spss中相关与回归分析

合集下载

第7章 相关分析与回归分析(含SPSS)

第7章 相关分析与回归分析(含SPSS)



四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。

偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)

偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。

(二)偏相关系数在SPSS中的实现

1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶

SPSS for Windows 统计分析第二讲 相关分析与回归分析

SPSS for Windows 统计分析第二讲  相关分析与回归分析

第二讲 相关分析与回归分析第一节 相关分析1.1 变量的相关性1.变量的相关性分两种,一种是研究两个变量X 与Y 的相关性,另一种是研究两组变量X 1,X 2,…,X p 与Y 1,Y 2,…,Y q 之间的相关性。

本节只研究前者,即两个变量之间的相关性;后者,即两组变量之间的相关称为典型相关,不在本节研究范围之内。

2.两个变量X 与Y 的相关性研究,是探讨这两个变量之间的关系密切到什么程度,能否给出一个定量的指标。

这个问题的难处在于“关系”二字,从数学角度看,两个变量X 、Y 之间的关系具有无限的可能性,因此泛泛谈“关系”不会有什么出路。

一个比较现实的想法是:确立一种“样板”关系,然后把X 、Y 的实际关系与“样板”关系比较,看它们“像”到了什么程度,给出一个定量指标。

3.取什么关系做“样板”关系?线性关系。

这是一种单调递增或递减的关系,在现实生活中广为应用;另外,现实世界中大量的变量服从正态分布,对这些变量而言,可以用线性关系或准线性关系构建它们之间的联系。

1.2 相关性度量1.概率论中用相关系数(correlation coefficient )度量两个变量的相关程度。

变量X 和Y 的相关系数定义为:)()(),(),(Y Var X Var Y X Cov Y X Corr其中Cov (X ,Y )是协方差,Var (X )和Var (Y )分别是变量X 和Y 的方差。

相关系数Corr (X ,Y )有性质: 1)1),(≤Y X Corr ;2)1),(=Y X Corr 当且仅当1}{=+=bX a Y P 。

而且当 Corr (X ,Y )=1时,有b >0,称为正相关;Corr (X ,Y )=-1时,有b <0,称为负相关。

特别,当Corr (X ,Y )=0,称X 和Y 不相关,这时它们没有线性关系。

为区别以下出现的样本相关系数,有时也把这里定义的相关系数称为总体相关系数。

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

SPSS_相关分析与回归分析专题

SPSS_相关分析与回归分析专题

相关分析 与
回归分析
Pearson相关系数应用广泛,其计算公式及其性质如下:
r (x x)(y y) (x x)2(y y)2
r 0.3 微弱相关、0.3 r 0.5 低度相关 0.5 r 0.8 显著相关、0.8 r 1 高度相关 当r 0时,表示x与y为正相关 当r 0时,表示x与y为负相关 当 r 0时,表示x与y不相关
相关分析 与
回归分析
相关分析与回归分析专题 (Correlation & regression)
相关分析 与
回归分析
相关分析
(Correlation Analysis)
相关分析 与
回归分析
一、相关分析的意义:
研究问题过程:单变量分析 双变量分析 多变量分析 多变量分析与单变量分析的最大不同:揭示客观事物之间 的关联性。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变 量进行控制,输出控制其他变量影响后的相关系数。
相关分析 与
回归分析
举例: 分析身高与肺活量之间的相关性,要控制体重在 相关分析过程中的影响。 1.设置偏相关分析的参数。
依次单击“Analyze-Correlate-Patial”执行偏相 关分析。其主设置面板如图所示:
n
( yi y )2 称为总离差平方和(SST)
i 1
线性回归
相关分析 与
回归分析
回归方程的统计检验 回归方程的拟合优度检验(相关系数检验)
R2取值在0-1之间, R2越接近于1,说明回归方程对样 本数据点的拟合优度越高。
线性回归
相关分析 与

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。

在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。

本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。

一、相关分析相关分析是一种用于确定变量之间关系的统计方法。

SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。

在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。

下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。

1. 打开SPSS软件并导入数据。

可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备相关分析的变量。

选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。

在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。

3. 进行相关分析。

点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。

4. 解读相关分析结果。

SPSS会给出相关系数的值以及显著性水平。

相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。

显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。

二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。

SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。

下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。

1. 打开SPSS软件并导入数据。

同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备回归分析的变量。

薛薇,《SPSS统计分析方法及应用》第八章 相关分析和线性回归分析

薛薇,《SPSS统计分析方法及应用》第八章  相关分析和线性回归分析

以控制,进行偏相关分析。
偏相关分 析输出结 果;负的 弱相关
相关分析 输出结果 ;正强相 关
8.4.1
8.4.2
回归分析概述
线性回归模型
8.4.3
8.4.4 8.4.5 8.4.6
回归方程的统计检验
基本操作
其它操作
应用举例

线性回归分析的内容

能否找到一个线性组合来说明一组自变量和因变量
可解释x对Y的影响大小,还可 以对y进行预测与控制
目的是刻画变量间的相关 程度
8.2.1 8.2.2 8.2.3 8.2.4
散点图 相关系数 基本操作 应用举例

相关分析通过图形和数值两种方式,有效地揭示事物
之间相关关系的强弱程度和形式。

8.2.1 散点图 它将数据以点的的形式画在直角坐标系上,通过

Distances 过程用于对各样本点之间或各个变量之间 进行相似性分析,一般不单独使用,而作为聚类分
析和因子分析等的预分析。
1) 选择菜单Analyze Correlate Bivariate,出现 窗口:
2) 把要分析的变量选到变量Variables框。
3) 在相关系数Correlation Coefficents框中选择计算哪种

一元线性回归模型的数学模型:
y 0 1 x

其中x为自变量;y为因变量; 0 为截距,即常量;
1 为回归系数,表明自变量对因变量的影响程度。

用最小二乘法求解方程中的两个参数,得到
1
( x x )( y y ) (x x)
i i 2 i
0 y bx

spss-回归分析和相关分析的区别

spss-回归分析和相关分析的区别

spss-回归分析和相关分析的区别回归分析和相关分析是互相补充、密切联系的,相关分析需要回归分析来表明现象数量关系的具体形式,而回归分析则应该建立在相关分析的基础上。

主要区别有:一,在回归分析中,不仅要根据变量的地位,作用不同区分出自变量和因变量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时总假定自变量是非随机的可控变量.在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量. 二,相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映.而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制.相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。

相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。

在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析,这是相关分析方法本身所决定的。

对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(有确定的取值)也可以是随机变量。

在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;如果自变量是普通变量,即模型Ⅰ回归分析,采用的回归方法就是最为常用的最小二乘法。

如果自变量是随机变量,即模型Ⅱ回归分析,所采用的回归方法与计算者的目的有关。

在以预测为目的的情况下,仍采用“最小二乘法”(但精度下降—最小二乘法是专为模型Ⅰ 设计的,未考虑自变量的随机误差);在以估值为目的(如计算可决系数、回归系数等)的情况下,应使用相对严谨的方法(如“主轴法”、“约化主轴法”或“Bartlett法” )。

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。

本文将介绍如何使用SPSS进行相关分析和回归分析。

相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。

在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“相关”子菜单。

3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。

4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。

回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。

在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“回归”子菜单。

3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。

4.选择回归模型的方法(如线性回归、多项式回归等)。

5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。

6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。

在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。

回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。

值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。

例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。

总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。

通过上述步骤,用户可以轻松地完成数据分析和结果呈现。

然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。

SPSS相关性分析

SPSS相关性分析

相关分析的作用



判断变量之间有无联系 确定相关关系的表现形式及相关分析方法 把握相关关系的方向与密切程度 为进一步采取其他统计方法进行分析提供依据 用来进行预测
相关分析和回归分析区别


相关分析:如果仅仅研究变量之间的相互关系 的密切程度和变化趋势,并用适当的统计指标 描述。 回归分析:如果要把变量间相互关系用函数表 达出来,用一个或多个变量的取值来估计另一 个变量的取值。
2 Cn
2 (U V ) n(n 1)
偏相关分析


概念:当有多个变量存在时,为了研究任何两 个变量之间的关系,而使与这两个变量有联系 的其它变量都保持不变。即控制了其它一个或 多个变量的影响下,计算两个变量的相关性。 偏相关系数:偏相关系数是用来衡量任何两个 变量之间的关系的大小。 自由度:在统计学中,自由度指的是计算某一 统计量时,取值不受限制的变量个数。通常 df=n-k。其中n为样本含量,k为被限制的条 件数或变量个数,或计算某一统计量时用到其 它独立统计量的个数。
线性相关和非线性相关
统计关系还可以分为: (1)线性相关:当一个变量的值发生变化时, 另外的一个变量也发生大致相同的变化。在直 角坐标系中,如现象观察值的分布大致在一条 直线上,则现象之间的相关关系为线性相关或 直线相关(Linear correlation)。 (2)非线性相关:如果一个变量发生变动,另 外的变量也随之变动,但是,其观察值分布近 似的在一条曲线上,则变量之间的相关关系为 非线性相关或曲线相关(Curvilinear correlation)
回归方程统计检验

回归方程的拟合优度:回归直线与各观测点的接近程度称 为回归方程的拟合优度,也就是样本观测值聚集在回归线 周围的紧密程度 。

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析;具体包括:(1)皮尔逊pearson简单相关系数的计算与分析(2)学会在SPSS上实现一元及多元回归模型的计算与检验..(3)学会回归模型的散点图与样本方程图形..(4)学会对所计算结果进行统计分析说明..(5)要求试验前;了解回归分析的如下内容..参数α、β的估计回归模型的检验方法:回归系数β的显着性检验t-检验;回归方程显着性检验F-检验..二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度..用来测度简单线性相关关系的系数是Pearson简单相关系数..2.回归分析的统计学原理相关关系不等于因果关系;要明确因果关系必须借助于回归分析..回归分析是研究两个变量或多个变量之间因果关系的统计方法..其基本思想是;在相关分析的基础上;对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定;确立一个合适的数据模型;以便从一个已知量推断另一个未知量..回归分析的主要任务就是根据样本数据估计参数;建立回归模型;对参数与模型进行检验与判断;并进行预测等..线性回归数学模型如下:在模型中;回归系数是未知的;可以在已有样本的基础上;使用最小二乘法对回归系数进行估计;得到如下的样本回归函数:回归模型中的参数估计出来之后;还必须对其进行检验..如果通过检验发现模型有缺陷;则必须回到模型的设定阶段或参数估计阶段;重新选择被解释变量与解释变量及其函数形式;或者对数据进行加工整理之后再次估计参数..回归模型的检验包括一级检验与二级检验..一级检验又叫统计学检验;它是利用统计学的抽样理论来检验样本回归方程的可靠性;具体又可以分为拟与优度评价与显着性检验;二级检验又称为经济计量学检验;它是对线性回归模型的假定条件能否得到满足进行检验;具体包括序列相关检验、异方差检验等..三、试验演示内容与步骤1.连续变量简单相关系数的计算与分析在上市公司财务分析中;常常利用资产收益率、净资产收益率、每股净收益与托宾Q值4个指标来衡量公司经营绩效..本试验利用SPSS对这4个指标的相关性进行检验..操作步骤与过程:打开数据文件“上市公司财务数据连续变量相关分析.sav”;依次选择“分析→相关→双变量”打开对话框如图;将待分析的4个指标移入右边的变量列表框内..其他均可选择默认项;单击ok提交系统运行..图5.1 Bivariate Correlations对话框结果分析:表给出了Pearson简单相关系数;相关检验t统计量对应的p值..相关系数右上角有两个星号表示相关系数在0.01的显着性水平下显着..从表中可以看出;每股收益、净资产收益率与总资产收益率3个指标之间的相关系数都在0.8以上;对应的p值都接近0;表示3个指标具有较强的正相关关系;而托宾Q值与其他3个变量之间的相关性较弱..表5.1 Pearson简单相关分析Correlations每股收益率净资产收益率资产收益率托宾Q值每股收益率PearsonCorrelation1.877.824-.073Sig.2-tailed..000.000.199N315315315315净资产收益率Pearson.8771.808-.001 CorrelationSig..000..000.983 2-tailedN315315315315资产收益率Pearson.824.8081.011 CorrelationSig..000.000..849 2-tailedN315315315315托宾Q值Pearson-.073-.001.0111 CorrelationSig..199.983.849.2-tailedN315315315315 Correlation is significant at the 0.01 level 2-tailed.2.一元线性回归分析实例分析:家庭住房支出与年收入的回归模型在这个例子里;考虑家庭年收入对住房支出的影响;建立的模型如下:其中;yi是住房支出;xi是年收入线性回归分析的基本步骤及结果分析:1绘制散点图打开数据文件;选择图形-旧对话框-散点/点状;如图5.2所示..图5.2 散点图对话框选择简单分布;单击定义;打开子对话框;选择X变量与Y变量;如图5.3所示..单击ok提交系统运行;结果见图5.4所示..图5.3 Simple Scatterplot 子对话框从图上可直观地看出住房支出与年收入之间存在线性相关关系..图5.4 散点图2简单相关分析选择分析—>相关—>双变量;打开对话框;将变量“住房支出”与“年收入”移入variables列表框;点击ok运行;结果如表5.2所示..表5.2 住房支出与年收入相关系数表CorrelationsCorrelation is significant at the 0.01 level 2-tailed.从表中可得到两变量之间的皮尔逊相关系数为0.966;双尾检验概率p值尾0.000<0.05;故变量之间显着相关..根据住房支出与年收入之间的散点图与相关分析显示;住房支出与年收入之间存在显着的正相关关系..在此前提下进一步进行回归分析;建立一元线性回归方程..3 线性回归分析步骤1:选择菜单“分析—>回归—>线性”;打开Linear Regression 对话框..将变量住房支出y移入Dependent列表框中;将年收入x移入Independents列表框中..在Method 框中选择Enter 选项;表示所选自变量全部进入回归模型..图5.5 Linear Regresssion对话框步骤2:单击Statistics按钮;如图在Statistics子对话框..该对话框中设置要输出的统计量..这里选中估计、模型拟合度复选框..图5.6 Statistics子对话框估计:输出有关回归系数的统计量;包括回归系数、回归系数的标准差、标准化的回归系数、t统计量及其对应的p值等..置信区间:输出每个回归系数的95%的置信度估计区间..协方差矩阵:输出解释变量的相关系数矩阵与协差阵..模型拟合度:输出可决系数、调整的可决系数、回归方程的标准误差、回归方程F检验的方差分析..步骤3:单击绘制按钮;在Plots子对话框中的标准化残差图选项栏中选中正态概率图复选框;以便对残差的正态性进行分析..图5.7 plots子对话框步骤4:单击保存按钮;在Save子对话框中残差选项栏中选中未标准化复选框;这样可以在数据文件中生成一个变量名尾res_1 的残差变量;以便对残差进行进一步分析..图5.8 Save子对话框其余保持Spss默认选项..在主对话框中单击ok按钮;执行线性回归命令;其结果如下:表5.3给出了回归模型的拟与优度R Square、调整的拟与优度Adjusted R Square、估计标准差Std. Error of the Estimate以及Durbin-Watson统计量..从结果来看;回归的可决系数与调整的可决系数分别为0.934与0.93;即住房支出的90%以上的变动都可以被该模型所解释;拟与优度较高..表5.4给出了回归模型的方差分析表;可以看到;F统计量为252.722;对应的p值为0;所以;拒绝模型整体不显着的原假设;即该模型的整体是显着的..表5.5给出了回归系数、回归系数的标准差、标准化的回归系数值以及各个回归系数的显着性t检验..从表中可以看到无论是常数项还是解释变量x;其t统计量对应的p值都小于显着性水平0.05;因此;在0.05的显着性水平下都通过了t检验..变量x的回归系数为0.237;即年收入每增加1千美元;住房支出就增加0.237千美元..表5.3 回归模型拟与优度评价及Durbin-Watson检验结果Model Summaryba Predictors: Constant;年收入千美元b Dependent Variable:住房支出千美元表5.4 方差分析表ANOVAba Predictors: Constant; 年收入千美元b Dependent Variable: 住房支出千美元表5.5 回归系数估计及其显着性检验Coefficientsaa Dependent Variable: 住房支出千美元为了判断随机扰动项是否服从正态分布;观察图5.9所示的标准化残差的P-P图;可以发现;各观测的散点基本上都分布在对角线上;据此可以初步判断残差服从正态分布..为了判断随机扰动项是否存在异方差;根据被解释变量y与解释变量x的散点图;如图5.4所示;从图中可以看到;随着解释变量x的增大;被解释变量的波动幅度明显增大;说明随机扰动项可能存在比较严重的异方差问题;应该利用加权最小二乘法等方法对模型进行修正..图5.9 标准化残差的P-P图四、备择试验现有1987~2003年湖南省全社会固定资产投资总额NINV与GDP两个指标的年度数据;见下表..试研究全社会固定资产投资总额与GDP的数量关系;并建立全社会固定资产投资总额与GDP之间的线性回归方程..。

SPSS5-相关与回归分析

SPSS5-相关与回归分析
用F值作为标准
在回归方程中包括常项 缺失值的处理方式
用均值代替缺失值
一、线性回归分析( Linear Regression)
2、一元线性回归:
示例1:教材P260数据:20章_数据1.sav
识字量对阅读能力的影响有多大?
步骤:
(1)依据散点图检验线性关系 (2)操作过程:Analyze-Regression-Linear (3)结果输出观察重点:
二、双变量相关分析(Bivariate)
示例1:大学生人格(神经质、内外向程度) 与心理健康(SCL-90总分)之间有无相关?
SPSS操作:
1、绘制散点图,判定两变aphs-Scatter
2、打开Bivarite Correlations主对话框
偏相关分析的思想:控制其它变量的变化,即在剔 除其它变量影响的情况下,计算两变量之间的相 关关系。
两个变量间的线性相关关系,用偏相关系数表示。 应用条件:均为连续性变量。
Partial Correlations 对话框
分析变量
显著性检验 显示实际的显著性水平
控制变量
Options 对话框
均值及标准差 零阶相关矩阵(即:Pearson相关矩阵)
Model 1
Regression Residual Total
Sum of Squares 1845.333 899.634 2744.967
a. Predictors: (Constant), 识 字 量
b. Dependent Var iable: 阅 读 能力
ANOV Ab
df 1
28 29
解释回归平方和在总平方各中所占的比率,即解释回 归效果, r2=0.672,则表示因变量(阅读能力)的 变异中有67.2%是由自变量(识字量)而引起的。

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

数据统计分析软件SPSS的应用相关分析与回归分析

数据统计分析软件SPSS的应用相关分析与回归分析

数据统计分析软件SPSS的应用相关分析与回归分析一、本文概述随着信息技术的快速发展和大数据时代的来临,数据统计分析在各个领域的应用越来越广泛。

SPSS作为一款功能强大的数据统计分析软件,其在社会科学、商业分析、医学统计等多个领域具有广泛的应用。

本文将深入探讨SPSS在相关分析与回归分析中的应用,帮助读者更好地理解和应用这一强大的工具。

本文将简要介绍SPSS软件的基本功能和特点,使读者对其有一个初步的了解。

随后,文章将重点介绍相关分析的概念、类型及其在SPSS中的实现方法,包括皮尔逊相关系数、斯皮尔曼秩相关系数等。

文章还将详细阐述回归分析的基本原理、类型及其在SPSS中的操作步骤,如线性回归分析、逻辑回归分析等。

通过本文的学习,读者将能够掌握SPSS在相关分析与回归分析中的基本应用,提高数据处理和分析的能力,为实际工作和研究提供有力支持。

文章还将提供一些实际案例,以帮助读者更好地理解和应用所学知识,提高实际操作能力。

二、SPSS软件基础SPSS,全称为Statistical Package for the Social Sciences,即“社会科学统计软件包”,是一款广泛应用于社会科学领域的数据统计分析软件。

它提供了丰富的数据分析工具,包括描述性统计、推论性统计、探索性数据分析、回归分析、因子分析、聚类分析等,能够帮助研究者轻松处理和分析数据,挖掘数据背后的深层次信息。

在使用SPSS之前,用户需要对其基本界面和常用功能有所了解。

SPSS界面友好,主要分为菜单栏、工具栏、数据视图和变量视图等部分。

菜单栏包含了大多数统计分析功能的命令,如“分析”“描述统计”“因子分析”等。

工具栏则提供了一些常用的统计分析工具的快捷方式。

数据视图是用户输入和编辑数据的地方,而变量视图则用于定义变量的属性,如变量名、变量类型、宽度、小数位数等。

在SPSS中,数据分析的核心步骤通常包括数据准备、数据分析、结果解释和报告生成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义变量:血红蛋白,贫血体征→Variables
20:41
16

建立数据文件:血红蛋 白的等级相关分析.sav.

定义变量 输入数据

开始分析

ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate

定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34

主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17

20:41

主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)
贫 血 体 征
Correlation Coefficient Sig . (2-tailed) N Correlation Coefficient Sig . (2-tailed) N
确定系数 调整确 定系数
20:41 35

主要结果
ANOVAb Model 1 Sum of Squares 175.941 27.463 203.404 df 1 8 9 Mean Square 175.941 3.433 F 51.251 Sig . .000a
Reg ression Residual Total

定义变量:身高 →Y Axis,体重→ X Axis
20:41
7

建立数据文件:身高体重 的相关分析.sav.

定义变量 输入数据 开始分析

绘制散点图
假定满足双变量正态分 布:analyze →Correlate →Bivariate

定义变量:身高, 体重→Variables
20:41
体 重 ( kg )
**. Correlation is sig nificant at the 0.01 level (2-tailed).
总体相关系 数=0的假设 检验的P值
Pearson相 关系数
20:41
11

练习1 某医生测得10名正常成年男性的血浆清蛋白含量( g/L) 及血红蛋白含量(g/L)数据如下,试问两者有无相关关系?
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
对总体回归 模型检验的F 值
对总体回归 模型检验的 P值

定义变量 输入数据 开始分析

绘制散点图 Analyze →Regression→Linear


定义变量:体重→Dependent,身高→Independent(s) 选择统计量: 绘制残差图: 计算总体均数的估计值和预测值: 在散点图中添加置信带和预测带:双击散点图进行添加,
表 2 10 名正常成年男性的血浆清蛋白含量及血红蛋白含量检测结果 编号 1 2 3 4 5 血浆清蛋 白含量(x) 35.5 36.5 38.5 37.5 36.5 血红蛋白含 量(y) 119.5 120.5 127.5 126.5 120.5 编号 6 7 8 9 10 血浆清蛋 白含量(x) 35.4 34.5 34.2 34.6 33.5 血红蛋白 含量(y) 118.5 110.5 109.2 108.5 105.3
Element →Fit Line at total →Confidence Intervals →Mean (Individual)
20:41 31

主要结果——散点图
20:41
32

主要结果
Descriptive Statistics 体 重 ( kg ) 身 高 ( cm) Mean 36.060 157.590 Std. Deviation 4.7540 8.3683 N 10 10
20:41
20
第二节 线性回归分析
一、简单线性回归分析 二、多重线性回归分析
20:41
21
一、简单线性回归分析

例3 表1为一项关于儿童健康和发展的研究中10名学龄儿 童的身高和体重资料。
表1 10名学龄儿童的身高和体重
儿童编号 身高(X) 体重(Y) 1 149.4 30.8 2 167.6 42.6 3 146.3 33.1 4 170.7 44.0 5 161.5 36.3 6 164.6 40.8 7 155.5 32.7 8 158.5 35.4 9 149.4 33.1 10 152.4 31.8
27
20:41

建立数据文件:身高与体重的回归分析.sav.


定义变量
输入数据 开始分析

绘制散点图 Analyze →Regression→Linear


定义变量:体重→Dependent,身高→Independent(s) 选择统计量: Statistics →Estimates,Confidence intervals,Model fit,Descriptives 绘制残差图:Plots → DEPENDNT →X:, *ZRESID(标准化残差) →Y:
20:41
26

建立数据文件:身高与体重的回 归分析.sav.

定义变量 输入数据

开始分析

绘制散点图 Analyze →Regression→Linear


定义变量:体重 →Dependent,身高 →Independent(s)

选择统计量: Statistics →Estimates,Confidence intervals,Model fit,Descriptives
→ Predicted Values →Unstandardize, →Prediction Intervals →Mean,Individual
20:41
29

建立数据文件:身高与体重的回归分析.sav.

定义变量 输入数据 开始分析

绘制散点图 Analyze →Regression→Linear

建立数据文件:血红蛋白的等级相关分析.sav.

定义变量
20:41
14

建立数据文件:血红蛋白的等级相关分析.sav.

定义变量 输入数据
20:41
15

建立数据文件:血红蛋白的等级相关分析.sav.


定义变量
输入数据 开始分析

analyze →Correlate →Bivariate
*. Correlation is significant at the 0.05 level (2-tailed).
总体相关系 数=0的假设 检验的P值
Spearman 相关系数
20:41
18

练习2 将例2的数据进行秩变换,对变换后的变量进行Pearson 相关分析。
20:41
19

练习3 某医院用复方猪胆胶囊治疗219例慢性支气管炎, 结果见下表。问患者疗效与年龄间有无关联?

20:41
9

主要结果——散点图
20:41
10

主要结果
Correlations 身 高 ( cm) 身 高 ( cm) Pearson Correlation Sig . (2-tailed) N Pearson Correlation Sig . (2-tailed) N 1 10 .930** .000 10 体 重 ( kg ) .930** .000 10 1 10


定义变量:体重→Dependent,身高→Independent(s) 选择统计量: 绘制残差图: 计算总体均数的估计值和预测值: 在散点图中添加置信带和预测带:双击散点图进行添加,
Element →Fit Line at total
20:41
30

建立数据文件:身高与体重的回归分析.sav.
20:41
33

主要结果
Correlations Pearson Correlation Sig . (1-tailed) N 体 重 ( kg ) 身 高 ( cm) 体 重 ( kg ) 身 高 ( cm) 体 重 ( kg ) 身 高 ( cm) 体 重 ( kg ) 1.000 .930 . .000 10 10 身 高 ( cm) .930 1.000 .000 . 10 10
20:41
22

建立数据文件:身高与体重的回归分析.sav.

定义变量
20:41
23
相关文档
最新文档