三次方程的韦达定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三次方程的韦达定理
一元三次方程韦达定理是:
设三次方程为ax^3+bx^2+cx+d=0
三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0 即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0 对比原方程ax^3+bx^2+cx+d=0 可知
x1+x2+x3=-b/a
x1*x2+x2*x3+x3*x1=c/a
x1*x2*x3=-d/a
实数根:
虽然三个根都是实数根,但是求解过程中却遇到了虚数。

虚数经过运算后,最终结果为实数。

这个三次方程的根比较简单,求解过程中遇到的三次重根式可以化简。

但是,绝大多数三次方程的根都是无理数,其三次重根式无法化简,那么这时就必须要用虚数才能用根号精确表示这些复杂的无理实根,即:用带虚数的根式来表示一个实数。

由此可见,三次方程的根比二次方程的根的复杂度要高出很多。

二次方程的根仅仅用单层二次根号就能精确表示出来,而三次方程的根不仅需要用到二、三次双重根号,有时甚至还需要用到虚数才能精确表示。

相关文档
最新文档