全国中考数学一元二次方程组的综合中考模拟和真题分类汇总含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国中考数学一元二次方程组的综合中考模拟和真题分类汇总含答案解析
一、一元二次方程
1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.
(1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值.
【答案】(1)12k ≤
;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤
12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,
∴k 1=1,k 2=-3.
∵k ≤12
,∴k =-3.
2.阅读下列材料
计算:(1﹣﹣
)×(+)﹣(1﹣﹣)(+),令+=t ,则:
原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2= 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣﹣
)×(+)﹣(1﹣﹣)×
(+) (2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4
(3)解方程:(x 2+4x +1)(x 2+4x +3)=3
【答案】(1)
;(2)(a 2﹣5a +5)2;(3)x 1=0,x 2=﹣4,x 3=x 4=﹣2
【解析】
【分析】
(1)仿照材料内容,令+=t 代入原式计算. (2)观察式子找相同部分进行换元,令a 2﹣5a =t 代入原式进行因式分解,最后要记得把t 换为a .
(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.
【详解】
(1)令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=
(2)令a2﹣5a=t,则:
原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2
(3)令x2+4x=t,则原方程转化为:
(t+1)(t+3)=3
t2+4t+3=3
t(t+4)=0
∴t1=0,t2=﹣4
当x2+4x=0时,
x(x+4)=0
解得:x1=0,x2=﹣4
当x2+4x=﹣4时,
x2+4x+4=0
(x+2)2=0
解得:x3=x4=﹣2
【点睛】
本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.
3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?
【答案】经过2秒后△PBQ的面积等于4cm2.
【解析】
【分析】
作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=1
2
×PB×QE,有P、Q点的移动速
度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】
解:
如图,
过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,
∴2QE=QB.
∴S△PQB=1
2
•PB•QE.
设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.
根据题意,1
2
•(6﹣t)•t=4.
t2﹣6t+8=0.
t2=2,t2=4.
当t=4时,2t=8,8>7,不合题意舍去,取t=2.
答:经过2秒后△PBQ的面积等于4cm2.
【点睛】
本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.
4.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.
(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加
1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.
①润滑用油量为80kg,用油量的重复利用率为多少?
②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?
【答案】(1)28(2)①76%②75,84%
【解析】
试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;
(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;
②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.
试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);
(2)①60%+1.6%(90﹣80)=76%;
②设润滑用油量是x千克,则
x{1﹣[60%+1.6%(90﹣x)]}=12,
整理得:x2﹣65x﹣750=0,
(x﹣75)(x+10)=0,
解得:x1=75,x2=﹣10(舍去),
60%+1.6%(90﹣x)=84%,
答:设备的润滑用油量是75千克,用油的重复利用率是84%.
考点:一元二次方程的应用
5.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x2﹣7x+10=0
a=1 b=﹣7 c=10
∵b2﹣4ac=9>0
∴73
2
±
∴x1=5,x2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
当腰为2,底为5时,等腰三角形的三条边为2,2,5.
探究应用:请解答以下问题:
已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m
2

1
4
=0的两个实数根.
(1)当m=2时,求△ABC的周长;
(2)当△ABC为等边三角形时,求m的值.
【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为7
2
;(2)当
△ABC为等边三角形时,m的值为1.
【解析】
【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.
(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣
m)2﹣4(m
2

1
4
)=m2﹣2m+1,可求得m.
【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.
(1)当m=2时,方程为x2﹣2x+3
4
=0,
∴x1=1
2,x2=
3
2

当1
2
为腰时,
1
2
+
1
2
<
3
2

∴1
2、
1
2

3
2
不能构成三角形;
当3
2
为腰时,等腰三角形的三边为
3
2

3
2

1
2

此时周长为3
2
+
3
2
+
1
2
=
7
2

答:当m=2时,△ABC的周长为7
2

(2)若△ABC为等边三角形,则方程有两个相等的实数根,
∴△=(﹣m)2﹣4(m
2﹣
1
4
)=m2﹣2m+1=0,
∴m1=m2=1.
答:当△ABC为等边三角形时,m的值为1.
【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.
6.计算题
(1)先化简,再求值:
2
1
x
x-
÷(1+
2
1
1
x-
),其中x=2017.
(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.
【答案】(1)2018;(2)m=4
【解析】
分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;
(2)根据一元二次方程的根的判别式求解即可.
详解:(1)
2
1
x
x-
÷(1+
2
1
1
x-

=
22
2
11 11 x x
x x
-+
÷
--
=
()() 2
2
11 1
x x
x
x x
+-

-
=x+1,
当x=2017时,原式=2017+1=2018
(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,
∴△=(﹣2)2﹣4×1×(m ﹣3)=0,
解得,m=4
点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.
7.解下列方程:
(1)2x 2-4x -1=0(配方法);
(2)(x +1)2=6x +6.
【答案】(1)x 1=1+
2x 2=1-21=-1,x 2=5. 【解析】
试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;
(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =
12,∴x 2-2x +1=32. ∴(x -1)2=
32.
∴x -1=±2.
∴x 1=1+2,x 2=1-2
. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.
∴x +1=0或x +1-6=0.
∴x 1=-1,x 2=5.
8.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?
(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45
m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.
【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.
【解析】
【分析】
(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;
(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】
解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,
依题意得:7.5-x≤2x,
解得x≥2.5.
即A社区居民人口至少有2.5万人;
(2)依题意得:1.2(1+m%)2+1.5×(1+4
5
m%)+1.5×(1+
4
5
m%)(1+2m%)=7.5×92%,
解得m=50
答:m的值为50.
【点睛】
本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.
9.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.
(1)求y与x之间的函数关系式;
(2)当每箱售价为多少元时,每星期的销售利润达到3570元?
(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?
【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元
【解析】
【分析】
(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,
(3)表示出最大利润将函数变成顶点式即可求解.
【详解】
解:(1)∵售价每降价1元,每星期可多卖10箱,
设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),
(2)依题意得:
(x-40)(-10x+780)=3570,
解得:x=57,
∴当每箱售价为57元时,每星期的销售利润达到3570元.
(3)设每星期的利润为w,
W=(x-40)(-10x+780)=-10(x-59)2+3610,
∵-10 0,二次函数向下,函数有最大值,
当x=59时, 利润最大,为3610元.
【点睛】
本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.
10.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.
(1)求实数m 的取值范围;
(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.
【答案】(1)m>2; (2)17
【解析】
试题分析:(1)由根的判别式即可得;
(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.
试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.
当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;
故三角形的周长为17.
点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.
11.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.
(1)能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由. (2)若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.
【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.
【解析】
【分析】
(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米,再根据矩形面积公式列方程求解即可得到答案.
(2)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣2y )米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
【详解】
(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米,
根据题意得:x(32﹣2x)=126,
解得:x 1=7,x 2=9,
∴32﹣2x=18或32﹣2x=14,
∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
(2)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣2y )米,
根据题意得:y(36﹣2y)=170,
整理得:y 2﹣18y+85=0.
∵△=(﹣18)2﹣4×1×85=﹣16<0,
∴该方程无解,
∴假设不成立,即若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.
12.已知关于x 的方程(x-3)(x-2)-p 2=0.
(1)求证:无论p 取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.
【答案】(1)详见解析;(2)p=±1.
【解析】
【分析】
(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把
2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.
【详解】
证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,
x 2﹣5x+6﹣p 2=0,
△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,
∵无论p 取何值时,总有4p 2≥0,
∴1+4p 2>0,
∴无论p 取何值时,方程总有两个不相等的实数根;
(2)x 1+x 2=5,x 1x 2=6﹣p 2,
∵2212
123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,
∴52=5(6﹣p 2),
∴p=±1.
考点:根的判别式;根与系数的关系.
13.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
14.已知关于x的方程x2﹣(2k+1)x+4(k﹣1
2
)=0.
(1)求证:无论k取何值,此方程总有实数根;
(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?
【答案】(1)详见解析;(2)k=3
2
或2.
【解析】
【分析】
(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;
(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.
【详解】
(1)∵△=(2k+1)2﹣4×4(k﹣1
2
)=4k2﹣12k+9=(2k﹣3)2≥0,
∴该方程总有实数根;
(2)
() 2k12k3 x=
2
±
+﹣
∴x1=2k﹣1,x2=2,
∵a、b、c为等腰三角形的三边,
∴2k﹣1=2或2k﹣1=3,
∴k=3
2
或2.
【点睛】
本题考查了根的判别式以及等腰三角形的性质,分a是等腰三角形的底和腰两种情况是解题的关键.
15.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.
(1)A 超市 11 月排骨的进货价为年初排骨售价的3
2
倍,按 11 月 10 日价格出售,平均一
天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?
(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该
天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的5
7
,两种排
骨销售的总金额比 11 月 10 日提高了1
28
a%,求a 的值.
【答案】(1)售价为每千克65元;(2)a=35.
【解析】
【分析】
(1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x元,则每千克的利润为10-x元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;
(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.
【详解】
解:(1)11月10日的售价为350÷5=70元/千克
年初的售价为:350÷5÷175%=40元/千克,
11月的进货价为: 3
40602?元/千克
设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x +-=,
解得10x =,25x =
因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元.
(2)根据题意可得
52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭
g g g g g g 解得135a =,20a =(舍去)
所以a =35.
【点睛】
本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.。

相关文档
最新文档