长方形彩纸上摆满小正方形,每个小正方形面积与所需小正方形的数量如表:每个小正方形的面积/cm24916
所需小正方形的数量/个2169654
________比例关系.
(2)如果采用面积是36cm2的小正方形来摆满这张长方形彩纸,需要多少个小正方形?(用比例方法解答)
10.求下列立体图形的体积。
11.圆柱形的无盖水桶,底面直径30厘米,高50厘米。
(1)做这个水桶至少需要用多少平方分米的铁皮?(得数保留两位小数)
(2)如果在这个水桶中先倒入14.13升的水,再把几条鱼放入水中,这时量的桶内的水深是21厘米,这几条鱼的体积一共是多少?
12.一个近似圆锥形的小麦堆,量得底面直径4米,高1.5米,这堆小麦大约有多少立方米?
13.装订同样大小的练习本,如果每本装38页,可装订300本,如果每本多订2页,可
以装订多少本?(用比例解)
14.一棵树高12米,它的影长是15米,如果同一时间地点测得小明的身高是1.6米,它的影子长多少米?(用比例解答)
15.武汉有轨电车车都T1线是华中地区首条现代有轨电车,时速24千米每小时,从得胜港站开往车轮广场,地图上全长28厘米。
一辆有轨电车行完全程需要多少分钟?
16.一种健身器材陀螺(如下图),上面是圆柱体,下面是圆锥体。
经过测试,当圆柱直
径4厘米,高6厘米,圆锥的高是圆柱高的时,旋转得又快又稳,求这个陀螺的体积有多大?
17.已知三角形的三个顶点分別为A(2,3),B(2,6),C(5,3)。
(1)请在方格纸上画出这个三角形。
(2)将画出的三角形按2:1放大,在方格纸上画出放大后的图形。
18.想象上面一排图形旋转后会得到下面的哪个图形?连一连。
19.一个圆锥形麦堆,底面直径是6m,高1.2m。
(1)这堆小麦的体积是多少立方米?
(2)如果每立方米小麦的质量为800kg,这堆小麦的质量为多少千克?(得数保留整千克数)
20.做一个底面周长是18.84分米、高10分米的圆柱形无盖铁皮水桶,
(1)水桶的占地面积多大?
(2)水桶可以容纳多少升水?
21.请按要求完成下面的操作。
(1)画出圆形向上平移5格后的图形,平移后圆心的位置用数对表示是()。
(2)过B点作直线a的垂线,点B到直线a的距离是______。
(3)以P点为顶点画一个直角三角形,然后将它绕P点顺时针旋转90°。
22.下图的博士帽是用黑色卡纸做成的,上面是边长30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱。
制作一个这样的“博士帽”至少需要多少平方厘米的黑色卡纸?
23.(如图所示)一个棱长6cm的正方体,从正方体的底面向内挖去一个最大的圆锥体,这个圆锥的体积是多少cm3?
24.儿童节,爸爸送给高兴一个圆锥形的玩具(如图)。
如果要用一个长方体的盒子包装它,这个盒子的表面积至少多少平方厘米?
25.
(1)上图中用数值比例尺表示是(),李红家在学校西偏北40°方向的800m处,请标出李红家的位置。
(2)如果从李红家修一条管道到淳南路,怎样修最短?请在图中画出来。
26.
(1)把图中的长方形绕A点顺时针旋转90°,画出旋转后的图形。
旋转后,B点的位置用数对表示是(,).
(2)按1:2的比画出三角形缩小后的图形。
缩小后的三角形的面积是原来的。
(3)如果1个小方格表示1平方厘米,在方格纸上设计一个面积是8平方厘米的轴对称图形,并画出它的一条对称轴。
27.用a,h分别表示面积为96平方厘米的平行四边形的底和高。
(1)请完成下表,并回答问题。
a/cm123468122448
h/cm96
(3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
28.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
29.如图是校园一角的平面图,过A点有一根水管与长方形草坪的长边平行.
(1)请在平面图中用直线画出这根水管.
(2)从A点到下水道挖一条排水沟,要使其长度最短.请在平面图中用线段画出这条水沟.
(3)草坪长边的实际长度是________米.
30.一个正方体玻璃容器内盛有水,水面高度为12厘米,从内测出玻璃容器的棱长为20厘米。
在这个容器中竖直放入一个底面积为80平方厘米、高30厘米的圆柱形铁块,这时水面高度是多少厘米?
31.小明为了测量出一只乌龟的体积,按如下的步骤进行了一个实验:①小明找来一个圆柱形玻璃水杯,量得底面周长是25.12厘米;②在玻璃杯中装入一定量的水,量得水面的高度是10厘米;③将乌龟放入水中完全浸没,再次测量水面的高度是12厘米。
如果玻璃的厚度忽略不计,这只乌龟的体积大约是多少立方厘米?
32.下图中A、B、C表示三个城市的车站位置。
根据图中的比例尺,求下列问题。
(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。
(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C 到B再到A要行4小时。
照这样的速度,
①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米?
③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
33.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积?(π取3.14)
34.工地上有一堆圆锥形三合土,底面周长为37.68m,高为5m。
用这堆三合土在15m宽的公路上铺4cm厚的路面,可以铺多少米?
35.按要求在方格纸上画图形。
(1)在方格纸上,把圆O向右平移4格,画出平移后的图形。
(2)把六边形绕点A逆时针旋转90°,画出旋转后的图形,再以直线MN为对称轴画出原图形的轴对称图形。
36.计划修一条3600米的水渠,前6天完成了计划的,照这样计算修完水渠还需要多少天?(用比例解)
37.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
38.一个圆柱形木桶,底面直径4分米,高6分米,这个木桶破损后(如图),最多能装多少升水?
39.把一块棱长10厘米的正方体铁块熔铸成一个底面直径是2分米的圆锥形铁块,这个圆锥形铁块的高约是多少厘米?(得数保留一位小数)
40.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。
将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题六年级下册应用题
1.解:已走路程+剩余路程=全程,所以已走路程和剩余路程不成比例关系。
【解析】【分析】若y=kx(k不为0,x,y≠0),那么x和y成正比例关系;
若y=(k不为0,x,y≠0),那么x和y成反比例关系。
2.(1)解:480m=48000cm
48000×=8(厘米)
答:在图上应该画8厘米。
(2)解:1÷=6000(厘米)=60(米)
0.5÷=3000(厘米)=30(米)
60×30=1800(平方米)
答:它的实际占地面积是1800平方米。
【解析】【分析】1m=100cm
(1)图上距离=实际距离×比例尺,据此代入数据作答即可;
(2)实际距离=图上距离÷比例尺,所以住宅的实际占地面积=长×宽,据此代入数据作答即可。
3.解:S=3.14×4×11=138.16(cm2)
V=3.14×(10÷2)2×11-3.14×(4÷2)2×11=725.34(cm3)
答:内芯需要138.16cm2的硬纸壳,这卷纸的实际体积是725.34cm3。
【解析】【分析】内芯需要硬纸壳的面积=卷纸内壁的侧面积=内芯的直径×π×h;
这卷纸的实际体积=这卷纸实心的体积-掏去的内芯的体积,其中这卷纸实心的体积=(整个卷纸的直径÷2)2×π×h,掏去的内芯的体积=(内芯的直径÷2)2×π×h。
4.(1)解:如图所示:
(2)(x+3,y+2)
(3)解:如图所示:
【解析】【分析】(1)画轴对称图形的方法:①点出关键点,找出所有的关键点,即图形中所有线段的端点;②确定关键点到对称轴的距离,关键点离对称轴多远,对称点就离对称轴多远;③点出对称点;④连线,按照给出的一半图形将所有对称点连接成线段。
(2)用数对表示位置,先表示列,后表示行; A点的位置为(列数+3,行数+2)。
(3)旋转作图,把一个图形绕其上面一点逆时针旋转一定的度数,先把这个点连接的边逆时针旋转指定的度数,然后把剩下的边连接起来即。
5.(1)解:π×10²×0.8=80π(立方米)
答:这个喷泉池的容积是80π立方米。
(2)解:2×π×10×0.8+π×10²=116π(平方米)
答:粉刷水泥的面积是116π平方米。
【解析】【分析】(1)这个喷泉池的容积=πr2h;
(2)粉刷水泥的面积=πr2+2πrh。
6.解:黑布:(20÷2)2×3.14+20×3.14×10=942cm2
红布:[(20+10)÷2]2×3.14-(20÷2)2×3.14=392.5cm2
942>392.5
答:黑色布用得多。
【解析】【分析】黑布用的面积=圆柱的侧面积+圆柱的底面积,其中圆柱的侧面积=圆柱的底面直径×π×高,圆柱的底面积=(圆柱的底面直径÷2)2×π;
红布用的面积=圆环的面积=大圆的面积-小圆的面积。
最后进行比较即可。
7.解:10×50×20÷[(20÷2)2×3.14]≈32cm
答:圆柱形钢柱的高是32cm。
【解析】【分析】圆柱的高=圆柱的体积÷圆柱的底面积,其中圆柱的体积=长方体的体积=长×宽×高,圆柱的底面积=(圆柱的底面直径÷2)2×π,据此代入数据作答即可。
8.解:设:这些面粉一共能吃x天。
=
150 x=1800×5
x=9000÷150
x=60
答:这些面粉一共能吃30天。
【解析】【分析】照这样计算的意思就是每天吃面粉的重量不变,这样吃面粉的重量与吃的天数成正比例。
先设出未知数,然后根据每天吃面粉的重量不变列出比例,解比例求出共能吃的天数即可。
9.(1)反
(2)解:设需要多x个小正方形.
36x=216×4
36x÷36=216×4÷36
x=24
答:需要24个小正方形。
【解析】【分析】(1)经过计算,每个小正方形的面积×所需小正方形的数量是一个定值,所以每个小正方形的面积与所需小正方形的数量成反比例关系;
(2)本题可以设需要x个小正方形,题中存在的比例关系是:36×需要面积是36cm2的小正方形的个数=4×需要面积是4cm2的小正方形的个数,据此代入数据和字母作答即可。
10.解:3.14×(202-102)×100
=3.14×(400-100)×100
=3.14×30000
=94200(cm3)
【解析】【分析】用横截面的面积乘长即可求出立体图形的体积,横截面的面积是一个圆环,由此根据公式计算即可。
11.(1)解:30厘米=3分米,50厘米=5分米
(3÷2)2×3.14+3×3.14×5=54.165≈54.17(平方分米)
答:做这个水桶至少需要用54.17平方分米的铁皮。
(2)解:14.13÷(3÷2)2÷3.14=2(分米)
21厘米=2.1分米
2.1-2=0.1(分米)
(3÷2)2×3.14×0.1=0.7065(立方分米)
答:这几条鱼的体积一共是0.7065立方分米。
【解析】【分析】(1)先把单位进行换算,即30厘米=3分米,50厘米=5分米,那么做这个水桶至少需要铁皮的平方分米数=侧面积+底面积,其中底面积=π×(直径÷2)2,侧面积=πdh;
(2)倒入水后水的高度=水的容积÷π÷(直径÷2)2,那么这几条鱼的体积=水面身高的高度×π×(直径÷2)2。
12.解:3.14×()2×1.5×
=3.14×4×0.5
=6.28(立方米)
答:这堆小麦大约有6.28立方米。
【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式直接计算即可。
13.解:设可以装订x本。
(38+2)x=38×300
x=11400÷40
x=285
答:可以装订285本。
【解析】【分析】装订的本数×每本装的页数=总页数,总页数不变,装订的本数与每本装订的页数成反比例,先设出未知数,然后根据总页数不变列出比例解答即可。
14.解:12:15=1.6:x
12x=15×1.6
12x=24
x=24÷12
x=2
答:它的影子长2米。
【解析】【分析】树高:它的影长=小明的身高:它的影子长,据此列比例,根据比例的基本性质解比例。
15.解:28÷=1680000(厘米)=16.8(千米),16.8÷24=0.7(小时),0.7×60=42(分钟)。
答:一辆有轨电车行完全程需要42分钟。
【解析】【分析】用图上距离除以比例尺求出实际距离,把实际距离换算成千米,用实际距离除以电车速度即可求出需要的时间,把时间换算成分钟即可。
16.解:圆柱的体积:3.14×(4÷2)2 ×6=75.36(立方厘米)
圆锥的体积: ×3.14×(4÷2)2 ×6× =18.84(立方厘米)
陀螺的体积:75.36+18.84=94.2(立方厘米)
答:这个陀螺的体积有94.2立方厘米。
【解析】【分析】圆柱体积=底面积×高,圆锥体积=底面积×高×,陀螺的体积=圆柱体积+圆锥体积。
17.(1)
(2)
【解析】【分析】(1)数对中,第一个数表示这个点所在的列,第二个数表示这个点所在的行,据此作图即可;
(2)把一个数按照2:1放大,就是把这个图形的每条边都扩大2倍。
18.
【解析】【分析】直角三角形以一条直角边为轴,旋转一周,会得到一个圆锥;
长方形以一条边为轴,旋转一周,会得到一个圆柱;
半圆以半径为轴,旋转一周,会得到一个球。
19.(1)解:(6÷2)2×3.14×1.2×
=9×3.14×1.2×
=28.26×0.4
=11.304(立方米)
答:这堆小麦的体积是11.304立方米。
(2)解:11.304×800≈9043(千克)
答:这堆小麦的质量为9043千克。
【解析】【分析】(1)这堆小麦的体积=π×(底面直径÷2)2×h×,据此代入数据作答即可;
(2)这堆小麦的质量=这堆小麦的体积×每立方米小麦的质量,据此代入数据作答即可。
20.(1)解:这个水桶的底面半径是:18.84÷3.14÷2=3(分米)
3.14×3²=28.26(平方分米)
答:水桶的占地面积是28.26平方分米。
(2)解:3.14×3²×10
=3.14×90
=282.6(立方分米)
=282.6(升)
答:水桶的容积是282.6升。
【解析】【分析】(1)根据圆周长公式,用底面周长除以3.14再除以2即可求出底面半径。
然后根据圆面积公式计算出占地面积即可;
(2)根据圆柱的体积公式,用底面积乘高即可求出水桶的容积。
21.(1)解:
;
平移后圆心的位置用数对表示是(2,8)。
(2)解:
点B到直线a的距离是=2。
(3)
【解析】【分析】(1)平移圆时,可以先把圆心平移,然后根据半径的长短画出圆即可;用数对表示点的位置,这个点在第几行,数对中的第一个数就是几,在第几列,数对中的第二个数就是几;
(2)过一点作已知直线的垂线,把三角尺的一边与边重合,平移三角尺,使得这个点出现在另一条直角边商,沿着这条边画出的线就是垂线,然后标上直角符号即可;
直角三角形斜边的长度=;
(3)将一个图形绕其上面一点顺时针旋转一定的度数,先把这个点连接的边顺时针旋转相同的度数,然后把剩下的边连接起来即可。
22.解:3.14×16×10+30×30
=502.4+900
=1402.4(cm2)
答:制作一个这样的“博士帽”至少需要1402.4平方厘米的黑色卡纸。
【解析】【分析】这个“博士帽”面积是一个正方形的面积和一个圆柱的侧面积组成,正方形的面积=边长×边长,圆柱的侧面积=πdh,再把两部分的面积合起来,即可求得“博士帽”的面积。
23.解:底面半径:6÷2=3(厘米)
3.14×3×3×6÷3
=28.26×6÷3
=169.56÷3
=56.52(立方厘米)
答:这个圆锥的体积是56.52立方厘米。
【解析】【分析】圆锥体的底面直径是6厘米,高是6厘米,圆锥体积=π×半径的平方×高÷3,据此解答。
24.解:6×6×2+6×10×4
=72+240
=312(平方厘米)
答:这个盒子的表面积至少312平方厘米。
【解析】【分析】盒子的底面边长至少是6cm,高至少是10cm,根据长方体表面积公式计算盒子的表面积即可。
25.(1)解:上图中用数值比例尺表示是1:40000,。
(2)解:红色线段表示管道路线,
【解析】【分析】(1)观察图可知,此图是按“上北下南,左西右东”来规定方向的,图上距离1厘米表示实际距离400米,比例尺是1:40000,然后以学校为观测点,根据方向和距离,找出李红家的位置;
(2)从直线外一点到直线的连线中,垂直线段最短,据此过李红家所在的位置向淳南路作垂线,这条垂线段就是管道的路线。
26.(1)解:绕点A顺时针旋转90°得到图形1,如下图所示:
此时点B的位置为(7,6)。
(2)解:三角形按1:2的比例缩小后得到图形2,如下图所示:
三角形的面积=底×高÷2,底与高都缩小到原来的,则面积缩小到原来的×=。
(3)解:如图,图形3的面积是8平方厘米,它是一个长方形,它的对称轴有2条,分别是对边中点所在的直线。
【解析】【分析】(1)画旋转图形的方法:把图形的每个点与旋转中心连接,再量出题目要求旋转的角度,最后依次连接;
用数对表示位置的方法是:第一个数字表示列,第二个数字表示行,中间用“,”隔开,据此解答;
(2)根据题意可知,先数一数原来直角三角形的两条直角边的格数,然后分别缩小到原来的,即可画出三角形缩小后的图形,三角形的面积=底×高÷2,当底和高都缩小到原来
的,则缩小后的三角形的面积是原来的×=;
(3)根据题意可知,可以画一个长是4厘米,宽是2厘米的长方形,它的面积是8平方厘米,然后连接两条长的中点所在的直线就是它的一条对称轴,据此作图。
27.(1)解:填表如下:
a/cm123468122548
h/cm964832241912842
(3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。
(4)解:15h=96
h=96÷15=6.4
答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可;
(2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例;
(4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
28.解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
29.(1)
(2)
(3)90
【解析】【解答】解:(3)解:测量草坪长边的图上长度为3厘米,草坪长边的实际长度是3×30=90(米),所以草坪长边的实际长度是90米。
【分析】(1)过直线外一点做已知直线的平行线,把三角尺的一条直角边与已知直线重合,然后把直尺与另一条直角边重合,保持直尺不变,沿着直尺平移三角尺,直到这个点出现在第一条直角边上,最后沿着这条直角边画线即可;
(2)过直线外一点做已知直线的垂线,把三角尺的一条直角边与已知直线重合,沿着这条直线平移三角尺,直到直到这个点出现在第一条直角边上,最后沿着这条直角边画线,并标上直角符号即可;
(3)草坪场边的实际长度=图上距离÷比例尺,据此作答即可。
30.解:20×20×12÷(20×20-80)
=4800÷320
=15(厘米)
答:水面高度是15厘米。
【解析】【分析】放入圆柱形铁块后水的底面积就容器的底面积减去铁块的底面积,用水的体积除以放入铁块后水的底面积即可求出此时水面的高度。
31.解:圆柱形玻璃水杯的底面半径是:25.12÷3.14÷2=4(厘米)
圆柱形玻璃水杯的底面积:3.14×4×4=50.24(平方厘米)
水的体积:50.24×10=502.4(立方厘米)
水增加的体积:50.24×(12-10)=100.48(立方厘米)
答:这只乌龟的体积大约是100.48立方厘米。
【解析】【分析】底面周长÷π÷2=底面半径;底面积=π×底面半径的平方;水的体积=底面积×高;水增加的体积=底面积×水增加的高度;水增加的体积就是这只乌龟的体积。
32.(1)A站到B站的图上距离是3厘米,B站到C站的图上距离是2厘米。
3÷=15000000(厘米)=150(千米)
2÷=10000000(厘米)=100(千米)
答:A站到B站的实际距离是150千米,B站到C站的实际距离是100千米。
(2)解:甲车速度:250÷5=50(千米)
乙车速度:250÷4=62.5(千米)
①250÷(50+62.5)=250÷112.5=(时)
答:两车开出小时后可以在途中相遇。
②100÷62.5=1.6(时)
150-50×1.6=70(千米)
答:甲车还离B站70千米。
③150÷50=3(小时)
(62.5×3-100)÷62.5=1.4(小时)
答:乙车可以从C站迟开出1.4小时。
【解析】【分析】(1)实际距离=图上距离÷比例尺,然后进行单位换算,即1千米=100000厘米;
(2)甲车的速度=从A到B再到C的距离÷甲车从A到B再到C要行的时间,乙车的速度=从A到B再到C的距离÷乙车从C到B再到A要行的时间;
①两车相遇需要的时间=从A到B再到C的距离÷两车的速度和;
②当乙车到达B站用的时间=从C到B的距离÷乙车的速度,所以甲车还离B站的距离=从A到B的距离-甲车的速度×当乙车到达B站用的时间;
③甲车到达B站用的时间=从A到B的距离÷甲车的速度,那么乙车可以从C站迟开出的时间=(乙车的速度×甲车到达B站用的时间-从C到B的距离)÷乙车的速度。
33.解:圆柱的底面半径:
125.6÷2÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(厘米)
体积:
3.14×10²×10
=3.14×100×10
=314×10
=3140(立方厘米)
答:这个圆柱的体积是3140立方厘米。
【解析】【分析】根据题意可知圆柱的高增加2厘米,那么它的面积就增加125.6平方厘米,增加的只是侧面积,侧面积÷高=底面周长,底面周长÷3.14÷2=半径;圆柱体的体积=底面积×高即可。
34.解:圆锥的底面半径=37.68÷3.14÷2
=12÷2
=6(米)
圆锥的体积=3.14×62×5×
=3.14×36×5×
=113.04×5×
=565.2×
=188.4(立方米)
可以铺的长度=188.4÷15÷(4÷100)
=12.56÷0.04
=314(米)
答:可以铺314米。
【解析】【分析】圆锥的底面周长=π×底面半径×2,即可得出圆锥的底面半径=圆锥底面周
长÷π÷2;圆锥的体积=π×圆锥的底面半径的平方×圆锥的高×计算出土堆的体积,接下来根据长方体的长=土堆的体积÷长方体的宽÷长方体的高(铺土的厚度,注意单位化成m),计算即可得出答案。
35.(1)
(2)
【解析】【分析】(1)图形在平移前后,形状、大小不变,只是位置发生了改变。
(2)图形在旋转时,旋转中心不变,注意旋转方向是逆时针,旋转角度是90°,与原来的线段垂直;画轴对称图形时,对称的图形和原来的图形到对称轴的距离要相等。
36.解:3600×=2160(米)
设修完水渠还需要x天,则
2160x=1440×6
2160x=8640
x=4
答:照这样计算修完水渠还需要4天。
【解析】【分析】因为水渠的长度÷所修时间=每天修的水渠长度(一定),所以水渠的长
度和所修时间成正比例关系,根据,即可求得修完剩下的水渠还需要的时间。
37.解:500米=50000厘米,1000米=100000厘米,50000×=2.5(厘米),100000×=5(厘米),如图:
4.2÷=84000(厘米)=840(米)
答:学校到电影院大约有840米。
【解析】【分析】把实际距离都换算成厘米,然后用实际距离乘比例尺分别求出图上距离;图上的方向是上北下南、左西右东,根据图上的方向、夹角的度数和图上距离确定医院的位置,再确定电影院的位置。
测量出学校到电影院的图上距离,然后用图上距离除以比例尺求出学校到电影院的实际距离即可。
38.解:水的高度为:6﹣1=5(dm)
底面积为:3.14×(4÷2)2=3.14×4=12.56(dm2)
水的体积为:12.56×5=62.8(dm3)
62.8dm3=62.8L
答:最多能装62.8升水。
【解析】【分析】用木桶的高度减去1分米即可求出能装水的高度,用木桶的底面积乘装水的高度即可求出最多能装水的体积,然后换算成升即可。
39.解:正方体体积:10×10×10=1000(立方厘米)
圆锥的底面半径:2分米=20厘米,20÷2=10(厘米)
圆锥的高:1000×3÷(3.14×102)=3000÷314≈9.6(厘米)
答:这个圆锥形铁块的高约是9.6厘米。
【解析】【分析】圆锥的高=圆锥体积×3÷底面积,圆锥体积=正方体体积=棱长3,底面积=π×半径2。
40.解:625mL=625cm3
625÷(10+2.5)×10
=625÷12.5×10
=50×10
=500(cm3)
500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。