射频电路中无源器件特性

合集下载

微波无源器件简介8

微波无源器件简介8

3dB电桥图片 3dB电桥图片
Copyright 2009 Potevio Corporation, All Rights Reserved
3dB电桥在系统中的应用 3dB电桥在系统中的应用
Copyright 2009 Potevio Corporation, All Rights Reserved
Copyright 2009 Potevio Corporation, All Rights Reserved
耦合器室内覆盖应用
耦合器 功 分 器 耦合器
耦合器
直放站
耦合器
耦合器
Hale Waihona Puke 干线放大器耦合器Copyright 2009 Potevio Corporation, All Rights Reserved
Copyright 2009 Potevio Corporation, All Rights Reserved
销售过程中产品技术指标的解答和说明
1.耦合器 指标里一般会提到频率范围、耦合度、耦合平坦度、插 入损耗、回波损耗(驻波比) 、隔离度、功率容量、温 度范围,湿度,接口形式,外形尺寸,喷漆颜色,安装方 式,贴牌要求等.其中必须知道的是:频率范围、耦合度 、耦合平坦度、插入损耗、回波损耗(驻波比) 、隔离 度.耦合度与插入损耗的关系是耦合数值越大(弱耦合) 插损越小,耦合数值越小(强耦合)插损越大. 2.功分器 如果是带线或微带结构一般会提到频率范围、插入损 耗、回波损耗(驻波比) 、隔离度、功率容量、温度范 围,湿度,接口形式,外形尺寸,喷漆颜色,安装方式, 贴牌要求等. 而如果是同轴线结构则指标里不会出现隔离度的要求 ,其余同带线或微带功分器指标一样.
四频合路器 三频合路器 三频合路器

射频基础知识及其主要指标

射频基础知识及其主要指标

1000~100千米 (km) 100~10千米 10~1千米 1000~100米 100~10米 10~1米 10~1分米
微波
(km) (km) (m) (m) (m) (dm) (cm) (mm) (dmm)
300~3000千赫 (kHz) 3~30兆赫 (MHz)
甚高频(VHF) 特高频(UHF) 超高频(SHF) 极高频(EHF) 至高频
Rb
:接收基带输出端单位比特能噪比。 其中前三项由射频通道性能所决定,是线性的, 后二项由解码特性所决定,取决于信道速率等因素。
N0
Eb
Comba Telecom Systems
干扰协调
最大干扰容限
在最大干扰容限的仿真模拟测试中,有关主管部门提出的一个标 准是以接收机灵敏度(射频线性部分)恶比 0.8dB 为标准,这相当于 在被干扰信号上迭加了一个比它低 6.9dB( 以下计算以 7dB 计)( dBm) SI SR 6.9 的干扰信号。
-132 -126 -123 -122 -116 -111.3
PHS
-119 -113 -110 -110 -104 -99.3
WCDMA
-119 -113 -110 -109 -103 -98.3
CDMA2000 -124 -118
-115 -114 -108 -103.3
TDSCDMA -124 -118
接收机的热噪声功率电平(底噪)
任何一个无线通信接收机能否正常工作,不仅取决于所能获得的输入 信号的大小,而且也与其内部噪声以及外部噪声和干扰的大小有关。 接收机内部噪声也称为热噪声,它是由电子运动所产生的,其定义是 指当温度为290°K(17°C)时,由接收机通带(通常由接收机中频带 宽所决定)所截获的热噪声功率电平。这个热噪声功率电平也称为接收 机的底噪,是计算接收机噪声的基本参数。 No= KT B(W) B: 接收机(中频)带宽 T: 绝对温度值 290° -23 K: 玻尔兹曼常量 1.37×10 如用dBW表示,可写为 No(dBw)= -204 dBW + 10lgB 或 = -174 dBm + 10lgB 对于G网,B = 200KHz,10lgB=53dBHz,No = -121dBm

射频基础知识

射频基础知识

输入/输出驻波比( 输入 输出驻波比(Input/Output VSWR) 输出驻波比 / ) 传输线上的电压波或电流波通常都是由入射波和反射波叠 加而成的,当它们相位相同时,该处的电压波或电流波的 振幅最大,称波腹点;当它们的相位相差π时,该处的电 压波或电流波的振幅最小,称波节点。传输线上电压波 (或电流波)最大值与最小值之比称为驻波比,又称为驻 波系数。在输入、输出端测得的驻波比分别成为输入、输 出驻波比。
AMPS
SMR
IDEN (800)
CDMA2000 1X EVDO
CDMA2000 MX
CDMA2000的过渡路径 CDMA2000的过渡路径
标准 IS-95A IS-95A IS-95B IS-95B CDMA2000第 CDMA2000第1阶段 9600 bit/s或14.4kbit/s bit/s或14. 主要是前向链路上的话音和数据,改进的切换以及64/56 kbit/s 主要是前向链路上的话音和数据,改进的切换以及64/ SR1(1.2288Mchip/s) SR1 2288Mchip/s) 话音和数据(经由孤立信道的分组数据) 128Walsh码 128Walsh码 具有2倍的IS-95容量 具有2倍的IS-95容量 达到144kbit/s(使用SR1T 1XRTT方式) 达到144kbit/s(使用SR1T 1XRTT方式) CDMA2000第 CDMA2000第2阶段 SR3(3.6864Mchip/s) SR3 6864Mchip/s) 定向于分组数据 具有更高的数据率 达到144kbit/s:移动车载用户 达到144kbit/s:移动车载用户 384kbit/s:移动步行用户 384kbit/s:移动步行用户 2Mbit/s:固定的用户 2Mbit/s:固定的用户 256Walsh码 256Walsh码 突出要求

03 射频信号的三大要素

03 射频信号的三大要素

三、阻抗要素
50Ω和75Ω阻抗 在射频信号进入自由空间之前,会在导体或器件内振荡。每个器件都有一个 入口或出口,或两者都有。如果射频信号从一个器件穿过一个导体进入另外 一个器件,导体和器件之间要有连接。为了方便,工程师将连接标准化,这 样,一个公司生产的器件就可以和另一个公司生产的器件匹配工作,只有很 小的信号损失。阻抗的度量单位是欧姆。 至于为什么是50Ω,这只是一个巧合,第二次世界大战期间,军队需要连接 一些碰巧是50Ω阻抗的天线,于是,他们开发了一些50Ω的电缆(后来称为 RG-58)并大量使用,其它所需要连接的设备都只能是适从50Ω了。 50Ω是最佳的吗?答案是否定的。以射频电缆为例,75Ω的性能更佳(即衰 减更小)。它是近期开发的,75Ω是用于有线电视中的阻抗。相应地,现在 有两种阻抗标准:通信射频用50Ω和电视射频用75Ω。
其实C/N和C/I对于通信的影响是归一的,都是衡量有用信号(载波)和 无用信号(噪声、干扰)的关系。C/N和C/I的好坏,在数字通信系统中 直接关系到误码率的高低。
三、功率要素
功率 有用信号
C/N
C/I
干扰信号 噪声
频率
三、功率要素
有关射频/微波信号功率的基本电路 衰减器:衰减器是指控制射频/微波信号功率的大小的器件,通常根据衰 减量分为固定衰减器和可变衰减器两种。 功率分配器/合路器:功率分配器是将一路射频/微波信号分成若干路的 器件,一般是等分的。例如二功分器、三功分器。功分器也可以作为合 路器使用,在各个支路口接不同频率的信号,在主路合路输出。 定向耦合器:定向耦合器是一种有方向性的无源射频和微波功率分配器 件。定向耦合器通常是耦合主路的一小部分功率到耦合端,用以检测主 路信号的工作状态是否正常;在移动通信天线覆盖系统里,传输信号耦 合一部分信号至天线,实现信号覆盖。耦合度通常可分为:5dB、6dB、 7dB、10dB、15dB、20dB、30dB、50dB等。 放大器:射频/微波放大器是提高射频/微波信号电平的有源电路。

射频电路设计原理与应用

射频电路设计原理与应用

【连载】射频电路设计——原理与应用相关搜索:射频电路, 原理, 连载, 应用, 设计随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。

微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。

通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。

但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。

下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。

作者介绍ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。

第1章射频电路概述本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。

第1节频谱及其应用第2节射频电路概述第2章射频电路理论基础本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等第1节品质因数第2节无源器件特性第3章传输线工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

工程师必须要掌握的常用天线无源器件原理及功能

工程师必须要掌握的常用天线无源器件原理及功能

工程师必须要掌握的常用天线无源器件原理及功能工程师在无线通信系统的设计和维护中,需要了解天线和无源器件的原理和功能。

天线是将电磁能量从导线传输到自由空间的装置,而无源器件是在电路中不需要供电的元器件。

下面是工程师必须要掌握的常用天线和无源器件的原理和功能的介绍。

一、常用天线的原理和功能:1.简单天线:如半波长偶极子天线和单极天线。

原理是电流通过导线会在空间产生辐射,仿佛天线是一个辐射源。

常见于Wi-Fi路由器和收音机。

2. 方向性天线:如小型喇叭天线和Yagi天线。

原理是通过设计天线的形状和构造来实现特定的辐射方向性。

常见于通信基站和无线电测量设备。

3. 宽频带天线:如Vivaldi天线和螺旋天线。

原理是通过特殊的天线结构和构造实现宽频带的传输和接收功能。

常见于雷达和宽带通信系统。

4.衍射天线:如带状天线和光纤天线。

原理是利用天线和介质的交互作用,实现辐射和接收无线信号。

常见于射频传输和微波通信系统。

5.平面天线:如微带天线和贴片天线。

原理是将导体片固定在平面表面上,实现辐射和接收电磁波的功能。

常见于移动通信设备和卫星通信终端。

6.捕捉天线:如磁环天线和弹性天线。

原理是通过改变天线的物理位置或形状,实现对特定频段的信号捕捉和过滤。

常见于无线电接收器和RFID读写器。

二、常用无源器件的原理和功能:1.电阻器:原理是通过电阻材料的电阻值限制电流的流动,用于电路的调节和阻抗匹配。

2.电容器:原理是利用电场作用储存电荷,用于能量存储和电路的频率响应调节。

3.电感器:原理是利用电磁感应作用储存磁能,用于滤波和电路的频率响应调节。

4.变压器:原理是通过线圈的磁场耦合实现输入和输出电压的变化,用于电压转换和隔离。

5.二极管:原理是利用半导体的PN结实现单向电流导通,用于电流控制和电路开关。

6.晶体管:原理是利用半导体材料的输运特性实现电流放大,用于信号放大和电路控制。

7.三极管:原理是在晶体管的基础上添加了一个控制接口,实现电流的放大和控制功能。

13 无源元件的射频特性.

13  无源元件的射频特性.

图1.3.9 二端陶瓷元件的等效电路
图1.3.10 二端陶瓷元件等效阻抗的频率特性


3.三端陶瓷元件 三端陶瓷元件的结构与符号如图1.3.11所示,由两片 陶瓷片A和B用导电胶粘合起来,由粘合面引出的端子 作为公共端,而由另两面引出的端子分别作为输入端 和输出端, 输入信号u加在A片上,它将电能转换成机械能,并产 生机械振动。机械振动通过粘合面传到B片上,又将机 械能转换成电能,输出给外接负载RL。同样,当信号 频率与陶瓷片固有的机械振动频率相等时,形成共振。 共振状态可形成强的电流,提供最大的电流到外部电 路。在共振的条件下,输出和输入信号间可能是同相 位,也可能有180°的相位差,与A、B陶瓷片的粘合 面有关。


石英晶体谐振器的等效电路如图1.3.7(a)所示,石英 晶体谐振器的符号如图1.3.7(b)所示。 图中,Lq为动态电感(等效电感);Cq为动态电容;rq 为动态电阻;C0为晶片与金属极板构成的静态电容。
图1.3.7 石பைடு நூலகம்晶体谐振器的等效电路和符号

石英晶体谐振器的等效电感Lq非常大,而Cq和rq都非常 小,所以石英晶体谐振器具有非常高的Q值,其Q值为
1 j C0 1 j C0
Lq (1 1/ 2 Lq Cq )
Cq C0 Lq 1 1/ Lq Cq C0 2 s2 p 1 2 1 2
(1.3.5)
图1.3.8 石英晶体谐振器的阻抗特性
1.3.5 压电陶瓷元件的射频特性



采用压电陶瓷材料(如铁钛酸铅)构成的压电陶瓷元 件有压电陶瓷谐振器、压电陶瓷滤波器等。它们在射 频电路的振荡槽路、选频网络、滤波等电路中应用, 具有频率稳定性好,选频特性尖锐和调试简单等优点。 通常将压电陶瓷材料做成片状,在其两面涂以银层, 作为电极,构成压电陶瓷元件。 1.压电陶瓷元件的压电效应 压电陶瓷材料具有压电效应,即能将机械的作用力转 换成电效应,也能将电的作用转换成机械效应。

1 什么是无源互调( PIM )? 无源互调与有源互调

1 什么是无源互调( PIM )? 无源互调与有源互调

1.什么是无源互调(PIM)?无源互调与有源互调相类似,只是无源互调是无源器件产生的。

只要在一个射频导体中同时存在两个或两个以上RF信号,就会产生互调。

当器件中存在一个以上的频率时,任何无源器件都会产生无源互调产物。

由于不同材料的连接处的具有非线性,信号会在结点混合。

典型地,其奇数阶互调产物(如IM3=2*F1-F2)会落在基站的上行或接收频段内,成为干扰接收机工作的信号。

它会造成独立于接收机随机底噪的接收机减敏现象。

2.产生PIM的典型原因?在射频器件(天线、电缆、滤波器等)中,有三个典型的成因:1.射频通道中不良的机械结点2.射频器件的材料具有磁滞现象(如不锈钢)3.射频通道中的表面或接触面受到污染。

例如,焊料(会吸附其他污染物)和加工过程中的金属微粒。

在一个完整的基站中,大功率放大器和接收机滤波器之间的任何无源器件都会产生严重的无源互调信号。

铁塔(“生锈螺钉噪声”)或发射天线的直射波周围的金属物质也会产生无源互调信号。

3.什么是IM3和IM5?它一般用来说明我们所讨论的互调产物的阶数。

IM表示“互调(inter-modulation)”。

紧跟着的数字是产生互调产物的两个母信号的整数倍频之和。

通过下表,可以很好的理解这个概念:IM Calculation互调计算IM Order互调阶数2*F1±1*F2 = F IM3Third Order (2+1=IM3)3*F1±2*F2 = F IM5Fifth Order (3+2=IM5)4*F1±3*F2 = F IM7Seventh Order (4+3=IM7)5*F1±4*F2 = F IM9Ninth Order (5+4=IM9)一般来说,阶数越小能量越大。

尽管如此,在选频系统中,接收机中的五阶互调产物大于三阶互调产物也是有可能的。

4.如果定义“良好”的PIM值?一个给定的RF器件所要求达到的无源互调水平对于该器件所在的最终系统的性能来说,是非常重要的。

射频无源器件课件

射频无源器件课件

Γ = 1, ρ = ∞, K = 0
可使用计算软件: 可使用计算软件
F:\cjq\u\Rf Tools\常用反射转换计算
1.08
Confidential Information
0.00
传输功率为 传输功率 :
1 P( z) = Re U( z) I ∗ ( z) 2
{
}
U ( z) 2 2 1 i ∗ = Re 1 − Γ ( z) + Γ ( z) − Γ ( z) 2 Z0
R=50*(3.16-1)/(3.16+1)=26欧姆 R1=50* (2*3.16)/(3.162-1) =35欧姆
Confidential Information
Sep 2010
衰减器计算软件: 衰减器计算软件:
F:\cjq\u\rf tools2\衰减网络计算.
Confidential Information
回波损耗RL 0.00 0.92 0.94 3.10 4.44 6.02 7.96 10.46 13.98 20.00 20.92 21.94 23.10 24.44 26.02 27.96 30.46 33.98 40.00 ∞
驻波比SWR ∞ 19.00 9.00 5.67 4.00 3.00 2.33 1.86 1.50 1.22 1.20 1.17 1.15 1.13 1.11 1.06 1.04 1.02 1.00
Z in ( z ) =
U ( z) I ( z)
对给定的传输线和负载阻抗,线上各点的输入阻抗随至终端的距离l的不同而作周期(周期为)变化,且在一些特 殊点上,有如下简单阻抗关系:
Z in (l ) = Z L Z in (l ) = Z0 ZL

射频基础知识及其主要指标

射频基础知识及其主要指标

对于G网,B = 200KHz,10lgB=53dBHz,No = -121dBm
Comba Telecom Systems
干扰协调
最大干扰容限
通常,码分系统的接收灵敏度可表示为:
SV
KT dBmHZ
10lgBdBHZ
NRdB
G
dB
P
EbdB
N0
KT:热噪声底噪-174dBm/Hz
B: 通道带宽(Hz)
为满足第三代(3G)蜂窝移动通信技术和业务发展的需求, 中国于2002年对3G系统使用的频谱作出了如下规划: ①第三代公众蜂窝移动通信系统的主要工作频段: 频分双工(FDD)方式:1920~1980 MHz / 2110~2170 MHz;
时分双工(TDD)方式:1880~1920MHz、2010~2025 MHz。
Comba Telecom Systems
3G与2G共存干扰协调
Comba Telecom Systems
32. 无线电干扰定义和分类(1)
无线电干扰是指发生在无线电频谱内的干扰。接收机收到无用信号时会导致有用信号的
接收质量下降,出现信息差错或丢失,甚至会阻断通信,这就是通常所说的无线电干扰。无
=E+20lgλ-11.6(dBμv)
对于其它接收天线,只需增加其相对于
半波偶极天线的增益Gr即可
即:A=E+20lgλ-11.6+Gr
~
半波偶 极天线
匹配网络
50Ω
接收机
Comba Telecom Systems
电场强度、电压及功率电平的换算
例如:对于900MHz频段,波长为0.33m,当采用半波偶 极天线时,输入电压A与接收场强E之间的关系为:
Comba Telecom Systems

射频概念知识点(修改)

射频概念知识点(修改)

1电平是以分贝表示的绝对功率,单位dBm,计算公式:dBm=10lg(*mw/1mw)2某发信机额定功率电平为30dBm,其杂散辐射相对电平为-70dBc,该项指标表明,杂散辐射电平为-40 dBm(30 dBm-70 dB)。

3增益(db):指放大器或系统的功率放大倍数,单位为分贝(dB)4插损=器件输出电平(dBm)-器件输入电平(dBm)5隔离度——耦合端口与输出端口的功率比(隔离端口与输入端口的功率之比),单位为dB6无源器件的方向性=隔离度-耦合度7常规工程无源器件:耦合器、合路器、电桥、衰减器、负载、功分器等。

8负载是一种特殊的衰减器,衰减度为无限大。

9合路器分为同频段合路器和异频段合路器两种,3dB电桥主要应用于同频段内不同载波间的合路应用。

10滤波器的典型指标:频率范围、带宽、插入损耗、带外抑制、驻波(回波损耗)、带内波动、功率容量等。

11直放站分类,按带宽分为宽带直放站和选频直放站,按传输方式分为:无线直放站和有线直放站;按接入方式分为:直接耦合直放站和空间耦合直放站。

12若一个系统的功率放大的倍数是2,则这个系统的增益是3dB 。

若系统的输出电平是43dBm,输入电平是10dBm,则系统的增益是33dB。

13无源器件按电气性能可分为微带和腔体。

14光合波器或光分波器统称为波分复用器。

它能将使光纤的通信容量成倍的提高。

目前多采用1310nm和1550nm波长的波分复用器。

15天线是将高频电流或波导形式的能量变换成电磁波并向规定方向发射出去或把来自一定方向的电磁波还原为高频电流的一种设备。

主要参数:方向图、增益、输入阻抗、驻波比、极化方式、前后比等。

16天线按极化方式分为单极化天线及双极化天线。

单极化天线又分为垂直极化和水平极化。

17天线增益是指天线朝一个特定方向收发信号的能力。

其单位用dBi和dBd表示,其中dBi=dBd+2.15,0dBd=2.15dBi。

18天线波瓣宽度是指天线辐射图中,低于峰值3dB处夹角的宽度或主波瓣宽度从最大值下降一半时两点所张的夹角19天线前后比指最大正向增益与最大反向增益之比,用分数表示。

无源器件的基本知识

无源器件的基本知识

三维工程技术培训讲义1射频基本参数介绍无源器件原理介绍三维工程技术培训讲义2射频基本参数介绍三维工程技术培训讲义3射频基本参数介绍固有噪声电平以KTB 定义的热噪声功率,和实际噪声功率电平之间的差别(以dB 表示)叫做噪声系数。

把它折算到电路或系统的输入端,噪声系数就为在线性有噪系统中,已算出了多种带宽内的固有噪声电平:一个实际系统中,在没有互调失真的情况下,输入噪声系数决定了最低)log(10)log(10KTB P NF Nactual dB −=三维工程技术培训讲义4射频基本参数介绍 功率/电平)是指放大器输出信号能量的能力,直放站的输出功率一般就是它的ALC 电平宽。

一般单位为w 、mw 、dBm 。

注:dBm 是取1mw 作基准值,以分贝表示的绝对功率电平。

三维工程技术培训讲义5射频基本参数介绍 增益;是指放大器在线性工作状态下对信号的放大能力,即放大倍数,单位可表示为分贝(dB)。

即:dB=10lgA(A为功率放大倍数);是指放大器在线性工作状态下对信号的放大能三维工程技术培训讲义6射频基本参数介绍 插损当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。

如果一个无源器件输出的信号是输入信号的三维工程技术培训讲义7射频基本参数介绍三维工程技术培训讲义8射频基本参数介绍三维工程技术培训讲义9射频基本参数介绍 噪声系数噪声系数定义为系统输入信噪功率比(SNR 0)与输出信噪功率比(SNR 1)的比值。

噪声系数表征了信号通过系统后,系统内部噪声造成信噪比恶三维工程技术培训讲义10射频基本参数介绍 线性线性通常用来度量放大器使信号形状失真的程度。

通常要求放大器工作在线性工作环境中,即输入与输出的信号完全一样,只是工作幅度被放大或缩小。

三维工程技术培训讲义11射频基本参数介绍 互调;互调是指非线性射频线路中,两个或多个频率混合后所产生的噪音信号。

;互调产生的本来并不存在“错误”信号,此信号三维工程技术培训讲义12射频基本参数介绍 互调(举例)频率A 及B 上的载波,产生如下互调信号:1阶:A ,B2阶:(A+B ),(A-B )三维工程技术培训讲义13射频基本参数介绍f1f22f1-f22f2-f1F(MHz)三维工程技术培训讲义14射频基本参数介绍三维工程技术培训讲义15射频基本参数介绍互调失真对系统的影响(举例)•三阶互调失真信号(A=935MHz ,B=960MHz)•2A-B=1870-960=910MHz 2B-A=1920-935=985MHz •A 及B 代表GSM 发射频率2A-B 进入GSM 接收波段,带三维工程技术培训讲义16射频基本参数介绍 互调产生的原因•构件材料•因为磁滞的关系,铁质材料是属非线性的•材料不纯三维工程技术培训讲义17射频基本参数介绍 隔离度本振或信号泄漏到其他端口的功率与原有功率之比,单位为dB 。

无源与有源元件的区别

无源与有源元件的区别

简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。

有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。

容、阻、感都是无源器件,IC、模块等都是有源器件。

(通俗的说就是需要电源才能显示其特性的就是有源元件,如三极管。

而不用电源就能显示其特性的就叫无源元件)
1.无源器件的简单定义
如果电子元器件工作时,其内部没有任何形式的电源,不依靠外加电源(直流或交流)的存在就能独立表现出其外特性的器件就是无源器件。

从电路性质上看,无源器件有两个基本特点:(1)自身或消耗电能,或把电能转变为不同形式的其他能量。

(2)只需输入信号,不需要外加电源就能正常工作。

无源元件主要是电阻类、电感类、电容类、射频隔离器、射频环行器元件,它的共同特点是在电路中无需加电源即可在有信号时工作。

2.有源器件的基本定义
如果电子元器件工作时,其内部有电源存在,则这种器件叫做有源器件。

从电路性质上看,有源器件有两个基本特点:
(1)自身也消耗电能。

(2)除了输入信号外,还必须要有外加电源才可以正常工作。

由此可知,有源器件和无源器件对电路的工作条件要求、工作方式完全不同,这在电子技术的学习过程中必须十分注意。

优译创立于中国深圳市,主要生产的产品:射频隔离器、环形器、衰减器、负载、合路器、功分器、电桥、射频滤波器、放大器等射频微波器件。

无源器件介绍

无源器件介绍
对微带功分器来说,如果一个电缆或天线损坏,可能造成功分器 的开路或短路。但因为输出间有隔离,一个臂的问题不会影响到另一臂。 而腔体功分器没有电阻可烧,所以一旦产生开路或短路,其可马上恢复 正常工作。
二、无源器件原理介绍
功分器必须掌握几个关键指标: 分配比 插入损耗 隔离度 功率容量 工作频带
二、无源器件原理介绍
在室温下,1Hz频带宽度内产生的热噪声功率为:
PNT(B) =(1.38 x10-23焦耳/ k)*( 294k)* (1Hz) = 4.057x10 -21 W = 4.057x10-18 mW
用分贝表示为 -174dBm/1Hz。 在理想的无其他噪声的系统里,放大器的输入噪声即为热噪声。放大器的 输出噪声包含了放大了的输入热噪声加放大器自身产生的噪声总和。
二、无源器件原理介绍
★ 环形器
使信号单方向传输的器件。所有射频信号以同样的环形方向传输,但是 只能从一个端口出去,所有射频信号必须从它遇到的第一个端口出来。它是 结合磁铁和一种特殊类型的材料即铁素体来完成。
频率范围:1.89~1.92GHz 最大正向损耗:0.4 dB 最小反向损耗:20dB 最大电压驻波系数:1.2。
★功率/电平
功率指电磁波能量。输出功率指放大器输出电磁波的能量。一般功率单位为 瓦w、毫瓦mw;用分贝表示为dBw、dBm。
1w = 1000mw;0dBw =10lg1w ;0dBm =10lg1mw;0dBw = 30dBm。
其他: 5W 10w 20w
10lg5000=37dBm 10lg10000=40dBm 10lg20000=43dBm
二、无源器件原理介绍
二、无源器件原理介绍
★衰减器
在相当宽的频段范围内一种相移为零、其衰减和特性阻抗均与频 率无关的常数,由电阻元件组成的四端网络,其主要用途是调整电路 中信号大小、改善阻抗匹配。衰减器可以分为两种类型:固定的和可 变的。通常工程上我们多采用固定衰减器。目前我们多采用的有5dB 、10dB、15dB、20dB、30dB、40dB等。衰减器我们最关注的指标 是衰减大小、功率容量大小等。

《无源器件介绍》课件

《无源器件介绍》课件

温度特性
总结词
描述无源器件在不同温度下的性能稳 定性。
详细描述
无源器件的温度特性是指其在不同温 度下的性能稳定性。由于温度变化可 能引起无源器件的性能漂移,因此了 解其温度特性有助于保证电路的稳定 性和可靠性。
环境特性
总结词
描述无源器件在不同环境条件下的性能表现和可靠性。
详细描述
无源器件的环境特性是指其在不同环境条件下的性能表现和可靠性。例如,某些无源器件可能对湿度、压力、机 械振动等环境因素敏感,需要在特定环境下使用或采取保护措施。
03
柔性化
柔性无源器件成为研究热点,可穿戴、可折叠和可伸缩 的电子产品需求增长,为无源器件带来新的应用场景。
市场发展趋势
5G和物联网推动
随着5G通信和物联网技术的快速 发展,无源器件市场将迎来新的 增长点,尤其在射频和微波领域

汽车电子需求增长
汽车智能化和电动化趋势带动汽车 电子市场增长,无源器件在汽车电 子领域的应用将进一步扩大。
厚膜工艺
厚膜工艺是一种将材料通过印刷 、烧结等工艺形成无源器件的技
术。
厚膜工艺具有工艺简单、成本低 、可靠性高等优点,广泛应用于厚膜工艺的制造过程包括印刷、 烧结、涂层等步骤,其中印刷和
烧结是关键工艺。
微组装工艺
微组装工艺是一种将多个小型化无源 器件组装在一起形成复杂电路的技术 。
新工艺的探索
3D打印技术
利用3D打印技术可以制造出结构更为复杂、功能更为多样的 无源器件,提高器件的性能和集成度。
纳米压印技术
纳米压印技术可以实现高精度、大面积的图案化,为制造高 性能无源器件提供了新的途径。
新应用领域的拓展
物联网
随着物联网技术的发展,无源器件的应用领域不断拓展,涉及传感器、无线通信和能量 收集等多个方面。

射频电路理论与设计(第2版) 第1章 引言

射频电路理论与设计(第2版) 第1章 引言

1.2.1 频率与波长
众所周知,在自由空间工作频率与工 作波长的乘积等于光的速度,也即 fλ= c = 3×108m/s (1.1)
式中,f为工作频率;λ为工作波长;c 为光的速度。式(1.1)的结论是:频率越 高波长越短。射频频段有很高的频率,所 以射频的工作波长很短。
在电路设计中,当频率较高、电路电路。
本书有配套的ADS射频电路仿真教材, 由为人民邮电出版社出版。 1.《ADS射频电路设计基础与典型应用》 2.《ADS射频电路仿真与实例详解》
1.4 本书安排
本书共分3大部分。 第1部分为射频电路基础知识和基本 理论。内容包括第1章引言和第2~4章,主 要介绍射频电路的基本概念、基本参数、 图解工具和基本研究方法。
对于电磁频谱,按照频率从低到高 (波长从长到短)的次序,可以划分为不 同的频段,电子通信的发展历程,实际上 就是所使用的载波频率由低到高的发展过 程。电通信的容量几乎与所使用的频率成 正比,对通信容量的要求越高,使用的频 率就越高。
一般认为,当频率高于30MHz时电路 的设计就需考虑射频电路理论;而射频电 路理论应用的典型频段为几百MHz至 4GHz,在这个频率范围内,电路需要考虑 分布参数的影响,低频的基尔霍夫电路理 论不再适用。
射频电路理论与设计 (第2版)
第1 章 引言
在射频频段,电路出现了许多独特的 性质,这些性质在常用的低频电路中从未 遇到,因此需要建立新的射频电路理论体 系。射频电路理论是电磁场理论与传统电 子学的融合,它将电磁场的波动理论引入 电子学,形成了射频电路的理论体系和设 计方法。
1.1
射频概念
射频电路的特点
第2部分为射频电路设计。内容包括 第5 ~ 11章的谐振电路设计、匹配电路设 计、滤波器设计、放大器设计、振荡器设 计、混频器设计和检波器设计。

无源器件技术介绍-基础篇

无源器件技术介绍-基础篇

Wuhan Hongxin Telecommunication Technologies Co., LTD
5
型号 名称描述 频率范围 端口驻波 分配比 输出隔离 插入损耗 功率容量 幅度平衡度 带内波动 阻抗 相位平衡度 互调 工作温度 端口类型 工作湿度
HXPD2-0800-25002-200N 200W 腔体二路功率分配器
常用微带功分器型号及指标: 其主要特点为插入损耗小,隔离度高,波动范围小,可靠性高,接头灵活,适用 于多种频段。下面列出部分器件的参数。
Wuhan Hongxin Telecommunication Technologies Co., LTD
4
型号 名称描述 频率范围 端口驻波 分配比 输出隔离 插入损耗 功率容量 幅度平衡度 带内波动 阻抗 相位平衡度 互调 工作温度 端口类型 工作湿度
Wuhan Hongxin Telecommunication Technologies Co., LTD
7
型号
HXPD1-0800-2500-05100N
HXPD1-0800-2500-06100N 名称描述:微带耦合器
HXPD1-0800-250007-100N
HXPD1-0800-250010-100N
HXPD2-0800-25002-050N 50W 微带二路功率分配器
HXPD2-0800-25003-050N 50W 微带三路功率分配器 806MHz~960MHz 1710MHz~2500MHz ≤1.20
HXPD2-0800-25004-050N 50W 微带四路功率分配器
3.00dB
4.77dB ≥20 dB
常用微带耦合器器型号及指标: 用于分配较小功率的 RF 信号(一般低于 100W) ,适用于 CDMA、GSM、DSC、PHS、3G 和 W-LAN 无线接入的室内分布系统。 它能满足各种频段的技术要求,具有可靠性高、频带宽、易于安装等特点,在室内分布系统 工程中得到了广泛的应用。下面列出部分器件的参数。

rf电路中分频器

rf电路中分频器

rf电路中分频器
(原创实用版)
目录
1.RF 电路中的分频器概述
2.分频器的工作原理
3.分频器的应用领域
4.分频器的发展趋势
正文
一、RF 电路中的分频器概述
在射频(RF)电路设计中,分频器是一种重要的无源器件,主要用于将输入信号的频率转换成较低或较高的频率。

分频器在无线通信、广播电视、导航定位等众多领域中都有广泛的应用。

二、分频器的工作原理
分频器通常由一个或多个耦合电容、电感、谐振器等元器件组成,其工作原理主要基于信号的频率特性。

当输入信号的频率与分频器的固有频率相同或相近时,信号会被放大;而当输入信号的频率与分频器的固有频率相差较大时,信号会被衰减。

通过这种频率选择性的特性,分频器可以实现对信号的频率分选。

三、分频器的应用领域
1.无线通信:在无线通信系统中,分频器用于将高频信号转换成中频或低频信号,以便进行信号处理和传输。

2.广播电视:在广播电视系统中,分频器用于将音频信号和视频信号进行频率分离,以便在不同的设备上进行处理和传输。

3.导航定位:在导航定位系统中,分频器用于将导航信号和定位信号
进行频率分离,以便在不同的设备上进行处理和传输。

4.其他领域:分频器还广泛应用于雷达、电子对抗、仪器测量等领域。

四、分频器的发展趋势
随着科技的不断发展,对分频器的性能要求也越来越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无源器件特性
1.高频电阻
低频电子学中最普通的电路元件就是电阻,它的作用是通过将一些电能装化成热能来达到电压降低的目的。

电阻的高频等效电路如图所示,其中两个电感L模拟电阻两端的引线的寄生电感,同时还必须根据实际引线的结构考虑电容效应;用电容C模拟电荷分离效应。

电阻等效电路表示法
根据电阻的等效电路图,可以方便的计算出整个电阻的阻抗:
下图描绘了电阻的阻抗绝对值与频率的关系,正像看到的那样,低频时电阻的阻抗是R,然而当频率升高并超过一定值时,寄生电容的影响成为主要的,它引起电阻阻抗的下降。

当频率继续升高时,由于引线电感的影响,总的阻抗上升,引线电感在很高的频率下代表一个开路线或无限大阻抗。

一个典型的1KΩ电阻阻抗绝对值与频率的关系
2.高频电容
片状电容在射频电路中的应用十分广泛,它可以用于滤波器调频、匹配网络、晶体管的偏置等很多电路中,因此很有必要了解它们的高频特性。

电容的高频等效电路如图所示,其
中L为引线的寄生电感;描述引线导体损耗用一个串联的等效电阻R1;描述介质损耗用一个并联的电阻R2。

电容等效电路表示法
同样可以得到一个典型的电容器的阻抗绝对值与频率的关系。

如下图所示,由于存在介质损耗和有限长的引线,电容显示出与电阻同样的谐振特性。

一个典型的1pF电容阻抗绝对值与频率的关系
3.高频电感
电感的应用相对于电阻和电容来说较少,它主要用于晶体管的偏置网络或滤波器中。

电感通常由导线在圆导体柱上绕制而成,因此电感除了考虑本身的感性特征,还需要考虑导线的电阻以及相邻线圈之间的分布电容。

电感的等效电路模型如下图所示,寄生旁路电容C 和串联电阻R分别由分布电容和电阻带来的综合效应。

高频电感的等效电路
与电阻和电容相同,电感的高频特性同样与理想电感的预期特性不同,如下图所示:首
先,当频率接近谐振点时,高频电感的阻抗迅速提高;第二,当频率继续提高时,寄生电容C的影响成为主要的,线圈阻抗逐渐降低。

电感阻抗绝对值与频率的关系
总之,在高频电路中,导线连同基本的电阻、电容和电感这些基本的无源器件的性能明显与理想元件特征不同。

读者可以发现低频时恒定的电阻值,到高频时显示出具有谐振点的二阶系统相应;在高频时,电容中的电介质产生了损耗,造成电容起呈现的阻抗特征只有低频时才与频率成反比;在低频时电感的阻抗响应随频率的增加而线形增加,达到谐振点前开始偏离理想特征,最终变为电容性。

这些无源元件在高频的特性都可以通过前面提到的品质因数描述,对于电容和电感来说,为了调谐的目的,通常希望的到尽可能高的品质因数。

相关文档
最新文档