实验三 MATLAB 数值计算(2)
matlab数学实验
《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。
(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。
【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。
(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。
(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。
(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。
【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。
0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。
reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。
A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。
MATLAB实验报告(1-4)
信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
Matlab实验
MATLAB实验报告学校:湖北文理学院学院:物理与电子工程学院专业:电子信息工程学号: 2013128182 姓名:张冲指导教师:宋立新实验一 MATLAB环境的熟悉与基本运算一、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验内容1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)2、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符。
三、练习1)help rand,然后随机生成一个2×6的数组,观察command window、command history和workspace等窗口的变化结果。
2)学习使用clc、clear,了解其功能和作用。
3)用逻辑表达式求下列分段函数的值4)求[100,999]之间能被21整除的数的个数。
(提示:rem,sum的用法)四、实验结果1)2)clc:清除命令窗口所有内容,数值不变;clear:初始化变量的值。
3)4)实验二 MATLAB数值运算一、实验目的1、掌握矩阵的基本运算2、掌握矩阵的数组运算二、实验内容1)输入C=1:2:20,则C(i)表示什么?其中i=1,2,3, (10)2)输入A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2; 3 3 3],在命令窗口中执行下列表达式,掌握其含义:A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2)A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A3)二维数组的创建和寻访,创建一个二维数组(4×8)A,查询数组A第2行、第3列的元素,查询数组A第2行的所有元素,查询数组A第6列的所有元素。
(完整word版)含答案《MATLAB实用教程》
第二章 MATLAB 语言及应用实验项目实验一 MATLAB 数值计算三、实验内容与步骤1.创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a(1(2)用(3)用(42.矩阵的运算(1)利用矩阵除法解线性方程组。
⎪⎪⎩⎪⎪⎨⎧=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将方程表示为AX=B ,计算X=A\B 。
(2)利用矩阵的基本运算求解矩阵方程。
已知矩阵A 和B 满足关系式A -1BA=6A+BA ,计算矩阵B 。
其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。
已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1104152021X ,计算其特征值和特征向量。
(4)Page:322利用数学函数进行矩阵运算。
已知传递函数G(s)=1/(2s+1),计算幅频特性Lw=-20lg(1)2(2w )和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。
3.多项式的运算(1)多项式的运算。
已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。
Page 324(2)多项式的拟合与插值。
将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进行拟合。
对G(x)和y1分别进行插值,计算在5.5处的值。
Page 325 四、思考练习题1.使用logspace 函数创建0~4π的行向量,有20个元素,查看其元素分布情况。
Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8用向量表示该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。
matlab实验
实验一 MATLAB基本操作一、实验目的1、了解MATLAB应用程序环境2、掌握MATLAB语言程序的书写格式和MATLAB语言程序的结构。
3、掌握在MATLAB应用环境下编写程序4、掌握MATALB调试过程,帮助文件5、掌握MATLAB语言上机步骤,了解运行一个MATLAB程序的方法。
6、本实验可在学习完教材第一章后进行。
二、主要仪器及耗材PC电脑,MATLAB6.5软件三、实验内容和步骤1、MATLAB语言上机步骤:(1)、进入系统在C盘或其他盘上找到MATLAB或MATLAB6.5,然后双击其图标打开文件夹。
然后进行编辑源程序->编译->连接->执行程序->显示结果(2)、常用命令编辑切换(F6),编译(F9),运行(CTRL+F9),显示结果(ALT+F5)其它常用命令见“附录一”。
2、有下面的MATLAB程序。
(1)数值计算功能:如,求方程 3x4+7x3 +9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根(2)绘图功能:如,绘制正弦曲线和余弦曲线x=[0:0.5:360]*pi/180;plot(x,sin(x),x,cos(x));(3)仿真功能:如,请调试上述程序。
3、熟悉MATLAB环境下的编辑命令,具体见附录一。
三、实验步骤1、静态地检查上述程序,改正程序中的错误。
2、在编辑状态下照原样键入上述程序。
3、编译并运行上述程序,记下所给出的出错信息。
4、按照事先静态检查后所改正的情况,进行纠错。
5、再编译执行纠错后的程序。
如还有错误,再编辑改正,直到不出现语法错误为止。
四、实验注意事项1、记下在调试过程中所发现的错误、系统给出的出错信息和对策。
分析讨论对策成功或失败的原因。
2、总结MATLAB程序的结构和书写规则。
五、思考题1、matlab到底有多少功能?2、MATLAB的搜索路径3、掌握使用MATLAB帮助文件实验二 MATLAB 矩阵及其运算一、 实验目的1、了解矩阵的操作,包括矩阵的建立、矩阵的拆分、矩阵分析等2、了解MATLAB 运算,包括算术运算、关系运算、逻辑运算等3、掌握字符串的操作,了解结构数据和单元数据。
MATLAB实验三 定积分的近似计算
实验三定积分的近似计算一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算0sin()dx xπ⎰x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件integrnd.m:function z = integrnd(x, y) z = y*sin(x);7.fprintf (文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1; y = [x; exp(x)];fid = fopen('exp.txt','w'); %打开文件 fprintf(fid,'%6.2f %12.8f\n',y); %写入 fclose(fid) %关闭文件 8.syms 变量1 变量2 …:定义变量为符号. 9.sym('表达式'):将表达式定义为符号.解释:Matlab 中的符号运算事实上是借用了Maple 的软件包,所以当在Matlab 中要对符号进行运算时,必须先把要用到的变量定义为符号. 10.int(f,v,a,b):求f 关于v 积分,积分区间由a 到b .11.subs(f ,'x',a):将 a 的值赋给符号表达式 f 中的 x ,并计算出值.若简单地使用subs(f),则将f 的所有符号变量用可能的数值代入,并计算出值.三、实验内容1. 矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即1()d ()nbi i ai f x x f x ς==∆∑⎰在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同i ς的取法,计算结果会有不同,我们以 120d 1xx +⎰为例(取100=n ),(1) 左点法:对等分区间b x i n ab a x x a x n i =<<-+=<<<=ΛΛ10,在区间],[1i i x x -上取左端点,即取1-=i i x ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78789399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差0.7878939967307840.0031784ππ-=≈(2)右点法:同(1)中划分区间,在区间],[1i i x x -上取右端点,即取i i x =ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78289399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7828939967307840.0031884ππ-=≈(3)中点法:同(1)中划分区间,在区间1[,]i i x x -上取中点,即取12i ii x x ς-+=, 12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78540024673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7854002467307842.653104ππ--=≈⨯如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2. 梯形法等分区间b x i n a b a x x a x n i =<<-+=<<<=ΛΛ10,nab x -=∆ 相应函数值为n y y y ,,,10Λ(n i x f y i i ,,1,0),(Λ==).曲线)(x f y =上相应的点为n P P P ,,,10Λ(n i y x P i i i ,,1,0),,(Λ==)将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为x y y ii ∆⨯+-21,n i ,,2,1Λ=. 于是各个小梯形面积之和就是曲边梯形面积的近似值,11 11()d ()22nnbi i i i ai i y y x f x x x y y --==+∆≈⨯∆=+∑∑⎰, 即11 ()d ()22bn n ay y b a f x x y y n --≈++++⎰L , 称此式为梯形公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,10112 0d ()122n n y y x b a y y x n --≈++++=+⎰L 0.78539399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7853939967307845.305104ππ--=≈⨯很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3. 抛物线法由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间],[b a 作n 2等分,分点依次为b x i n a b a x x a x n i =<<-+=<<<=2102ΛΛ,nab x 2-=∆, 对应函数值为n y y y 210,,,Λ(n i x f y i i 2,,1,0),(Λ==),曲线上相应点为n P P P 210,,,Λ(n i y x P i i i 2,,1,0),,(Λ==).现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线)(12x p x x y =++=γβα来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:21 ()d x x p x x =⎰22 ()d x x x x x αβγ++=⎰)()(2)(30220223032x x x x x x -+-+-γβα]4)(2)()()[(62022022202002γβαγβαγβα++++++++++-=x x x x x x x x x x 由于2201x x x +=,代入上式整理后得 21 ()d x x p x x ⎰)](4)()[(612122202002γβαγβαγβα++++++++-=x x x x x x x x )4(621002y y y x x ++-=)4(6210y y y nab ++-= 同样也有422 ()d x x p x x ⎰)4(6432y y y n ab ++-=……222 ()d n n x nx p x x -⎰)4(621222n n n y y y nab ++-=-- 将这n 个积分相加即得原来所要计算的定积分的近似值:22222212 11()d ()d (4)6ii nnbx i i i i ax i i b af x x p x x y y y n---==-≈=++∑∑⎰⎰, 即021******* ()d [4()2()]6bn n n ab af x x y y y y y y y y n---≈++++++++⎰L L 这就是抛物线法公式,也称为辛卜生(Simpson )公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,102132124222 0d [4()2()]16n n n x b ay y y y y y y y x n ---≈+++++++++⎰L L=0.78539816339745,理论值 12 0d 14x x π=+⎰,此时计算的相对误差 160.7853981633974542.827104ππ--=≈⨯4. 直接应用Matlab 命令计算结果(1) 数值计算 120d .1xx +⎰ 方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0:0.001:1; y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分) (2)数值计算 212 01d d x x y y -+⎰⎰方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1. 实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算 120d 1xx +⎰,取258=n ,并比较三种方法的精确程度.2. 分别用梯形法与抛物线法,计算 2 1d xx⎰,取120=n .并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3. 试计算定积分 0sin d xx x+∞⎰.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)4. 将 120d 1xx +⎰的近似计算结果与Matlab 中各命令的计算结果相比较,试猜测Matlab 中的数值积分命令最可能采用了哪一种近似计算方法?并找出其他例子支持你的观点.5. 通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值?6. 学习fulu2sum.m 的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.五、附录附录1:矩形法(左点法、右点法、中点法)(fulu1.m ) format long n=100;a=0;b=1;inum1=0;inum2=0;inum3=0; syms x fx fx=1/(1+x^2); for i=1:nxj=a+(i-1)*(b-a)/n; %左点 xi=a+i*(b-a)/n; %右点 fxj=subs(fx,'x',xj); %左点值fxi=subs(fx,'x',xi); %右点值fxij=subs(fx,'x',(xi+xj)/2); %中点值inum1=inum1+fxj*(b-a)/n;inum2=inum2+fxi*(b-a)/n;inum3=inum3+fxij*(b-a)/n;endinum1inum2inum3integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum1 and real-value is about: %d\n\n',...abs((inum1-integrate)/integrate))fprintf('The relative error between inum2 and real-value is about: %d\n\n',...abs((inum2-integrate)/integrate))fprintf('The relative error between inum3 and real-value is about: %d\n\n',...abs((inum3-integrate)/integrate))附录2:梯形法(fulu2.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n;xi=a+i*(b-a)/n;fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);inum=inum+(fxj+fxi)*(b-a)/(2*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录2sum:梯形法(fulu2sum.m),利用求和函数,避免for 循环format longn=100;a=0;b=1;syms x fxfx=1/(1+x^2);i=1:n;xj=a+(i-1)*(b-a)/n; %所有左点的数组xi=a+i*(b-a)/n; %所有右点的数组fxj=subs(fx,'x',xj); %所有左点值fxi=subs(fx,'x',xi); %所有右点值f=(fxi+fxj)/2*(b-a)/n; %梯形面积inum=sum(f) %加和梯形面积求解integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录3:抛物线法(fulu3.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点xk=(xi+xj)/2; %中点fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);fxk=subs(fx,'x',xk);inum=inum+(fxj+4*fxk+fxi)*(b-a)/(6*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))。
MATLAB实验
MATLAB实验一:MATLAB语言基本概念实验实验目的:1. 熟悉MATLAB语言及使用环境;2.掌握MATLAB的常用命令;3.掌握MATLAB的工作空间的使用;4.掌握MATLAB的获得帮助的途径。
5.掌握科学计算的有关方法,熟悉MATLAB语言及其在科学计算中的运用;6.掌握MATLAB的命令运行方式和M文件运行方式;7.掌握矩阵在MATLAB中的运用。
实验方案分析及设计:本次实验主要目的是了解MATLAB的使用环境,以及常用的一些命令的使用;了解矩阵在MATLAB实验中的具体运用,以及相关的一些符号命令的使用。
实验器材:电脑一台,MATLAB软件实验步骤:打开MATLAB程序,将实验内容中的题目依次输入MATLAB中,运行得到并记录结果,最后再对所得结果进行验证。
实验内容及要求:1.熟悉MATLAB的菜单和快捷键的功能2.熟悉MATLAB的命令窗口的使用3.熟悉常用指令的使用format clc clear help lookfor who whos 4.熟悉命令历史窗口的使用5. 熟悉MATLAB工作空间的功能将工作空间中的变量保存为M文件,并提取该文件中的变量6.熟悉MATLAB获取帮助的途径将所有plot开头的函数列出来,并详细给出plotfis函数的使用方法1. 输入 A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2;3 3 3],在命令窗口中执行下列表达式,掌握其含义:A(2, 3) A(:,2) A(3,:) A(:,1:2:3)A(:,3).*B(:,2) A(:,3)*B(2,:) A*BA.*BA^2 A.^2 B/A B./AA=[7 1 5;2 5 6;3 1 5]7 1 52 5 63 1 5>> B=[1 1 1; 2 2 2;3 3 3]1 1 12 2 23 3 3>> A(2, 3)6>> A(:,2)151>> A(3,:)3 1 5>> A(:,1:2:3)7 52 63 5>> A(:,3).*B(:,2)51215>> A(:,3)*B(2,:)10 10 1012 12 1210 10 10>> A*B24 24 2430 30 3020 20 20>> A.*B7 1 54 10 129 3 15>> A^266 17 6642 33 7038 13 46>> A.^249 1 254 25 369 1 25>> B/A0.1842 0.2105 -0.23680.3684 0.4211 -0.47370.5526 0.6316 -0.7105>> B./A0.1429 1.0000 0.20001.0000 0.4000 0.33331.0000 3.0000 0.60002.输入 C=1:2:20,则 C (i )表示什么?其中 i=1,2,3, (10)1到19差为2,i 代表公差3. 试用 help 命令理解下面程序各指令的含义:cleart =0:0.001:2*pi;subplot(2,2,1);polar(t, 1+cos(t))subplot(2,2,2);plot(cos(t).^3,sin(t).^3)subplot(2,2,3);polar(t,abs(sin(t).*cos(t)))subplot(2,2,4);polar(t,(cos(2*t)).^0.5)4计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和。
《MATLAB仿真技术》实验指导书2016附问题详解
实验项目及学时安排实验一 MATLAB环境的熟悉与基本运算 2学时实验二 MATLAB数值计算实验 2学时实验三 MATLAB数组应用实验 2学时实验四 MATLAB符号计算实验 2学时实验五 MATLAB的图形绘制实验 2学时实验六 MATLAB的程序设计实验 2学时实验七 MATLAB工具箱Simulink的应用实验 2学时实验八 MATLAB图形用户接口GUI的应用实验 2学时实验一 MATLAB环境的熟悉与基本运算一、实验目的1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。
2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。
MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符4.MATLAB的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7 两种运算指令形式和实质涵的异同表6.MATLAB的常用函数表8 标准数组生成函数表9 数组操作函数三、实验容1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)2、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、 exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
计算方法matlab实验报告
计算方法matlab实验报告计算方法MATLAB实验报告引言:计算方法是一门研究如何用计算机来解决数学问题的学科。
在计算方法的学习过程中,MATLAB作为一种强大的数值计算软件,被广泛应用于科学计算、工程计算、数据分析等领域。
本实验报告将介绍在计算方法课程中使用MATLAB 进行的实验内容和实验结果。
一、二分法求方程根在数值计算中,求解非线性方程是一个常见的问题。
二分法是一种简单而有效的求解非线性方程根的方法。
在MATLAB中,可以通过编写函数和使用循环结构来实现二分法求解方程根。
实验步骤:1. 编写函数f(x),表示待求解的非线性方程。
2. 设定初始区间[a, b],满足f(a) * f(b) < 0。
3. 利用二分法迭代求解方程根,直到满足精度要求或迭代次数达到预设值。
实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个非线性方程的根。
例如,对于方程f(x) = x^3 - 2x - 5,我们通过二分法迭代了5次,得到了方程的一个根x ≈ 2.0946。
二、高斯消元法解线性方程组线性方程组的求解是计算方法中的重要内容之一。
高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵变换将线性方程组化为上三角矩阵,从而简化求解过程。
在MATLAB中,可以利用矩阵运算和循环结构来实现高斯消元法。
实验步骤:1. 构建线性方程组的系数矩阵A和常数向量b。
2. 利用高斯消元法将系数矩阵A化为上三角矩阵U,并相应地对常数向量b进行变换。
3. 利用回代法求解上三角矩阵U,得到线性方程组的解向量x。
实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个线性方程组。
例如,对于线性方程组:2x + 3y - z = 13x - 2y + 2z = -3-x + y + 3z = 7经过高斯消元法的计算,我们得到了方程组的解x = 1,y = -2,z = 3。
三、数值积分方法数值积分是计算方法中的重要内容之一,它用于计算函数在给定区间上的定积分。
MATLAB实验报告一二三
2015秋2013级《MATLAB程序设计》实验报告实验一班级:软件131 姓名:付云雷学号:132872一、实验目的:1、了解MATLAB程序设计的开发环境,熟悉命令窗口、工作区窗口、历史命令等窗口的使用。
2、掌握MATLAB常用命令的使用。
3、掌握MATLAB帮助系统的使用。
4、熟悉利用MATLAB进行简单数学计算以及绘图的操作方法。
二、实验内容:1、启动MATLAB软件,熟悉MATLAB的基本工作桌面,了解各个窗口的功能与使用。
图1 MATLAB工作桌面2、MATLAB的常用命令与系统帮助:(1)系统帮助help:用来查询已知命令的用法。
例如已知inv是用来计算逆矩阵,键入help inv即可得知有关inv命令的用法。
lookfor:用来寻找未知的命令。
例如要寻找计算反矩阵的命令,可键入lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。
找到所需的命令後,即可用help进一步找出其用法。
(2)数据显示格式:常用命令:说明format short 显示小数点后4位(缺省值)format long 显示15位format bank 显示小数点后2位format + 显示+,-,0format short e 5位科学记数法format long e 15位科学记数法format rat 最接近的有理数显示(3)命令行编辑:键盘上的各种箭头和控制键提供了命令的重调、编辑功能。
具体用法如下:↑----重调前一行(可重复使用调用更早的)↓----重调后一行→----前移一字符←----后移一字符home----前移到行首end----移动到行末esc----清除一行del----清除当前字符backspace----清除前一字符(4)MATLAB工作区常用命令:who--------显示当前工作区中所有用户变量名whos--------显示当前工作区中所有用户变量名及大小、字节数和类型disp(x) -----显示变量X的内容clear -----清除工作区中用户定义的所有变量save文件名-----保存工作区中用户定义的所有变量到指定文件中load文件名-----载入指定文件中的数据3、在命令窗口执行命令完成以下运算,观察workspace的变化,记录运算结果。
数值分析matlab实验报告
数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。
本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。
二、实验内容(一)误差分析在数值计算中,误差是不可避免的。
通过对给定函数进行计算,分析截断误差和舍入误差的影响。
例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。
(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。
2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。
(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。
2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。
(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。
三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。
```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。
(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。
matlab数值计算 实验报告
matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种强大的数值计算软件,广泛应用于科学和工程领域。
本实验旨在通过实际案例,展示Matlab在数值计算中的应用能力。
本报告将从三个方面进行讨论:数值积分、线性方程组求解和最优化问题。
一、数值积分:数值积分是数学中常见的问题,Matlab提供了多种函数和方法来解决这类问题。
我们以求解定积分为例进行讨论。
假设我们要求解函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用Matlab中的quad函数来进行计算,代码如下:```matlabf = @(x) x.^2;integral = quad(f, 0, 1);disp(integral);```运行以上代码,我们可以得到定积分的近似值为0.3333。
通过调整积分方法和精度参数,我们可以得到更精确的结果。
二、线性方程组求解:线性方程组求解是数值计算中的重要问题,Matlab提供了多种函数和方法来解决线性方程组。
我们以一个简单的线性方程组为例进行讨论。
假设我们要求解以下线性方程组:```2x + y = 5x - y = 1```我们可以使用Matlab中的linsolve函数来求解,代码如下:```matlabA = [2 1; 1 -1];B = [5; 1];X = linsolve(A, B);disp(X);```运行以上代码,我们可以得到方程组的解为x = 2,y = 3。
通过调整方程组的系数矩阵和右侧向量,我们可以求解更复杂的线性方程组。
三、最优化问题:最优化问题在科学和工程领域中广泛存在,Matlab提供了多种函数和方法来解决这类问题。
我们以求解无约束最优化问题为例进行讨论。
假设我们要求解函数f(x) = x^2的最小值。
我们可以使用Matlab中的fminunc函数来进行计算,代码如下:```matlabf = @(x) x.^2;x0 = 1; % 初始点options = optimoptions('fminunc', 'Display', 'iter');[x, fval] = fminunc(f, x0, options);disp(x);disp(fval);```运行以上代码,我们可以得到最小值的近似解为x = 0,f(x) = 0。
matlab 实验三 matlab程序设计与优化
matlab 实验三 matlab程序设计与优化Matlab是一种高级的计算机编程语言,广泛应用于科学、工程、金融和其他领域。
在Matlab实验三中,我们将学习Matlab程序设计与优化。
本文将介绍Matlab实验三的内容和要求,并提供一些有用的技巧和建议,帮助读者更好地完成实验。
实验三的主要内容包括:1. Matlab程序设计基础2. Matlab程序优化技巧3. Matlab代码调试方法4. Matlab性能分析工具5. 实例分析与练习题下面我们将逐个介绍这些内容。
1. Matlab程序设计基础在本节中,我们将学习如何使用Matlab编写简单的程序。
以下是一些重要的概念和技巧:1)变量和数据类型:在Matlab中,变量可以存储不同类型的数据,如数字、字符串、逻辑值等。
常见的数据类型包括double、char、logical等。
2)运算符:Matlab支持各种数学运算符,包括加减乘除、幂运算等。
此外,还有逻辑运算符(如and、or)和比较运算符(如==、~=)。
3)控制结构:控制结构可以控制程序执行流程。
常见的控制结构包括if语句、for循环和while循环。
4)函数:函数是一种可重复使用的代码块,可以接受输入参数并返回输出结果。
Matlab中有很多内置函数,也可以编写自己的函数。
2. Matlab程序优化技巧在本节中,我们将学习如何优化Matlab程序以提高其性能。
以下是一些重要的技巧:1)向量化:向量化是一种将循环操作转换为矩阵操作的技术。
这样可以减少程序执行时间,并且使代码更简洁。
2)预分配数组:在编写Matlab程序时,应尽可能避免动态数组分配。
相反,应该预先分配所需大小的数组。
3)使用内置函数:Matlab中有许多内置函数,它们通常比用户自定义函数更快。
因此,在编写程序时应尽可能使用内置函数。
4)避免不必要的计算:在编写程序时,应尽可能避免不必要的计算。
例如,在循环中进行重复计算或计算已知结果等。
基于Matlab的信号与系统实验指导
基于Matlab 的信号与系统实验指导实验一 连续时间信号在Matlab 中的表示一、实验目的1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉这些信号的波形和特性二、实验原理及实例分析1、信号的定义与分类2、如何表示连续信号?连续信号的表示方法有两种;符号推理法和数值法。
从严格意义上讲,Matlab 数值计算的方法不能处理连续时间信号。
然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被Matlab 处理,并且能较好地近似表示连续信号。
3、Matlab 提供了大量生成基本信号的函数。
如:(1)指数信号:K*exp(a*t)(2)正弦信号:K*sin(w*t+phi)和K*cos(w*t+phi)(3)复指数信号:K*exp((a+i*b)*t)(4)抽样信号:sin(t*pi)注意:在Matlab 中用与Sa(t)类似的sinc(t)函数表示,定义为:)t /()t (sin )t (sinc ππ=(5)矩形脉冲信号:rectpuls(t,width)(6)周期矩形脉冲信号:square(t,DUTY),其中DUTY 参数表示信号的占空比DUTY%,即在一个周期脉冲宽度(正值部分)与脉冲周期的比值。
占空比默认为0.5。
(7)三角波脉冲信号:tripuls(t, width, skew),其中skew 取值范围在-1~+1之间。
(8)周期三角波信号:sawtooth(t, width)(9)单位阶跃信号:y=(t>=0)三、实验内容1、验证实验内容直流及上述9个信号2、程序设计实验内容(1)利用Matlab 命令画出下列连续信号的波形图。
(a ))4/3t (2cos π+(b ))t (u )e 2(t -- (c ))]2()(u )][t (cos 1[--+t u t π(2)利用Matlab 命令画出复信号)4/t (j 2e)t (f π+=的实部、虚部、模和辐角。
MATLAB课程设计
一、课程目的初步学会使用MATLAB软件,掌握MATLAB基本的函数的使用,熟练MATLAB编程,以便为今后数字信号的处理打下基础。
二、课程内容实验一 MATLAB语言基础实验目的:基本掌握 MATLAB 向量、矩阵、数组的生成及其基本运算(区分数组运算和矩阵运算)、常用的数学函数。
了解字符串的操作。
实验内容:1、创建以下矩阵:A为3×4的全1 矩阵、B为3×3的0矩阵、C为3×3的单位阵、D为3×3的魔方阵、E由C和D纵向拼接而成、F抽取E的2~5行元素生成、G由F经变形为3×4的矩阵而得、以G为子矩阵用复制函数(repmat)生成6×8的大矩阵H。
源程序:A=ones(3,4)% A为3×4的全 1 矩阵B=zeros(3)% B为3×3的0矩阵C=eye(3)% C为3×3的单位阵D=magic(3)% D为3×3的魔方阵E=cat(1,C,D)% E由C和D纵向拼接而成F=E(2:5,:)% F抽取E的2~5行元素生G=reshape(F,3,4)% G由F经变形为3×4的矩阵而得H=repmat(G,2,2) %以G为子矩阵用复制函数(repmat)生成6×8的大矩阵H运行结果:A =1 1 1 11 1 1 11 1 1 1B =0 0 00 0 00 0 0C =1 0 00 1 00 0 1D =8 1 63 5 74 9 2E =1 0 00 1 0 0 0 1 8 1 6 3 5 7 4 9 2 F =0 1 0 0 0 1 8 1 6 3 5 7 G =0 3 1 1 0 1 5 6 8 0 0 7 H =0 3 1 1 0 3 1 1 0 1 5 6 0 1 5 6 8 0 0 7 8 0 0 7 0 3 1 1 0 3 1 1 0 1 5 6 0 1 5 6 8 0 0 7 8 0 0 72、(1)用矩阵除法求下列方程组的解 x=[x 1;x 2;x 3];⎪⎩⎪⎨⎧-=---=++-=++73847523436321321321x x x x x x x x x (2) 求矩阵的秩;(3) 求矩阵的特征值与特征向量; (4) 矩阵的乘幂与开方; (5) 矩阵的指数与对数; (6) 矩阵的提取与翻转。
matlab数值分析实验报告
matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。
本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。
一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。
在Matlab中,可以使用diff函数来计算函数的导数。
例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。
在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。
例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。
在Matlab中,可以使用\操作符来求解线性方程组。
例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。
通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。
数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。
实验三MATLAB的程序设计
end
ifk==0
Y=1;
elseifk==1&&n==1
Y=1;
elseifk<=n
Y=(n/k)*c(k-1,n-1);
end
程序测试:
>> c(0,0)
ans =
1
>> c(0,1)
ans =
1
>> c(3,4)
ans =
4
7,计算以下和式,并估计其求和公式以及验证:
functionY=s(n)
Y=0;
fork=1:n
Y=Y+k;
end
测试:
>> s(3)
ans =
6
functionY=s(n)
Y=0;
fork=1:n
Y=Y+k^2;
end
测试:
>> s(3)
ans =
14
functionY=s(n)
Y=0;
fork=1:n
Y=Y+k^3;
end
测试:
>> s(2)
4
>> Joseph0(7,4)
2
11,求出 之间的所有素数;
M函数文件:
functionout = nprimes(N)
A= [1:N];
A(1)=0;
i=2;
whilei<= floor(sqrt(N));
forj= 2:fix(N/i)
A(i*j) = 0;
end;
i = A(find(A>i,1));
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 MATLAB 数值计算
一、实验目的:
熟悉MATLA B多项式的运用。
(1)多项式的求值、求根和部分分式展开
(2)多项式的乘除法和微积分
(3)多项式拟合和插值
二、实验内容和步骤:
1. 多项式求值
函数polyval可以用来计算多项式在给定变量时的值,是按数组运算规则进行计算的。
语法:
polyval(p,s)
说明:p为多项式, s为给定矩阵。
【例1】计算p(x)= 3x2+2x+1多项式的值。
p = [3 2 1];
polyval(p,2) %计算x=2时多项式的值
ans =
17
x=0:0.5:3;
polyval(p,x) %计算x为向量时多项式的值
ans =
1.0000
2.7500 6.0000 10.7500 17.0000 24.7500 34.0000
2. 多项式求根
▪roots用来计算多项式的根。
语法:
r=roots(p)
说明:p为多项式;r为计算的多项式的根,以列向量的形式保存。
▪与函数roots相反,根据多项式的根来计算多项式的系数可以用poly函数来实现。
语法:
p=poly (r)
【例2】计算多项式p(x)= x3-6x2-72x-27的根以及由多项式的根得出系数。
p = [1 -6 -72 -27]
roots(p) %计算多项式的根
ans =
12.1229
-5.7345
-0.3884
poly([ 12.1229;-5.7345;-0.3884]) %计算多项式的系数
ans =
1.0000 -6.0000 -7
2.0000 -27.0011
3. 特征多项式
对于一个方阵s ,可以用函数poly 来计算矩阵的特征多项式的系数。
特征多项式的根即为特征值,用roots 函数来计算。
语法:
p=poly (s)
说明:s 必须为方阵;p 为特征多项式。
【例3】 根据矩阵来计算的特征多项式系数。
A =[1 2 3;4 5 6;7 8 0]
p = poly(A)
A =
1 2 3
4 5 6
7 8 0
p =
1.0000 -6.0000 -7
2.0000 -27.0000
r = roots(p)
r =
12.1229
-5.7345
-0.3884
程序分析:p= x 3-6x 2-72x-27为矩阵A 的特征多项式,12.1229, -5.7345和-0.3884为矩阵s 的特征根。
4. 部分分式展开
用residue 函数来实现将分式表达式进行多项式的部分分式展开。
k(s)n
p s n r 2p s 2r 1p s 1r A(s)B(s)+-++-+-= 语法:
[r,p,k]=residue(b,a)
说明:b 和a 分别是分子和分母多项式系数行向量;r 是[r 1 r 2 …r n ]留数行向量;p 为[p 1 p 2 …p n ]极点行向量;k 为直项行向量。
【例4】 将表达式
进行部分分式展开。
b = [ 5 3 -2 7]
a = [-4 0 8 3]
[r, p, k] = residue(b,a)
b =
5 3 -2 7
a =
-4 0 8 3
r =
-1.4167
-0.6653
1.3320
p =
1.5737
-1.1644
-0.4093
k =
-1.2500
程序分析:表达式
展开结果为2500.10.4093s 1.3320
1.1644s 0.6653
1.5737-s 1.4167
-+++-+-。
2.多项式的乘除法和微积分
1. 多项式的乘法和除法
▪ 多项式的乘法
语法:
p=conv(pl,p2)
说明:p 是多项式p1和p2的乘积多项式。
▪ 多项式的除法
语法:
[q,r]=deconv(pl,p2)
说明:除法不一定会除尽,会有余子式。
多项式p1被p2除的商为多项式q,而余子式是r。
【例5】计算表达式(x3+2x2+3x+4)(10x2+20x+30)。
u = [1 2 3 4]
v = [10 20 30]
c = conv(u,v)
c =
10 40 100 160 170 120
[q,r] = deconv(c,u)
q =
10 20 30
r =
0 0 0 0 0 0
2. 多项式的微分和积分
▪多项式的微分由polyder函数实现。
▪MATLAB没有专门的多项式积分函数,但可以用[p./length(p):-1:1,k]的方法来完成积分,k为常数。
【例6】求多项式(3x2+6x+9) (x2+2x)的微分和积分.
a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
k =
12 36 42 18
s=length(k):-1:1
s =
4 3 2 1
p1=[k./s,0] %多项式积分,常数k=0
p1 =
3 12 21 18 0
3多项式拟合和插值
1. 多项式拟合
多项式曲线拟合是用一个多项式来逼近一组给定的数据,使用polyfit函数来实现。
拟
合的准则是最小二乘法,即找出使
2
n
1
i
i
i
y
)
f(x
∑
=
-最小的f(x)。
语法:
p=polyfit(x,y,n)
说明:x、y向量分别为N个数据点的横、纵坐标;n是用来拟合的多项式阶次;p为拟合的多项式,p为n+1个系数构成的行向量。
【例7】对多项式y=2x3-x2+5x+10曲线拟合。
经过一阶、二阶和三阶拟合的曲线如图2所示。
图一阶、阶和三阶拟合曲线
x=1:10;
p=2 -1 5 10];
y1=polyval(p,x)
y1 =
Columns 1 through 7
16 32 70 142 260 436 682
Columns 8 through 10
1010 1432 1960
p1=polyfit(x,y1,1) %一阶拟合
p1 =
204.8000 -522.4000
p2=polyfit(x,y1,2) %二阶拟合
p2 =
32.0000 -147.2000 181.6000
p3=polyfit(x,y1,3) %三阶拟合
p3 =
2.0000 -1.0000 5.0000 10.0000
2. 插值运算
插值运算是根据数据点的规律,找到一个多项式表达式可以连接两个点,插值得出相邻数据点之间的数值。
1. 一维插值
一维插值是指对一个自变量的插值,interp1函数是用来进行一维插值的。
语法:
yi=interp1(x,y,xi,’method’)
说明:x、y为行向量;xi是插值范围内任意点的x坐标,yi则是插值运算后的对应y 坐标;method是插值函数的类型,“linear”为线性插值(默认),“nearest”为用最接近的相邻点插值,“spline”为三次样条插值,“cubic”为三次插值。
【例8】经过线性插值、三次样条插值计算出横坐标为9.5的对应纵坐标,如图所示。
图线性插值和三次样条插值
x=1:10;
p=[2 -1 5 10];
y1=polyval(p,x)
y1 =
Columns 1 through 7
16 32 70 142 260 436
682
Columns 8 through 10
1010 1432 1960
y11=interp1(x,y1,9.5) %线性插值
y11 =
1696
y12=interp1(x,y1,9.5,'spline') %三次样条插值
y12 =
1682
2. 二维插值
二维插值是指对两个自变量的插值,interp2函数是用来进行二维插值的。
语法:
zi=interp2(x,y,z,xi,yi,’method ’)
说明:method 是插值函数的类型有,“linear ”为双线性插值(默认),“nearest ”为用最接近点插值,“cubic ”为三次插值。
>> average{2}=average_scores;
思考题
1.计算 p(x)= x 4+10 x 3 +2x 2 + 4x+3多项式的在x=5值。
2. 表达式10)
2)(s s(s 4)10(s +++进行部分分式展开。
3. 计算表达式(5x 3+4x 2+7x+1)(9x+5)的根以及由多项式的根得出系数。
4. 求多项式(5x 2+4x+9) (3x 2+6x)的微分和积分.。