《直线的点斜式方程》课件4 (北师大版必修2)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6:已知直线l过A(3,-5)和B(-2,5),求直 线l的方程
解:∵直线l过点A(3,-5)和B(-2,5)
k
L
5
5
将A(3,-5),k=-2代入点斜式,得
2 3
2
y-(-5) =-2 ( x-3 ) ,即
2x + y -1 = 0
㈢巩固: ①经过点(- 2 ,2)倾斜角是300的直线的方程是 (A)y+ 2 = 3 ( x-2) (B)y+2= 3 (x- 2 ) 3 (C)y-2= (x+ 2)(D)y-2= 3 (x+ 2 ) 3 ②已知直线方程y-3= 3(x-4),则这条直线经过的已知 点,倾斜角分别是 (A)(4,3);π/ 3 (B)(-3,-4);π/ 6 (C)(4,3);π/ 6 (D)(-4,-3);π/ 3 ③直线方程可表示成点斜式方程的条件是 (A)直线的斜率存在 (B)直线的斜率不存在 (C)直线不过原点 (D)不同于上述答案
解:由已知得k =5, b= 4,代入斜截式方程 y= 5x + 4 即5 x - y + 4 = 0
4
例5:求过点(1,2)且与两坐标轴组成一等腰直角 三角形的直线方程。
解:∵直线与坐标轴组成一等腰直角三角形 ∴k=±1
直线过点(1,2)代入点斜式方程得
y- 2 = x - 1 或y-2=-(x-1) 即x-y+1=0或x+y-1=0
直线上任意一点P与这条直线上 一个定点P1所确定的斜率都相等。
° °
⑶如直线l过P1且平行于x轴,则它的斜率k=0,由点斜式 知方程为y=y0; 如果直线l过P1且平行于Y轴,此时它的 倾斜角是900,而它的斜率不存在,它的方程不能用点斜 式表示,但这时直线上任一点的横坐标x都等于P1的横坐 标所以方程为x=x1
k y
. .
P1
y1
x x1
可化为
y y1 k
x
和直线的斜率确定的直线方程,叫直 线的点斜式方程。
小结:
⑴P为直线上的任意一点,它的 位置与方程无关
y
° °P ° ° ° ° ° ° ° P1
O x
° ⑵当P点与P1重合时,有x=x1,y=y1,此时满足y-y1=k(x -x1),所以直线l上所有点的坐标都满足y-y1=k(x-x1), 而不在直线l上的点,显然不满足(y-y1)/(x-x1)=k即 不满足y-y1=k(x-x1),因此y-y1=k(x-x1)是直线l的方程。
应用:
例1:一条直线经过点P1(-2,3),倾斜角α=450,求这 y 条直线的方程,并画出图形。
解:这条直线经过点P1(-2,3), 斜率是 k=tan450=1 代入点斜式得 y-3 = x + 2, 即x-y + 5 = 0 P1 ° 5 ° ° -5 O
x
例2:一条直线经过点A(0,5),倾斜角为00,求这直线 方程 y
3
㈣总结: ①直线的点斜式,斜截式方程在直线斜率存在时才可以应 用。 ②直线方程的最后形式应表示成二元一次方程的一般形式。
复习回顾
已知A(0,3),B(-1,0),C(3,0), 求D点的坐标,使四边形ABCD为直角梯形(A、 B、C、D按逆时针方向排列)。
y A
.
O
D
D
B
.
.
C
x
新课:
1、直线的点斜式方程:
已知直线l经过已知点P1(x1,y1),并且它的斜率是k 求直线l的方程。 设点P(x,y)是直线l上 不同于P1的任意一点。 l 根据经过两点的直线斜率 y P 公式,得
解:这条直线经过点A(0,5) 斜率是k=tan00=0 代入点斜式,得
5
y - 5 = 0
O
x
②直线的斜截式方程:
已知直线l的斜率是k,与y轴的交点是P(0,b),求 直线方程。 代入点斜式方程,得l的直线方程:y - b =k ( x - 0)
即
y = kx + b。
(2)
例3:斜率是5,在y轴上的截距是4的直线方程。