2012年浙江省高考数学试卷及答案(文科)

合集下载

2012年高考文科数学浙江卷(含详细答案)

2012年高考文科数学浙江卷(含详细答案)

数学试卷 第1页(共36页)数学试卷 第2页(共36页) 数学试卷 第3页(共36页)绝密★启用前2012年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页,非选择题部分4至6页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 参考公式:球的表面积公式柱体的体积公式 24πS R =V Sh =球的体积公式其中S 表示柱体的底面积,h 表示柱体的高 34π3V R =台体的体积公式其中R 表示球的半径121()3V h S S =锥体的体积公式其中1S ,2S 分别表示台体的上、下底面积, 13V Sh =h 表示台体的高 其中S 表示锥体的底面积,h 表示锥体的高 如果事件A ,B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5,6}U =,集合{1,2,3,4}P =,{3,4,5,6}Q =,则()U P Q =ð( )A . {1,2,3,4,6}B . {1,2,3,4,5}C . {1,2,5}D . {1,2} 2. 已知i 是虚数单位,则3i1i+=-( )A . 12i -B . 2i -C . 2i +D . 12i +3. 已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A . 1 3cmB . 2 3cmC . 3 3cmD . 6 3cm4. 设a ∈R ,则“1a =”是“直线1l :210ax y +-=与直线2l :240x y ++=平行”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 5. 设l 是直线,α,β是两个不同的平面( )A . 若l α∥,l β∥,则a β∥B . 若l α∥,l β⊥,则αβ⊥C . 若αβ⊥,l α⊥,则l β⊥D . 若αβ⊥,l α∥,则l β⊥6. 把函数cos 21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )A .B .C .D . 7. 设a ,b 是两个非零向量( )A . 若+=-|a b ||a ||b |,则⊥a bB . 若⊥a b ,则+=-|a b ||a ||b |C . 若+=-|a b ||a ||b |,则存在实数λ,使得λ=b aD . 若存在实数λ,使得λ=b a ,则+=-|a b ||a ||b |8. 如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A . 3B . 2C .D .9. 若正数x ,y 满足35x y xy +=,则34x y +的最小值是( )A .245B .285C . 5D . 6 10. 设0a >,0b >,e 是自然对数的底数,( )A . 若e 2e 3a b a b =++,则a b >B . 若e 2e 3a b a b =++,则a b <C . 若e 2e 3a b a b =--,则a b >D . 若e 2e 3a b a b =--,则a b <姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共36页)数学试卷 第5页(共36页) 数学试卷 第6页(共36页)非选择题部分(共100分)注意事项:1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2. 在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二、填空题:本大题共7小题,每小题4分,共28分.11. 某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为_________.12. 从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距_________.13. 若某程序框图如图所示,则该程序运行后输出的值是_________.14. 设2z x y =+,其中实数x ,y 满足10,20,0,0,x y x y x y -+⎧⎪+-⎪⎨⎪⎪⎩≥≤≥≥则z 的取值范围是_________.15. 在ABC △中,M 是BC 的中点,3AM =,10BC =,则AB AC =uu u r uuu rg _________.16. 设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()f x =1x +,则3()2f =_________.17. 定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线1C :2y x a =+到直线l :y x =的距离等于曲线2C :22(4)2x y ++=到直线l :y x =的距离,则实数a =_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程,或演算步骤. 18.(本小题满分14分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B . (Ⅰ)求角B 的大小;(Ⅱ)若3b =,sin 2sin C A =,求a ,c 的值.19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且22n S n n =+,*n ∈N ,数列{}n b 满足24log 3n n a b =+,*n ∈N .(Ⅰ)求n a ,n b ;(Ⅱ)求数列{}n n a b 的前n 项和n T .20.(本小题满分15分)如图,在侧棱垂直底面的四棱柱1111ABCD A B C D -中,AD BC ∥,AD AB ⊥,AB 2AD =,4BC =,12AA =,E 是1DD 的中点,F 是平面11B C E 与直线1AA 的交点.(Ⅰ)证明:(ⅰ)1EF D A ∥;(ⅱ)1BA ⊥平面11B C EF ;(Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值.21.(本小题满分15分)已知a ∈R ,函数3()42f x x ax a =-+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当01x ≤≤时,|2|)0(f x a -+>.22.(本小题满分14分)在直角坐标系xOy 中,点1(1,)2P 到抛物线C :22(0)y px p =>的准线的距离为54.点, 1M t ()是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(Ⅰ)求p ,t 的值;(Ⅱ)求ABP △面积的最大值.3 / 122012年普通高等学校招生全国统一考试(浙江卷)数学(文科)答案解析选择题部分【解析】{1,2,3,4,5,6=U {()=U P Q ð()U P Q ð即可得到正确选项。

2012年浙江省高考数学(文科)第22题解法探析

2012年浙江省高考数学(文科)第22题解法探析

2012年浙江省高考数学(文科)第22题解法探析作者:陈巧妍来源:《考试周刊》2013年第05期2012年浙江省高考数学(文科)试卷第22题:如图1,在直角坐标系xy中,点P(1,)到抛物线C:y=2px(p>0)的准线的距离为,点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.(1)求p,t的值;(2)求△ABP的面积的最大值.图1本题突出考查了解析几何中的直线与抛物线的位置关系、面积、点到直线的距离公式等主干知识,强化能力立意,加强了解析几何与函数、方程、导数等相关知识的链接、渗透与融合.注重在知识网络的交汇点处设计试题,在强调考查函数与方程思想、化归与转换思想,强调考查通性通法的同时,增加了运算处理能力的考查.命题者提供的参考答案是:解法一:(1)由题意2pt=11+=得p=t=1(2)设A(x,y),B(x,y),线段AB的中点Q(m,m),由题意知,直线AB的斜率肯定存在,设直线AB的斜率为k(k≠0),∵y=xy=x,∴(y-y)(y+y)=x-x,∴k·2m=1,∴k=.∴直线AB的方程为y-m=(x-m),即x-2my-2m-m=0.又x-2my+2m-m=0y=x,∴y-2my+2m-m=0,且△=4m-4m>0,y+y=2m,y·y=2m-m,从而|AB|=|y-y|=·.设点P到直线AB的距离为d=,∴S=|AB|·d=|1-2(m-m)|.由△=4m-4m>0,得0令u=,u∈(0,],∴S=u(1-2u).设S(u)=u(1-2u),(0S′(u)=1-u,由S′(u)=0,得u=∈(0,],∴S(u)=S()=.故△ABP的面积最大值.解法二:(1)同解法一.(2)设A(x,y),B(x,y),直线AB的方程为:x=ay+b(a≠0),由y=x ①x=ay+b ②得y-ay-b=0.∴y+y=a,y·y=-b,△=a+4b>0,又∵线段AB被直线OM平分,∴AB的中点(,)在直线OM上.∴a+2b=a即2b=-a+a,∴△=a-2a+2a>0,∴0|AB|=|y-y|==·=·.设点P到直线AB的距离为d==(0∴S=[2-(-a+2a)].令=u(0S′(u)=-u,令S′(u)=0得u=∈(0,1],∴S(u)=S()=,∴S的面积的最大值为.解法三:(1)同解法一.(2)设A(x,y),B(x,y),因为直线的斜率肯定存在,设直线AB的方程为:y=kx+b(k≠0),由y=kx+b ①y=x ②得kx+(2kb-1)x+b=0,∴x+x=-,∴x·x=.△=(2kb-1)-4kb>0,即1-4kb>0,又AB被直线OM平分,∴=,得k=1-2kb,即b=,∴△=1-4k·>0,∴k>.∴|AB|=|x-x|===.点P到直线AB的距离d==.∴S=|AB|·d=·=·(k+-1)=·=·=[1-(-)]令=u(0记S(u)=u(1-u),S′(u)=(1-u)=0得u=∈(0,1],∴S(u)=S()=,故△ABP的面积最大值为.另在解法三中,若由①得x=-代入②则类同解法二.三种解法的繁与简源于直线方程的不同设法:解法一:直线AB与抛物线相交,且与线段AB的中点位置有关,故可用“点差法”属通法;解法二:设直线AB方程为:x=ay+b(a≠0)好于方程组的整理,也属通法.解法一、二在表示△ABP的面积分别为S=[1-2(m-m)],S=[2-(-a+2a)]后,由此较容易想到换元法,再利用导数求最值从而简化了运算.解法三中设直线AB方程为:y=kx+b(b≠0)更符合通法,但从S=(k+-1)化到S=×[1-(-)],再用换元法求最值,在高考限定的时间里找到中间的过渡方法是极其困难的.若直接用导数求最大值,学生则会感觉无法进行下步的运算,因此在最通法中处理运算时要走独木桥是此题的遗憾之处.理想的命题应当是:设直线AB方程为y=kx+b,面积的表达式出来后,用最通的“通法”导数求最值可解才是上上之作.从本题三种不同解法中获得对平时教学上的几点启示:1.根据“题情”选“设法”.解法一、二的设直线方程,是有“题情”为据的,它的解题过程更简捷些.其实因题设条件不同,用不同的方法,各有长短,需要针对具体的情况选择合理、简捷、有效的解法.如果方法选择不当,则往往会导致计算烦琐,不仅不易得到正确的结果,反而会浪费宝贵的时间.2.加强通性通法.本题考查学生对“通法通性”的理解与掌握程度,以及数学素养,思维能力.如本题中:①利用抛物线的定义求出p,t;②对“线段AB被直线OM平分”这个条件作出合理的转化;③直线方程的设法;④利用导数,换元法求面积的最值等都属于通性通法.首都师范大学教授张饴慈说过:如果在学生学过用导数求最值的一般方法后,我们故意出一道用导数无法求解的题目,而用一种只对这一道题有用的方法来解,势必引导教师在教学中,去找这样的偏题怪题来做,而忽视了通性通法的学习.出这样的题,只能让学生都远离数学,怕数学,甚至恨数学,应该反思.据此本题解法二若能设计成直接用导数可求得最大值更为理想.因此教师在平时的授课时,更应注重通性通法,选择典型例题,以此为载体对比辨析,渗透通法,注重学生总体与提炼,聚集基本思想方法灵活运用,提升学生的思维层次.3.注重解题反思著名教育家波利亚说:“没有一道题是可以解决得十全十美的,总剩下些工作要做,经过充分的探讨,总结,总会有点滴的发现,总能改进这个解答,而且在任何情况下,我们都能提高自己对这个解答的理解水平.”他打比方说在你找到第一个蘑菇(我有了这个发现后)要环顾四周,因为它们总是成堆生长的.事实上本题三种解法中,用k==代入的面积表达式后,三者又是统一的,这不就说明了这一点吗?同时,这也启示教师在平时应注重解题反思,因为解题的反思,会给我们带来意外的收获,体验探索成功的快乐,加深对知识的理解.参考文献:[1]2012年普通高等学校招生统一考试试题、参考答案.浙江省教育考试院,2012.6.。

2012年上海文科数学试卷及答案WORD版

2012年上海文科数学试卷及答案WORD版

2012年全国普通高等学校招生统一考试上海 数学试卷(文史类)一、填空题(本大题共有14题,满分56分) 1、计算:31ii-=+ (i 为虚数单位) 2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂= 3、函数sin 2()1cos x f x x=-的最小正周期是4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为6、方程14230x x +--=的解是7、有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=8、在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= 10、满足约束条件22x y +≤的目标函数z y x =-的最小值是11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是 (结果用最简分数表示)12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CNBC CD=,则AM AN ⋅ 的取值范围是13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为 14、已知1()1f x x=+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012a a =,则2011a a +的值是二、选择题(本大题共有4题,满分20分)15、若12+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-= 16、对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件17、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定 18、若2sinsin...sin 777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( ) A 、16 B 、72 C 、86 D 、100三、解答题(本大题共有5题,满分74分)19、(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =,2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示) PA DB C20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向(2)问救援船的时速至少是多少海里才能追上失事船?y POxA22、(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分在平面直角坐标系xOy 中,已知双曲线22:21C x y -=(1)设F 是C 的左焦点,M 是C 右支上一点,若22MF =,求点M 的坐标;(2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积; (3)设斜率为k (2k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5 (1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a(2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k kb a =(1,2,...,k m =)(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭,若(1)22(1)n n n a an n +=--,{}n b 是{}n a 的控制数列,求1122()()b a b a -+-+100100...()b a +-。

12.杂数列

12.杂数列

1. (浙江省杭州市2012届高三第二次教学质量检测数学(理)试题2012.4)数列21111231{},2,()(*),555,5n n n n n n n a a a a n N S a a a a -+=+=∈=++++ 中则65n n nS a n-= .12. (浙江省名校新高考研究联盟2012届高三第二次联考试题数学文)在数列{}n a 中,11=a ,n n n a a 21=+*()n N ∈,则数列{}n a 的通项=n a .1222 2n nn n a n -⎧⎪=⎨⎪⎩是奇数是偶数3. (浙江省宁波市鄞州区2012届高三5月适应性考试题数学文) 已知数列{}n a ,对任意的,p q N *∈满足p q p q a a a +=⋅,且11a =-,那么9a 等于 . -14. (浙江省五校2012届高三第二次联考试题word 版数学(文)试题)已知数列{}n a ,22n a n n λ=-+,若该数列是递减数列,则实数λ的取值范围是( )DA. (],3-∞B. (],4-∞C. (),5-∞D. (),6-∞5. (宁夏银川一中2012届高三第三次模拟考试 数学(理))已知有穷数列A :na a a ,,,21⋅⋅⋅(N n n ∈≥,2).定义如下操作过程T :从A 中任取两项j i a a ,,将ji j i a a a a ++1的值添在A的最后,然后删除j i a a ,,这样得到一系列1-n 项的新数列A 1 (约定:一个数也视作数列);对A 1的所有可能结果重复操作过程T 又得到一系列2-n 项的新数列A 2,如此经过k 次操作后得到的新数列记作A k . 设A :31,21,43,75-,则A 3的可能结果是A.34 B. 12C. 13D. 0【答案】A6. (辽宁省大连市庄河六高中2011-2012学年高二下学期期中考试试题(数学理))在数列{}n a 中,若11a =,1130n n n n a a a a --+-=,(2,n n N *≥∈),则 n a =A.213n + B. 23n + C. 121n - D. 132n - 【答案】D重庆市2012(春)高三考前模拟测试数学试题(理科)7.若数列1221{}:1,2,(3),n n n n a a a a a a n --===≥满足则2012a 的值为 CA .1B .12C .2D .22012玉溪一中高2013届下学期期中考试高二数学(文理科) 3.数列}{n a 的前n 项和,2n S n =则5a 的值是A. 9B. 10 C 16 D. 25 A甘肃兰州一中11-12学年度下学期高一期中考试14. 观察下列等式:332333233332123,1236,123410+=++=+++=根据以上规 律:第5个等式为____________________________________________________________. 【答案】333333212345621+++++=江西省重点中学盟校2012届高三第二次联考试卷理科数学 13、下表给出一个“直角三角形数阵”41 41,21163,83,43 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为83),,,(a N j i j i a ij 则+∈≥等于 .【答案】21江西师大附中2012届高三第三次模拟考试 数学理 10.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++ 成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论:① 若{}n a 是等比数列,则{}n a 为1阶递归数列;② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3 【答案】C上海市浦东新区2012届高三第三次模拟考试(2012浦东三模)理科数学8.数列{}n a 的前n 项和为n S ,若点(,)n n S (*n N ∈)在函数2log (1)y x =+的反函数的图像上,则n a =________. 【答案】12n -上海市徐汇区2012届高三第二次模拟 数学理 8、已知数列{}n a 的前n 项和21n n S a =-,则数列{}n a 的通项公式为n a = .*()n N ∈8.12n -南师大附中2011届高三第四次模拟考试14.已知数列{}n a 的各项均为正整数,对于⋅⋅⋅=,3,2,1n ,有1352n n n ka a a ++⎧⎪=⎨⎪⎩n n 1n a a k a +为奇数为偶数,是使为奇数的正整数,若存在*m ∈N ,当n m >且na 为奇数时,n a 恒为常数p ,则p 的值为___1或5___.山东省菏泽学院附中2012届高三下学期5月高考冲刺试题(数学理)B9.已知“整数对”按如下规律排成一列:()1,1,()1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是 ( )A .()7,5B . ()5,7C .()2,10D .()10,1山东省菏泽学院附中2012届高三下学期5月高考冲刺试题(数学文)A10.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列,这个新数列的第2003项是 ( ) A .2048 B .2049 C .2050 D .2051 9.(2012浙江冲刺卷B 理科)如果有穷数列)(,...,,*21N n a a a n ∈满足条件:,,...,,1121a a a a a a n n n ===-即1+-=i n i a a ,),...,2,1(n i =我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列}{n b 是项数不超过),1(2*N m m m ∈>的“对称数列”,并使得122,...,2,2,1-m 依次为该数列中连续的前m 项,则数列}{n b 的前2009项和2009S 所有可能的取值的序号为 ①122009-②)12(22009-③1223201021--⋅--m m ④122200921---+m mA .①②③B . ②③④C .①②④D . ①③④ 【答案】C10.(2012届安徽省淮北市第二次模拟文科)设函数xxx f -+=1lo g 21)(2,定义121()()()n n S f f f n n n -=++ ,其中,2,≥∈+n N n ,则=n S ( ) A .(1)2n n - B .21log (1)2n n --- C .12n - D .21log (1)2n n -+-【答案】C17.(2012上海市嘉定、黄浦区第二次模拟理科)已知△ABC 的三边分别是a b c 、、,且a b c ≤≤(*a b c ∈N 、、),若当b n =(*n ∈N )时,记满足条件的所有三角形的个数为n a ,则数列{}n a 的通项公式…………………( )A .21n a n =-B .(1)2n n n a +=C .21n a n =+D .n a n = 【答案】B6、(2012天津市高考压轴卷理科)设x 、a 1、a 2、y 成等差数列,x 、b 1、b 2、y 成等比数列,则21212(a a )b b +的取值范围是A 、[4,+∞)B 、(0][4,+,-∞∞ )C 、[0,4]D 、(4)[4,,-∞-+∞ )【答案】B(2012河北广宗中学第二次模拟考试数 学 试 题(理)) 20.(14分)设集合W 由满足下列两个条件的数列{}n a 构成: ①212n n n a a a +++<; ②存在实数M ,使n a M ≤.(n 为正整数)(I )在只有5项的有限数列{}n a ,{}n b 中,其中123451,2,3,4,5a a a a a =====; 123451,4,5,4,1b b b b b =====;试判断数列{},{}n n a b 是否为集合W 的元素;(II )设{}n c 是各项为正的等比数列,n S 是其前n 项和,314c =,374S =, 证明数列{}n S W ∈;并写出M 的取值范围;(III )设数列{},n d W ∈且对满足条件的M 的最小值0M ,都有()*n n d M n ≠∈N . 求证:数列{}n d 单调递增. 【解析】 (I )对于数列{}n a ,取13222a a a +==,显然不满足集合W 的条件,① 故{}n a 不是集合W 中的元素,对于数列{}n b ,当{1,2,3,4,5}n ∈时,不仅有13232b b b +=<,24342b bb +=<,33432b b b +=<,而且有5n b ≤,显然满足集合W 的条件①②, 故{}n b 是集合W 中的元素.(II )∵{}n c 是各项为正数的等比数列,n S 是其前n 项和,3317,,44c S ==设其公比为0q >, ∴333274c c c q q ++=,整理得2610q q --=. ∴12q =,∴1111,2n n c c -==,1122n n S -=-对于*n ∀∈N ,有222111222222n n n n n n S S S ++++=--<-=,且2n S <,故{}n S W ∈,且[)2,M ∈+∞(III )证明:(反证)若数列{}n d 非单调递增,则一定存在正整数k , 使1k k d d +≥,易证于任意的n k ≥,都有1k k d d +≥,证明如下: 假设()n m m k =≥时,1k k d d +≥当1n m =+时,由212m m m d d d +++<,212m m m d d d ++<-.而12111(2)0m m m m m m m d d d d d d d +++++->--=-≥ 所以12,m m d d ++>所以对于任意的n k ≥,都有1m m d d +≥.显然12,,,k d d d 这k 项中有一定存在一个最大值,不妨记为0n d ; 所以0*()n n d d n ∈N ≥,从而00n d M =与这题矛盾.所以假设不成立, 故命题得证.C7. (莱芜一中50级4月自主检测数学试题文科)已知数列}{n a 满足a 1=1,且1n n a a +=1n n+,则2012a =( ) A.2010 B.2011 C.2012 D.2013安徽省芜湖一中2012届高三下学期第六次模拟考试数学(理)试卷14. 已知数列{}n a 满足:*1log (2) ()n n a n n N +=+∈,定义使123k a a a a ⋅⋅⋅⋅…为整数的数* ()k k N ∈叫做幸运数,则[]1,2012内所有的幸运数之和为____________. 【答案】20261. (甘肃省西北师大附中2012年高三第一次诊断考试试卷数学(理科))6. 已知正项数列{}n a 中,11=a ,22=a ,222112(2)n n n a a a n +-=+≥,则6a 等于【答案】D17、莆田一中2012届高三第五次月考数学(文)试题 (本小题满分12分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列。

2008年浙江省高考数学试卷(文科)答案与解析

2008年浙江省高考数学试卷(文科)答案与解析

2008年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•浙江)已知集合A={x|x>0},B={x|﹣1≤x≤2},则A∪B=()A.{x|x≥﹣1} B.{x|x≤2} C.{x|0<x≤2} D.{x|﹣1≤x≤2}【考点】并集及其运算.【分析】根据并集的求法,做出数轴,求解即可.【解答】解:根据题意,作图可得,则A∪B={x|x≥﹣1},故选A.【点评】本题考查集合的运算,要结合数轴发现集合间的关系,进而求解.2.(5分)(2008•浙江)函数y=(sinx+cosx)2+1的最小正周期是()A.B.πC.D.2π【考点】二倍角的正弦;同角三角函数基本关系的运用.【分析】先将原函数进行化简,再求周期.【解答】解:∵y=(sinx+cosx)2+1=sin2x+2,故其周期为.故选B.【点评】本题主要考查正弦函数周期的求解.3.(5分)(2008•浙江)已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】常规题型.【分析】首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”的既不充分也不必要条件.【解答】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.【点评】本小题主要考查充要条件相关知识.4.(5分)(2008•浙江)已知{a n}是等比数列,a2=2,a5=,则公比q=()A. B.﹣2 C.2 D.【考点】等比数列.【专题】等差数列与等比数列.【分析】根据等比数列所给的两项,写出两者的关系,第五项等于第二项与公比的三次方的乘积,代入数字,求出公比的三次方,开方即可得到结果.【解答】解:∵{a n}是等比数列,a2=2,a5=,设出等比数列的公比是q,∴a5=a2•q3,∴==,∴q=,故选:D.【点评】本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.5.(5分)(2008•浙江)已知a≥0,b≥0,且a+b=2,则()A.B.C.a2+b2≥2 D.a2+b2≤3【考点】基本不等式.【分析】ab范围可直接由基本不等式得到,a2+b2可先将a+b平方再利用基本不等式联系.【解答】解:由a≥0,b≥0,且a+b=2,∴,而4=(a+b)2=a2+b2+2ab≤2(a2+b2),∴a2+b2≥2.故选C.【点评】本题主要考查基本不等式知识的运用,属基本题.基本不等式是沟通和与积的联系式,和与平方和联系时,可先将和平方.6.(5分)(2008•浙江)在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的展开式中,含x4的项的系数是()A.﹣15 B.85 C.﹣120 D.274【考点】二项式定理的应用.【分析】本题主要考查二项式定理展开式具体项系数问题.本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)的思路来完成.【解答】解:含x4的项是由(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的5个括号中4个括号出x仅1个括号出常数∴展开式中含x4的项的系数是(﹣1)+(﹣2)+(﹣3)+(﹣4)+(﹣5)=﹣15.故选A.【点评】本题考查利用分步计数原理和分类加法原理求出特定项的系数.7.(5分)(2008•浙江)在同一平面直角坐标系中,函数(x∈[0,2π])的图象和直线的交点个数是()A.0 B.1 C.2 D.4【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式进行化简,再由x的范围求出的范围,再由正弦函数的图象可得到答案.【解答】解:原函数可化为:y=cos()(x∈[0,2π])=,x∈[0,2π].当x∈[0,2π]时,∈[0,π],其图象如图,与直线y=的交点个数是2个.故选C.【点评】本小题主要考查三角函数图象的性质问题.8.(5分)(2008•浙江)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()A.3 B.5 C.D.【考点】双曲线的定义.【专题】计算题.【分析】先取双曲线的一条准线,然后根据题意列方程,整理即可.【解答】解:依题意,不妨取双曲线的右准线,则左焦点F1到右准线的距离为,右焦点F2到右准线的距离为,可得,即,∴双曲线的离心率.故选D.【点评】本题主要考查双曲线的性质及离心率定义.9.(5分)(2008•浙江)对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α【考点】空间点、线、面的位置.【专题】空间位置关系与距离.【分析】对两条不相交的空间直线a与b,有a∥b 或a与b是异面直线,从而得出结论.【解答】解:∵两条不相交的空间直线a和b,有a∥b 或a与b是异面直线,∴一定存在平面α,使得:a⊂α,b∥α.故选B.【点评】本题主要考查立体几何中线面关系问题,属于基础题.10.(5分)(2008•浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域的面积是()A.B.C.1 D.【考点】简单线性规划的应用.【专题】计算题;压轴题.【分析】欲求平面区域的面积,先要确定关于a,b的约束条件,根据恒有ax+by≤1成立,a≥0,b≥0,确定出ax+by的最值取到的位置从而确定关于a,b约束条件.【解答】解:∵a≥0,b≥0t=ax+by最大值在区域的右上取得,即一定在点(0,1)或(1,0)取得,故有by≤1恒成立或ax≤1恒成立,∴0≤b≤1或0≤a≤1,∴以a,b为坐标点P(a,b)所形成的平面区域是一个正方形,所以面积为1.故选C.【点评】本小题主要考查线性规划的相关知识.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2008•浙江)已知函数f(x)=x2+|x﹣2|,则f(1)=2.【考点】函数的概念及其构成要素.【分析】将x=1代入函数解析式即可求出答案.【解答】解:∵f(1)=12+|1﹣2|=1+1=2故答案为:2【点评】本题主要考查函数解析式,求函数值问题.12.(4分)(2008•浙江)若,则cos2θ=.【考点】诱导公式的作用;二倍角的余弦.【分析】由sin(α+)=cosα及cos2α=2cos2α﹣1解之即可.【解答】解:由可知,,而.故答案为:﹣.【点评】本题考查诱导公式及二倍角公式的应用.13.(4分)(2008•浙江)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=8.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】运用椭圆的定义,可得三角形ABF2的周长为4a=20,再由周长,即可得到AB的长.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆的方程和定义,考查运算能力,属于基础题.14.(4分)(2008•浙江)在△ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.【考点】正弦定理的应用;两角和与差的正弦函数.【专题】计算题.【分析】先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值.【解答】解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:【点评】本题主要考查正弦定理、两角和与差的正弦公式的应用.考查对三角函数公式的记忆能力和综合运用能力.15.(4分)(2008•浙江)如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于π.【考点】球的体积和表面积;球内接多面体.【专题】计算题.【分析】说明△CDB是直角三角形,△ACD是直角三角形,球的直径就是CD,求出CD,即可求出球的体积.【解答】解:AB⊥BC,△ABC的外接圆的直径为AC,AC=,由DA⊥面ABC得DA⊥AC,DA⊥BC,△CDB是直角三角形,△ACD是直角三角形,∴CD为球的直径,CD==3,∴球的半径R=,∴V球=πR3=π.故答案为:π.【点评】本题是基础题,考查球的内接多面体,说明三角形是直角三角形,推出CD是球的直径,是本题的突破口,解题的重点所在,考查分析问题解决问题的能力.16.(4分)(2008•浙江)已知是平面内的单位向量,若向量满足•(﹣)=0,则||的取值范围是[0,1].【考点】平面向量数量积的运算.【专题】压轴题.【分析】本小题主要考查向量的数量积及向量模的相关运算问题,由向量满足•(﹣)=0,变化式子为模和夹角的形式,整理出||的表达式,根据夹角的范围得到结果.【解答】解:∵,即,∴且θ∈[0,π],∵为单位向量,∴,∴,∴.故答案为:[0,1]【点评】本题是向量数量积的运算,条件中给出两个向量的模和两向量的夹角,代入数量积的公式运算即可,只是题目所给的向量要应用向量的性质来运算,本题是把向量的数量积同三角函数问题结合在一起.17.(4分)(2008•浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是40(用数字作答).【考点】分步乘法计数原理.【专题】计算题;压轴题.【分析】欲求可组成符合条件的六位数的个数,只须利用分步计数原理分三步计算:第一步:先将3、5排列,第二步:再将4、6插空排列,第三步:将1、2放到3、5、4、6形成的空中即可.【解答】解析:可分三步来做这件事:第一步:先将3、5排列,共有A22种排法;第二步:再将4、6插空排列,共有2A22种排法;第三步:将1、2放到3、5、4、6形成的空中,共有C51种排法.由分步乘法计数原理得共有A22•2A22•C51=40(种).答案:40【点评】本题考查的是分步计数原理,分步计数原理(也称乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有m n 种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.三、解答题(共5小题,满分0分)18.(14分)(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+nq(n∈N*,p,q为常数),且x1,x4,x5成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.【考点】数列递推式;等差数列的前n项和;等比数列的前n项和;等差数列的性质.【专题】计算题;综合题.【分析】(Ⅰ)根据x1=3,求得p,q的关系,进而根据通项x n=2n p+np(n∈N*,p,q为常数),且x1,x4,x5成等差数列.建立关于p的方求得p,进而求得q.(Ⅱ)进而根据(1)中求得数列的首项和公差,利用等差数列的求和公式求得答案.【解答】解:(Ⅰ)∵x1=3,∴2p+q=3,①又x4=24p+4q,x5=25p+5q,且x1+x5=2x4,∴3+25p+5q=25p+8q,②联立①②求得p=1,q=1(Ⅱ)由(1)可知x n=2n+n∴S n=(2+22+…+2n)+(1+2+…+n)=.【点评】本题主要考查等差数列和等比数列的基本知识,考查运算及推理能力.19.(14分)(2008•浙江)一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率;(Ⅱ)袋中白球的个数.【考点】互斥事件的概率加法公式;古典概型及其概率计算公式.【专题】计算题.【分析】(Ⅰ)先做出袋中的黑球数,本题是一个古典概型,试验发生包含的事件是从袋中任意摸出两个球,共有C102种结果,满足条件的事件是得到的都是黑球,有C42种结果,根据概率公式得到结果.(Ⅱ)根据从中任意摸出2个球,至少得到1个白球的概率是,写出从袋中任意摸出两个球,至少得到一个白球的对立事件的概率,列出关于白球个数的方程,解方程即可.【解答】解:(Ⅰ)由题意知本题是一个古典概型,从中任意摸出1个球,得到黑球的概率是,袋中黑球的个数为.试验发生包含的事件是从袋中任意摸出两个球,共有C102种结果满足条件的事件是得到的都是黑球,有C42种结果,记“从袋中任意摸出两个球,得到的都是黑球”为事件A,则.(Ⅱ)从中任意摸出2个球,至少得到1个白球的概率是记“从袋中任意摸出两个球,至少得到一个白球”为事件B.设袋中白球的个数为x,则,得到x=5【点评】本题主要考查排列组合、概率等基础知识,同时考查逻辑思维能力和数学应用能力,考查对立事件的概率,考查古典概型问题,是一个综合题.20.(14分)(2008•浙江)如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=.(Ⅰ)求证:AE∥平面DCF;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?【考点】直线与平面平行的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(Ⅰ)过点E作EG⊥CF并CF于G,连接DG,证明AE平行平面DCF内的直线DG,即可证明AE∥平面DCF;(Ⅱ)过点B作BH⊥EF交FE的延长线于H,连接AH,说明∠AHB为二面角A﹣EF﹣C 的平面角,通过二面角A﹣EF﹣C的大小为60°,求出AB即可.【解答】(Ⅰ)证明:过点E作EG⊥CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形,所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG.因为AE⊄平面DCF,DG⊂平面DCF,所以AE∥平面DCF.(Ⅱ)解:过点B作BH⊥EF交FE的延长线于H,连接AH.由平面ABCD⊥平面BEFG,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF,所以∠AHB为二面角A﹣EF﹣C的平面角.在Rt△EFG中,因为EG=AD=.又因为CE⊥EF,所以CF=4,从而BE=CG=3.于是BH=BE•sin∠BEH=.因为AB=BH•tan∠AHB,所以当AB=时,二面角A﹣EF﹣G的大小为60°.【考点】空间点、线、面位置关系,空间向量与立体几何.【点评】由于理科有空间向量的知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量的方法解决立体几何问题也有其相对的缺陷,那就是空间向量的运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题的优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题的工具,要注意综合几何法的应用.【点评】本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.21.(15分)(2008•浙江)已知a是实数,函数f(x)=x2(x﹣a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;压轴题.【分析】(I)求出f'(x),利用f'(1)=3得到a的值,然后把a代入f(x)中求出f(1)得到切点,而切线的斜率等于f'(1)=3,写出切线方程即可;(II)令f'(x)=0求出x的值,利用x的值分三个区间讨论f'(x)的正负得到函数的单调区间,根据函数的增减性得到函数的最大值.【解答】解:(I)f'(x)=3x2﹣2ax.因为f'(1)=3﹣2a=3,所以a=0.又当a=0时,f(1)=1,f'(1)=3,则切点坐标(1,1),斜率为3所以曲线y=f(x)在(1,f(1))处的切线方程为y﹣1=3(x﹣1)化简得3x﹣y﹣2=0.(II)令f'(x)=0,解得.当,即a≤0时,f(x)在[0,2]上单调递增,从而f max=f(2)=8﹣4a.当时,即a≥3时,f(x)在[0,2]上单调递减,从而f max=f(0)=0.当,即0<a<3,f(x)在上单调递减,在上单调递增,从而综上所述,f max=.【点评】本题主要考查导数的基本性质、导数的应用等基础知识,以及综合运用所学知识分析问题和解决问题的能力.22.(15分)(2008•浙江)已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(﹣1,0)的直线,M是C上(不在l上)的动点;A、B在l上,MA⊥l,MB⊥x轴(如图).(Ⅰ)求曲线C的方程;(Ⅱ)求出直线l的方程,使得为常数.【考点】轨迹方程;直线的一般式方程.【专题】计算题;压轴题.【分析】(I)设N(x,y)为C上的点,进而可表示出|NP|,根据N到直线的距离和|NP|进而可得曲线C的方程.(II)先设,直线l:y=kx+k,进而可得B点坐标,再分别表示出|QB|,|QM|,|MA|,最后根据|QA|2=|QM|2﹣|AM|2求得k.【解答】解:(I)设N(x,y)为C上的点,则,N到直线的距离为.由题设得,化简,得曲线C的方程为.(II)设,直线l:y=kx+k,则B(x,kx+k),从而.在Rt△QMA中,因为=,.所以,∴,.当k=2时,,从而所求直线l方程为2x﹣y+2=0.【点评】本题主要考查求曲线轨迹方程,两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.。

2012年浙江省高考数学试卷(理科)附送答案

2012年浙江省高考数学试卷(理科)附送答案

2012年浙江省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)2.(5分)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i3.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A.B.C.D.5.(5分)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||6.(5分)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(5分)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>08.(5分)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ 的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.9.(5分)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b10.(5分)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.12.(4分)若某程序框图如图所示,则该程序运行后输出的值是.13.(4分)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.14.(4分)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=.15.(4分)在△ABC中,M是BC的中点,AM=3,BC=10,则•=.16.(4分)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.17.(4分)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.19.(14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).20.(15分)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.21.(15分)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.22.(14分)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.2012年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)【分析】由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确选项【解答】解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x >3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B2.(5分)(2012•浙江)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i【分析】由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案.【解答】解:故选D3.(5分)(2012•浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.4.(5分)(2012•浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A.B.C.D.【分析】首先根据函数图象变换的公式,可得最终得到的图象对应的解析式为:y=cos(x+1),然后将曲线y=cos(x+1)的图象和余弦曲线y=cosx进行对照,可得正确答案.【解答】解:将函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为:y=cosx+1,再将y=cosx+1图象向左平移1个单位长度,再向下平移1个单位长度,得到的图象对应的解析式为:y=cos(x+1),∵曲线y=cos(x+1)由余弦曲线y=cosx左移一个单位而得,∴曲线y=cos(x+1)经过点(,0)和(,0),且在区间(,)上函数值小于0由此可得,A选项符合题意.故选A5.(5分)(2012•浙江)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||【分析】通过向量和向量的模相关性质进行判断即可.【解答】解:对于A,若|+|=||﹣||,则||2+||2+2•=||2+||2﹣2||||,得•=﹣||||≠0,与不垂直,所以A不正确;对于B,由A解析可知,|+|≠||﹣||,所以B不正确;对于C,若|+|=||﹣||,则||2+||2+2•=||2+||2﹣2||||,得•=﹣||||,则cosθ=﹣1,则与反向,因此存在实数λ,使得=λ,所以C正确.对于D,若存在实数λ,则•=λ||2,﹣||||=λ||2,由于λ不能等于0,因此•≠﹣||||,则|+|≠||﹣||,所以D不正确.故选C.6.(5分)(2012•浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种【分析】本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,当取得4个奇数时,当取得2奇2偶时,分别用组合数表示出各种情况的结果,再根据分类加法原理得到不同的取法.【解答】解:由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有=1种结果,当取得4个奇数时,有=5种结果,当取得2奇2偶时有=6×10=60∴共有1+5+60=66种结果,故选D7.(5分)(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0【分析】由等差数列的求和公式可得S n=na1+d=n2+(a1+)n,可看作关于n的二次函数,由二次函数的性质逐个选项验证可得.【解答】解:由等差数列的求和公式可得S n=na1+d=n2+(a1﹣)n,选项A,若d<0,由二次函数的性质可得数列{S n}有最大项,故正确;选项B,若数列{S n}有最大项,则对应抛物线开口向下,则有d<0,故正确;选项C,若对任意n∈N*,均有S n>0,对应抛物线开口向上,d>0,可得数列{S n}是递增数列,故正确;选项D,若数列{S n}是递增数列,则对应抛物线开口向上,但不一定有任意n∈N*,均有S n>0,故错误.故选D8.(5分)(2012•浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q 两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.【分析】确定PQ,MN的斜率,求出直线PQ与渐近线的交点的坐标,得到MN 的方程,从而可得M的横坐标,利用|MF2|=|F1F2|,即可求得C的离心率.【解答】解:线段PQ的垂直平分线MN,|OB|=b,|O F1|=c.∴k PQ=,k MN=﹣.直线PQ为:y=(x+c),两条渐近线为:y=x.由,得Q();由得P.∴直线MN为,令y=0得:x M=.又∵|MF2|=|F1F2|=2c,∴3c=x M=,∴3a2=2c2解之得:,即e=.故选B.9.(5分)(2012•浙江)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b【分析】对于2a+2a=2b+3b,若a≤b成立,经分析可排除B;对于2a﹣2a=2b﹣3b,若a≥b成立,经分析可排除C,D,从而可得答案.【解答】解:∵a≤b时,2a+2a≤2b+2b<2b+3b,∴若2a+2a=2b+3b,则a>b,故A正确,B错误;对于2a﹣2a=2b﹣3b,若a≥b成立,则必有2a≥2b,故必有2a≥3b,即有a≥b,而不是a>b排除C,也不是a<b,排除D.故选A.10.(5分)(2012•浙江)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【分析】先根据翻折前后的变量和不变量,计算几何体中的相关边长,再分别筛选四个选项,若A成立,则需BD⊥EC,这与已知矛盾;若C成立,则A在底面BCD上的射影应位于线段BC上,可证明位于BC中点位置,故B成立;若C成立,则A在底面BCD上的射影应位于线段CD上,这是不可能的;D显然错误【解答】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC=,AE=CF=,BE=EF=FD=,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC ⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选B二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2012•浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于1cm3.【分析】由三视图知,几何体是一个三棱锥,底面是直角边长为1和3的直角三角形,三棱锥的一条侧棱与底面垂直,且长度是2,这是三棱锥的高,根据三棱锥的体积公式得到结果.【解答】解:由三视图知,几何体是一个三棱锥,底面是直角边长为1cm和3cm 的直角三角形,面积是cm2,三棱锥的一条侧棱与底面垂直,且长度是2cm,这是三棱锥的高,∴三棱锥的体积是cm3,故答案为:1.12.(4分)(2012•浙江)若某程序框图如图所示,则该程序运行后输出的值是.【分析】通过循环框图,计算循环变量的值,当i=6时结束循环,输出结果即可.【解答】解:循环前,T=1,i=2,不满足判断框的条件,第1次循环,T=,i=3,不满足判断框的条件,第2次循环,T=,i=4,不满足判断框的条件,第3次循环,T=,i=5,不满足判断框的条件,第4次循环,T=,i=6,满足判断框的条件,退出循环,输出结果.故答案为:.13.(4分)(2012•浙江)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.【分析】经观察,S4﹣S2=a3+a4=3(a4﹣a2),从而得到q+q2=3(q2﹣1),而q>0,从而可得答案.【解答】解:∵等比数列{a n}中,S2=3a2+2,S4=3a4+2,∴S4﹣S2=a3+a4=3(a4﹣a2),∴a2(q+q2)=3a2(q2﹣1),又a2≠0,∴2q2﹣q﹣3=0,又q>0,∴q=.故答案为:.14.(4分)(2012•浙江)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=10.【分析】将x5转化[(x+1)﹣1]5,然后利用二项式定理进行展开,使之与f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5进行比较,可得所求.【解答】解:f(x)=x5=[(x+1)﹣1]5=(x+1)5+(x+1)4(﹣1)+(x+1)3(﹣1)2+(x+1)2(﹣1)3+(x+1)1(﹣1)4+(﹣1)5而f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,∴a3=(﹣1)2=10故答案为:1015.(4分)(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=﹣16.【分析】设∠AMB=θ,则∠AMC=π﹣θ,再由=(﹣)•(﹣)以及两个向量的数量积的定义求出结果.【解答】解:设∠AMB=θ,则∠AMC=π﹣θ.又=﹣,=﹣,∴=(﹣)•(﹣)=•﹣•﹣•+,=﹣25﹣5×3cosθ﹣3×5cos(π﹣θ)+9=﹣16,故答案为﹣16.16.(4分)(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.【分析】先根据定义求出曲线C2:x2+(y+4)2=2到直线l:y=x的距离,然后根据曲线C1:y=x2+a的切线与直线y=x平行时,该切点到直线的距离最近建立等式关系,解之即可.【解答】解:圆x2+(y+4)2=2的圆心为(0,﹣4),半径为,圆心到直线y=x的距离为=2,∴曲线C2:x2+(y+4)2=2到直线l:y=x的距离为2﹣=.则曲线C1:y=x2+a到直线l:y=x的距离等于,令y′=2x=1解得x=,故切点为(,+a),切线方程为y﹣(+a)=x﹣即x﹣y﹣+a=0,由题意可知x﹣y﹣+a=0与直线y=x的距离为,即解得a=或﹣.当a=﹣时直线y=x与曲线C1:y=x2+a相交,故不符合题意,舍去.故答案为:.17.(4分)(2012•浙江)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.【分析】分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.【解答】解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【分析】(1)由A为三角形的内角,及cosA的值,利用同角三角函数间的基本关系求出sinA的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π﹣(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值;(2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入sinB=cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,=acsinB=×××=.则S△ABC19.(14分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).【分析】(1)X的可能取值有:3,4,5,6,求出相应的概率可得所求X的分布列;(2)利用X的数学期望公式,即可得到结论.【解答】解:(1)X的可能取值有:3,4,5,6.P(X=3)=;P(X=4)=;P(X=5)=;P(X=6)=.故所求X的分布列为X3456P(2)所求X的数学期望E(X)=3×+4×+5×+6×=20.(15分)(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.【分析】(1)连接BD,利用三角形的中位线的性质,证明MN∥BD,再利用线面平行的判定定理,可知MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,求出平面AMN的法向量,利用向量的夹角公式,即可求得二面角A﹣MN﹣Q的平面角的余弦值;方法二:证明∠AEQ为二面角A﹣MN﹣Q的平面角,在△AED中,求得AE=,QE=,AQ=2,再利用余弦定理,即可求得二面角A﹣MN﹣Q的平面角的余弦值.【解答】(1)证明:连接BD.∵M,N分别为PB,PD的中点,∴在△PBD中,MN∥BD.又MN⊄平面ABCD,BD⊂平面ABCD∴MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,在菱形ABCD中,∠BAD=120°,得AC=AB=,BD=∵PA⊥平面ABCD,∴PA⊥AC在直角△PAC中,,AQ⊥PC得QC=2,PQ=4,由此知各点坐标如下A(﹣,0,0),B(0,﹣3,0),C(,0,0),D(0,3,0),P(),M(),N()Q()设=(x,y,z)为平面AMN的法向量,则.∴,取z=﹣1,,同理平面QMN的法向量为∴=∴所求二面角A﹣MN﹣Q的平面角的余弦值为.方法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA=,BD=∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AC,PA⊥AD,∴PB=PC=PD,∴△PBC≌△PDC 而M,N分别是PB,PD的中点,∴MQ=NQ,且AM=PB==AN取MN的中点E,连接AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A ﹣MN﹣Q的平面角由,AM=AN=3,MN=3可得AE=在直角△PAC中,AQ⊥PC得QC=2,PQ=4,AQ=2在△PBC中,cos∠BPC=,∴MQ=在等腰△MQN中,MQ=NQ=.MN=3,∴QE=在△AED中,AE=,QE=,AQ=2,∴cos∠AEQ=∴所求二面角A﹣MN﹣Q的平面角的余弦值为.21.(15分)(2012•浙江)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B 两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.【分析】(Ⅰ)由题意,根据离心率为,其左焦点到点P(2,1)的距离为,建立方程,即可求得椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),线段AB的中点为M,当AB⊥x轴时,直线AB的方程为x=0,与不过原点的条件不符,故设AB的方程为y=kx+m(m≠0)由,消元再利用韦达定理求得线段AB的中点M,根据M在直线OP 上,可求|AB|,P到直线AB的距离,即可求得△APB面积,从而问题得解.【解答】解:(Ⅰ)由题意,解得:.∴所求椭圆C的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),线段AB的中点为M当AB⊥x轴时,直线AB的方程为x=0,与不过原点的条件不符,故设AB的方程为y=kx+m(m≠0)由,消元可得(3+4k2)x2+8kmx+4m2﹣12=0①∴,∴线段AB的中点M∵M在直线OP上,∴∴k=﹣故①变为3x2﹣3mx+m2﹣3=0,又直线与椭圆相交,∴△>0,x1+x2=m,∴|AB|=P到直线AB的距离d=∴△APB面积S=(m∈(﹣2,0)令u(m)=(12﹣m2)(m﹣4)2,则∴m=1﹣,u(m)取到最大值∴m=1﹣时,S取到最大值综上,所求直线的方程为:22.(14分)(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.【分析】(Ⅰ)(ⅰ)求导函数,再分类讨论:当b≤0时,f′(x)>0在0≤x≤1上恒成立,此时最大值为:f(1)=|2a﹣b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,此时最大值为:f(x)max=max{f(0),f(1)}=|2a﹣b|﹢a,由此可得结论;(ⅱ)利用分析法,要证f(x)+|2a﹣b|+a≥0,即证g(x)=﹣f (x)≤|2a﹣b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a ﹣b|﹢a.(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a﹣b|﹢a,且函数在0≤x ≤1上的最小值比﹣(|2a﹣b|﹢a)要大.根据﹣1≤f(x)≤1对x∈[0,1]恒成立,可得|2a﹣b|﹢a≤1,从而利用线性规划知识,可求a+b的取值范围.【解答】(Ⅰ)证明:(ⅰ)f′(x)=12a(x2﹣)当b≤0时,f′(x)>0,在0≤x≤1上恒成立,此时最大值为:f(1)=|2a﹣b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,f'(x)在区间[0,1]先负后可能正,f(x)图象在[0,1]区间内是凹下去的,所以最大值正好取在区间的端点,此时最大值为:f(x)max=max{f(0),f(1)}=|2a﹣b|﹢a;综上所述:函数在0≤x≤1上的最大值为|2a﹣b|﹢a;(ⅱ)要证f(x)+|2a﹣b|+a≥0,即证g(x)=﹣f(x)≤|2a﹣b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a﹣b|﹢a,∵g(x)=﹣4ax3+2bx+a﹣b,∴令g′(x)=﹣12ax2+2b=0,当b≤0时,;g′(x)<0在0≤x≤1上恒成立,此时g(x)的最大值为:g(0)=a﹣b<3a﹣b=|2a﹣b|﹢a;当b>0时,g′(x)在0≤x≤1上的正负性不能判断,∴g(x)max=max{g(),g (1)}={}=∴g(x)max≤|2a﹣b|﹢a;综上所述:函数g(x)在0≤x≤1上的最大值小于(或等于)|2a﹣b|﹢a.即f(x)+|2a﹣b|+a≥0在0≤x≤1上恒成立.(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a﹣b|﹢a,且函数在0≤x ≤1上的最小值比﹣(|2a﹣b|﹢a)要大.∵﹣1≤f(x)≤1对x∈[0,1]恒成立,∴|2a﹣b|﹢a≤1.取b为纵轴,a为横轴,则可行域为:或,目标函数为z=a+b.作图如右:由图易得:a+b的取值范围为(﹣1,3]。

完整版2012年浙江省高考数学试卷文科答案与解析

完整版2012年浙江省高考数学试卷文科答案与解析

2012年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2012?浙江)设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(?Q)=()U A.{ 1,2,3,4,6} B.{1,2,3,4,5} C.{1,2,5} D.{1,2}考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先由已知条件求出CQ,然后由交集的定义求出P∩(CQ)即可得到正UU确选项.解答:解:∵U={1,2,3,4,5,6},Q={3,4,5},∴?Q={1,2,6},又P={1,2,3,4},U∴P∩(CQ)={1,2} U故选D.点评:本题考查交、并、补的运算,解题的关键是熟练掌握交、并、补的运算规则,准确计算.是虚数单位,则=(?浙江)已知i)20122.(5分)(A.1 ﹣2i B.2﹣i C.2+i D.1+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案.解答:解:故选D点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握.3.(5分)(2012?浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是()13333...DB.C A cm1cmcm 2cm6 3三视图求面积、体积.考点:由体几何.专题:立2的直角三角形,三棱锥由三视图知,几何体是一个三棱锥,底面是直角边长为1和分析:,这是三棱锥的高,根据三棱锥的体积公式得到的一条侧棱与底面垂直,且长度是3 结果.2cm的直角三角:由三视图知,几何体是一个三棱锥,底面是直角边长为1cm和解答:解2,1×2=1cm形,面积是×3cm,这是三棱锥的高,三棱锥的一条侧棱与底面垂直,且长度是33=1cm×1×∴三棱锥的体积是,.故选A本题解题的关键是根据三视图看出几何体的形状和长点评:本题考查由三视图还原几何体,度,注意三个视图之间的数据关系,本题是一个基础题.平x+2y+4=0l::ax+2y﹣1=0与直线Ra∈,则“a=1”是“直线l54.(分)(2012?浙江)设21)行的(必要不充分条件分不必要条件B.A.充不充分也不必要条件D.既C.充分必要条件要条件、充分条件与充要条件的判断.考点:必易逻辑.专题:简分析::ly+C=0与直线利用充分、必要条件进行推导,结合两直线直线l:Ax+B21111 C可得答案.=ABB≠Ay+CAx+B=0平行的充要条件是A122212122)充分性:1:(解答:解x+2y+4=0:平行;x+2y﹣1=0与直线l:a=1当时,直线l21 2)必要性:(x+2y+4=0平行时有::﹣l当直线:ax+2y1=0与直线l21.,即:??a2=21a=12∴“a=1”是“直线l:ax+2y﹣1=0与直线l:x+2y+4=0平行”充分必要条件.21故选C.点评:本题考查充分条件、必要条件、充分必要条件以及两直线平行的充要条件,属于基础题型,要做到熟练掌握.5.(5分)(2012?浙江)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直的判定定理可证明B是正确的,对于其它选项,可利用举反例法证明其是错误命题解答:解:A,若l∥α,l∥β,则满足题意的两平面可能相交,排除A;B,若l∥α,l⊥β,则在平面α内存在一条直线垂直于平面β,从而两平面垂直,故B正确;C,若α⊥β,l⊥α,则l可能在平面β内,排除C;D,若α⊥β,l∥α,则l可能与β平行,相交,排除D故选 B点评:本题主要考查了空间线面、面面位置关系,空间线面、面面垂直于平行的判定和性质,简单的逻辑推理能力,空间想象能力,属基础题6.(5分)(2012?浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()DC A B....考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:首先根据函数图象变换的公式,可得最终得到的图象对应的解析式为:y=cos(x+1),然后将曲线y=cos(x+1)的图象和余弦曲线y=cosx进行对照,可得正确答案.解答:解:将函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为:y=cosx+1,再将y=cosx+1图象向左平移1个单位长度,再向下平移1个单位长度,得到的图象对应的解析式为:y=cos(x+1),∵曲线y=cos(x+1)由余弦曲线y=cosx左移一个单位而得,,且在区间),),0和(0经过点x+1y=cos∴曲线()(,()0上函数值小于由此可得,A选项符合题意.A故选3点评:本题给出一个函数图象的变换,要我们找出符合的选项,着重考查了函数图象变换规律和函数y=Asin(ωx+φ)的图象变换公式等知识点,属于基础题.,是两个非零向量.则下列命题为真命题的是()分)(2012?浙江)设7.(5A.⊥| +|=||﹣若,则||B.||,则|=|||+若﹣⊥C.λ,使得=|若||,则存在实数+λ|=||﹣D.||||λ若存在实数+,使得=﹣λ,则|=|考点:平面向量的综合题.专题:平面向量及应用.分析:通过向量和向量的模相关性质进行判断即可.解答:2222|||≠|,+20?得=||,?+||A解:对于,若=|﹣+|=||﹣﹣||,则||2|||+|||与不垂直,所以A不正确;||,所以B不正确;|≠||对于B,由A解析可知,﹣|+2222||||?+||+﹣|=||﹣||,则=||2|+||﹣||+2?|=||,则,若对于C,得|λ,所以C=,使得=﹣1正确.,则与反向,因此存在实数λcosθ22?0≠,因此||,则λ?=,由于||λ,﹣不能等于||||=λD对于,若存在实数λ||,所以D|||﹣|||,则|不正确.+|≠﹣故选C.点评:本题考查向量的关系的综合应用,特例法的具体应用,考查计算能力.8.(5分)(2012?浙江)如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是().DC2.B 3.A .考点:圆锥曲线的共同特征.专题:圆锥曲线的定义、性质与方程.分析:根据M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分,可得椭圆的长轴长是双曲线实轴长的2倍,利用双曲线与椭圆有公共焦点,即可求得双曲线与椭圆的离心率的比值.解答:解:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍∵双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故选B.点评:本题考查椭圆、双曲线的几何性质,解题的关键是确定椭圆的长轴长是双曲线实轴长的2倍.9.(5分)(2012?浙江)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()C.5 D B..6A.考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:()(3x+4y)将x+3y=5xy,展开后利用基转化成=1,然后根据3x+4y=本不等式可求出3x+4y的最小值.解答:解:∵正数x,y满足x+3y=5xy,∴=1(3x+4y=+2+=5)(3x+4y)=≥+∴+当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选:C点评:本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.10.(5分)(2012?浙江)设a>0,b>0,e是自然对数的底数()abab B.A.+3b,则a<若若eeb +2a=ea+3b,则>b +2a=e abab.D.C﹣3b,则a>b ,则3ba<b 若e2a=e若e2a=e﹣﹣﹣考点:指数函数综合题.专题:函数的性质及应用.abab分析:﹣3b,若a≥b成立,2a=e;对于成立,经分析可排除≤,若于对e+2a=e+3babBe﹣经分析可排除C,D,从而可得答案.5解答:baab b≥ba这与aa≤b成立,则必有e≤≤e,故必有2a≥3be解:对于,+2a=e即有+3b,若B不对;a≤b成立不可能成立,故矛盾,故baab,故排除b,即有a≥b成立,则必有ea≥e≥,故必有2a≥对于e3b﹣2a=e,若﹣3b .C,D .故选A baba点评:根据选项中的条件逆+2a=e﹣+3b与ee3b﹣2a=e,题考查指数函数综合题,本对于向分析而排除不适合的选项是关键,也是难点,属于难题.28分.二、填空题:本大题共7小题,每小题4分,共人,用分层抽样的方法从该年4204.(分)(2012?浙江)某个年级有男生560人,女生11160级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.考点:分层抽样方法.专题:概率与统计.分析:先根据男生和女生的人数做出年纪大总人数,用要抽取得人数除以总人数得到每个个体被抽到的概率,用男生人数乘以概率,得到结果.解答:解:∵有男生560人,女生420人,∴年级共有560+420=980∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故答案为:160点评:本题考查分层抽样方法,本题解题的关键是在抽样过程中每个个体被抽到的概率相等,这是解题的依据,本题是一个基础题.12.(4分)(2012?浙江)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为的概率是.考点:列举法计算基本事件数及事件发生的概率.专题:空间位置关系与距离;概率与统计.分析:先求出随机(等可能)取两点的总数,然后求出满足该两点间的距离为的种数,最后根据古典概型的概率公式求之即可.解答:解:从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点共有=10 种种可能的必选中心,共有其中两点间的距离为46的概率是=故该两点间的距离为故答案为:点评:本题主要考查了古典概型的概率,同时考查了分析问题的能力,属于基础题..浙江)若某程序框图如图所示,则该程序运行后输出的值是分)13.(4(2012?循环结构.考点:法和程序框图.:专题算时结束循环,输出结果即可.分析:通过循环框图,计算循环变量的值,当i=6解答:,T=,i=3T=1解:循环前,,i=2,不满足判断框的条件,第1次循环,i=4,,不满足判断框的条件,第2次循环,T=,T=次循环,i=5,不满足判断框的条件,第3i=6,,T=次循环,不满足判断框的条件,第4.满足判断框的条件,退出循环,输出结果.故答案为:7点评:本题考查循环结构的应用,注意循环的变量的计算,考查计算能力.z的取值范围是z=x+2y4分)(2012?浙江)设,其中实数x,y则满足.14(.][0,简单线性规划.考点:等式的解法及应用.专题:不z在目标函数中的几何意义,分析:根据已知的约束条件画出满足约束条件的可行域,结合的范围.求出目标函数的最大值、及最小值,进一步线出目标函数z 解答:对应的平面区域如图示:解:约束条件z=0 0)处取得最小值,此时O(0,在由图易得目标函数z=2y+xz=),此时B在B处取最大值,由可得(]的取值范围为:Z=x+2y[0,故][0故答案为:,8用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件,利用目标函数点评:z 的几何意义是关键.中﹣=??浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则分)15.(4(2012 16.考点:平面向量数量积的运算.:平面向量及应用.专题分析:)以及两﹣)?(= π设∠AMB=θ,则∠AMC=﹣θ,再由(﹣个向量的数量积的定义求出结果.解答:﹣,=πAMC=﹣θ.又﹣,=∠解:设AMB=θ,则∠(??﹣﹣,﹣)=?+)=∴(﹣? +9=﹣16,5cos﹣3×(π﹣θ)θ﹣=﹣255×3cos 故答案为﹣16.题主要考查两个向量的数量积的定义,属于基础题.点评:本时,1,]xR)是定义在上的周期为2的偶函数,当∈[0xf?(416.(分)2012浙江)设函数(.,则)(fx=x+1=9考点:函数的周期性;函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:上的)是定义在,再利用函数f(x利用函数的周期性先把转化成fR()(f),代入已知求解即可.偶函数转化成R上的周期为2的函数,解答:解:∵函数f(x)是定义在(),∴=f=f(+2)x)是定义在R上的偶函数,又∵函数f(()∴f,()=f ,)=x+1[0∈,1]时,f(x又∵当x∴f,()+1==.=则.故答案为:题主要考查函数的性质中的周期性和奇偶性,属于基础题,应熟练掌握.点评:本到直线的距离的最小值称为曲线C(2012?浙江)定义:曲线C上的点到直线l17.(4分)222到直线+(y+4)=2C:y=xl+a到直线:y=x的距离等于曲线C:x的距离,已知曲线l21的距离,则实数a=.l:y=x考点:利用导数研究曲线上某点切线方程;点到直线的距离公式.专题:导数的概念及应用.22分析:=2到直线l:y=x的距离,然后根据曲线C根据定义求出曲线C:x:+(y+4)先122+a 的切线与直线y=x平行时,该切点到直线的距离最近建立等式关系,解之即可.y=x22解答:=2的圆心为(0,﹣4)(y+4),半径为,解:圆x+圆心到直线y=x的距离为=2,22C∴曲线=2到直线l:y=x 的距离为2:xy+4+().﹣=22+a到直线l:y=x的距离等于则曲线C:y=x,1令y′=2x=1解得x=,故切点为(,+a),切线方程为y﹣(+a)=x﹣即x﹣y﹣+a=0,由题意可知x﹣y﹣+a=0与直线y=x的距离为,10a=.即解得或﹣2 y=x相交,故不符合题意,舍去.+a时直线y=x与曲线C当a=:﹣1.故答案为:题主要考查了利用导数研究曲线上某点切线方程,以及点到直线的距离的计算,同点评:本时考查了分析求解的能力,属于中档题.分.解答应写出文字说明、证明过程或演算步骤.小题,共72三、解答题:本大题共5.bsinA=c,且acosB,B,C的对边分别为a,b,内角18.(14分)(2012?浙江)在△ABC 中,A 的大小;)求角B(1 c的值.a,sinC=2sinA,求,(2)若b=3三角形.考点:解三角形.专题:解sinA,sinA不为0,等式两边同时除以分析:(1)将已知的等式利用正弦定理化简,根据为三角形的内角,利用特殊的值,由B再利用同角三角函数间的基本关系求出tanB B的度数;角的三角函数值即可求出cosBb及的方程,记作①,再由2)由正弦定理化简sinC=2sinA,得到关于a与c(a①②即可求出的另一个方程,记作②,联立的值,利用余弦定理列出关于a与c c的值.与解答:,acosBsinBsinA=及正弦定理sinAcosB=解:(1)由,得:bsinA= ,sinA≠0∵A为三角形的内角,∴,tanB=∴sinB=cosB,即;B=又B为三角形的内角,∴及正弦定理sinC=2sinA (2)由,得:=c=2a①,22222b由余弦定理∵b=3,cosB=,∴②+c,+c﹣﹣2accosB得:9=aac=ac=2a=,联立①②解得:.题属于解直角三角形的题型,涉及的知识有:正弦、余弦定理,同角三角函数间的点评:此基本关系,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.*2},数列n,∈N,且{a}的前n项和为SS=2n{b+n浙江)已知数列分)19.(14(2012?nnnn*∈N.,满足a=4logb+3n nn2;,b1()求a nn.n项和T}{a(2)求数列?b的前nnn数考点:列的求和;等差关系的确定;等比关系的确定.等专题:差数列与等比数列.11 2分析:+n可得,当n=1时,可求a=3,当n≥2时,由a=s﹣s可求通项,Ⅰ)由S=2n(11nnnn﹣进而可求b n)知,,利用错位相减可求数列的和Ⅰ(Ⅱ)由(2解答:+n可得,当n=1时,=2na=s=3:解(Ⅰ)由S11n22﹣(n﹣1)=4n﹣﹣2(n﹣1)时,当n≥2a=s﹣s=2n1 +n1nnn﹣而n=1,a=4﹣1=3适合上式,1故a=4n﹣1,n又∵a=4logb+3=4n﹣1n2n∴)知,Ⅰ(Ⅱ)由(nn21﹣)?2+(4n2﹣1)?=32T×2+7×2…++(4n﹣5n∴n?2(4n﹣1)=nnn+5 ?24n﹣5)(2﹣2)]=)=(4n﹣1?2(﹣[3+4点评:本题主要考查了数列的递推公式在数列的通项公式求解中的应用,数列求和的错位相减求和方法的应用.20.(15分)(2012?浙江)如图,在侧棱垂直底面的四棱柱ABCD﹣ABCD中,AD∥BC,1111AB=.AD=2,BC=4,AA=2,E是DD的中点,F是平面BCEABAD⊥,与直线AA11111的交点.(1)证明:(i)EF∥AD;11(ii)BA⊥平面BCEF;111(2)求BC与平面BCEF所成的角的正弦值.11112考点:直线与平面所成的角;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)(i)先由CB∥AD证明CB∥平面ADDA,再由线面平行的性质定理得出11111111CB∥EF,证出EF∥AD.1111(ii)易通过证明BC⊥平面ABBA得出BC⊥BA,再由1111111B=,即∠ABF=∠AAB,得出BA⊥tan∠ABF=tan∠AABF.所以BA⊥平111111111面BCEF;11(2)设BA与BF交点为H,连接CH,由(1)知BA⊥平面BCEF,所以∠BCH1111111是BC与平面BCEF所成的角.在RT△BHC中求解即可.1111解答:(1)证明(i)∵CB∥AD,CB?平面ADDA,∴CB∥平面ADDA,111111111111又CB?平面BCEF,平面BCEF∩平面ADDA=EF,11111111∴CB∥EF,∴EF∥AD;1111(ii)∵BB⊥平面ABCD,∴BB⊥BC,11111111又∵BC⊥BA,1111∴BC⊥平面ABBA,1111∴BC⊥BA,111B=,即∠AAtan∠ABF=tan中,在矩形ABBAF是AA的中点,111111∠ABF=∠AAB,故BA⊥BF.11111所以BA⊥平面BCEF;111(2)解:设BA与BF交点为H,11连接CH,由(1)知BA⊥平面BCEF,所以∠BCH是BC与平面BCEF所成11111111的角.BH=,AA=2,得在矩形AABB中,AB=,111=,BCsin∠H=中,RT在△BHCBC=2,111所成的角的正弦值是.EFB所以BC与平面C111点评:本题考查空间直线、平面位置故选的判定,线面角求解.考查空间想象能力、推理论证能力、转化、计算能力.133﹣2ax+a.(x)=4x(2012?浙江)已知a∈R,函数f21.(15分)(1)求f(x)的单调区间;(2)证明:当0≤x≤1时,f(x)+|2﹣a|>0.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.2分析:﹣=12x2a=12′(x)0恒成立;a>0时,f′(1)求导函数,再分类讨论:a≤0时,f (x)≥x+),由此可确定f(x(x)的单调区间;﹣)(33﹣4x+2;当a>2﹣2ax+2≥4x时,f≤1,故当a≤2时,f(x)+|2﹣a|=4x(2)由于0≤x3333=2x)g(x﹣2=4x﹣4x+2,)﹣2≥4x构造函数+4(1﹣x)(x)+|2﹣a|=4xx+2a(1﹣﹣>0,即可证得结论.)=g ()=1﹣2x+1,0≤x≤1,确定g(x min2解答:﹣2ax)=12x1)解:求导函数可得f′((a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞)2x+)((x ﹣时,f′(x)=12x)﹣2a=12a>0;单调递减区间为(﹣),﹣,,+),∞(∴f(x)的单调递增区间为(﹣∞;),故≤12)证明:由于0≤x(334x+2﹣﹣2ax+2≥时,f(x)+|2﹣a|=4x4x2当a≤3334x+2 2=4x4x﹣+4(1﹣x)﹣x当a>2时,f()+|2﹣a|=4x1+2a(﹣x)﹣2≥3))﹣(=61设g(x)=2x﹣2x+1,0≤x≤,∴g′(x)(xx+0 x (),)(0,1+ ﹣)g ′(x极小值(gx),0g(x)在(∴1,)上单调减,在()上单调增函数)x∴g(﹣>)=g=1(0min32x时,x≤1当∴0≤﹣2x+1>0∴当0≤x≤1时,f(x)+|2﹣a|>0.点评:本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,属于中档题.2=2pxy)到抛物线C中,点P(1:,xOy(.22(14分)2012?浙江)如图,在直角坐标系)的准线的距离为.点M(t,1)是C上的定点,A,B是C0P(>上的两动点,且线段AB 被直线OM平分.(1)求p,t的值.14(2)求△ABP面积的最大值.考点:直线与圆锥曲线的综合问题;抛物线的简单性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:2)的准线的距离为.列出方程,>0=2px((1P,)到抛物线C:yP(1)通过点求出p,t的值即可.(2)设A(x,y),B(x,y),线段AB的中点为Q(m,m),设直线AB的斜2121m=﹣.利用弦长公式AB的方程k≠0)y,利用推出率为k,(求出|AB|,设点P到直线AB的距离为d,利用点到直线的距离公式求出d,设△ABP2|.利用函数的导数求出mm﹣△)ABP的面积为S,求出=|1S=﹣2(面积的最大值.解答:得,.1)由题意可知解:((2)设A(x,y),B(x,y),线段AB的中点为Q(m,m),2112由题意可知,设直线AB的斜率为k,(k≠0),由得,(y﹣y)(y+y)=x﹣x,212121故k?2m=1,m=.﹣所以直线AB方程为y22﹣m=2my.+y>0,y=2m,y﹣即△=4m4m2112=,|AB|= 从而设点P到直线AB的距离为d,则d=,设△ABP的面积为S,则2|.mm2=|1S=﹣(﹣)15=>0,得0<m<1,由△2,,﹣2u )令,则u=,S=u(12u==0,得S′(u)=1′,则S(u)﹣6u,=.()S所以=S最大值面积的最大值为△ABP .故点评:本题考查直线与圆锥曲线的综合问题,抛物线的简单性质,函数与导数的应用,函数的最大值的求法,考查分析问题解决问题的能力.16。

2012年浙江省高考数学试卷(理科)答案与解析

2012年浙江省高考数学试卷(理科)答案与解析

2012年浙江省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.(5分)(2012•浙江)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i3.(5分)(2012•浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2012•浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A .B.C.D.5.(5分)(2012•浙江)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||6.(5分)(2012•浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(5分)(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列8.(5分)(2012•浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心()A.B.C.D.9.(5分)(2012•浙江)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b10.(5分)(2012•浙江)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2012•浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.12.(4分)(2012•浙江)若某程序框图如图所示,则该程序运行后输出的值是.13.(4分)(2012•浙江)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.14.(4分)(2012•浙江)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=.15.(4分)(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=.16.(4分)(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.17.(4分)(2012•浙江)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.19.(14分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).20.(15分)(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.21.(15分)(2012•浙江)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.22.(14分)(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.。

2013年浙江省高考数学试卷及答案(文科)

2013年浙江省高考数学试卷及答案(文科)

绝密★考试结束前2013年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径如果事件,A B 互斥 ,那么()()()P A B P A P B +=+(第5题图)俯视图侧视图正视图323244(第8题图)-11Oxy一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2},{|41},S x x T x x ST =>-=-≤≤=则.A [4,)-+∞ .B (2,)-+∞ .C [4,1- .D (2,1]- 2.已知i 是虚数单位,则(2)(3)i i ++=.A 55i - .B 75i - .C 55i + .D 75i + 3.若a R ∈,则“0a = ”是“sin cos αα< ”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 4.设m,n 是两条不同的直线,,αβ是两个不同的平面.A ,,m n m n αα//////若则 .B ,,m m αβαβ//////若则 .C ,,m n m n αα⊥⊥//若则 .D ,,m m ααββ⊥⊥//则 5.已知某几何体的三视图(单位:mm )如图所示,则该几何体的体积是 .A 2108cm .B 2100cm .C 292cm .D 284cm 6.函数3()sin cos cos 22f x x x x =+的最小正周期和振幅分别是 .A ,1π .B ,2π .C 2,1π .D 2,2π 7.,,a b c R ∈函数2(),(0)(4)(1),f x ax bx c f f f =++=>若则 .A 0,40a a b >+= .B 0,40a a b <+=.C 0,20a a b >+= .D 0,20a a b <+=8.已知函数()y f x =的图象是下列四个图象之一,且其导函数()y f x '=的如 右图所示,则该函数的图象是9.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是 .A 2 .B 3 .C 32.D 6210.设,a b R ∈,定义运算“∧”和“∨”如下: a a b b a ba b a b b a b a a b ≤≤⎧⎧∧=∨=⎨⎨>>⎩⎩若正数,,,4,4,a b c d ab c d ≥+≤满足则.A 2,2a b c d ∧≥∧≤ .B 2,2a b c d ∧≥∨≥.C 2,2a b c d ∨≥∧≤ .D 2,2a b c d ∨≥∨≥ 二.填空题:本大题共7小题,每小题4分,共28分.11.已知函数()1,()3,f x x f a =-=若则实数a = .12.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这两名同学都是女生的概率等于 .13.直线23y x =+被圆22680x y x y +--=所截得的弦长等于 . 14.若某程序框图如图所示,则该程序运行后输出的值等于 .15.设,z kx y =+其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k = .16.设,a b R ∈,若0x ≥时恒有43220(1)x x ax b x ≤-++≤-,则ab = . 17.设12,e e 为单位向量,非零向量1212,,.,b xe ye x y R e e =+∈若的夹角为6π,则||||x b 的最大值等于 .三.解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2sin 3.a B b = (Ⅰ)求角A 的大小;ⅠⅠ()若6,8,a b c ABC =+=∆求的面积.19.(本题满分14分)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列. (Ⅰ)求d ,n a ;ⅠⅠ()120,|||||.n d a a a <+++若求|(第20题图)GPB CDA20.(本题满分15分)如图,在四棱锥P ABCD -中,,2,PA ABCD AB BC ⊥==平面7,3,120,A D C D P A A B C G ===∠=为线段PC 上的点.(Ⅰ)证明:BD APC ⊥平面;ⅠⅠ()若G 为PC 的中点,求DG 与平面APC 所成角的正切值; (ⅠⅠⅠ)若G 满足,PC BGD ⊥平面求PGGC的值.21.(本题满分15分)已知a R ∈,函数32()23(1)6f x x a x ax =-++ (Ⅰ)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程; ⅠⅠ()若||1a >,求()f x 在闭区间[0,2||]a 上的最小值.22.(本题满分14分)已知抛物线C 的顶点为(0,0)O ,焦点为(0,1)F . (Ⅰ)求抛物线C 的方程;ⅠⅠ()过点F 作直线交抛物线C 于,A B 两点,若直线,AO BO 分别交直线:2l y x =-于,M N 两点,求||MN 的最小值.参考答案一.选择题:本题考查基本知识和基本运算.每小题5分,满分50分.题号1 2 3 4 5 6 7 8 9 10 答案D C A C B A A BDC二.填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.10 112.5 13.45 914.515.2 16.1- 17.2 三.解答题:本大题共5小题,共72分18.(本题满分14分)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2sin 3.a B b = (Ⅰ)求角A 的大小;ⅠⅠ()若6,8,a b c ABC =+=∆求的面积. (Ⅰ) 解:由2sin 3a B b =及正弦定理sin sin a bA B=,得3sin 2A = 因为A 为锐角,所以 3A π=ⅠⅠ()由余弦定理222222cos 36ab c bc A b c bc =+-+-=得,又8b c +=所以 283bc =由三角形面积化工得1128373sin 22323ABC S bc A ∆==⋅⋅= 19.(本题满分14分)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列.(Ⅰ)求d ,n a ;ⅠⅠ()120,|||||.n d a a a <+++若求|(Ⅰ) 解;:由题意得223125(22)34014a a a d d d d ⋅=+⇒--=⇒=-=或所以 11,*46,*.n n a n n N a n n N =-∈=+∈或ⅠⅠ()设数列{}n a 的前n 项和为n S ,因为0,d <由(Ⅰ)得1,11,n d a n =-=-则当11n ≤时,212121||||||.22n n a a a S n n +++==-+当12n ≥时,21211121||||||2110.22n n a a a S S n n +++=-+=-+综上即得212212111,22||||||12111012.22n n n n a a a n n n ⎧-+≤⎪⎪+++=⎨⎪-+≥⎪⎩20.(本题满分15分)如图,在四棱锥P ABCD -中,,2,PA ABCD AB BC ⊥==平面7,3,120,A D C D P A A B C G ===∠=为线段PC 上的点.(第20题图)OG PB CDA(Ⅰ)证明:BD APC ⊥平面;ⅠⅠ()若G 为PC 的中点,求DG 与平面APC 所成角的正切值;(ⅠⅠⅠ)若G 满足,PC BGD ⊥平面求PG GC的值. (Ⅰ)设点O 为,AC BD 的交点,由,,AB BC AD CD BD ==得是线段AC 的中垂线. 所以O 为AC 的中点,BD AC ⊥ ①又因为,,PA ABCD BD ABCD PA BD ⊥⊂⊥平面平面所以 ② 由①②即得 BD APC ⊥平面.ⅠⅠ()连结OG 由(Ⅰ)可知OD APC ⊥平面,则DG 在平面APC 内的射影为OG ,所以OGD ∠是DG 与平面APC 所成的角,由题意得1322OG PA == 在ABC ∆中, 222cos 23AC AB BC AB BC ABC =+-⋅∠=所以 132OC PA == 在Rt OCD ∆中,222OD CD OC =-= 在Rt OGD ∆中,43tan 3OD OGD OG ∠== 所以与DG 平面APC 所成角的正切值433. (ⅠⅠⅠ)连结OG ,因为,,PCBGD OG BGD PC OG ⊥⊂⊥平面平面所以在Rt PAC ∆中,得15PC =,从而2155AC OC GC PC ⋅==,315,5PG = 所以3.2PG GC = 21.(本题满分15分)已知a R ∈,函数32()23(1)6f x x a x ax =-++ (Ⅰ)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程; ⅠⅠ()若||1a >,求()f x 在闭区间[0,2||]a 上的最小值.(Ⅰ) 当1a =时,2()6126f x x x '=-+,所以(2) 6.f '=又因为(2)4f =,所以切线方程为 68y x =- ⅠⅠ() 记()g a 为()f x 在闭区间[0,2||]a 上的最小值,2()66(1)66(1)().f x x a x a x x a '=-++=--令12()0,1,f x x x a '===得当1a >时,x 0(0,1)1(1,)a a (,2)a a2a()f x '+0 -+()f x单调递增 极大值31a - 单调递减极小值2(3)aa -单调递增34a比较(0)f 和2()(3)f a a a =-的大小可得213()(3)3a g a a a a <≤⎧=⎨->⎩ 当1a <-时x 0(0,1)1(1,2)a -2a -()f x '-+()f x0 单调递减极小值31a -单调递增322824a a --得 ()31g a a =-综上所述,()f x 在闭区间[0,2||]a 上的最小值为2311()013(3)3a a g a a a a a ⎧-<-⎪=<≤⎨⎪->⎩. 22.(本题满分14分)已知抛物线C 的顶点为(0,0)O ,焦点为(0,1)F . (Ⅰ)求抛物线C 的方程;ⅠⅠ()过点F 作直线交抛物线C 于,A B 两点,若直线,AO BO 分别交直线:2l y x =-于,M N 两点,求||MN 的最小值. (Ⅰ) 设抛物线C 方程为22(0)x py p =>,则1.2p= 所以抛物线C 的方程为 24x y = ⅠⅠ()设1122(,),(,),A x y B x y 直线AB 的方程为1y kx =+由2214404y kx x kx x y=+⎧⇒--=⎨=⎩得12124,4x x k x x +=⋅= 从而 212||41x x k -=+由112y y x x y x ⎧=⎪⎨⎪=-⎩ 得点M 的横坐标 1121111122844M x x x x x y x x ===--- 同理得点N 的横坐标 284N x x =- 所以21212121288821||22||2||82||444()16|43|M N x x k MN x x x x x x x x k -+=-=-==---++-令343,0,.4t k t t k +-=≠=则 当0t <时,2256||22122MN t t=++> 当0t <时,2531682||22().5255MN t =++≥ 综上所述,当253t =-,即43k =-时,||MN 的最小值是82.5。

浙江省高考数学压轴试卷

浙江省高考数学压轴试卷

高考数学压轴试卷题号一二三总分得分一、选择题(本大题共11小题,共44.0分)1.已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},则A∩(∁U B)()A. ∅B. {5}C. {3}D. {3,5}2.已知双曲线(a>0)的离心率为,则a的值为()A. B. C. D.3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为()A. 4+2B. 2C. 4+4D. 6+44.若复数z满足:1+(1+2z)i=0(i是虚数单位),则复数z的虚部是()A. B. C. D.5.函数y=2x2-e|x|在[-2,2]的图象大致为()A. B.C. D.6.已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.(1-x)4(1+x)5的展开式中x3的系数为()A. 4B. -4C. 6D. -68.4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了查.根据调查结果知道,从该校学生中任意抽取1名学生恰为读书迷的概率是.现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,则期望E(X)和方差D(X)分别是()A. ,B. ,C. ,D. ,9.已知A,B,C是球O球面上的三点,且,D为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D-ABC体积的最大值为()A. B. C. D.10.设S n为等差数列{a n}的前n项和,若a7=5,S5=-55,则nS n的最小值为()A. B. C. D.11.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有()A. 120种B. 156种C. 188种D. 240种二、填空题(本大题共6小题,共32.0分)12.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有______人;所合买的物品价格为______元.13.已知x,y满足条件则2x+y的最大值是______,原点到点P(x,y)的距离的最小值是______14.在△ABC中,若b=2,A=120°,三角形的面积,则c=________;三角形外接圆的半径为________.15.已知向量、满足||=1,||=2,则|+|+|-|的最小值是______,最大值是______.16.已知实数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围为______.17.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈[,],则a的最大值为______.三、解答题(本大题共5小题,共60.0分)18.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.19.已知等差数列{a n}的前n项和为S n,若.(1)求首项a1与m的值;(2)若数列{b n}满足,求数列{(a n+6)•b n}的前n项和.20.如图,已知四棱锥P-ABCD,底面ABCD为菱形,AB=2,∠BAD=120°,PA⊥平面ABCD,M,N分别是BC,PC的中点.(1)证明:AM⊥平面PAD;(2)若H为PD上的动点,MH与平面PAD所成最大角的正切值为,求二面角M-AN-C的余弦值.21.已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.(1)求该抛物线C的方程;(2)已知抛物线上一点M(t,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断直线DE是否过定点?并说明理由.22.已知函数.若函数是单调递减函数,求实数a的取值范围;若函数在区间上既有极大值又有极小值,求实数a的取值范围.答案和解析1.【答案】D【解析】解:∵U={1,2,3,4,5,6},B={1,2},∴∁U B═{3,4,5,6},又集合A={1,3,5},∴A∩∁U B={3,5},故选:D.先由补集的定义求出∁U B,再利用交集的定义求A∩∁U B.本题考查交、并补集的混合运算,解题的关键是熟练掌握交集与补集的定义,计算出所求的集合.2.【答案】B【解析】解:双曲线,可得c=1,双曲线的离心率为:,∴,解得a=.故选:B.直接利用双曲线求出半焦距,利用离心率求出a即可.本题考查双曲线的离心率的求法,双曲线的简单性质的应用.3.【答案】D【解析】解:根据题意和三视图知几何体是一个放倒的直三棱柱ABC-A′B′C′,底面是一个直角三角形,两条直角边分别是、斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积S=2×+2×2+2×=6+4,故选:D.根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.4.【答案】B【解析】解:由1+(1+2z)i=0,得z=,∴复数z的虚部是,故选:B.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于基础题.根据已知函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵,∴,故函数为偶函数,当时,,故排除A,B;当时,,则有解为x0,当时,时,故函数在[0,2]不是单调的,故排除C,故选D.6.【答案】A【解析】解:a⊥α,且b⊥α⇒a∥b,反之不成立.可能a,b分别于α,β斜交.∴“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选:A.a⊥α,且b⊥α⇒a∥b,反之不成立.可能a,b分别于α,β斜交.本题考查了空间线面位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.【答案】B【解析】解:(1-x)4(1+x)5=(1-4x+6x2-4x3+x3)(1+5x+10x2+10x3+5x4+x5),故展开式中x3的系数为10-40+30-4=-4,故选:B.把(1-x)4和(1+x)5按照二项式定理展开,可得展开式中x3的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.【答案】B【解析】解:由题意,从该校学生中任意抽取1名学生恰为读书迷的概率.从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,所以.X0123p均值,方差.从该校学生中任意抽取1名学生恰为读书迷的概率.说明每次抽取的结果是相互独立的,推出.得到分布列,然后求解期望即可.本题考查独立重复实验的概率的分布列以及期望的求法,考查转化思想以及计算能力.9.【答案】D【解析】解:如图,在△ABC中,∵AB=AC=3,BC=3,∴由余弦定理可得cos A==-,则A=120°,∴sin A=.设△ABC外接圆的半径为r,则,得r=3.设球的半径为R,则,解得R=2.∵×3×3×=,∴三棱锥D-ABC体积的最大值为=,故选:D.由题意画出图形,求出三角形ABC外接圆的半径,设出球的半径,利用直角三角形中的勾股定理求得球的半径,则三棱锥D-ABC体积的最大值可求.本题主要考查空间几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等,是中档题.10.【答案】A【解析】解:由题意可得,解可得a1=-19,d=4,∴S n=-19n=2n2-21n,∴nS n=2n3-21n2,设f(x)=2x3-21x2,f′(x)=6x(x-7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:-343.故选:A.分别利用等差数列的通项公式及求和公式表示已知条件,然后求出得a1,d,在代入求和公式即可求解.本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题.11.【答案】A【解析】【分析】本题考查排列、组合的应用,注意题目限制条件比较多,需要优先分析受到限制的元素,是简单题.根据题意,由于节目甲必须排在前三位,对甲的位置分三种情况讨论,依次分析乙丙的加法原理计算可得答案.【解答】解:根据题意,由于节目甲必须排在前三位,分3种情况讨论:①甲排在第一位,节目丙、丁必须排在一起,则丙丁相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有4×2×6=48种编排方法;②甲排在第二位,节目丙、丁必须排在一起,则丙丁相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有3×2×6=36种编排方法;③甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有=6种安排方法,则此时有3×2×6=36种编排方法;则符合题意要求的编排方法有36+36+48=120种;故选:A.12.【答案】7 ;53【解析】解:设人数为x,物品价格为y,则,解得x=7,y=53.故答案为:7,53.列方程组求解.本题考查了方程的应用,属于基础题.13.【答案】6【解析】解:作出x,y满足条件的可行域如图:目标函数z=2x+y在的交点A(2,2)处取最大值为z=2×2+1×2=6.原点到点P(x,y)的距离的最小值是:|OB|=.故答案为:6;;画出约束条件表示的可行域,判断目标函数z=2x+y的位置,求出最大值.利用可行域转化求解距离即可.本题考查简单的线性规划的应用,正确画出可行域,判断目标函数经过的位置是解题的关键.14.【答案】2;2【解析】【分析】本题主要考查正弦定理的应用,三角形的面积公式,属于基础题.由条件求得c =2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解答】解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sin A=c•,∴c=2=b,故B=(180°-A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2.故答案为2;2.15.【答案】4【解析】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|-|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=-x+z,则直线y=-x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=-x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max=×=.综上所述,|+|+|-|的最小值是4,最大值是.故答案为:4、.通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|-|=,进而换元,转化为线性规划问题,计算即得结论.本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.【答案】(-∞,-2]【解析】解:原问题等价于f2(x)+f(x)=-t有三个不同的实根,即y=-t与y=f2(x)+f(x)有三个不同的交点,当x≥0时,y=f2(x)+f(x)=e2x+e x为增函数,在x=0处取得最小值为2,与y=-t只有一个交点.当x<0时,y=f2(x)+f(x)=lg2(-x)+lg(-x),根据复合函数的单调性,其在(-∞,所以,要有三个不同交点,则需-t≥2,解得t≤-2.原问题等价于f2(x)+f(x)=-t有三个不同的实根,即y=-t与y=f2(x)+f(x)有三个不同的交点,然后分x≥0和x<0两种情况代入解析式可得.本题考查了函数与方程的综合运用,属难题.17.【答案】【解析】解:设A(x1,y1)、B(x2,y2),由,消去y,可得(a2+b2)x2-2a2x+a2(1-b2)=0,∴则x1+x2=,x1x2=,由△=(-2a2)2-4a2(a2+b2)(1-b2)>0,整理得a2+b2>1.∴y1y2=(-x1+1)(-x2+1)=x1x2-(x1+x2)+1.∵OA⊥OB(其中O为坐标原点),可得•=0∴x1x2+y1y2=0,即x1x2+(-x1+1)(-x2+1)=0,化简得2x1x2-(x1+x2)+1=0.∴2•-+1=0.整理得a2+b2-2a2b2=0.∵b2=a2-c2=a2-a2e2,∴代入上式,化简得2a2=1+,∴a2=(1+).∵e∈[,],平方得≤e2≤,∴≤1-e2≤,可得≤≤4,因此≤2a2=1+≤5,≤a2≤,可得a2的最大值为,满足条件a2+b2>1,∴当椭圆的离心率e=时,a的最大值为.故答案为:.将直线方程代入椭圆方程,由韦达定理,向量数量积的坐标运算,求得2a2=1+,由离心率的取值范围,即可求得a的最大值.本题考查椭圆的标准方程,直线与椭圆的位置关系,韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.18.【答案】解:(Ⅰ)函数f(x)=sin(ωx-)+sin(ωx-)=sinωx cos-cosωx sin-sin(-ωx)=sinωx-cosωx=sin(ωx-),又f()=sin(ω-)=0,∴ω-=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x-),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin (x-)的图象;再将得到的图象向左平移个单位,得到y=sin(x+-)的图象,∴函数y=g(x)=sin(x-);当x∈[-,]时,x-∈[-,],∴sin(x-)∈[-,1],∴当x=-时,g(x)取得最小值是-×=-.【解析】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[-,]时g(x)的最小值.19.【答案】解:(1)由已知得a m=S m-S m-1=4,且a m+1+a m+2=S m+2-S m=14,设数列{a n}的公差为d,则有2a m+3d=14,∴d=2由S m=0,得,即a1=1-m,∴a m=a1+(m-1)×2=m-1=4∴m=5,a1=-4(2)由(1)知a1=-4,d=2,∴a n=2n-6∴n-3=log2b n,得.∴.设数列{(a n+6)b n}的前n项和为T n∴①②①-②得==∴【解析】(1)利用a m=S m-S m-1,转化求出数列的公差,然后利用已知条件求解m.(2)化简数列的通项公式,利用错位相减法求和求解即可.本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.20.【答案】(1)证明:由四边形ABCD为菱形,∠BAD=120°,可得∠ABC=60°,△ABC 为正三角形.因为M为BC的中点,所以AM⊥BC.…(2分)又BC∥AD,因此AM⊥AD.因为PA⊥平面ABCD,AM⊂平面ABCD,所以PA⊥AM.而PA∩AD=A,所以AM⊥平面PAD.…(4分)(2)解:AB=2,H为PD上任意一点,连接AH,MH.由(1)知:AM⊥平面PAD,则∠MHA为MH与平面PAD所成的角.在Rt△MAH中,AM=,∴当AH最短时,∠MHA最大,即当AH⊥PD时,∠MHA最大.此时,tan∠MHA==又AD=2,∴∠ADH=45°,∴PA=2.由(1)知AM,AD,AP两两垂直,以A为坐标原点如图建立空间直角坐标系,则A(0,0,0),P(0,0,2),D(0,2,0),,,,则,,,设AC的中点为E,则,故就是面PAC的法向量,.设平面MAN的法向量为n=(x,y,1),二面角M-AN-C的平面角为θ..,∴二面角M-AN-C的余弦值为.…(12分)【解析】(1)利用菱形与等边三角形的性质可得:AM⊥BC,于是AM⊥AD.利用线面垂直的性质可得PA⊥AM.再利用线面垂直的判定与性质定理即可得出;(2)连接AH,MH.由(1)知:AM⊥平面PAD,可得:∠MHA为EH与平面PAD所成的角.在Rt△EAH中,AM=,可知:当AH最短时,∠MHA最大,即当AH⊥PD时,∠MHA最大.利用直角三角形边角关系可得PA=2.由(1)知AM,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系.求出法向量,利用向量夹角求解即可.本题考查了直线与平面垂直的判定.在题中出现了探究性问题,在解题过程中“空间问题平面化的思路”,是立体几何常用的数学思想,属于中档题.21.【答案】解:(1)由题意设抛物线方程为y2=2px,其准线方程为,∵P(4,m)到焦点的距离等于A到其准线的距离,∴,∴p=2.∴抛物线C的方程为y2=4x.(2)由(1)可得点M(4,4),可得直线DE的斜率不为0,设直线DE的方程为:x=my+t,联立,得y2-4my-4t=0,则△=16m2+16t>0①.设D(x1,y1),E(x2,y2),则y1+y2=4m,y1y2=-4t.∵•=(x1-4,y1-4)•(x2-4,y2-4),=x1x2-4(x1+x2)+16+y1y2-4(y1+y2)+16,=,=,=t2-16m2-12t+32-16m=0即t2-12t+32=16m2+16m,得:(t-6)2=4(2m+1)2,∴t-6=±2(2m+1),即t=4m+8或t=-4m+4,代入①式检验均满足△>0,∴直线DE的方程为:x=my+4m+8=m(y+4)+8或x=m(y-4)+4.∴直线过定点(8,-4)(定点(4,4)不满足题意,故舍去).【解析】(1)求出抛物线的焦点坐标,结合题意列关于p的等式求p,则抛物线方程可求;(2)由(1)求出M的坐标,设出直线DE的方程x=my+t,联立直线方程和抛物线方程,化为关于y的一元二次方程后D,E两点纵坐标的和与积,利用⊥得到t与m的关系,进一步得到DE方程,由直线系方程可得直线DE所过定点.本题考查抛物线的简单性质,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,属中档题.22.【答案】解:(1),∵函数f(x)是单调递减函数,∴f'(x)≤0对(0,+∞)恒成立,∴-2x2+ax-1≤0对(0,+∞)恒成立,即对(0,+∞)恒成立,∵(当且仅当2x=,即x=时取等号),∴;(2)∵函数f(x)在(0,3)上既有极大值又有极小值.∴在(0,3)上有两个相异实根,即2x2-ax+1=0在(0,3)上有两个相异实根,,则,得,即.【解析】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查转化思想以及计算能力.(1)求出导函数,通过f'(x)≤0对(0,+∞)恒成立,分离变量推出a,利用基本不等式求解函数的最小值,得到a的范围.(2)通过函数f(x)在(0,3)上既有极大值又有极小值,则说明导函数有由两个零点,列出不等式组求解即可.。

2012年高考试题及答案

2012年高考试题及答案

2012年高考试题及答案
全国卷大纲版(广西、贵州、甘肃、青海、西藏)(标红链接生效)
2012年全国高考试题难度调

新课标版(黑龙江、吉林、河北、河南、内蒙古、山西、云南、宁夏、新疆)
2012年全国高考试题难度调

北京地区高考试卷及答案
2012年全国高考试题难度调

广东地区高考试卷及答案
2012年全国高考试题难度调

上海地区高考试卷及答案
2012年全国高考试题难度调

湖北地区高考试卷及答案
2012年全国高考试题难度调

陕西地区高考试卷及答案
2012年全国高考试题难度调

湖南地区高考试卷及答案
2012年全国高考试题难度调

福建地区高考试卷及答案
2012年全国高考试题难度调

江西地区高考试卷及答案
2012年全国高考试题难度调

重庆地区高考试卷及答案
2012年全国高考试题难度调

安徽地区高考试卷及答案
2012年全国高考试题难度调

山东地区高考试卷及答案
2012年全国高考试题难度调

江苏地区高考试卷及答案
2012年全国高考试题难度调

四川地区高考试卷及答案
2012年全国高考试题难度调

天津地区高考试卷及答案
2012年全国高考试题难度调

辽宁地区高考试卷及答案
2012年全国高考试题难度调

浙江地区高考试卷及答案
2012年全国高考试题难度调

海南地区高考试卷及答案
2012年全国高考试题难度调查。

20.三角函数的化简求值

20.三角函数的化简求值

1.广东省2012年高考数学考前十五天每天一练(4) 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(D ) A . 43-B .54C .34-D .452.陕西省西工大附中2011届高三第八次适应性训练数学(文) 观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++= ; ②tan13tan35tan35tan 42tan 42tan131++= ; ③tan 5tan100tan100tan(15)+-tan(15)tan 51+-=;一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 .【答案】90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时3.陕西省咸阳市2012届高三上学期高考模拟考试(文科数学) sin 330 的值是( )A .12 B. 12- C. D. 【答案】B4.2012北京宏志中学高考模拟训练-数学理cos300= ( )(A)-12 (C)12【答案】C5.2012北京宏志中学高考模拟训练-数学理 已知2sin 3α=,则cos(2)πα-= ( )(A ) (B )19-6..山东省烟台市2012届高三五月份适应性练习 数学文(二)(2012烟台二模)22sin(250)cos 70cos 155sin 25-︒︒︒-︒的值为A .B .一12C .12D 【答案】C7.山东省烟台市2012届高三五月份适应性练习 数学文(三)已知倾斜角为α的直线的值为则平行与直线α2tan 022,y x l =+- A.54 B.34 C.43 D.32 【答案】A4.(福建省厦门市2012年高中毕业班适应性考试)已知a ∈(3,2ππ),且cos 5α=-,则tan α DA .43B .一43C .-2D .22.(2011年江苏海安高级中学高考数学热身试卷)已知tan 2α=,则s i n ()c o s ()s i n ()c o s ()παπααα++--+-= . 【答案】1贵州省五校联盟2012届高三年级第三次联考试题)10.如果33sin cos cos sin θθθθ->-,且()0,2θπ∈,那么角θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .3,24ππ⎛⎫ ⎪⎝⎭ C .5,44ππ⎛⎫ ⎪⎝⎭ D . 5,24ππ⎛⎫⎪⎝⎭C(贵州省五校联盟2012届高三第四次联考试卷) 5.已知πα<<0,21cos sin =+αα ,则α2cos 的值为 ( ) A.4- B.47 C.47± D.43- A(贵州省2012届高三年级五校第四次联考理) 13.函数sin y x x =-的最大值是 . 2(贵州省2012届高三年级五校第四次联考文) 4. 若4cos ,,0,52παα⎛⎫=∈- ⎪⎝⎭则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7 C .177或D .177-或-A洋浦中学2012届高三第一次月考数学理科试题13.已知函数22()1xf x x =+,则11(1)(2)(3)()()23f f f f f ++++= .25冀州市中学2012年高三密卷(一)6. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈ 则 =αtan ( )A. 3-B. 3C. 33D. 33±B冀州中学高三文科数学联排试题 10.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值为 A . 43- B .34- C .43或43- D .43-或34-A河北省南宫中学2012届高三8月月考数学(文) 6.已知2tan =α,则ααcos sian 的值为( )A.21B.32C.52D.1C冀州中学第三次模拟考试文科数学试题13. 已知2()4f x x x =-,则(sin )f x 的最小值为 -32012年普通高考理科数学仿真试题(三) 12.定义一种运算:⎩⎨⎧≤=⊗a b b a a b a ,,,令()()45sin cos 2⊗+=x x x f ,且⎥⎦⎤⎢⎣⎡∈2,0πx ,则函数⎪⎭⎫⎝⎛-2πx f 的最大值是 A.45B.1C.—1D.45-【答案】A2012年普通高考理科数学仿真试题(四) 17.(本小题满分12分)已知函数()().1cos 2267sin 2R x x x x f ∈-+⎪⎭⎫⎝⎛-=π (I )求函数()x f 的周期及单调递增区间;>b.(II )在△ABC 中,三内角A ,B ,C 的对边分别为a,b,c,已知点⎪⎭⎫ ⎝⎛21,A 经过函数()x f 的图象,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值. 【答案】9(广东省韶关市2012届第二次调研考试).已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=35_____________; tan(2)πα-=___247____________. 5(广东省深圳市2012高三二模文). tan 2012︒∈A. (0,3B. (3C. (1,3--D. (3- 【答案】B16(上海市财大附中2012届第二学期高三数学测验卷理)对任意的实数α、β,下列等式恒成立的是( ) AA ()()2sin cos sin sin αβαβαβ⋅=++-B .()()2cos sin sin cos αβαβαβ⋅=++-C .cos cos 2sinsin22αβαβαβ+-+=⋅ D .cos cos 2coscos22αβαβαβ+--=⋅17.(上海市财大附中2012届第二学期高三数学测验卷文)已知πα<<0,21cos sin =+αα ,则α2cos 的值为( ) A A .47- B .47 C .47± D .43-3.广东省中山市2012届高三期末试题数学文 已知233sin 2sin ,(,),52cos πθθθπθ=-∈且则的值等于 A .23 B .43 C .—23 D .—43AB7. 广东实验中学2011届高三考前 已知24sin 225α=-, (,0)4πα∈-,则s i n c o s αα+=A .15-B .51 C .75- D .5716. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题 已知函数R x x x x f ∈-=,cos sin 3)(,若1)(≥x f ,则x 的取值范围是 ⎭⎬⎫⎩⎨⎧∈+≤≤+z k k x k x ,232ππππ 15. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题若⎪⎩⎪⎨⎧>-≤=)0(21)0(6sin )(x x x x x f π,则=)]1([f f 21- 。

数学_2012年浙江省杭州市高考数学二模试卷(理科)(含答案)

数学_2012年浙江省杭州市高考数学二模试卷(理科)(含答案)

2012年浙江省杭州市高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若全集U ={1, 2, 3, 4, 5},C U P ={4, 5},则集合P 可以是( )A {x ∈N ∗||x|<4}B {x ∈N ∗|x <6}C {x ∈N ∗|x 2≤16}D {x ∈N ∗|1≤x ≤4} 2. 已知复数z =i ⋅tanθ−1(i 是虚数单位),则“θ=π”是“z 为实数”的( )A 充要条件B 必要不充分条件C 充分不必要条件D 既不充分也不必要条件3. 用茎叶图记录甲、乙两人在5次体能综合测评中的成绩(成绩为两位整数),现乙还有一次不小于90分的成绩未记录.则甲的平均成绩超过乙的平均成绩的概率为( )A 25B 710C 45D 124. 设l 是一条直线,α,β,γ是不同的平面,则在下列命题中,假命题是( )A 如果α⊥β,那么α内一定存在直线平行于βB 如果α不垂直于β,那么α内一定不存在直线垂直于βC 如果α⊥γ,β⊥γ,α∩β=l ,那么l ⊥γD 如果α⊥β,l 与α,β都相交,则l 与α,β所成的角互余5.已知函数f(x)=ax 3+12x 2在x =−1处取得极大值,记g(x)1f′(x).某程序框图如图所示,若输出的结果S >20112012,则判断框中可以填入的关于n 的判断条件是( )A n ≤2011?B n ≤2012?C n >2011?D n >2012?6. 设定义在区间(−b, b)上的函数f(x)=lg 1+ax1−2x 是奇函数(a ,b ∈R ,且a ≠−2),则a b 的取值范围是( )A (1,√2]B [√22,√2] C (1,√2) D (0,√2)7. 双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线分别为l 1,l 2,点P 在第一象限内且在l 1上,若l 2⊥PF 1,l 2 // PF 2,则双曲线的离心率是( )A √5B 2C √3D √28. 正项等比数列{a n }中,存在两项a m ,a n (m, n ∈N ∗)使得√a m a n =4a 1,且a 7=a 6+2a 5,则1m +5n 的最小值是( )A 74B 1+√53 C 256 D 2√539. 如图所示,A ,B ,C 是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是( ) A (0, 1) B (1, +∞) C (−∞, −1) D (−1, 0)10. 用C(A)表示非空集合A 中的元素个数,定义A ∗B ={C(A)−C(B),当C(A)≥C(B)C(B)−C(A),当C(A)<C(B),若A ={x|x 2−ax −1=0, a ∈R},B ={x||x 2+bx +1|=1, b ∈R},设S ={b|A ∗B =1},则 C(S)等于( )A 4B 3C 2D 1二、填空题:(本大题有7小题,每小题4分,共28分) 11. (x −√3x)10的展开式中,x 6的系数是________(用数字作答). 12. 已知正三棱柱ABC −A′B′C′的正视图和侧视图如图所示.设△ABC ,△A′B′C′的中心分别是O ,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S ,则S 的最大值为________.13. 函数f(x)=sin(x +π2)cosx(x +π6)的单调递减区间是________.14. 设整数m 是从不等式x 2−2x −8≤0的整数解的集合S 中随机抽取的一个元素,记随机变量ξ=m 2,则ξ的数学期望Eξ=________.15. 已知动点P 在直线 x +2y −1=0上,动点Q 在直线 x +2y +3=0上,线段PQ 中点 M(x 0, y 0)满足不等式{y 0≤x03+2y 0≤−x 0+2,则√x 02+y 02的取值范围是________.16. 数列{a n }中,a 1=2,a n +a n+1=(15)n (n ∈N ∗),S n =a 1+5a 2+52a 3+...+5n−1a n ,则6S n −5n a nn=________.17. 设定义域为(0, +∞)的单调函数f(x),对任意的x ∈(0, +∞),都有f[f(x)−log 2x]=6,若x 0是方程f(x)−f′(x)=4的一个解,且x 0∈(a, a +1)(a ∈N ∗),则实数a =________.三、解答题:(本大题有5小题,共72分) 18. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量m →=(a, 12),n →=(cosC, c −2b),且m →⊥n →.(1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.19. 设数列{a n }与数列{b n }满足a 1=b 1=1,b n a n=1a 1+1a 2+⋯+1an−1(n ≥2且n ∈N ∗).(1)求证:b n+1b n+1=a nan+1(n ≥2);(2)设(1+1b 1)(1+1b 2) (1)1b n)=λ(1a 1+1a 2…+1a n)(n ∈N ∗),求实数λ的值.20. 已知四棱锥 P −ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,∠ADC =90∘,AD // BC ,AB ⊥AC ,AB =AC =2,G 为△PAC 的重心,E 为PB 的中点,点F 在BC 上,且CF =2FB . (1)求证:FG ⊥AC ;(2)当二面角 P −CD −A 的正切值为多少时,FG ⊥平面AEC ;并求此时直线FG 与平面PBC 所成角的正弦值.21. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)上任一点P 到两个焦点的距离的和为2√3,P 与椭圆长轴两顶点连线的斜率之积为−23.设直线l 过椭圆C 的右焦点F ,交椭圆C 于两点A(x 1, y 1),B(x 2, y 2).(1)若OA →⋅OB →=4tan∠AOB (O 为坐标原点),求|y 1−y 2|的值;(2)当直线l 与两坐标轴都不垂直时,在x 轴上是否总存在点Q ,使得直线QA 、QB 的倾斜角互为补角?若存在,求出点Q 的坐标;若不存在,请说明理由. 22. 已知函数f(x)=lnx ,g(x)=12x 2.(1)设函数F(x)=f(x)−ag(x),若x ∈(0, 2),函数F(x)不存在极值,求实数a 的取值范围;(2)设函数G(x)=(x−1)[f 2(x)+g(x)]g(x),如果对于任意实数x ∈(1, t],都有不等式tG(x)−xG(t)≤G(x)−G(t)成立,求实数t 的最大值.2012年浙江省杭州市高考数学二模试卷(理科)答案1. A2. C3. C4. D5. B6. A7. B8. A9. D10. B11. 13512. 813. [kπ−π12,kπ+5π12](k∈Z)14. 515. [√55,√34]16. n+1n17. 118. 解:(1)由题意m→⊥n→.可知:m→⋅n→=0,即acosC+12c=b,得sinAcosC+12sinC=sinB.又sinB=sin(A+C)=sinAcosB+cosAsinC.∴ 12sinC=cosAsinC,∵ sinC≠0,∴ cosA=12.又0<A<π∴ A=π3.(2)由正弦定理得:b=asinBsinA =√3,c=√3,l=a+b+c=1+√3+sinC)=1√3+sin(A+B))=1+2(√32sinB+12cosB)=1+2sin(B+π6).∵ A=π3.∴ B∈(0,2π3),∴ B+π6∈(π6,5π6),∴ sin(B+π6)∈(12,1].故△ABC的周长l的范围为(2, 3].19. 证明:(1)n≥2时,∵ b n a n=1a 1+1a 2+...+1an−1(n ≥2且n ∈N ∗), ∴b n+1a n+1=1a 1+1a 2+...+1a n−1+1a n,∴ bn+1a n+1=bn a n+1a n,∴ b n+1a n −(b n +1)a n+1=0(n ≥2且n ∈N ∗), 所以b n +1b n+1=a n a n+1(n ≥2且n ∈N ∗).(2)由(1)知b n+1b n+1=a nan+1,b 2=a 2,∴ (1+1b 1)(1+1b 2)…(1+1b n)=b 1+1b 1⋅b 2+1b 2...b n +1b n=1b 1⋅b 1+1b 2⋅b 2+1b 3...b n−1+1b n⋅b n +1b n+1⋅b n+1=1b 1⋅b 1+1b 2⋅a 2a 3⋅a 3a 4...a n−1a n ⋅a n a n+1⋅b n+1=2⋅b n+1a n+1=2(1a 1+1a 2+...+1a n−1+1a n),故(1+1b 1)(1+1b 2)…(1+1b n )1a 1+1a 2+⋯+1a n=2,即 λ=2.20. (1)证明:连接CG 并延长交PA 于H ,连接BH ,∵ G 是△PAC 的重心,∴ CG:GH =2:1,∵ CF:FB =2:1,∴ CG:GH =CF:FB ,∴ FG // BH . ∵ PA ⊥平面ABCD ,∴ PA ⊥AC ,∴ AC ⊥平面PAB , ∴ AC ⊥BH ,∴ FG ⊥AC .(2)解:∵ PA ⊥平面ABCD ,∴ PA ⊥CD , ∵ CD ⊥AD ,∴ CD ⊥平面PAD ,∴ CD ⊥PD ,∴ ∠PDA 为二面角P −CD −A 的平面角. 如图所示,以A 为坐标原点建立空间直角坐标系 ∵ AB =AC =2且AB ⊥AC ,∴ ∠ACB =45∘,在直角梯形ABCD 中,∵ ∠BCD =90∘,∴ ∠ACD =45∘, ∵ AC =2,∴ AD =CD =√2.∴ A(0, 0, 0),C(√2, √2, 0),D(0, √2, 0),B(√2, −√2, 0), 设P(0, 0, a),∴ H(0, 0, a2),E(√22, −√22, a2), ∵ FG ⊥平面AEC∴ FG ⊥AE∵ FG // BH∴ BH ⊥AE ∴ BH →=(−√2, √2, a2),AE →=(√22, −√22, a2),∴ BH→⋅AE →=0,∴ a =2√2,∴ PA =2√2,∴ tan∠PDA =2.∴ 当二面角P −CD −A 的正切值为2时,FG ⊥平面AEC .∵ BH // FG ,∴ FG 与平面PBC 所成的角等于BH 与平面PBC 所成的角. ∵ BH →=(−√2, √2, √2),BC →=(0, 2√2, 0),PC →=(√2, √2, −2√2), 设平面PBC 的法向量n →=(x, y, z),∴ {n →⋅PC →=0˙,∴ {y =0x =2z,令z =1,∴ n →=(2, 0, 1). ∴ cos <BH →,n →>=|BH →|⋅|n →|˙=−√1515. 设直线FG 与平面PBC 所成的角为θ, ∴ sinθ=|cos <BH →,n →>|=√1515, ∴ 直线FG 与平面PBC 所成的角的正弦值为√1515. 21. 解:(1)由椭圆的定义知a =√3,又−b 2a2=−23,∴ b 2=2,c 2=a 2−b 2=1.∴ 椭圆P(x 0, y 0)的方程是x 23+y 22=1.∵ OA →⋅OB →=4tan∠AOB ,∴ |OA →|⋅|OB →|cos∠AOB =4tan∠AOB , ∴ |OA →|⋅|OB →|sin∠AOB =4,∴ S △AOB =12|OA →|⋅|OB →|sin∠AOB =2,又S △AOB =12|y 1−y 2|×1,故|y 1−y 2|=4.(2)假设存在一点Q(m, 0),使得直线QA 、QB 的倾斜角互为补角, 依题意可知直线l 、QA 、QB 斜率存在且不为零.设直线l 的方程为y =k(x −1)代入椭圆的方程消去y 得(3k 2+2)x 2−6k 2x +3k 2−6=0, 设A(x 1, y 1),B(x 2, y 2)则x 1+x 2=6k 23k 2+2,x 1⋅x 2=3k 2−63k 2+2 ∵ 直线QA 、QB 的倾斜角互为补角, ∴ k QA +k QB =0,∴y 1x 1−m+y 2x 2−m=0.又y 1=k(x 1−1),y 2=k(x 2−1),代入上式可得2x 1x 2+2m −(m +1)(x 1+x 2)=0, ∴ 2×3k 2−63k 2+2+2m −(m +1)×6k 23k 2+2=0,化为2m −6=0,解得m =3,∴ 存在Q(3, 0)使得直线QA 、QB 的倾斜角互为补角. 22. 解:(1)由F(x)=lnx −12ax 2,得F′(x)=1x −ax =1−ax 2x(x >0),当a≤0时,F′(x)>0(x>0),此时F(x)在(0, 2)上无极值,当a>0时,所以F(x)在区间√a )上递增,在区间(√a+∞)上递减,所以要使得F(x)在(0, 2)上不存在极值,只要√a ≥2,即0<a≤14,综合以上两种情况可得a≤14.(2)不等式tG(x)−xG(t)≤G(x)−G(t)等价于(t−1)G(x)≤(x−1)G(t),等价于G(x)x−1≤G(t)t−1,即f2(x)g(x)≤f2(t)g(t)…设函数ℎ(x)=f 2(x)g(x),问题等价于ℎ(x)≤ℎ(t)在(1, t]上恒成立,即ℎ(t)为ℎ(x)的最大值,而ℎ(x)=f 2(x)g(x)=2ln2xx2,所以ℎ′(x)=4lnx(1−lnx)x3(x>0),故ℎ(x)在区间(e, +∞)上单调递减,在区间(1, e)上单调递增,因此t≤e,即实数t的最大值为e.。

星垂平野阔月涌大江流——2012年全国各地高考数学试题的特点和启示

星垂平野阔月涌大江流——2012年全国各地高考数学试题的特点和启示
提 高 高三 复 习质 量 ,就 应 该 在 ‘ ’ ‘ ’ ‘ ’三 个 教 学 支 读 、 写 、 算
点上做好文章” .

番分析 比较 ,从 中归纳 出试 题 的一些 特点 ,并提 出今后高 考
试 题 特 点 :稳 、变 、新
频 现 经典 、 强 化 综 合 、 关 注 应 用 、 适 度 创 新 、 彰 显 文 化 、保 持 复 习的 一 点 建议 .
文 1理 8 1 ,理 1 4
文6 3 理
江苏卷
四JI I 卷 重庆卷 上海 卷

文 1 1 理 3 文 1 0 文 2理 2

理2 理 1 1 文 1 1 理 ,文 1 理 1 5 5

文 7理 7 文 6理 6 文 l 2理 l 2

文8 理 l O 文 1 0
福建卷 、湖南卷 、湖北卷 、北京卷 、陕西卷 、山东卷 、安徽卷 、 空题 的比较靠前部分 ,考生往往不必 “ 小题大做 ” ,常常只需灵 江苏 卷 、四川卷 、重 庆卷 、上海卷 ,每套卷有数 学文科 、数 学 机一动.从总体来看 ,各地试卷更着 眼基础 ,起点有所降低 ,难 理科各 1 ( 份 江苏卷除外) 笔苦对这 3 份高考数学试卷进行 了 度也都不同程度作下调. . 5
_ 。




——


_。

_…
2 2舒 01
第 7 8期 —
、 \\
中国
Mah mai s t e tc Ed a in uc to N - 2 1 O7 8 02
野圊
摘 要 :2 1 0 2年全 国各地 高考数 学卷着 眼基 础 、突 出本 质、 风格 ,颇具 “ 、 变” “ ”的特点.它带给我们的启示是 “ 稳” “ 、新 要

例谈循序渐进的教学设计

例谈循序渐进的教学设计

例谈循序渐进的教学设计作者:邱海燕来源:《文理导航》2015年第35期【摘要】数学课堂教学设计一般尊崇从易到难、从特殊到一般、从具体到抽象、从感性到理性的设计原则,具备良好的设计是课堂教学成果的基本,本文从几个原则出发谈谈课堂教学设计的循序渐进.【关键词】课堂教学;数学;循序渐进;理性;感性;具体;抽象;特殊;一般数学课堂教学的设计是数学教学的基本,它将抽象的数学知识、形式化的数学结果以通俗易懂的方式传递给学生,这与教材和书籍大不一样(书籍中的数学知识是线性的排列着),合理的数学教学需要将抽象的数学知识传授的有趣和有效(章建跃语)。

数学教学设计如何实施是比较符合当下课程教学理念呢?在近年来课堂教学中,愈来愈多的教学演变为返璞归真型,不再像新课程实施之初般“凡探究言必称讨论、凡讨论必需热热闹闹”的伪探究,而在课堂教学中却比较忽视了合理的、符合学生认知心理的设计,笔者以前常常听到这样的公开课,对场面的追求非常细致,却忽视对教学原本的设计,即以循序渐进原则分解数学知识、以符合学生认知心理过程的设计教学才是贴合课程理念的要求的。

1.从特殊到一般特殊到一般的设计原则是数学教学中运用最为普遍的设计方式,这一方式比较符合中学生(尤其是高中生)。

从心理学认知理论来说,中学生的认知首先缘自特定的模型,这种特定的模型需要简洁、直观,并且从多次模型认知中总结了一定的经验,进而得到更为一般性的规律。

这种设计方式有比较多的教学设计运用,如:函数概念教学中的从特殊的数集间关系归纳出函数形式化的概念结果,如运用物理学中功的概念类比去思考向量数量积的一般性结论等等。

案例1:函数y=Asin(ωx+φ)的图像及应用。

基本知识部分从用五点法画y=Asin(ωx+φ)一个周期内的简图、函数y=sinx的图象经变换得到y=Asin(ωx+φ)的图象的步骤、函数图像的对称性等三方面对本节知识进行了详尽的阐述;基本技能部分给出了两个题型:(1)函数y=Asin(ωx+φ)的图像及变换;(2)求函数y=Asin(ωx+φ)的解析式,分别从形和数两方面进行分析。

2012年四川省高考文科数学试卷及答案

2012年四川省高考文科数学试卷及答案

2012年四川省高考数学(文)试题数学(文)一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合,,则()A、 B、 C、 D、2、的展开式中的系数是()A、21B、28C、35D、423、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为()A、101B、808C、1212D、20124、函数的图象可能是()5、如图,正方形的边长为,延长至,使,连接、则()A、 B、 C、 D、6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设、都是非零向量,下列四个条件中,使成立的充分条件是()A、且B、C、D、8、若变量满足约束条件,则的最大值是()A、12B、26C、28D、339、已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。

若点到该抛物线焦点的距离为,则()A、 B、 C、 D、10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为()A、 B、 C、 D、11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、28条B、32条C、36条D、48条12、设函数,是公差不为0的等差数列,,则()A、0B、7C、14D、21第二部分(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.设是直线,是两个不同的平面 若若 若若
6..把函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像 是
7.设是两个非零向量。
若,则
若,则
若,则存在实数使得
若存在实数使得则
8.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线 的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率 的比值是
二.填空题.
11.160
12.
13.
14.
15.-16
16.
17.
三.解答题
18.本题主要考查正、余弦定理及三角运算等基础知识,同时
考查运算求解能力。
由及正弦定理得
由得 由及余弦定理 所以
19.本题主要考查等差、等比数列的概念,通项公式及求和公
式等基础知识,同时考查运算求解能力。
由得, 当时, 当时, 所以 由
由知 所以
所以 即
20.本题主要考查空间点、线、面位置关系,线面所成角等基 础知识,同时考查空间想象能力和推理认证能力。
因为所以 又因为所以 所以 因为所以 又因为 在矩形的中点, 即
所以 设与交点为,连接
由知 所以所成的角
在矩形 在直角中, 所以与平面所成的角的正弦值是 21.本题主要考查利用导数研究函数的单调性等性质,及导数应用等基 础知识,同时考查抽象概括、推理论证能力。 由题意得 当时,恒成立,此时的单调递增区间为 当时,此时函数的 单调递增区间为和单调递减区间为 由于故
16.设函数是定义在R上的周期为2的偶函数,当时, ,则_______。
17.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距 离,已知曲线到直线的距离等于曲线到直线的 距离,则实数______。
三.解答题:本大题共5小题,共72分。解答应写出文字说明、证明过 程或演算步骤。 18.(本题满分14分)在中,内角的对边分别为a,b,c,且
22.(本题满分14分)如图,在直角坐标系中,点到抛物线的准线的距 离为。点是C上的定点,A,B是C上的两动点,且线段AB被直线OM 平分。 ⑴求的值。 ⑵求面积的最大值。
数学(文科)试题参考答案
一.选择题:
题号 1 2 3 4 5 6 7 8 9 10
答案 D D A C B A C B C A
当时, 当时, 设于是
0
1

0
+
1

极小值

1
所以,所以当时, 故
22.本题主要考查抛物线几何性质,直线与抛物线地位置关系,同时考 查解析几何的基本思想方法和运算求解能力。 由题意知 设线段的中点为 由 故 所以直线的方程为 由 所以
从而 设点到直线的距离为则 设的面积为则 由
令 令 所以 故面积的最大值为
绝密★考试结束前
2012年普通高等学校招生全国统一考试(浙江 卷)
数学(文科)
本试题卷分选择题和非选择题两部分。全卷共5页,选择题部分1至 3页,非选择题部分4至5页。满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)
一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的 四个选项中,只有一项是符合题目要求的。 1.设全集设集合则 2. 已知是虚数单位,则 3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积 是 4.设则“”是“直线与直线平行 的” 充分不必要条件 必要不充分条件 充分必要条件 既不充分也不必要 条件
⑴求角B的大小; ⑵若求a,c的值。
19.(本题满分14分)已知数列的前项和为,且,数列满足
⑴求 ⑵求数列的前项和
20.(本题满分15分)如图,在侧棱锥垂直底面的四棱锥中,
的中点,F是平面与直线的交点。 证明: 求与平面所成的角的正弦值。
21.(本题满分15分)已知函数 ⑴求的单调区间 ⑵证明:当时,
32 9.若正数x,y满足的最小值是
56 10.设是则
非选择题部分(共100分)
注意事项: 1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题
卷上。 2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色自拟的
签字笔或钢笔描黑。 二.填空题:本大题共7小题,每小题4分,共28分。 11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全
体学生 中抽取一个容量为280的样本,则此样本中男生人数为 ____________.
12.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两 点,则该
两点间的距离为 的概率是___________。 13.若某程序框图如图所示,则该程序运行后输出的值是 ___________。 14.设其中实数x,y满足则z的取值范围是________。 15.在中,M是BC的中点,________。
相关文档
最新文档