高中三角函数测试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4第一章三角函数单元测试
一、选择题:
1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=C
C .A C
D .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是
( )
A .
3
π B .-
3
π C .
6
π D .-6
π 3、已知sin 2cos 5,tan 3sin 5cos ααααα
-=-+那么的值为
( )
A .-2
B .2
C .
23
16 D .-
23
16
4、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上
C .在y 轴上
D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )
A .2
-
B .
2
C .
12
D . 12
-
6、要得到)4
2sin(3π
+=x y 的图象只需将y=3sin2x 的图象
( )
A .向左平移
4π个单位 B .向右平移4π
个单位 C .向左平移8π个单位 D .向右平移8
π
个单位
7、如图,曲线对应的函数是 ( )
A .y=|sin x |
B .y=sin|x |
C .y=-sin|x |
D .y=-|sin x |
8 ( )
A .cos160︒
B .cos160-︒
C .cos160±︒
D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12
sin cos 25
A A +=
,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)3
2sin(2π
+
=x y 的图象
( )
A .关于原点对称
B .关于点(-6π,0)对称
C .关于y 轴对称
D .关于直线x=6
π
对称 11、函数sin(),2
y x x R π
=+
∈是 ( )
A .[,]22
ππ
-
上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数
12、函数y =的定义域是 ( ) A .2,2()33k k k Z π
πππ-
+
∈⎡⎤⎢⎥⎣
⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣
⎦ C .22,2()3
3k k k Z π
πππ+
+
∈⎡
⎤⎢⎥⎣

D .222,2()3
3k k k Z ππππ-
+
∈⎡⎤
⎢⎥⎣

二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知απ
βαππβαπ2,3
,34则-<-<-<
+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .
15、函数])32
,6[)(8cos(πππ
∈-
=x x y 的最小值是 . 16、已知,2
4,81cos sin π
απαα<<=⋅且则=-ααsin cos .
三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值2
2
sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒
18、(8分)已知3
tan 2
απαπ=
<<,求sin cos αα-的值.
19、(8分)绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按
逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm?
20、(10分)已知α是第三角限的角,化简α
α
ααsin 1sin 1sin 1sin 1+---+
21、(10分)求函数2
1()tan 2tan 5f t x a x =++在[
,]42
x ππ
∈时的值域(其中a 为常数)
22、(8分)给出下列6种图像变换方法:
①图像上所有点的纵坐标不变,横坐标缩短到原来的
2
1
; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;
③图像向右平移

个单位; ④图像向左平移3π
个单位;
⑤图像向右平移32π
个单位;
⑥图像向左平移3

个单位。

请用上述变换将函数y = sinx 的图像变换到函数y = sin (2x +3
π
)的图像.
参考答案
1. B
2. C
3. D
4. A
5. A
6.C
7.C
8.B
9.B 10. B 11.D 12.D 13. ),0(π 14.x x cos 2sin - 15.
2
1
16.23-
17
.原式221112=-+-+1
2
= 18

3tan 2
απαπ=<<且
sin 0,cos 0αα∴<<
,由2
2sin sin cos 1αααα⎧=⎪⎨+=⎪⎩
得sin 1
cos 2
αα⎧=⎪⎪⎨⎪=-⎪
⎩1sin cos 2αα-∴-= 19.设需x 秒上升100cm .则π
π15
,100502460=∴=⨯⨯⨯x x (秒) 20。

–2tan α
21.2
tan 2tan 5y x a x =++2
2
(tan )5x a a =+-+
[,]42
x ππ
∈tan [1,]x ∴∈+∞∴
当1a ≤-时,2
5y a ≥-+,此时tan x a =-
∴ 当1a >-时,25y a ≥+,此时tan 1x =
22.④②或②⑥。

相关文档
最新文档