2019年南昌市中考数学模拟试题与答案

合集下载

江西省南昌市2019-2020学年第三次中考模拟考试数学试卷含解析

江西省南昌市2019-2020学年第三次中考模拟考试数学试卷含解析

江西省南昌市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B .明天下雪的概率为12,表示明天有半天都在下雪 C .甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .了解一批充电宝的使用寿命,适合用普查的方式2.若实数 a ,b 满足|a|>|b|,则与实数 a ,b 对应的点在数轴上的位置可以是( ) A .B .C .D .3.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣344.下列运算正确的是( ) A .a 2+a 2=a 4B .(a+b )2=a 2+b 2C .a 6÷a 2=a 3D .(﹣2a 3)2=4a 65.已知a,b 为两个连续的整数,且a<11<b,则a+b 的值为( ) A .7B .8C .9D .106.圆锥的底面半径为2,母线长为4,则它的侧面积为( ) A .8πB .16πC .43πD .4π7.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°8.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x +21x 的值是( )A .1B .2C .﹣34D .﹣439.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为( ) A .20B .30C .40D .5010.下面计算中,正确的是( ) A .(a+b )2=a 2+b 2 B .3a+4a=7a 2 C .(ab )3=ab 3 D .a 2•a 5=a 711.如图,在四边形ABCD 中,对角线 AC ⊥BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若AC=10,BD=6,则四边形EFGH 的面积为( )A .20B .15C .30D .6012.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( ) A .13∠=∠ B .11803∠=-∠o C .1903∠=+∠oD .以上都不对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.14.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.15.等腰梯形是__________对称图形. 16.计算:(2018﹣π)0=_____.17.如图,在Rt △ABC 中,∠A=90°,AB=AC ,2+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为_____.18.如图,等边△ABC 的边长为6,∠ABC ,∠ACB 的角平分线交于点D ,过点D 作EF ∥BC ,交AB 、CD 于点E 、F ,则EF 的长度为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC 与CD 的长分别为45cm 和60cm ,且它们互相垂直,座杆CE 的长为20cm .点A 、C 、E 在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732) (1)求车架档AD 的长;(2)求车座点E 到车架档AB 的距离(结果精确到1cm ).20.(6分)如图,有四张背面相同的卡片A 、B 、C 、D ,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作: (1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ; (2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.21.(6分)抛物线23yax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.22.(8分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A 、D 是人工湖边的两座雕塑,AB 、BC 是湖滨花园的小路,小东同学进行如下测量,B 点在A 点北偏东60°方向,C 点在B 点北偏东45°方向,C 点在D 点正东方向,且测得AB =20米,BC =40米,求AD 的长.(3≈1.732,2≈1.414,结果精确到0.01米)23.(8分)我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?24.(10分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图 2 是其工作示意图,AC 是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m .当起重臂 AC 长度为 8 m ,张角∠HAC 为 118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)25.(10分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).26.(12分)已知关于x的方程x2﹣6mx+9m2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.27.(12分)已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G.若GE=2,AF=3,求EF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.2.D【解析】【分析】根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.3.B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.4.D【解析】【分析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.5.A【解析】∵9<11<16,∴91116<<,即3114<<,∵a,b为两个连续的整数,且11a b<<,∴a=3,b=4,∴a+b=7,故选A.6.A【解析】【详解】解:底面半径为2,底面周长=4π,侧面积=12×4π×4=8π,故选A.7.B 【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型. 8.C 【解析】试题分析:找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和12b x x a+=-与两根之积12c x x a⋅=,然后利用异分母分式的变形,将求出的两根之和x 1+x 2=3与两根之积x 1•x 2=﹣4代入,即可求出12121211x x x x x x ++=⋅=3344=--. 故选C .考点:根与系数的关系 9.A 【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:.n0430n=+ ,计算得出:n=20, 故选A.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 10.D 【解析】 【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案. 【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。

【中考模拟】江西省南昌市2019年 中考数学模拟试卷 一(含答案)

【中考模拟】江西省南昌市2019年 中考数学模拟试卷 一(含答案)

2019年中考数学模拟试卷一、选择题1.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)32.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( )A.2.3×109B.0.23×109C.2.3×108D.23×1073.甲、乙两人5次射击命中的环数如下:则以下判断中,正确的是()A.‾x甲=‾x乙,S甲2=S乙2B.‾x甲=‾x乙,S甲2>S乙2C.‾x甲=‾x乙,S甲2 <S乙2D.‾x甲<‾x乙,S甲2<S乙24.若m·23=26,则m等于( )A.2B.4C.6D.85.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A. B. C. D.6.买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%.设买甲种水x桶,乙种水y桶,则所列方程组中正确的是( ).A. B.C. D.7.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对8.如图,圆内接四边形ABCD是由四个全等的等腰梯形组成,AD是⊙O的直径,则∠BEC的度数为( )A.15°B.30°C.45°D.60°9.x,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( )1A.x1小于-1,x2大于3B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于310.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°11.若数a、b、c在数轴上的位置如图所示,则|a|﹣|a﹣c|+|b+c|的化简结果为( )A.﹣2a+b+2cB.cC.﹣b﹣2cD.b12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b-)x+c=0(a≠0)的两根之和()A.大于0B.等于0C.小于0D.不能确定二、填空题13.的算术平方根是 .14.解不等式组不等式组的解集为:.15.如图,已知矩形ABCD中,AB=8 cm,AD=10 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积等于________cm2.16.如图,在△ABC中,以B为圆心,BC为半径作弧,分别交AC、AB于点D、E,连接DE,若ED=DC,AE=3,AD=4,则= .三、解答题17.化简:18.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长。

2019年江西省南昌市中考数学模拟试卷(3月份)

2019年江西省南昌市中考数学模拟试卷(3月份)

2019年江西省南昌市中考数学模拟试卷(3月份)一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)下列四个数,表示无理数的是()A.sin30°B .C.π﹣1D .2.(3分)下列运算结果,正确的是()A.x+2x=2x2B.(x﹣1)2=x2﹣1C.(﹣x2)3=﹣x5D.12x3÷4x2=3x3.(3分)据《九章算术》中记载:“鸡免同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”,若设鸡x只,兔y只,则所列方程组是()A .B .C .D .4.(3分)如图是一个几何体的三视图,则这个几何体是()A .B .C .D .5.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°第1页(共21页)6.(3分)如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是()A.四边形EDCN是菱形B.四边形MNCD是等腰梯形C.△AEM与△CBN相似D.△AEN与△EDM全等二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)分解因式:x2﹣4x=.8.(3分)据市财政局对外公布的数据显示,2018年南昌市完成财政总收入938.6亿元,则数据938.6亿用科学记数法表示是.9.(3分)若一组数据1,2,x,3,4的众数为4,则这组数据的中位数是.10.(3分)如图,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,将三角板ABC绕点C逆时针旋转,当起始位置时的点B恰好落在边A1B1上时,A1B的长为.11.(3分)若m,n为方程x2﹣2x﹣1=0的两个实数根,则m+n的值是.12.(3分)如图,在矩形ABCD中,AD=2AB=2,E是BC边上的一个动点,连接AE,过点D作DF⊥AE于F,连接CF,当△CDF为等腰三角形时,则BE的长是三、(本大题共5小题.每小题6分,共30分)13.(6分)(1)解不等式,并把它的解集在数轴上表示出来.(2)先化简,再求值:,其中x=3.第2页(共21页)。

江西南昌市 2019年 九年级数学 中考模拟试卷(含答案)【含答案及解析】

江西南昌市 2019年 九年级数学 中考模拟试卷(含答案)【含答案及解析】

江西南昌市 2019年九年级数学中考模拟试卷(含答案)【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列说法正确的是()A. 有理数的绝对值一定是正数B. 如果两个数的绝对值相等,那么这两个数相等C. 如果一个数是负数,那么这个数的绝对值是它的相反数D. 绝对值越大,这个数就越大2. 世界文化遗产长城总长约为6700000m,若将数据6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A. 5B. 6C. 7D. 83. 如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=70°,则∠2的度数为( )A. 20°B. 40°C. 30°D. 25°4. 下图是一个由相同小正方体搭成的几何体的俯视图,若小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的主视图是()A. B. C. D.5. 甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示6. 选手甲乙丙丁方差0.0300.0190.1210.022td7. 在△ABC中,点O是△ABC的内心,连接OB、OC,过点O作EF∥BC分别交AB、AC于点E、F,已知BC=a(a是常数),设△ABC的周长为y,△AEF的周长为x,在下列图象中,大致表示y 与x之间的函数关系的是()A. B. C. D.二、填空题8. 分解因式:x2+2x-3=____________.9. 若解分式方程产生增根,则m=_______.10. 若关于x的方程2x+m-3(m-1)=1+x的解为负数,则m的范围是_________11. 已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2 ②x1x2<ab③x12+x12<a2+b2,则正确结论的序号是______________.12. 某种型号的电脑,原售价为7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________.13. 如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是_________.14. 如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=_____°.15. 如图所示,一束光线从点A(3,3)出发,经过y轴上的C反射后经过点B(1,0),则光线从A点到B点经过的路线长是_______.三、解答题16. 计算:﹣(π﹣2016)0+|﹣2|+2sin60°.17. 先化简,再求值:,其中a=1+,b=1﹣.18. 已知△ABC的顶点A、B、C的坐标分别是(﹣3,0)、(﹣1,2)、(﹣2,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕原点O按逆时针方向旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点A2、B2、C2的坐标;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).19. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20. 一个不透明的口袋中装有4个球,分别是红球和白球,这些球除颜色外都相同,将球搅匀,先从中任意摸出一个球,恰好摸到红球的概率为.(1)求口袋中有几个红球?(2)先从中任意摸出一个球,从余下的球中再摸出一个球,请用列表法或树状图法求两次摸到的球中一个是红球和一个是白球的概率.21. 某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人.(1)本次抽取的学生有人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数.22. 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.23. 心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲16分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?24. 已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.(Ⅰ)如图①,若∠OCA=60°,求OD的长;(Ⅱ)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.25. 如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2019-2020年最新江西省南昌市中考数学仿真模拟试题及答案解析

2019-2020年最新江西省南昌市中考数学仿真模拟试题及答案解析

江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2014•南昌)下列四个数中,最小的数是()、2.(3分)(2014•南昌)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为():3.(3分)(2014•南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()念掌握得不好,不把4.(3分)(2014•南昌)下列运算正确的是()5.(3分)(2014•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是( )BCD .6.(3分)(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是( )7.(3分)(2014•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()解中,中,中,8.(3分)(2014•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()∠AOC=55°.9.(3分)(2014•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()10.(3分)(2014•南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()11.(3分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()12.(3分)(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()B C D.y==,<二、填空题(本大题4小题,每小题3分,共12分)13.(3分)(2014•沈阳)计算:= 3 .14.(3分)(2014•南昌)不等式组的解集是x>.,>15.(3分)(2014•南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.,DO=(﹣)×=8,=44416.(3分)(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.==2;∴PC=BC÷cos30°=4或4三、(本大题共4小题,每小题6分,共24分)17.(6分)(2014•南昌)计算:(﹣)÷.==x18.(6分)(2014•南昌)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.(×10×4=20,)∵CD=4=5,如19.(6分)(2014•南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.P=P=P=20.(6分)(2014•南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.(1)求点C的坐标;(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.,﹣x+3x+3=0)当﹣y=y=.四、(本大题共3小题,每小题8分,共24分)21.(8分)(2014•南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?意可得出:22.(8分)(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45))BE=2OE=2×10×cos30°=10同理可得,DE=10BD=10cm≈49cm.23.(8分)(2014•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.OC•h=2h,CP=,==五、(本大题共2小题,每小题12分,共24分)24.(12分)(2014•南昌)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF ;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.4BF=(4,=8+4(=4﹣444AEH4×x 4BF=CG=BC=BF+FG+CG=x+x+x=4三角形、等25.(12分)(2014•南昌)如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为 4 ;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n= ,F n的碟宽有端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.y=x的相等.推广至含字母的抛物线;;∠AOB=90°=45°,﹣,(,,,OC=宽为y=a=,得碟宽宽为为宽为;宽为,宽为﹣4a+),﹣a=∴y=,.∵y==h))=…=(2+•∠GFH===2+,。

江西省南昌市2019-2020学年中考数学模拟试卷(含答案)

江西省南昌市2019-2020学年中考数学模拟试卷(含答案)

江西省南昌市2019-2020学年中考数学模拟试卷一.选择题(每题3分,满分18分)1.﹣的绝对值是()A.﹣2019 B.2019 C.﹣D.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.4.若不等式组无解,则m的取值范围是()A.m>2 B.m<2 C.m≥2 D.m≤25.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多6.在△ABC中,AC=AB,D,E,F分别是AC,BC,AB的中点,则下列结论中一定正确的是()A.四边形DEBF是矩形B.四边形DCEF是正方形C.四边形ADEF是菱形D.△DEF是等边三角形二.填空题(满分18分,每小题3分)7.分解因式:6xy2﹣9x2y﹣y3=.8.一次函数的图象如图所示,当﹣3<x<3时,y的取值范围是.9.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是.10.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.11.若x1,x2是方程x2﹣5x+3=0的两个根,则=.12.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=6,点D是BC边上一动点(不与B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为.三.解答题13.(6分)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.(6分)先化简,再求值.5(x2﹣y)﹣3(x2﹣2y)﹣x2﹣1,其中x=﹣3,y=1 15.(6分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.16.(6分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6分)如图,某学校旗杆AB旁边有一个半侧的时钟模型,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2m,旗杆的底端A到钟面9点刻度C的距离为11m,一天小明观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得1米长的标杆的影长1.2m.求旗杆AB的高度.四.解答题18.(8分)我们约定:体重在选定标准的±5%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg),收集并整理得到如下统计表:①②③④⑤⑥⑦⑧⑨⑩男生序号45 62 55 58 67 80 53 65 60 55体重x(kg)根据以上表格信息解决如下问题:(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:平均数中位数众数(2)请你选择其中一个统计量作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.19.(8分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.20.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求的长.(3)若tan C=2,AE=8,求BF的长.五.解答题21.(9分)在平面直角坐标系中,我们把经过同一点的所有直线称为过这一点的直线束,如下图,所有经过点P的直线,称为过点P的直线束.例如:直线y=kx,当k取不同实数时,在图象上可以得到过原点(0,0)的直线束,这个直线束的一般表达式为y=kx.(1)当k取不同实数时,y=kx﹣3是过点(,)的直线束;(2)当k取什么实数时,直线束y=kx﹣3中的直线与x轴、y轴围成的三角形面积为3?(3)当k取什么实数时,直线束y=kx﹣2k+3中的直线与x轴、y轴围成的三角形面积为12?22.(9分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.六.解答题23.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:||=.故的绝对值是.故选:D.2.解:80万亿用科学记数法表示为8×1013.故选:B.3.解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.4.解:,∵解不等式①得:x>2,不等式②的解集是x<m,又∵不等式组无解,∴m≤2,故选:D.5.解:因为两个扇形统计图的总体都不明确,所以A、B、C都错误,故选:D.6.解:结论:四边形ADEF是菱形.理由如下:∵CD=AD,CE=EB,∴DE∥AB,∵BE=EC,BF=FA,∴EF∥AC,∴四边形ADEF是菱形,∵AC=AB,∴AD=AF,∴四边形ADEF是菱形.故选:C.二.填空7.解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)28.解:当x=﹣3时,y=﹣x+2=4;当x=3时,y=﹣x+2=0.∴当﹣3<x<3时,y的取值范围是0<y<4.故答案为:0<y<4.9.解:∵直线a∥b,∠2=65°,∴∠FDE=∠2=65°,∵EF⊥CD于点F,∴∠DFE=90°,∴∠1=90°﹣∠FDE=90°﹣65°=25°.故答案为:25°.10.解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.11.解:根据题意x 1+x 2=5,x 1•x 2=3,==.故答案为:.12.解:∵Rt △ABC 中,∠ACB =90°,∠B =30°, ∴,即.∴AB =4∵∠B =30°,DE ⊥BC , ∴∠BED =60°.由翻折的性质可知:∠BED =∠FED =60°, ∴∠AEF =60°. ∵△AEF 为直角三角形, ∴∠EAF =30°. ∴AE =2EF .由翻折的性质可知:BE =EF , ∴AB =3BE . ∴EB =.在Rt △BED 中,∠B =30°, ∴,即.∴BD =2.如图所示:当点F 在BC 的延长线上时.∵△AEF为直角三角形,∴∠EAF=90°,∴∠EFA=30°.∴∠EFD=∠EFA.又∵ED⊥BF,EA⊥AF,∴AE=DE.∵BC=6,∠ACB=90°,∠B=30°,∴AB=4,AC=2设DE=x,BE=4﹣x.∵DE∥AC,∴,,解得:x=.∴BD=DE=4故答案为:2或4.三.解答13.解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.14.解:5(x2﹣y)﹣3(x2﹣2y)﹣x2﹣1=5x2﹣5y﹣3x2+6y﹣x2﹣1=x2+y﹣1,当x=﹣3,y=1时,代入原式=(﹣3)2+1﹣1=9.15.解:(1)补全图形如图.(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角),∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.故答案为90,直径所对的圆周角是直角.16.解:(1)该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、C、D,列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中小惠被抽中的有6种结果,所以小惠被抽中的概率为=.17.解:如图,设半圆圆心为O,连接OD、CD,∵点D在11点的刻度上,∴∠COD=60°,∴△OCD是等边三角形,过点D作DE⊥OC于E,作DF⊥AB于F,则四边形AEDF是矩形,∵半圆的半径2m,∴DE=2×=,同时测得1米长的标杆的影长1.2m,∴=,解得BF=10,所以AB=BF+AF=(10+)m.答:旗杆AB的高度(10+)m.四.解答18.解:(1)补全表格如下:平均数中位数众数60 59 55(2)选平均数作为标准.理由:平均数刻画了一组数据的集中趋势,能够反映一组数据的平均水平.当体重x满足:60(1﹣5%)≤x≤60×(1+5%),即57≤x≤63时为“一般体重”,此时序号为②,④,⑨的男生具有“一般体重”(答案不唯一.)19.解:(1)将A(﹣3,4)代入y=,得m=﹣3×4=﹣12 ∴反比例函数的解析式为y=﹣;将B(6,n)代入y=﹣,得6n=﹣12,解得n=﹣2,∴B(6,﹣2),将A(﹣3,4)和B(6,﹣2)分别代入y=kx+b(k≠0),得,解得,∴所求的一次函数的解析式为y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=3,∴C(3,0),∴S△AOC =×3×4=6,S△BOC=×3×2=3,∴S△AOB=6+3=9;(3)存在.过A点作AP1⊥x轴于P1,AP2⊥AC交x轴于P2,如图,∴∠AP1C=90°,∵A点坐标为(﹣3,4),∴P1点的坐标为(﹣3,0);∵∠P 2AC =90°,∴∠P 2AP 1+∠P 1AC =90°,而∠AP 2P 1+∠P 2AP 1=90°, ∴∠AP 2P 1=∠P 1AC , ∴Rt △AP 2P 1∽Rt △CAP 1, ∴=,即=,∴P 1P 2=, ∴OP 2=3+=,∴P 2点的坐标为(﹣,0),∴满足条件的P 点坐标为(﹣3,0)、(﹣,0).20.解:(1)连接OD , ∵AB =AC , ∴∠ABC =∠C , ∵OD =OB , ∴∠ABC =∠ODB , ∴∠C =∠O DB , ∴OD ∥AC , ∵DE ⊥AC ,∴OD ⊥DE ,即OD ⊥EF , ∴EF 是⊙O 的切线; (2)∵AB =AC =12, ∴OB =OD =AB =6,由(1)得:∠C =∠ODB =60°, ∴△OBD 是等边三角形, ∴∠BOD =60° ∴的长为=2π,即的长=2π;(3)连接AD ,∵DE ⊥AC ,∠DEC =∠DEA =90°在Rt△DEC中,tan C==2,设CE=x,则DE=2x,∵AB是直径,∴∠ADB=∠ADC=90°,∴∠ADE+∠CDE=90°,在Rt△DEC中,∠C+∠CDE=90°,∴∠C=∠ADE,在Rt△ADE中,tan∠ADE==2,∵AE=8,∴DE=4,则CE=2,∴AC=AE+CE=10,即直径AB=AC=10,则OD=OB=5,∵OD∥AE,∴△ODF∽△AEF,∴=即:=,解得:BF=,即BF的长为.五.解答21.解:(1)∵y=kx﹣3,当x=0时,y=﹣3,∴直线y=kx﹣3恒经过点(0,﹣3),∴当k取不同实数时,y=kx﹣3是过点( 0,﹣3)的直线束,故答案为(0,﹣3);(2)在y=kx﹣3中,令y=0,则x=;令x=0,则y=﹣3,∴直线束y=kx﹣3中的直线与x轴、y轴的交点为(,0),(0,﹣3),∵围成的三角形面积为3,∴||×3=3,解得:k=±,∴当k取或﹣时,直线束y=kx﹣3中的直线与x轴、y轴围成的三角形面积为3;(3)在直线束y=kx﹣2k+3中,令y=0,则x=;令x=0,则y=﹣2k+3,∴直线束y=kx﹣2k+3中的直线与x轴、y轴的交点为(,0),(0,﹣2k+3),∵围成的三角形面积为12,∴||•|﹣2k+3|=12,当k>0时,4k2﹣36k+9=0,∴k=,当k<0时,4k2+12k+9=0,∴k=﹣;综上所述:当k=或k=﹣时,直线束y=kx﹣2k+3中的直线与x轴、y轴围成的三角形面积为12.22.解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S=•AH•AG=AC2=×(4)2=16.△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.六.解答23.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).。

江西省南昌市2019年中考数学二模试卷(含解析)

江西省南昌市2019年中考数学二模试卷(含解析)

2019年江西省南昌市中考数学二模试卷一、选择题(共18.0分)1.|-2019|等于()A. 2019B.C.D.2.计算(-2b)3的结果是()A. B. C. D.3.李克强总理在2019年的政府工作报告中指出:三大攻坚战开局良好.其中精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,数据1386万用科学记数法可表示为()A. B. C. D.4.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的茶杯(茶口的直径与托盘的直径相同),则这只茶杯的俯视图大致是()A. B. C. D.5.如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论错误的是()A. B.C. ∠ ∠D. 四边形DECF是正方形6.如图,P是抛物线y=x2-x-4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A. 10B. 8C.D.二、填空题(共18.0分)7.分解因式:4x2-1=______.8.已知关于x的一元二次方程x2+ax+b=0的两根分别为-1和2,则=______.9.如图,在Rt△ABC中,∠ACB=90°,AC=BC,以AB为直径作⊙O,在上取一点D,使=2,则∠CBD=______.10.已知a,b,c三个数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为______.11.《孙子算经》有这样一道题:今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?大意是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺,则木条长______尺.12.如图,反比例函数y=(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是______.三、解答题(共84.0分)13.(1)解不等式:1-<-1-x(2)解方程组:14.如图,在▱ABCD中,E是BC延长线上的一点,AE与CD交于点F.求证:△ADF∽△EBA.15.甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y 元.(1)求y与x之间的函数关系式;(2)请判断y是否能等于62000,并说明理由.16.如图,四边形ABCD为菱形,且∠BAD=120°,以AD为直径作⊙O,与CD交于点P.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点C作AB边上的高CE;(2)在图2中,过点P作⊙O的切线PQ,与BC交于点Q.17.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹之一”当车辆经过这座大桥的收费站时,需从已开放的4个收费通道A、B、C、D中随机选择一个通过晶晶和贝贝两位同学的爸爸相约分别驾车经港珠澳大桥到香港旅行.(1)晶晶的爸爸驾车通过收费站时,选择A通道通过的概率是多少?(2)用画树状图或列表法求这两辆车经过此收费站时,选择不同通道通过的概率.18.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)19.某居委会为了了解本辖区内家庭月平均用水情况,随机调查了该辖区内的部分家庭,调查数据统计结果如下:请解答以下问题:(1)频数分布表中a=______,并把频数分布直方图补充完整;(2)求被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该辖区内有1000户家庭,根据调查数据估计,该辖区月平均用水量超过20吨的家庭有多少户?20.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF=,求OA的长.的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于C点,过点A作AM⊥x轴于点M,作AN⊥y轴于点N,OM=2,tan∠AOM=,点B的坐标为(m,-2).(1)求四边形AMON的周长和面积;(2)求该反比例函数和一次函数的解析式.22.【操作发现】(1)如图1,将△ABC绕点A逆时针旋转90°得到△ADE,连接BD,则∠ABD的度数是______.【类比探究】(2)如图2,在等腰直角三角形ABC内取一点P,使∠APB=135°,将△ABP绕顶点A逆时针旋转90°得到△ACP',连接PP'.请猜想BP与CP'有怎样的位置关系,并说明理由.【解决问题】(3)如图3,在等腰直角三角形ABC内任取一点P,连接PA、PB、PC.求证:PC+PA>PB.23.我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y=2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标.(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式.(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D两点,动点P为二次函数y=-x2-4x+8对称轴右侧上的动点,求△PCD的面积的最大值.答案和解析1.【答案】A【解析】解:|-2019|=2019.故选:A.利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】A【解析】解:(-2b)3=-8b3.故选:A.直接利用积的乘方运算法则计算得出答案.此题主要考查了积的乘方运算,正确将原式变形是解题关键.3.【答案】C【解析】解:1386万=1.386×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.4.【答案】B【解析】解:俯视图如选项B所示,故选:B.根据从上面看得到的图象是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.5.【答案】A【解析】解:∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴四边形DECF是矩形,∵CD是∠ACB的平分线,∴∠FCD=∠ECD,故C正确;∵∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形DECF是正方形,故D正确;∴CF=DF,故B正确,故选:A.根据已知条件推出四边形DECF是平行四边形,求得四边形DECF是矩形,根据角平分线的定义得到∠FCD=∠ECD,故C正确;推出四边形DECF是正方形,故D正确;根据正方形的性质得到CF=DF,故B正确.本题考查了正方形的判定,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.6.【答案】A【解析】解:设P(x,x2-x-4),四边形OAPB周长=2PA+2OA=-2(x2-x-4)+2x=-2x2+4x+8=-2(x-1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故选:A.设P(x,x2-x-4)根据矩形的周长公式得到C=-2(x-1)2+10.根据二次函数的性质来求最值即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.【答案】(2x+1)(2x-1)【解析】解:4x2-1=(2x+1)(2x-1).故答案为:(2x+1)(2x-1).直接利用平方差公式分解因式即可.平方差公式:a2-b2=(a+b)(a-b).本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.8.【答案】-1【解析】解:∵关于x的一元二次方程x2+ax+b=0的两根分别为-1和2,∴b=-1×2=-2,∴=-1.故答案为:-1.由方程的两根结合根与系数的关系可求出b=-2,进而可求出的值,此题得解.本题考查了根与系数的关系,牢记“两根之积等于”是解题的关键.9.【答案】75°【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CBA=45°,∵在Rt△ABC中,∠ACB=90°,=2,∴∠ABD=30°,∴∠CBD=75°,故答案为:75°根据直径所对的圆周角是90°,再根据圆周角定理解答即可.此题考查圆周角定理,关键是根据根据直径所对的圆周角是90°解答.10.【答案】8【解析】解:d=5×4-4×3=20-12=8.答:d的值为8.故答案为:8.根据总数=平均数×数据总和,分别求出a,b,c,d四个数的总数,a,b,c三个数的总数,再相减即可求解.本题考查了平均数的概念.平均数等于所有数据的和除以数据的个数.11.【答案】6.5【解析】解:设绳子长x尺,木条长y尺,依题意,得:,解得:.故答案为:6.5.设绳子长x尺,木条长y尺,根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.【答案】(2,)或(2,)或(6,-)【解析】解:把点A(2,3)代入y=(x>0)得:k=xy=6,故该反比例函数解析式为:y=.∵点B(4,0),BC⊥x轴,∴把x=4代入反比例函数y=,得y=.则C(4,).①如图,当四边形ACBD为平行四边形时,AD∥BC且AD=BC.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,y A-y D=y C-y B,故y D=.所以D(2,).②如图,当四边形ABCD′为平行四边形时,AD′∥CB且AD′=CB.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,y D′-y A=y C-y B,故y D′=.所以D′(2,).③如图,当四边形ABD″C为平行四边形时,AC=BD″且AC∥BD″.∵A(2,3)、B(4,0)、C(4,),∴x D″-x B=x C-x A即x D″-4=4-2,故x D″=6.y D″-y B=y C-y A即y D″-0=-3,故y D″=-.所以D″(6,-).综上所述,符合条件的点D的坐标是:(2,)或(2,)或(6,-).故答案为:(2,)或(2,)或(6,-).先将A点的坐标代入反比例函数求得k的值,然后将x=4代入反比例函数解析式求得相应的y的值,即得点C的坐标;然后结合图象分类讨论以A、B、C、D为顶点的平行四边形,如图所示,找出满足题意的D的坐标即可.此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答本题时,采用了“数形结合”和“分类讨论”的数学思想.13.【答案】解:(1)2-(x+5)<-2-2x,2-x-5<-2-2x,-x+2x<-2-2+5,x<1;(2)①+②,得:5x=5,x=1,将x=1代入②,得:1+y=4,y=3,则方程组的解为.【解析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)加减消元法求解可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.【答案】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠DFA=∠BAE,∴△ADF∽△EBA.【解析】由平行四边形的性质得出∠B=∠D,由平行线的性质得出∠DFA=∠BAE,即可证出△ADF∽△EBA.本题主要考查相似三角形的判定、平行四边形的性质,熟练掌握平行四边形的性质,由平行线的性质得出∠DFA=∠BAE是解题的关键.15.【答案】解:(1)y=800x+(40-x)×750+(70-x)×600+[20-(40-x)]×570=20x+60600 (2)当20x+60600=62000时,解得x=70,∵20≤x≤40∴x=70不符合题意∴y不能等于62000.【解析】(1)根据题意可以写出y与x的函数关系式;(2)将y=62000代入(1)中的函数解析式即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.16.【答案】解:(1)如图1,CE为所;(2)如图2,PQ为所作.【解析】(1)连接BD,则P点和BD与⊙O的交点的延长线与AB的交点即为E点;(2)连接BD,则O点和BD与⊙O的交点的延长线与BC的交点即为Q点.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定和菱形的性质.17.【答案】解:(1)晶晶的爸爸驾车通过收费站时,选择A通道通过的概率=;(2)画树状图为:共有16种等可能的结果数,其中这两辆车经过此收费站时,选择不同通道通过的结果数为12,所以这两辆车经过此收费站时,选择不同通道通过的概率==.【解析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,找出这两辆车经过此收费站时,选择不同通道通过的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.18.【答案】解:(1)在Rt△ODE中,DE=15cm,∠ODE=67°,∵cos∠ODE=,∴OD≈≈38.46(cm),∴OA=OD-AD≈38.46-14≈24.5(cm).答:半径OA的长约为24.5cm.(2)∵∠ODE=67°,∴∠BOC=157°,∴扇形BOC的面积≈.≈822(cm2).答:扇形BOC的面积约为822cm2.【解析】(1)在Rt△ODE中,DE=15cm,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD即为OA.(2)根据扇形的面积公式即可求解.考查了解直角三角形的应用,本题首先把实际问题转化成数学问题,主要利用了三角函数中余弦定义来解题.19.【答案】12【解析】解:(1)本次调查的家庭数为:6÷0.12=50,则a=50×0.24=12,故答案为:12,补充完整的频数分布直方图如右图所示;(2)(0.12+0.24+0.32)×100%=68%,即被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比是68%;(3)1000×(0.08+0.04)=120(户),答:该辖区月平均用水量超过20吨的家庭有120户.(1)根据统计表中的数据可以求得本次调查的家庭数,从而可以得到a的值,进而可以将直方图补充完整;(2)根据统计表中的数据可以得到被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)根据统计表中的数据可以得到该辖区月平均用水量超过20吨的家庭有多少户.本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)连接OE,∴∠AOE=2∠ACE,∵∠B=2∠ACE,∴∠AOE=∠B,∵∠P=∠BAC,∴∠ACB=∠OEP,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OEP=90°,∴PE是⊙O的切线;(2)∵OA=OE,∴∠OAE=∠OEA,∵AE=EF,∴∠EAF=∠AFE,∴∠OAE=∠OEA=∠EAF=∠AFE,∴△AEF∽△AOE,∴,∵AF=2,AE=EF=,∴OA=5.【解析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论..本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.21.【答案】解:(1)∵AM⊥x轴∴∠AMO=90°在Rt△AMO中,tan∠AOM==,∴AM=3∵AM⊥x轴,AN⊥y轴∴四边形AMON是矩形∴四边形AMON的周长=2×(2+3)=10四边形AMON的面积=2×3=6;(2)由(1)可知AM=3,OM=2,∴A(2,3)将点A(2,3)代入y=(k≠0)中得:k=6,∴反比例函数的解析式为y=将B(m,-2)代入y=,得m=-3,∴B(-3,-2)将点A(2,3)和B(-3,-2)代入一次函数y=ax+b(a≠0)中得:,解得:,∴一次函数的解析式为y=x+1.【解析】(1)利用矩形的判定得四边形AMON是矩形,而又由tan∠AOM=,OM=2可求出AM=3,代入周长和面积公式即可;(2)由(1)得A(2,3),将点A(2,3)代入y=(k≠0)中得反比例函数的解析式;将B(m,-2)代入反比例函数得到B(-3,-2),由A、B两点坐标即可求出一次函数的解析式.本题考查了反比例函数与一次函数的综合应用,找到相应点的坐标,利用待定系数法求解析式是解题的关键.22.【答案】45°【解析】解:(1)如图1,由旋转得:∠BAD=90°,AB=AD,∴△BAD是等腰直角三角形,∴∠ABD=45°,故答案为:45°;(2)BP⊥CP',理由是:如图2,由旋转得:AB=AC,AP=AP',∠BAC=∠PAP'=90°,∴△ABP≌△ACP'(SAS),∴∠APB=∠AP'C=135°,∵AP=AP',∠PAP'=90°,∴△APP'是等腰直角三角形,∴∠AP'P=45°,∴∠APB+∠APP'=180°,∴B、P、P'三点共线,∴∠CP'B=135°-45°=90°,∴BP⊥CP';(3)如图3,将△ABP绕点A逆时针旋转90°得到△ACP',∴△ACP'≌△ABP,∴P'C=PB,PA=P'A,连接PP',∵∠PAP'=90°,∴PP'=PA,在△PCP'中,PC+PP'>P'C,∴PC+PA>PB.(1)根据旋转的定义可得:△BAD是等腰直角三角形,从而得结论;(2)根据旋转的性质,证明△ABP≌△ACP'(SAS),得∠APB=∠AP'C=135°,又计算∠AP'P=45°,相减可得结论;(3)如图3,利用旋转作辅助三角形,则△ACP'≌△ABP,得P'C=PB,PA=P'A,根据等腰直角三角形的性质得:PP'=PA,最后利用三边关系得结论.本题是三角形的综合题,考查了旋转变换,等腰直角三角形的性质,勾股定理等知识,解题的关键是利用旋转添加辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考压轴题.23.【答案】解:(1)由题意得:a=1,b=-4,故抛物线的表达式为:y=x2-4x+c,将点C的坐标代入得:c=3,故抛物线的表达式为:y=x2-4x+3=(x-2)2-1,故抛物线的顶点坐标为(2,-1);(2)“子函数”y=x-6的“母函数”为:y=x2-6x+c,∵y=(x2-12x)+x=(x-6)2-18+c,故-18+c=1,解得:c=19,故“母函数”的表达式为:y=x2-6x+19;(3)如图所示,连接OP,设点P(m,-m2-4m+8),由题意得:直线l的表达式为:y=-2x-4,故点C、D的坐标分别为(-2,0)、(0,-4),∴S△PCD=S△POD+S△OCD+S△POD=-m2-4m+8+4+2m=-(m+1)2+13,∵-1<0,∴S△PCD=有最大值,当m=-1时,其最大值为13.【解析】(1)由题意得:a=1,b=-4,故抛物线的表达式为:y=x2-4x+c,将点C的坐标代入得:c=3,即可求解;(2)“子函数”y=x-6的“母函数”为:y=x2-6x+c,则y=(x2-12x)+x=(x-6)2-18+c,故-18+c=1,即可求解;(3)由S△PCD=S△POD+S△OCD+S△POD=-m2-4m+8+4+2m=-(m+1)2+13,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、三角形面积计算,此类阅读型题目通常按照题设条件顺次求解,难度一般不大.。

2019年江西省南昌市中考数学三模试卷(含答案解析)

2019年江西省南昌市中考数学三模试卷(含答案解析)

2021年江西省南昌市中考数学三模试卷一、选择题〔本大题共6小题,每题3分,共18分〕1. 2021的倒数是〔〕A. - 2021B. C .201 §201SD. 2021【分析】根据倒数的意义,可得答案.解:2021的倒数是2021应选:C.【点评】此题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2人类生存的环境越来越受到人们的关注,某研究机构对空气进行了测量研究, 发现在0摄氏度及一个标准大气压下1cnf空气的质量是0.001293克.数据0.001293可用科学记数法表示为〔〕A. 0.1293 X 10 2B. 1.293 X10 3C. 12.93 X 10 4D. 0.1293X10 3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为ax 10二与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:数据0.001293可用科学记数法表示为1.293 X10-3.应选:B.【点评】此题考查用科学记数法表示较小的数,一般形式为ax 10 n,其中10|a| <10, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3计算正确的选项是〔〕A. 〔-5〕0=0 B, x3+x4=x7C. 〔― a2b3〕2= —a4b6D. 2a2?a 1 = 2a【分析】根据整式乘法运算法那么以及实数运算法那么即可求出答案.解〔A〕原式=1,故A错误;〔B〕 x3与x4不是同类项,不能进行合并,故B错误;〔C〕原式=a4b6,故C错误;应选:D.【点评】此题考查学生的计算水平,解题的关键是熟练运用整式的运算法那么,本题属于根底题型.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.解:A、Z1和/2的是对顶角,不能判断AB// CQ此选项不正确;B、Z1 和/2 的对顶角是同位角,且相等,所以AB// CQ此选项正确;C Z1和/2的是内错角,且相等,故AC// BR不是AB// CR比图项错误;HZ1和/2互为同旁内角,同旁内角相等,两直线不平行,此选项错误.应选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5如图是一个全封闭的物体,那么它的俯视图是〔A.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.解:从上面观察可得到:应选:D【点评】此题考查了三视图的概简单几何体的三视图,此题的关键是要考虑到俯视图中看不见的局部用虚线表示.6如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG 动点P从点A出发,沿…AEAF-G-^B的路线绕多边形的边匀速运动到点B时停止〔不含点A和点B〕,那么4ABP的面积S随着时间t变化的函数图象大致是〔〕【分析】分析动点P在每段路径上的运动的过程中的面积增大、减小或不变的趋势即可.解:由点P的运动可知,当点P在GF ED边上时△ ABP的面积不变,那么对应图象为平行于t轴的线段,那么B C错误.点P在AD EF、GB上运动时, △ABP的面积分别处于增、减变化过程.故D排除应选:A.【点评】此题为动点问题的函数图象判断题,考查学生对于动点运动过程中函数图象的变化趋势的判断.解答关键是注意动点到达临界点前后的图象变化.二、填空题〔本大题共6小题,每题3分,共18分〕7 假设x的立方根是-2,那么x= - 8 .【分析】根据立方根的定义即可求出答案.解:由题意可知:x= 〔-2〕3= - 8故答案为:-8【点评】此题考查立方根,解题的关键是熟练运用立方根的定义,此题属于根底题型. 8为参加2021年“宜宾市初中毕业生升学体育测试〞,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩〔单位:成分别J为:2.21 , 2.12,2.43 , 2.39 , 2.43 , 2.40 , 2.43 .这组数据的中位数和众数分别是 2.40 ,2.43 .【分析】将数据已经由小到大排列,所以可以直接利用中位数和众数的定义求出结果. 解:二.把7天的成绩从小到大排列为:2.12, 2.21, 2.39, 2.40, 2.43, 2.43, 2.43.:它们的中位数为2.40 ,众数为2.43. 故答案为:45, 45.故答案为2.40 , 2.43 .【点评】考查了确定一组数据的中位数和众数的水平.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个, 那么正中间的数字即为所求,如果是偶数个那么找中间两位数的平均数9 如图,.0的直径CD垂直于弦AB, /CA由67.5 °,那么/AO由90 度.【分析】根据垂径定理得出版=菽,根据/ CA氏67.5 0求出京和菽的度数都是1350 ,求出藤的度数,即可得出答案.解::..的直径CD垂直于弦AB,.•.一,=,,••/CA氏67.5 0 ,・••的口位的度数都是2X67.5° =135° ,的度数是360° -135° -135° =90° ,. •/A0&90° ,故答案为:90.【点评】此题考查了垂径定理和圆周角定理,能求各段弧的度数是解此题的关键.10 a、b是方程x2-2x-1=0的两个根,那么a2- a+b的值是3 .【分析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2- a+b中即可求出结论.解:a、b是方程x2- 2x-1=0的两个根,「.a2-2a= 1, a+b = 2,a2—a+b = a2—2a+ (a+b) =1+2= 3.故答案为:3.【点评】此题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-土、两根之积等于自是解题的关键.a a11.如图,点A是反比例函数y=-1(x<0)图象上的点,分别过点A向横轴、x纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余局部涂上阴影,那么阴影局部的面积为 4 —九.【分析】由题意可以假设A(-m,成,那么-n2=-4,求出点A坐标即可解决问题;解:由题意可以假设A(-m m,那么—m2= — 4,. . m= w ± 2,2,• • S阴=S正方形—S圆=4 —冗,故答案为4 -九.【点评】此题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12 如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,点A、B、C 的坐标分别为A (0, 4) , B ( - 2, 0), C (8, 0),点E 是BC 的中点,点P为线段AD上的动点,假设^ BEP是以BE为腰的等腰三角形,那么【分析】分两种情形分别讨论求解即解:如图,作EH±AD于H.当EP= EB= 5 时,可得P〃(0, 4), P' (6, 4), (HA= HP =3),当BP= BE= 5 时,P (1, 4),综上所述,满足条件的点P坐标为(1, 4)或(0, 4)或(6, 4).【点评】此题考查平行四边形的性质、坐标与图形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解做题(本大题共5小题,每题6分,共30分)13. (6 分)(1)计算:-14-2X (- 3) 2+/市+(T)(2)如图,小林将矩形纸片ABC训折痕EF翻折,使点C、D分别落在点M N的位置,发现/ EF阵2/ BFM求/ EFC的度数.NA D【分析】〔1〕原式利用乘方的意义,立方根定义,乘除法那么,以及加减法那么计算即可求出值;〔2〕由折叠的性质得到一对角相等,根据角的关系求出所求即可. 解〔1〕原式=-1 — 18+9= - 10;〔2〕由折叠得:/ EF阵/EFq・•/ EF阵2/BFM・••设/ EFMk / EFG= x,那么有/ BFM= gx,・•/MF+/ MFE-Z EFC= 180° ,..x+x+ gx=180 ,解得:x = 72° ,那么/EF最72° .【点评】此题考查了实数的性质,以及平行线的性质,熟练掌握运算法那么是解本题的关键.2 _14. 〔6分〕先化简,再求化3m+〔1—L〕,其中x^+1.【分析】先根据分式混合运算顺序和运算法那么化简原式,再将x的值代入计算可得.解:原式=短L二二三二?匚冥X-1=聋【点评】此题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法那么.15. 〔6分〕如图,AD是.O的直径,点O是圆心,C F是AD上的两点,OC=OF B、E是.O上的两点,且卷=比,求证:BC// EF.【分析】由△BAC1AEDF (SAS,推出/AC口/ DFE推出/ BC白/ EFQ可得BC// EF.证实::杷=D陈AD是直径,• ・A及DE/ A= ZD,vQC= OF, O阵ODAO DF,・•.△BA3 AEDF (SAS,・•/AC乐 / DFE・./ BCF= / EFC・•. BC// EF.【点评】此题考查圆周角定理,全等三角形的判定和性质,平行线的判定等知识, 解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.16.(6分)请你仅用无刻度的直尺在下面的图中作出△ ABC的边AB上的高CD (1)如图①,以等边三角形ABC的边AB为直径的圆,与另两边BC AC分别交于点E、F.(2)如图②,以钝角三角形ABC的一短边AB为直径的圆,与最长的边AC相交于点E.【分析】(1)连接AE BF,找到△ ABC的高线的交点,据此可得CD(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG延长AB交CG 于点D,据此可得.解:(1)如下图,CD即为所求;(2)如图,CD即为所求.【点评】此题主要考查作图-根本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.17. (6分)某初级中学九(1)班共有40名同学,其中有22名男生, 18名女生.(1)假设随机选一名同学,求选到男生的概率.(2)学校因组织测试,将小明、小林随机编入A、B、C三个考场,请你用画树状图法或列表法求两人编入同一个考场的概率.【分析】(1)根据概率公式用男生人数除以总人数即可得.(2)根据题意先画出树状图,得出所有等可能的情况数和两人编入同一个考场的可能情况数,再根据概率公式即可得出答案.解(1)二.全班共有40名同学,其中男生有22人,「•随机选一名同学,选到男生的概率为三=共;(2)根据题意画图如下:小明,」海由以上树状图可知,共有9种等可能的情况,其中两人编入同一个考场的可能情况有AA BB, CC三种;所以两人编入同一个考场的概率为二=二.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结n,果再从中选出符合事件A或B的结果数目m然后利用概率公式求事件A或B的概率.四、解做题(本大题共3小题,每题8分,共24分)18. (8分)在我校举办的“读好书、讲礼仪〞活动中,各班积极行动,图书角的新书、好书不断增多,除学校购置的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答以下问题:(1)该班有学生多少人?(2)补全条形统计图.(3)九(1)班全体同学所捐图书是6本的人数在扇形统计图中所对应扇形的圆心角为多少度?(4)请你估计全校2000名学生所捐图书的数量.(2 根据条形统计图求出捐4本的人数为,再画出图形即可;(3 用360.乘以所捐图书是6本的人数所占比例可得;(4 先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.解(1)二.捐2本的人数是15人,占30%,该班学生人数为15+ 30限50人;(2)根据条形统计图可得:捐4本的人数为:50- (10+15+7+5 =13;(3)九(1)班全体同学所捐图书是6本的人数在扇形统计图中所对应扇形的圆 心角为 360° X --=360° 50答:全校2000名学生共捐6280册书.【点评】此题考查的是条形统计图, 读懂统计图,从不同的统计图中得到必要 的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据,用到 的知识点是众数、中位数、平均数.19. (8分)如图1 , 2分别是某款篮球架的实物图与示意图,底座BC 的 长为0.60米,底座BC 与支架AC 所成的角/ AC 氏75° ,点A 、H F 在同一条直线上,支架AH 段的长为1米,HF 段的长为1.50米,篮板底部支架HE 的长为0.75米.(1 求篮板底部支架HE 与支架AF 所成的角/ FHE 的度数.(2 求篮板顶端F 到地面的距离.(结果精确到0.1米;参考数据:cos75 0弋= 0.9659, tan75° =3.732, 1.732, 6=1.414) 补图如下;九U)殂捐献图书情况的扇龙场计图(4)二•九(1)班所捐图书的平均数是; (1X10+2X15+4X 13+5X7+6X 5) +50= 15750 「•全校2000名学生共捐2000X 157 5.= 6280 (本), 0.2588, sin75 九(1)班揖献书情况的条理统计圉• ・FG^ 2.17 g・••FMFG H G 降4.4 (米),答:篮板顶端F 到地面的距离是4.4米.解:(1 ),由题意可得:cos/FHE= 胆;1HF 2 那么/FH 白 60° ;(2)延长FE 交CB 的延长线于 M 过A 作AGL FM 于GAB= BC?tan75 ° = 0.60 X 3.732 = 2.2392 ,• .G 阵 AB= 2.2392,在 Rt^AGF 中,./FA ./FH 白 60° , sin/FAG^^, AF• ・sin60° =2. 5进而得出答案;(2)延长FE 交CB 的延长线于 M 过A 作AGL FM 于G,解直角三角形即可得 到结论.在 RtzXABC 中,tan/AC【点评】此题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.20. (8分)我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线投放“微型〞公交车.该公司方案购置10台“微型〞公交车,现有A、B两种型号,购置一台A型车比购置一台B型车多20万元,购置2台A 型车比购置3台B型车少60万元.(1 问购置一台A型车和一台B型车分别需要多少万元?(2 经了解,每台A型车每年节省2.4万元,每台B型车每年节省2万元, 假设购置这批公交车每年至少节省22.4万,那么购置这批公交车至少需要多少万元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答此题;(2)根据题意可以得到y与x的函数关系式,然后求出x的取值范围,即可解答此题. 解:(1)设购置一台A型车和一台B型车分别需要a万元、b万元,a二b+2Q [日* ,得 4 ,l2a=3b-60 l.b-100答:购置一台A型车和一台B型车分别需要120万元、100万元;(2)设A型车购置x台,那么B型车购置(10-x)台,需要y元,y=120x+100 (10-x) =20x+1000,. 2.4x+2 (10- x) >22.4 ,. . x>6,.•.当x = 6时,y取得最小值,止匕时y=1120,答:购置这批公交车至少需要1120万元.【点评】此题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.五、解做题(本大题共2小题,每题9分,共18分)21. (9分)如图,在平面直角坐标系xOy中,直线y = kx+b (kw0)与双曲线y =色相交于点A (m, 6)和点B ( - 3, n),直线AB与y轴交于点C,与x父轴交于点D.(1 求直线AB的表达式.(2 求AC: CB的值.(3 点E (3, 2),点F (2, 0),请你直接判断四边形BDEF的形状,不用说明理由.【分析】(1)先根据反比例函数图象上点的坐标特征求出m n的值,从而得到A、B点的坐标,然后利用待定系数法求直线AB的解析式;(2)作Ah/Ly轴于M, BNLy轴于N,如图,证实△ AM.△ BNC然后利用相似比求祟的值;BC(3)先利用直线AB的解析式确定D ( - 2, 0),那么可判断D点和F点,B点和E点关于原点对称,所以O*OF O氏OE然后根据平行四边形的判定方法可判断四边形BDEF为平行四边形.解:(1)把 A (m, 6)、B(—3, n)分别代入y=J■得6m= 6, — 3n=6,解得1, n= - 2,• .A (1, 6), B (-3, -2),把A (1,6),B(-3, - 2)代入y = kx+b得尸卜都,解得,心〞,l-3k+b=-2 (b=4「•直线AB的解析式为y = 2x+4;(2)作AMLy轴于M BNLy轴于N,如图,. AM/ BN,. .△AM8 ABN(C四=幽=1.BC BN 3'(3)当y = 0 时,2x+4=0,解得x= —2,贝U D( —2, 0),- F (2, 0),•.OD= OF,. B(-3, -2), E (3, 2),•. B点和E点关于原点对称,..OB- OE••・四边形BDEF为平行四边形.【点评】此题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,假设方程组有解那么两者有交点,方程组无解,那么两者无交点.也考查了待定系数法求函数解析式和平行四边形的判定.22. (9分)如图,一次函数y=-x-2的图象与二次函数y = ax2+bx-4的图象交于x轴上一点A,与y轴交于点B,在x轴上有一动点C.二次函数y= ax2+bx-4的图象与y轴交于点D,对称轴为直线x = n (n<0) , n是方程2x2-3x-2=0的一个根,连接AD(1)求二次函数的解析式.(2)当S A ACB= 3S A ADB时,求点C的坐标.(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与△ADB相似?假设存在,试求出点C的坐标;假设不存在,请说明理由.【分析】(1)由一次函数的解析式求得 A (-2, 0),通过解方程2x2-3x-2 = 0求得抛物线对称轴方程,将点A的坐标代入二次函数解析式,结合抛物线’4a-2b - 4=0对称轴公式,联立方程组! b 1,求得b、c的值;I 2a~ 2(2 由三角形的面积公式求得AC的长度,继而求得点C的坐标;(3 需要分类讨论:①AC与BD是对应边时,△ AD+z\BCA由相似三角形对应边成比例求得OC的长度,从而求得点C的坐标;②当AC与AB是对应边时,△ ADBoz\CBA由相似三角形对应边成比例求得OC的长度,从而求得点C的坐标.解(1)在y= - x — 2 中,令y = 0,贝Ux= - 2••A (- 2, 0).由2x2 - 3x - 2=0,彳4xi=— -, x2=2,2.二二次函数y = ax2+bx-4的对称轴为直线x=-二,’4a-2b-4=0•一,।云,解得卜二2,b=2L・••二次函数的解析式为:y=2x2+2x - 4;(2) ADB= -iBCPOA= 2,Sk ACB= 3S A ADB= 6.•・•点C在x轴上,工ACB= %C?OB=tx 2AC= 6, £上•, AC= 6.•••点A的坐标为〔―2, 0〕,.二当S AACA3S A ADB时,点 C 的坐标为〔4, 0〕或〔-8, 0〕;(3)存在.理由:令x = 0, 一次函数与y轴的交点为点B (0, -2),•.AB= . . '=2 : /OAB /OBA45° .•.在4ABD中,/BAD /ADB者B不等于45° , / AB* 180°—45° =135° ,•・•点C在点A的左边.①AC与BD是对应边时,・「△ ADB^z\BCA1,AB BDAO BD= 2,•.OC= OAAC= 2+2= 4,•••点C的坐标为(-4, 0).②当AC与AB是对应边时,: △ ADB^ ACBA•以•=诞-- .AB BD 2A⑥ /SAB= &X 4,..OC OA+AC= 2+4= 6,•••点C的坐标为(-6, 0).综上所述,在x轴上有一点C(-4, 0)或(-6, 0),使得以点A B C组成的三角形与△ ADB相似.【点评】此题是二次函数综合题型,主要考查了待定系数法求二次函数解析式, 解一元二次方程,一次函数图象上点的坐标特征,相似三角形对应边成比例的性质,难点在于〔3〕要分情况讨论.六、解做题〔本大题共12分〕23. 〔12分〕在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4的打印纸等,这些矩形的长与宽之比都为V2:1,我们将具有这类特征的矩形称为“完美矩形〞如图〔1〕,在“完美矩形〞ABCD中,点P为AB边上的定点,且A之AD〔1〕求证:PD= AB.〔2〕如图〔2〕,假设在“完美矩形" ABCD的边BC上有一动点E,当理的值是CE 多少时,△ PDE的周长最小?〔3〕如图〔3〕,点Q是边AB上的定点,且B岸BCAD= 1,在〔2〕的条件下连接DE 并延长交AB的延长线于点F,连接CF G为CF的中点,M N分别为线段QF和CD上的动点,且始终保持Q阵CN MN与DF相交于点H,请问GH的长度是定值吗?假设是,请求出它的值,假设不是,请说明理由.【分的:出根据题中“对里炬射〞的定义设出1MD吟AB,根据AP= AD利用勾股定理表示出PD,即可得证;⑵ 如图,作点P关于BC的对称点P',连接DP交BC于点E,此时4PDE 的周长最小,设A* PA= BG= a,表示出AB与CD由AB- AP表示出BP,由对称的性质得到BP= BP ,由平行得比例,求出所求比值即可;⑶ G+坐,理由为:由〔2〕可知BF= BP= AB- AP,由等式的性质得到MF= DN利用AAS得至iJz\MFH2ANDH利用全等三角形对应边相等得到FH= DH再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.〔1 证实:在图1中,设AD= BO a,那么有AB= C5Ji a,•••四边形ABCD是矩形,• ./A= 90° ,•PA= AD= BG= a,P* ^a,AB=行,• .PA AB;(2 解:如图,作点P关于BC的对称点P',连接DP交BC于点E,此时^ PDE的周长最小,< P B p匚--------------- 1设A5PA= BO a,贝U有AB= C5m a, v BP= AB- PA..BP =BP= V2a- a,由〔2〕可知BF= BP= AB- AP,AP= AD,・•. BF= AB- AD.• B岸BC, A QQ A AB- BQ= AB- BQ v BG= AD,•・AO AB- AD••. BF= AQ•. QF= BOBF= BQAQ= AB, v AB= CD•.QF= CD . Q阵CN••.QF- Q阵CD- CN 即MF= DN「MF// DN•./ NFhh / NDH在△MFH 和ANDH'/MFH=/NDH-ZHHF=ZNHD,MF=DNt・•.△MFHi △NDHIAAS,・•. FH=DH •・ G为CF的中点,・•.GH是ACFD的中位线,GH= pD=单【点评】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质, 熟练掌握相似三角形的性质是解此题的关键.。

江西省南昌市2019-2020学年中考数学三模考试卷含解析

江西省南昌市2019-2020学年中考数学三模考试卷含解析

江西省南昌市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003xy x y +=⎧⎪⎨+=⎪⎩ B .100131003x y x y +=⎧⎪⎨+=⎪⎩ C .1003100x y x y +=⎧⎨+=⎩ D .1003100x y x y +=⎧⎨+=⎩ 2.下列计算正确的是( )A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 33.如图,正六边形ABCDEF 中,P 、Q 两点分别为△ACF 、△CEF 的内心.若AF=2,则PQ 的长度为何?( )A .1B .2C .23﹣2D .4﹣234.如图,已知点A 在反比例函数y =k x上,AC ⊥x 轴,垂足为点C ,且△AOC 的面积为4,则此反比例函数的表达式为( )A .y =4xB .y =2xC .y =8xD .y =﹣8x5.比较417363 )A .417363B .436317C 363417D 17363 46.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A .平均数是3B .中位数是3C .众数是3D .方差是2.57.计算﹣8+3的结果是( )A .﹣11B .﹣5C .5D .118.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 9.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个10.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个11.计算3a 2-a 2的结果是( )A .4a 2B .3a 2C .2a 2D .312.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .14.写出一个比2大且比5小的有理数:______.15.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.16.已知α是锐角1sin 2α=,那么cos α=_________. 17.直线y=12x 与双曲线y=k x 在第一象限的交点为(a ,1),则k=_____. 18.因式分解:x 3﹣4x=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC .(1)求sinB 的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE 的长.20.(6分)如图,在平行四边形ABCD中,ADC∠的平分线与边AB相交于点E.(1)求证BE BC CD+=;(2)若点E与点B重合,请直接写出四边形ABCD是哪种特殊的平行四边形.21.(6分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?22.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i=的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)23.(8分)如图,两座建筑物的水平距离BC为60m.从C点测得A点的仰角α为53° ,从A点测得D点的俯角β为37° ,求两座建筑物的高度(参考数据:3433437,37 37, 534 53?35)55453sin cos tan sin cos tan ≈≈≈≈≈≈o o o o o o ,,,24.(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如下图所示.求甲组加工零件的数量y 与时间x 之间的函数关系式.求乙组加工零件总量a 的值.25.(10分)如图,某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,中柱CD =1米,∠A =27°,求跨度AB 的长(精确到0.01米).26.(12分)解方程(1)2430x x --=;(2)()22(1)210x x ---=27.(12分)先化简,再求值:(1a ﹣a )÷(1+212a a +),其中a 2 <a 2的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B .【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.2.B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案. 详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误;故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.3.C【解析】【分析】先判断出PQ ⊥CF ,再求出AC=23,AF=2,CF=2AF=4,利用△ACF 的面积的两种算法即可求出PG ,然后计算出PQ 即可.【详解】解:如图,连接PF ,QF ,PC ,QC∵P 、Q 两点分别为△ACF 、△CEF 的内心,∴PF 是∠AFC 的角平分线,FQ 是∠CFE 的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°, ∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ ⊥CF ,∴△PQF 是等边三角形,∴PQ=2PG ;易得△ACF ≌△ECF ,且内角是30º,60º,90º的三角形,∴AF=2,CF=2AF=4,∴S △ACF =12AF×AC=12×2× 过点P 作PM ⊥AF ,PN ⊥AC ,PQ 交CF 于G ,∵点P 是△ACF 的内心,∴PM=PN=PG ,∴S △ACF =S △PAF +S △PAC +S △PCF =12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×PG+12×4×PG=()PG=(PG∴1,∴1-2.故选C.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.4.C【解析】【分析】由双曲线中k的几何意义可知12AOCS kV,据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答. 【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=8x;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;5.C【解析】【分析】根据4=16<17且4=364>363进行比较【详解】解:易得:4=16<17且4=364>363,所以363<4<17,故选C.【点睛】本题主要考查开平方开立方运算。

2019年江西省南昌市中考数学一模试卷(解析版)

2019年江西省南昌市中考数学一模试卷(解析版)

2019年江西省南昌市中考数学一模试卷一、选择题(本大题共6小题,共18.0分)1.下列标志中,是中心对称图形的是()A. B. C. D.2.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是()A. 必然事件B. 不可能事件C. 随机事件D. 以上都有可能3.如图,下列条件中,不能判定△ACD∽△ABC的是()A. ∠ADC=∠ACBB. ∠B=∠ACDC. ∠ACD=∠BCDD. ACAB =ADAC4.如图,A ,B ,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于()A. 50∘B. 49∘C. 48∘D. 47∘5.如图,点A在反比例函数y=−4x的图象上,AM⊥y轴于点M,点P是x轴上的一点,则△APM的面积是()A. 8B. 6C. 4D. 26.如图,将正方形ABCD放于平面直角坐标系中,已知点A(-4,2),B(-2,2),以原点O为位似中心把正方形ABCD缩小得到正方形A′B′C′D′,使OA′:OA=1:2,则点D的对应点D′的坐标是()A. (−8,8)B. (−8,8)或(8,−8)C. (−2,2)D. (−2,2)或(2,−2)二、填空题(本大题共6小题,共18.0分)7.将函数y=x2-2x+4化为y=a(x-h)2+k的形式为______.8.方程x2-2x-4=0的所有实数根之和是______.9.写出一个在每个象限内,y随x的增大而增大的反比例函数:______.10.元旦那天,某超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买的活动,顾客购买物品就能获得一次转动转盘的机会,当转盘停止时,就可以获得指针所在区域相对应的奖品.下表是该活动的一组统计数据.假如你去转动一次转盘,获得铅笔的概率大约是______.转动转盘的次数n1001502005008001000落在“铅笔”区域的次数m68108140355560690落在“铅笔”区域的频率mn0.680.720.700.710.700.6911.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(2,0),直线y=√33x+√3与⊙O交于B、C两点,则弦BC的长为______.12.如图,在平面直角坐标系xOy中,一次函数y=-x+2与反比例函数y=kx(x<0)相交于点B,与x轴相交于点A,点B的横坐标为-2,设点M是直线AB上的一点,过点M作MN∥x轴,交反比例函数y=kx(x<0)的图象于点N,若以A、O、M、N为顶点的四边形为平行四边形,则点M的坐标为______.三、计算题(本大题共1小题,共6.0分)13.(1)解方程x2-3x-18=0;(2)如图,BD、AC相交于点P,连接BC、AD,且∠1=∠2,求证:△ADP∽△BCP.四、解答题(本大题共10小题,共78.0分)14.如图,正方形ABCD内接于⊙O,M为CD⏜的中点,连接AM,BM,求证:AM=BM.15.已知点P(m,4)在反比例函数y=-12x的图象上,正比例函数y=kx的图象经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)点Q是否在反比例函数的图象上?16.如图,⊙O的半径OA⊥OC,点D在AC⏜上,且AD⏜=2CD⏜,请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹,不必写画法)(1)在图1中,画出⊙O的一个内接正方形;(2)在图2中,画出⊙O的一个内接等边三角形.17.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6、8、10三张扑克牌,乙手中有5、7、9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请列举出此游戏所有可能出现的情况;(2)求学生乙一局游戏获胜的概率.18.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-2,1),B(-1,4),C(-3,2)(1)画出△ABC关于点B中心对称的△A1BC1,并直接写出点C1的坐标.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧画出△ABC放大后的△A2B2C2,并直接写出点C2的坐标.19.如图在平面直角坐标系中反比例函数y=kx的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接PA、OB,过P、B两点作直线PB,且S△AOB=S△PAB(1)求反比例函数的解析式;(2)求点B的坐标.20.如图,AB是⊙O的直径,在⊙O上取一点C,连接AC、BC,将△ABC沿直线AB翻折得到△ABD.(1)点D在⊙O上吗?请说明理由.(2)延长BD到点E,使AB2=BC•BE,连接AE,求证:AE是⊙O的切线.21.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.22.如图,抛物线C1:y=mx2-2mx-3m(m<0)与x轴交于A、B两点,与y轴交于点D,顶点为M,另一条抛物线C2与x轴也交于A、B两点,且与y轴的交点是C(0,−3),顶点是N.2(1)求A,B两点的坐标.(2)求抛物线C2的函数表达式.(3)是否存在m,使得△OBD与△OBC相似?若存在,请求出m的值;若不存在请说明理由.23.如图1,在矩形ABCD中,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部,将半圆O绕点A顺时针旋转a度(0°≤a≤180°).(1)在旋转过程中,B′C的最小值是______,如图2,当半圆O的直径落在对角线AC上时,设半圆O与AB的交点为M,则AM的长为______.(2)如图3,当半圆O与直线CD相切时,切点为N,与线段AD的交点为P,求劣弧AP的长;(3)在旋转过程中,当半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,请直接写出d的取值范围.答案和解析1.【答案】B【解析】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】C【解析】解:“在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球”这一事件是随机事件,故选:C.根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件即可得出答案.本题主要考查了必然事件、随机事件、不可能事件的概念,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】C【解析】解:(A)∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC,故A能判定△ACD∽△ABC;(B)∵∠A=∠A,∠B=∠ACD,∴△ACD∽△ABC,故B能判定△ACD∽△ABC;(D)∵=,∠A=∠A,∴△ACD∽△ABC,故D能判定△ACD∽△ABC;故选:C.根据相似三角形的判定即可求出答案.本题考查相似三角形,解题的关键是熟练运用相似三角形的判定,本题属于基础题型.4.【答案】A【解析】解:连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.【答案】D【解析】解:∵△AOB的面积=△ABP的面积,△AOB的面积=|k|=2,∴△ABP的面积=2,故选:D.由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=|k|=2.本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.本知识点是中考的重要考点,同学们应高度关注.6.【答案】D【解析】解:∵点A(-4,2),B(-2,2),以原点O为位似中心把正方形ABCD缩小得到正方形A′B′C′D′,使OA′:OA=1:2,∴点D的坐标是:(-4,4),∴点D的对应点D′的坐标是:(-2,2)或(2,-2).故选:D.根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k进行解答.本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.7.【答案】y=(x-1)2+3【解析】解:y=x2-2x+4=(x2-2x+1)+3,=(x-1)2+3,所以,y=(x-1)2+3.故答案为:y=(x-1)2+3.利用配方法整理即可得解.本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键.8.【答案】2【解析】解:∵△=(-2)2-4×1×(-4)=20>0,∴方程x2-2x-4=0有两个不相等的实数根;设方程x2-2x-4=0的两个实数根为m、n,则m+n=2.故答案为:2.根据根与系数的关系,即可求出方程所有实数根的和.本题考查了根与系数的关系以及根的判别式,利用根的判别式得出方程x2-2x-4=0有两个不相等的实数根是解题的关键.9.【答案】y =-1x(答案不唯一)【解析】解:只要使反比例系数小于0即可.如y=-,答案不唯一.故答案为:y=-(答案不唯一)反比例函数的图象在每个象限内,函数值y随自变量x的增大而增大,则反比例函数的反比例系数k <0;反之,只要k<0,则反比例函数在每个象限内,函数值y随自变量x的增大而增大.本题主要考查了反比例函数y=(k≠0)的性质:①k>0,则函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大;10.【答案】0.70【解析】解:转动一次转盘,获得铅笔的概率大约是0.70,故答案为:0.70根据事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率解答即可.本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.【答案】√7【解析】解:设直线y=x+与两坐标轴分别交于D、E点,过O点作OM⊥BC于点M,连接OB,如下图由直线y=x+可知点D坐标为(0,),点E的坐标为(-3,0)∴=∴∠DEA=30°∴OM=OE=在Rt△OMB中,OM=,OB=OA=2∴BM==由垂径定理可知BC=2BM=×2=故答案为.根据直线y=x+可知直线与两坐标轴的夹角分别为30°、60°,于是可根据勾股定理求出O到CB的距离,再根据垂径定理即可求出BC的长.本题考查的是一次函数的性质与垂径定理的运用,将一次函数与几何知识的有机结合是解决本题的关键.12.【答案】(-2√2+2,2√2)或(-2√3,2√3+2)【解析】解:∵y=-x+2∴B(-2,4),A(2,0),将B(-2,4)代入y=中得k=-8,∴反比例函数的解析式为y=-,设点M的坐标为(-m+2,m),则点N的坐标为(-,m),∴MN=|-m+2+|=OA=2,解得:m=或+2,故点M的坐标为:(-+2,)或(-,+2);故答案为:(-+2,)或(-,+2).由题意得出点N的坐标可表示为(-,m),然后依据MN=OA=2列方程求解即可.本题主要考查的是一次函数与反比例函数的综合应用,用含m的式子表示MN的长是解题的关键.13.【答案】解:(1)(x-6)(x+3)=0,∴x=6或x=-3;(2)∵∠1=∠2,∠DPA=∠CPB,∴△ADP∽△BCP;【解析】(1)根据一元二次方程的解法即可求出答案.(2)根据相似三角形的判定即可求出答案.本题考查一元二次方程以及相似三角形,解题的关键是熟练运用方程的解法以及相似三角形的判定,本题属于基础题型.14.【答案】证明:∵四边形ABCD是正方形,∴AD=BC,∴AD⏜=BC⏜,∵M为CD⏜中点,∴MD⏜=MC⏜,∴AM⏜=BM⏜,∴AM=BM.【解析】根据圆心距、弦、弧之间的关系定理解答即可.本题考查的是正方形的性质、圆心距、弦、弧之间的关系,掌握圆心距、弦、弧之间的关系定理是解题的关键.15.【答案】解:(1)∵点P(m,4)在反比例函数y=-12x的图象上,∴4=-12m,解得:m=-3,即点P的坐标为(-3,4),则-3k=4,解得:k=-43,即正比例函数的解析式为:y=-43x,(2)∵正比例函数y=kx的图象经过点Q(6,n),∴n=-43×6=-8,把x=6代入y=-12x得:y=-126=-2≠-8,故点Q不在反比例函数的图象上.【解析】(1)根据“点P(m,4)在反比例函数y=-的图象上”,列出关于m的分式方程,解之,得到点P 的坐标,代入正比例函数y=kx,解之,得到k值,即可得到答案,(2)根据“正比例函数y=kx 的图象经过点Q (6,n )”,把点Q 的坐标代入正比例函数的解析式,求出n 值,把x=6代入反比例函数解析式,求纵坐标,与n 比较,即可得到答案.本题考查了反比例函数图象上点的坐标特征,一次函数图象上点的坐标特征,待定系数法求正比例函数解析式,解题的关键:(1)正确掌握代入法和待定系数法,(2)正确掌握代入法. 16.【答案】解:(1)如图1所示:四边形ACEF 即为所求:(2)如图2所示,△DEF 即为所求. 【解析】(1)根据对角线相等且互相垂直平分的四边形是正方形,画出⊙O 的内接正方形即可. (2)根据等边三角形的性质,画出⊙O 的内接等边三角形即可.本题主要考查了复杂作图以及圆的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 17.【答案】解:(1)由题意可得,每人随机取手中的一张牌进行比较的所有情况是: (6,5)、(6,7)、(6,9)、 (8,5)、(8,7)、(8,9)、 (10,5)、(10,7)、(10,9);(2)学生乙获胜的情况有(8,9);(6,9);(6,7)共3种, 则学生乙获胜的概率为P =39=13; 【解析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题. 此题考查了列表法与树状图法,概率=所求情况数与总情况数之比. 18.【答案】解:(1)△A 1BC 1如图所示,点C 1的坐标(1,6).(2)△A 2B 2C 2如图所示,点C 2的坐标(-6,4).【解析】(1)分别作出A ,C 的对应点A 1,C 1即可.(2)延长OB 到B 2,使得OB 2=2OB ,同法作出A 2,C 2即可解决问题.本题考查位似变换,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 19.【答案】解:(1)把P (4,3)代入y =kx 得k =4×3=12,∴反比例函数解析式为y =12x ; (2)∵S △AOB =S △PAB ,∴P 点到AB 的距离等于OA ,而P 点到y 轴的距离为4,AB ⊥x 轴, ∴点O 和点P 到AB 的距离都是2, 即B 点的横坐标为2, 当x =2时,y =12x =6, ∴B (2,6). 【解析】(1)直接把P 点坐标代入y=可求出k 的值;(2)利用三角形面积公式可判断点O 和点P 到AB 的距离都是2,然后计算自变量为2对应的反比例函数值即可得到当B 点坐标.本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式. 20.【答案】解:(1)点D 在⊙O 上, 理由如下:∵AB是⊙O的直径∴∠ACB=90°根据折叠的性质可知:△ABC≌△ABD ∴∠ADB=∠ACB=90°∴OD=OA=OB∴点D在⊙O上(2)AE是⊙O的切线理由如下:∵△ABC≌△ABD∴BD=BC∵AB2=BC•BE∴AB2=BD•BE∴AB BD =BE AB∵∠ABD=∠EBA∴△EBA∽△ABD∴∠BAE=∠ADB=90°∴AE是⊙O的切线【解析】(1)易证得△ABC≌△ABD,从而得OD=OA=OB,即点D在⊙O上(2)通过证△EBA∽△ABD,可得∠EAB=∠ADB=90°,即可证AE是⊙O的切线此题主要考查相似三角形的判定与性质,切线的判定,切线的性质.关键在于切线性质的灵活运用.21.【答案】解:(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1-x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)-30]×1000(1+2a%)=30000,整理得:a2+75a-2500=0,解得:a1=25,a2=-100(不合题意,舍去),∴80(1+a%)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【解析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】解:(1)当y=0时,mx2-2mx-3m=0,∵x2-2x-3=0,∴x1=-1,x2=3,∴A(-1,0),B(3,0);(2)设抛物线C2的表达式为y=a(x+1)(x-3),把C(0,-32)代入,得a×1×(−3)=−32,解得a=12,∴抛物线C2的函数表达式为y=12(x+1)(x−3),即y=12x2−x−32.(3)当△OBD∽△OBC时,OBOB=ODOC,∴OC=OD,∴D(0,32).∴−3m=32,∴m=-12,当△ODB∽△OBC时,ODOB=OBOC,∴32OD=9,∴OD=6,∴D(0,6),∴-3m=6,∴m=-2,综合以上可得m的值为-12或-2.【解析】(1)解方程mx2-2mx-3m=0可得到A,B两点的坐标;(2)设交点式y=a(x+1)(x-3),然后把C点坐标代入求出a得到抛物线C2的表达式;(3)分两种情况考虑:当△OBD∽△OBC或△ODB∽△OBC时,求出OD长,得到m的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,能利用相似三角形的性质解决函数中点的坐标的求解问题.23.【答案】1 165【解析】解:(1)∵在矩形ABCD中,AB=4,BC=3,∴AC=5,在旋转过程中,当点B′落在对角线AC上时,B′C的值最小,最小值为1;在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=5.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;故答案为:1,;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G.∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=1.在Rt△AGO中,∠AGO=90°,AO=2,AG=1,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴劣弧AP的长==π;(3)由(2)可知:△AOP为等边三角形,∴DN=GO=OA=,∴CN=CD+DN=4+,当点B′在直线CD上时,如图4所示.在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4-,∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.(1)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=1可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(1)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.。

江西省南昌市2019-2020学年中考数学最后模拟卷含解析

江西省南昌市2019-2020学年中考数学最后模拟卷含解析

江西省南昌市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°2.下列调查中,最适合采用普查方式的是( )A .对太原市民知晓“中国梦”内涵情况的调查B .对全班同学1分钟仰卧起坐成绩的调查C .对2018年央视春节联欢晚会收视率的调查D .对2017年全国快递包裹产生的包装垃圾数量的调查3.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+ 4.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.755.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD ,垂足为E ,AE=3,ED=3BE ,则AB 的值为( )A .6B .5C .3D .3交⊙O于P,则当C在⊙O上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使PA=OA的劣弧上D.无法确定7.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.AD DC AB AC=8.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π916)A.±4 B.4 C.±2 D.210.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定11.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A .1B .2C .3D .412.如图,CD 是⊙O 的弦,O 是圆心,把⊙O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,∠CAD=100°,则∠B 的度数是( )A .100°B .80°C .60°D .50°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D 在ABC ∆的边BC 上,已知点E 、点F 分别为ABD ∆和ADC ∆的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于________.14.若a 是方程2320x x --=的根,则2526a a +-=_____.15.分解因式:x 3y ﹣2x 2y+xy=______.16.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.17.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =5x(x >0)的图象相交2218.当a =3时,代数式22121()222a a a a a a -+-÷---的值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0m y m x=≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P 在双曲线m y x =上,且△PAC 的面积为4,求点P 的坐标.20.(6分)如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E 做直线l ∥BC .(1)判断直线l 与⊙O 的位置关系,并说明理由;(2)若∠ABC 的平分线BF 交AD 于点F ,求证:BE=EF ;(3)在(2)的条件下,若DE=4,DF=3,求AF 的长.21.(6分)如图1,点O 和矩形CDEF 的边CD 都在直线l 上,以点O 为圆心,以24为半径作半圆,分别交直线l 于,A B 两点.已知: 18CD =,24CF =,矩形自右向左在直线l 上平移,当点D 到达点A 时,矩形停止运动.在平移过程中,设矩形对角线DF 与半圆»AB 的交点为P (点P 为半圆上远离点B 的交点).如图2,若FD 与半圆»AB 相切,求OD 的值;如图3,当DF 与半圆»AB 有两个交点时,求线段PD 的取值范围;若22.(8分)已知,关于x的方程x2﹣mx+14m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.23.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H 与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.24.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.25.(10分)如图1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面BD 的高度AH 为 2 m.当起重臂AC 长度为8 m,张角∠HAC 为118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)26.(12分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.27.(12分)计算:(13)-1+32027.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.故选C.考点:1.面动旋转问题;2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.2.B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.4.D【解析】【分析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D .【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.5.C【解析】【分析】由在矩形ABCD 中,AE ⊥BD 于E ,BE :ED=1:3,易证得△OAB 是等边三角形,继而求得∠BAE 的度数,由△OAB 是等边三角形,求出∠ADE 的度数,又由AE=3,即可求得AB 的长.【详解】∵四边形ABCD 是矩形,∴OB=OD ,OA=OC ,AC=BD ,∴OA=OB ,∵BE :ED=1:3,∴BE :OB=1:2,∵AE ⊥BD ,∴OA=AB=OB ,即△OAB 是等边三角形,∴∠ABD=60°,∵AE ⊥BD ,AE=3,∴AB==2330AE cos ︒, 故选C .【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB 是等边三角形是解题关键.6.B【解析】【分析】因为CP 是∠OCD 的平分线,所以∠DCP=∠OCP ,所以∠DCP=∠OPC ,则CD ∥OP ,所以弧AP 等于弧BP ,所以PA=PB .从而可得出答案.【详解】解:连接OP ,∵CP 是∠OCD 的平分线,∴∠DCP=∠OCP ,又∵OC=OP ,∴∠OCP=∠OPC ,∴∠DCP=∠OPC ,∴CD ∥OP ,又∵CD ⊥AB ,∴OP ⊥AB ,∴¼¼AP BP=, ∴PA=PB .∴点P 是线段AB 垂直平分线和圆的交点,∴当C 在⊙O 上运动时,点P 不动.【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.7.C【解析】【分析】结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②AD DC AB AC,故选C.【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.8.B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π- 故选B .9.B【解析】【分析】16的算术平方根,为正数,再根据二次根式的性质化简.【详解】4=,故选B .【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.10.B.【解析】试题解析:∵,∴根据点到圆心的距离等于半径,则知点在圆上.故选B .考点:1.点与圆的位置关系;2.坐标与图形性质.11.C【解析】【分析】试题解析:∵图象与x 轴有两个交点,∴方程ax 2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!12.B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,根据三角形的重心的概念可得12DG BD =,12DH CD =,2AE GE =,2AF HF =,即可求出GH 的长,根据对应边成比例,夹角相等可得EAF GAH ∆∆∽,根据相似三角形的性质即可得答案.【详解】如图,连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,∵点E 、F 分别是ABD ∆和ACD ∆的重心,∴12DG BD =,12DH CD =,2AE GE =,2AF HF =, ∵12BC =, ∴111()126222GH DG DH BD CD BC =+=+==⨯=, ∵2AE GE =,2AF HF =,∴23AE AF AG AH ==, ∵EAF GAH ∠=∠,∴EAF GAH ∆∆∽,∴23EF AE GH AG ==, ∴4EF =,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.14.1【解析】【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1.故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.xy (x ﹣1)1【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 1-1x+1)=xy (x-1)1.故答案为:xy (x-1)1【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.1.【解析】【分析】根据两点间的距离公式可求m 的值.【详解】依题意有2222(63)(m 1)(65)(m 3)-+-=-++,解得m 0=,故答案为:1.【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键.17.1.【解析】解:∵平移后解析式是y=x ﹣b ,代入y=5x 得:x ﹣b=5x,即x 2﹣bx=5,y=x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=1,故答案为1.点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x 平移后的解析式是解答本题的关键. 18.1.【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 原式=212a a --÷()212a a -- =()()a 1a 12a +--•()221a a -- =1a 1a +-, 当a =3时,原式=3131+-=1, 故答案为:1.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x =-;(2)点P 的坐标为1(2,2)P -或2(2,2)P - 【解析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可;(2)根据直线解析式求得点A 坐标,由S △ACP =12AC•|y P |=4求得点P 的纵坐标,继而可得答案.详解:(1)∵直线()30y kx k =+≠与双曲线y = m x (0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x=-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0),4AC ∴=,∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x=-上, ∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.20.(1)直线l 与⊙O 相切;(2)证明见解析;(3).【解析】试题分析:(1)连接OE 、OB 、OC .由题意可证明,于是得到∠BOE=∠COE ,由等腰三角形三线合一的性质可证明OE ⊥BC ,于是可证明OE ⊥l ,故此可证明直线l 与⊙O 相切;(2)先由角平分线的定义可知∠ABF=∠CBF ,然后再证明∠CBE=∠BAF ,于是可得到∠EBF=∠EFB ,最后依据等角对等边证明BE=EF 即可;(3)先求得BE 的长,然后证明△BED ∽△AEB ,由相似三角形的性质可求得AE 的长,于是可得到AF 的长.试题解析:(1)直线l 与⊙O 相切.理由如下:如图1所示:连接OE 、OB 、OC .∵AE 平分∠BAC ,∴∠BAE=∠CAE . ∴.∴∠BOE=∠COE .又∵OB=OC ,∴OE ⊥BC .∵l ∥BC ,∴OE ⊥l .∴直线l 与⊙O 相切.(2)∵BF 平分∠ABC ,∴∠ABF=∠CBF .又∵∠CBE=∠CAE=∠BAE ,∴∠CBE+∠CBF=∠BAE+∠ABF .又∵∠EFB=∠BAE+∠ABF ,∴∠EBF=∠EFB .∴BE=EF .(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE ,∠DEB=∠BEA ,∴△BED ∽△AEB . ∴,即,解得;AE=,∴AF=AE ﹣EF=﹣1=.考点:圆的综合题.21.(1)30OD =;(2)144185PD <…;(3)8512或8512 【解析】【分析】(1)如图2,连接OP ,则DF 与半圆相切,利用△OPD ≌△FCD (AAS ),可得:OD=DF=30;(2)利用cosDH CDODPOD FD∠==,求出72HD5=,则144DP2HD5==;DF与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m,则:22OG24m,DG20m,=-=-OGtan FDCDG∠=22424m320m-==-,求出64245m5±=,利用DGODcosα=,即可求解.【详解】(1)如图,连接OP∵FD与半圆相切,∴OP FD⊥,∴90OPD︒∠=,在矩形CDEF中,90FCD∠=o,∵18,24CD CF==,根据勾股定理,得2222182430FD CD CF=+=+=在OPD∆和FCD∆中,9024OPD FCDODP FDCOP CF︒⎧∠=∠=⎪∠=∠⎨⎪==⎩∴OPD FCD≅∆V∴30OD DF==(2)如图,当点B与点D重合时,过点O作OH DF⊥与点H,则2DP HD=∵cosDH CDODPOD FD∠==且18,24CD OD ==,由(1)知:30DF = ∴182430DH =,∴725DH =, ∴14425DP HD DH === 当FD 与半圆相切时,由(1)知:18PD CD ==,∴144185PD <… (3)设半圆与矩形对角线交于点P 、H ,过点O 作OG ⊥DF ,则PG=GH ,244tan FDC tan 183α∠===,则3cos 5α=, 设:PG=GH=m ,则:22OG 24m ,DG 20m =-=-,22OG 424m tan FDC DG 320m-∠===-, 整理得:25m 2-640m+1216=0,解得:64245m 5±=, DG 20m OD 85123cos 5α-===. 【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH 的高OG ,是本题的关键.22.(1)证明见解析;(2)m=2或m=1.【解析】【分析】(1)由△=(-m )2-4×1×(14m 2-1)=4>0即可得; (2)将x=2代入方程得到关于m 的方程,解之可得.【详解】(1)∵△=(﹣m )2﹣4×1×(14m 2﹣1) =m 2﹣m 2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+14m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.23.53米.【解析】【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值. 【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为:53米.【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.24.(1)14;(2)16.【解析】【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x ,y )位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14; (2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x ,y )位于第二象限的概率=212=16. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.25.5.8【解析】【分析】过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,易得四边形AHEF 为矩形,则2,90EF AH HAF ==∠=︒,再计算出28CAF ∠=︒,在Rt ACF V 中,利用正弦可计算出CF 的长度,然后计算CF+EF 即可.【详解】解:如图,过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,90FEH AFE ∴∠=∠=︒.又AH BD ⊥Q ,90AHE ∴∠=︒.∴四边形AHEF 为矩形.2,90EF AH HAF ∴==∠=︒1189028CAF CAH HAF ∴∠=∠-∠=︒-︒=︒在Rt ACFV中,sinCFCAFAC∠=,8sin2880.47 3.76CF∴=⨯︒=⨯=.3.762 5.8(m)CE CF EF∴=+=+≈.答:操作平台C离地面的高度约为5.8m.【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.26.(1)证明见解析;(2)阴影部分的面积为8833π-.【解析】【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O 的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影3﹣83π,∴阴影部分的面积为3﹣83π.27.3【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】3原式3-2×3。

江西省南昌市2019-2020学年中考数学一模考试卷含解析

江西省南昌市2019-2020学年中考数学一模考试卷含解析

江西省南昌市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .162.运用乘法公式计算(4+x )(4﹣x )的结果是( ) A .x 2﹣16 B .16﹣x 2C .16﹣8x+x 2D .8﹣x 23.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=-B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=-4.当 a >0 时,下列关于幂的运算正确的是( ) A .a 0=1B .a ﹣1=﹣aC .(﹣a )2=﹣a 2D .(a 2)3=a 55.二次函数y =ax 2+bx+c (a≠0)和正比例函数y =﹣13x 的图象如图所示,则方程ax 2+(b+ 13)x+c =0(a≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定6.在实数﹣3.5、、0、﹣4中,最小的数是( ) A .﹣3.5B .C .0D .﹣47.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(x -1)+3x=13 B .2(x+1)+3x=13 C .2x+3(x+1)=13D .2x+3(x -1)=138.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.1011.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m12.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 14.因式分解:x 3﹣4x=_____.15.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.16.已知抛物线y =x 2上一点A ,以A 为顶点作抛物线C :y =x 2+bx +c ,点B(2,y B )为抛物线C 上一点,当点A 在抛物线y =x 2上任意移动时,则y B 的取值范围是_________. 17.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.18.如图△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O 与AC 边交于点D ,过点D 的直线交BC 边于点E ,∠BDE=∠A .判断直线DE 与⊙O 的位置关系,并说明理由.若⊙O 的半径R=5,tanA=34,求线段CD 的长.20.(6分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.(1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;(2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求1s最小值;(3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.21.(6分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:3≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)22.(8分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.23.(8分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k 的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.24.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)25.(10分)如图,点是线段的中点,,.求证:.26.(12分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB =48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,2≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?27.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.2.B【解析】【分析】根据平方差公式计算即可得解.【详解】222(4)(4)416x x x x+-=-=-,故选:B.【点睛】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.3.D【解析】试题分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4.A【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B 选项:a ﹣1=1a,故此选项错误; C 选项:(﹣a )2=a 2,故此选项错误; D 选项:(a 2)3=a 6,故此选项错误; 故选A . 【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键. 5.C 【解析】 【分析】设20(0)ax bx c a ++=≠的两根为x 1,x 2,由二次函数的图象可知12x x 0+<,a >0;设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,再根据根与系数的关系即可得出结论.【详解】解:设20(0)ax bx c a ++=≠的两根为x 1,x 2,∵由二次函数的图象可知12x x 0+<,a >0, 0ba∴-<. 设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,则1133b b m n a a a++=-=-- 010300a ab am m >∴-<-<∴+<Q Q .故选C . 【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 6.D 【解析】 【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可 【详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D .【点睛】掌握实数比较大小的法则 7.A 【解析】 【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了. 【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶, 根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元, 可得方程为:2(x-1)+3x=1. 故选A . 【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A 中饮料的钱+买B 中饮料的钱=一共花的钱1元. 8.B 【解析】 【详解】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本; 则总共送出的图书为x(x−1); 又知实际互赠了210本图书, 则x(x−1)=210. 故选:B. 9.D 【解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x ax x a+-=+故选D. 10.B 【解析】 【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM , ∵∠FCE=∠FCM , ∴∠EFC=∠ECF , ∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2. 故选B .11.D 【解析】 【分析】根据三角形的中位线定理即可得到结果. 【详解】解:由题意得AB=2DE=20cm , 故选D. 【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 12.B 【解析】 【分析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4.4×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.x(x+2)(x﹣2)【解析】试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.15.甲【解析】【分析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【详解】甲种水稻产量的方差是:()()()()()2222219.8109.91010.110101010.2100.025⎡⎤-+-+-+-+-=⎣⎦, 乙种水稻产量的方差是:()()()()()2222219.41010.31010.8109.7109.8100.045⎡⎤-+-+-+-+-=⎣⎦, ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.16.y a ≥1【解析】【分析】设点A 的坐标为(m ,n ),由题意可知n=m 1,从而可知抛物线C 为y=(x-m )1+n ,化简为y=x 1-1mx+1m 1,将x=1代入y=x 1-1mx+1m 1,利用二次函数的性质即可求出答案.【详解】设点A 的坐标为(m ,n ),m 为全体实数,由于点A 在抛物线y=x 1上,∴n=m 1,由于以A 为顶点的抛物线C 为y=x 1+bx+c ,∴抛物线C 为y=(x-m )1+n化简为:y=x 1-1mx+m 1+n=x 1-1mx+1m 1,∴令x=1,∴y a =4-4m+1m 1=1(m-1)1+1≥1,∴y a ≥1,故答案为y a ≥1【点睛】本题考查了二次函数的性质,解题的关键是根据题意求出y a =4-4m+1m 1=1(m-1)1+1.17.-23≤y≤2【解析】【分析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y 最大,把x=2时y 最小代入即可得出结论.【详解】解:∵a=-1,∴抛物线的开口向下,故有最大值,∵对称轴x=-3,∴当x=-3时y 最大为2,当x=2时y 最小为-23,∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.18.4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,222253 4.BC DB CD=-=-=故答案为:4cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)DE与⊙O相切;理由见解析;(2)92.【解析】【分析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.【详解】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE与⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=34 BCAB=∴BC=AB•tanA=10×315 42 =,∴252==,∵∠BDC=∠ABC=90°,∠BCD=∠ACB ∴△BCD∽△ACB∴CD CB CB CA=∴CD=2215()922522CBCA==.【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.20.(1)详见解析;(2)(3)S△BDQ2【解析】【分析】(1)根据要求利用全等三角形的判定和性质画出图形即可.(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求1s最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求1s最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.【详解】解:(1)如图1,作一边上的中线可分割成2个全等三角形,如图2,连接外心和各顶点的线段可分割成3个全等三角形,如图3,连接各边的中点可分割成4个全等三角形,(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.∵△ABC是等边三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四边形BMON=S四边形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求1s最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求1s最小值,只要求出ON+OM的最小值,∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,此时1s定值最小,s=12×2×23=23,l=2+2+23+23=4+43,∴1s的最小值=434+323=2+23.(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等边三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF =12CD =1,DF同法可得:BE =1,DE =DF ,∵AF =AC ﹣CF =4﹣1=3,PA =x ,∴PF =EQ =3+x ,∴BQ =EQ ﹣BE =2+x ,∴S △BDQ =12•BQ•DE =12×(2+x )=2. 【点睛】本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。

江西省南昌市2019-2020学年中考数学模拟试题(4)含解析

江西省南昌市2019-2020学年中考数学模拟试题(4)含解析

江西省南昌市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )A .B .C .D . 2.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有( )A .1种B .2种C .3种D .4种3.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( ) A .152元 B .156元 C .160元 D .190元4.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x ,则下列方程正确的是( )A .1.2(1+x )=2.5B .1.2(1+2x )=2.5C .1.2(1+x )2=2.5D .1.2(1+x )+1.2(1+x )2=2.55.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元 C .225元 D .259.2元6.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小7.分式方程()22111x x x -++=1的解为( )A.x=1 B.x=0 C.x=﹣23D.x=﹣18.如图所示的几何体的俯视图是()A.B.C.D.9.式子2x 在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣210.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°11.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米12.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.14.已知:如图,矩形ABCD 中,AB =5,BC =3,E 为AD 上一点,把矩形ABCD 沿BE 折叠,若点A 恰好落在CD 上点F 处,则AE 的长为_____.15.边长为6的正六边形外接圆半径是_____.16.矩形纸片ABCD ,AB=9,BC=6,在矩形边上有一点P ,且DP=1.将矩形纸片折叠,使点B 与点P 重合,折痕所在直线交矩形两边于点E ,F ,则EF 长为________.17.用配方法将方程x 2+10x ﹣11=0化成(x+m )2=n 的形式(m 、n 为常数),则m+n =_____. 18.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知平行四边形ABCD ,点M 、N 分别是边DC 、BC 的中点,设AB u u u r =a r ,AD u u u r =b r ,求向量MN u u u u r 关于a r 、b r的分解式.20.(6分)如图,矩形ABCD 中,CE ⊥BD 于E ,CF 平分∠DCE 与DB 交于点F .求证:BF =BC ;若AB =4cm ,AD =3cm ,求CF 的长.21.(6分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A 、B 两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A 箱中放置3个黄球和2个白球;B 箱中放置1个黄球,3个白球,丽丽从A 箱中摸一个球,张强从B 箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止.根据以上规则回答下列问题:(1)求一次性摸出一个黄球和一个白球的概率;(2)判断该游戏是否公平?并说明理由.22.(8分)如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.23.(8分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .小明所求作的直线DE 是线段AB 的 ;联结AD ,AD =7,sin ∠DAC =,BC =9,求AC 的长.24.(10分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E 为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.25.(10分)如图,,,,,交于点.求的值.26.(12分)已知关于x 的一元二次方程x 2+(2m+3)x+m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值.27.(12分)如图已知△ABC ,点D 是AB 上一点,连接CD ,请用尺规在边AC 上求作点P ,使得△PBC 的面积与△DBC 的面积相等(保留作图痕迹,不写做法)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A 、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B 、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.2.B【解析】【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选B.【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.3.C【解析】【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.【详解】设进价为x元,依题意得240×0.8-x=20x℅解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.4.C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C.5.A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 6.B【解析】【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.7.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.8.D【解析】【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.9.B【解析】【分析】x+≥,再解不等式即可.根据二次根式有意义的条件可得20【详解】x+≥,解:由题意得:20x≥-,解得:2故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.10.C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.11.A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.C【解析】【分析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.14.5 3【解析】【分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=53,故答案为:53.【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.15.6【解析】【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.16.或.【解析】试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=62;②点P在AD上时,如图:先建立相似三角形,过E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得2239+10,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(两角对应相等,两三角形相似),∴对应线段成比例:EF EQPB AB=,代入相应数值:69310=,∴10.综上所述:EF长为2或10.考点:翻折变换(折叠问题).17.1【解析】【分析】方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.【详解】解:∵x2+10x-11=0,∴x2+10x=11,则x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案为1.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.18.﹣1<x<1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)∴图象与x 轴的另一个交点坐标为(-1,0)利用图象可知:ax 2+bx+c <0的解集即是y <0的解集,∴-1<x <1.考点:二次函数与不等式(组).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.答案见解析【解析】试题分析:连接BD ,由已知可得MN 是△BCD 的中位线,则MN=12BD ,根据向量减法表示出BD 即可得.试题解析:连接BD,∵点M 、N 分别是边DC 、BC 的中点,∴MN 是△BCD 的中位线, ∴MN ∥BD ,MN=12BD , ∵DB=AB-AD=a b -u u u v u u u v u u u v v v , ∴1122MN a b =-u u u u v v v . 20.(1)见解析,(2)CF =655cm. 【解析】【分析】(1)要求证:BF=BC 只要证明∠CFB=∠FCB 就可以,从而转化为证明∠BCE=∠BDC 就可以;(2)已知AB=4cm ,AD=3cm ,就是已知BC=BF=3cm ,CD=4cm ,在直角△BCD 中,根据三角形的面积等于12BD•CE=12BC•DC ,就可以求出CE 的长.要求CF 的长,可以在直角△CEF 中用勾股定理求得.其中EF=BF-BE ,BE 在直角△BCE 中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD 是矩形,∴∠BCD =90°,∴∠CDB+∠DBC =90°.∵CE ⊥BD ,∴∠DBC+∠ECB =90°.∴∠ECB =∠CDB .∵∠CFB =∠CDB+∠DCF ,∠BCF =∠ECB+∠ECF ,∠DCF =∠ECF ,∴∠CFB =∠BCF∴BF =BC(2)∵四边形ABCD 是矩形,∴DC =AB =4(cm ),BC =AD =3(cm ).在Rt △BCD 中,由勾股定理得BD =2222435AB AD +=+=. 又∵BD•CE =BC•DC ,∴CE =·125BC DC BD =. ∴BE =22221293()55BC CE -=-=. ∴EF =BF ﹣BE =3﹣9655=. ∴CF =222212665()()555CE EF +=+=cm . 【点睛】 本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.21. (1)1120;(2)不公平,理由见解析. 【解析】【分析】(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断.【详解】(1)画树状图如下:由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,∴一次性摸出一个黄球和一个白球的概率为1120; (2)不公平,由(1)种树状图可知,丽丽去的概率为320,张强去的概率为620=310, ∵332010≠, ∴该游戏不公平.【点睛】本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.22.(1)证明见解析;(2)2.【解析】【分析】(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=22,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=2,于是可求得AE=2.【详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=13,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD=22OD OA-=22.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴DC DEAD DC=,即222ED=.解得:DE=2,∴AE=AD﹣DE=2.23.(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】【分析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.24.(1)证明见解析;(2)3【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=223AD CD-=.【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.25.【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.26.(1)m≥﹣;(2)m的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.27.见解析【解析】【分析】三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.【详解】作∠CDP=∠BCD,PD与AC的交点即P.【点睛】本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.。

2019年南昌市中考数学第一次模拟试题带答案

2019年南昌市中考数学第一次模拟试题带答案

2019年南昌市中考数学第一次模拟试题带答案一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形 D .对角线相等的四边形是矩形 3.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=4.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 5.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解6.如果,则a 的取值范围是( )A .B .C .D .7.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .8.估6的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间9.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .1110.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .12.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间二、填空题13.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.14.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 15.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.16.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.18.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.已知10a b b -+-=,则1a +=__.三、解答题21.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D . (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.22.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B . (1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当1361DC =时,请直接写出t 的值.23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?25.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x= 元时,日销售利润w 最大,最大值是 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.A解析:A 【解析】 【分析】运用矩形的判定定理,即可快速确定答案. 【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B 四条边都相等的四边形是菱形,故B 错误;C 有一组邻边相等的平行四边形是菱形,故C 错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A. 【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.D解析:D 【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.4.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

江西省南昌市2019-2020学年中考数学模拟试题(5)含解析

江西省南昌市2019-2020学年中考数学模拟试题(5)含解析

江西省南昌市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.3102.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A.16B.13C.12D.233.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5 人数 2 4 3 8 3学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数B.加权平均数C.众数D.中位数4.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.25.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x+6x+m,则m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或146.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=7.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带③去B.带②去C.带①去D.带①②去8.如图所示的几何体的俯视图是( )A .B .C .D .9.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+10.如图,菱形ABCD 中,E. F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2411.估计7+1的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间12.下列运算正确的是( )A .2a ﹣a=1B .2a+b=2abC .(a 4)3=a 7D .(﹣a )2•(﹣a )3=﹣a 5 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____. 14.比较大小:3_________10 (填<,>或=). 15.分解因式:21a -=________.16.已知:如图,AB 是⊙O 的直径,弦EF ⊥AB 于点D ,如果EF =8,AD =2,则⊙O 半径的长是_____.17.计算:2111x x x+=--___________.18.如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.20.(6分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.21.(6分)解不等式组:()()3x1x382x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.22.(8分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)03623.(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.求y 与x 之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.24.(10分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米? 25.(10分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.26.(12分)先化简,再求值:(1x ﹣21x -)÷2212x xx x +-+,其中x 的值从不等式组11022(1)x x x⎧+⎪⎨⎪-≤⎩>的整数解中选取.27.(12分)已知一个二次函数的图象经过A (0,﹣3),B (1,0),C (m ,2m+3),D (﹣1,﹣2)四点,求这个函数解析式以及点C 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC=3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.2.B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .3.C【解析】【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.A 【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.D【解析】【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【详解】∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(-3,m-9),∴关于x轴对称的抛物线的顶点(-3,9-m),∵它们的顶点相距10个单位长度.∴|m-9-(9-m)|=10,∴2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,∴m的值是4或1.故选D.【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.6.B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.7.A【解析】【分析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃. 【详解】③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.8.B【解析】【分析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线9.C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.10.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.11.B【解析】分析:直接利用2<3,进而得出答案.详解:∵2<3,∴3+1<4,故选B.的取值范围是解题关键.12.D【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.【详解】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,故选D.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.14.<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<10,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.15.(a+1)(a-1)【解析】【分析】根据平方差公式分解即可.【详解】21a-=(a+1)(a-1).故答案为:(a+1)(a-1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.16.1.【解析】试题解析:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R 2=(R-2)2+42, ∴R=1.考点:1.垂径定理;2.解直角三角形. 17.x+1 【解析】 【分析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果. 【详解】解:2111x x x+-- =2111x x x --- 211x x -=- ()()111x x x +-=- 1x =+.故答案是:x+1. 【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键. 18.1. 【解析】试题分析:∵圆锥底面半径为rcm ,母线长为10cm ,其侧面展开图是圆心角为211°的扇形, ∴2πr=360216×2π×10,解得r=1. 故答案为:1. 【考点】圆锥的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)一件A 型、B 型丝绸的进价分别为500元,400元;(2)①1625m ≤≤,②7512500(50100)5000(100)6611600(100150)n n w n n n -+≤<⎧⎪==⎨⎪-+<≤⎩.【解析】 【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.【详解】(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为()100x +元, 根据题意得:100008000100x x=+, 解得400x =,经检验,400x =为原方程的解,100500x ∴+=,答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:5016m m m -⎧⎨⎩……, m ∴的取值范围为:1625m 剟,②设销售这批丝绸的利润为y ,根据题意得:()()()8005002600400?50y n m n m =--+---,()1001000050n m n =-+-50150n Q 剟,∴(Ⅰ)当50100n <…时,1000n ->,25m =时,销售这批丝绸的最大利润()2510010000507512500w n n n =-+-=-+;(Ⅱ)当100n =时,1000n -=,销售这批丝绸的最大利润5000w =;(Ⅲ)当100150n <…时,1000n -<当16m =时,销售这批丝绸的最大利润6611600w n =-+.综上所述:7512500(50100)50001006611600(100150)n n w n n n -+<⎧⎪==⎨⎪-+<⎩…….【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.20.(1)见解析;(2);(3).【解析】【分析】(1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;(2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;(3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可. 【详解】(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圆上,∴PD是⊙O的切线.(2)设∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD长.(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,在Rt△BDF中,DF=,由△OMN∽△FDN得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.21.0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集. 详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.1 7. 2【解析】分析:按照实数的运算顺序进行运算即可.详解:原式11 416,22=⨯+-+1216,2=+-+17.2=点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.23.(1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解析】【分析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.24.(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】【分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.25.(1)详见解析;(2)27EF =【解析】【分析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答 (2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:Q AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥Q90AGF AGD ∴∠=∠=︒又AG AG =Q()FAG DAG ASA ∴∆≅∆GF GD ∴=又DF AE ⊥QEF ED ∴=(2)FAG DAG ∆≅∆Q6AF AD ∴==Q 四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒ 1602FAE BAD ∴∠=∠=︒ 60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形624AB AE BE BC CE ∴===-=-=642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴== 2222213HF BF BH =--=415EH BE BH =+=+= ()22223527EF FH EH =+=+=【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线 26.-14【解析】【分析】先化简,再解不等式组确定x 的值,最后代入求值即可.【详解】(1x ﹣21x -)÷2212x x x x+-+, =(1)(1)x x x -+-÷2212x x x x +-+,=21x x-, 解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义,∴x=2,∴原式=2122-=﹣14.27.y=2x 2+x ﹣3,C 点坐标为(﹣32,0)或(2,7) 【解析】【分析】设抛物线的解析式为y=ax 2+bx+c ,把A (0,﹣3),B (1,0),D (﹣1,﹣2)代入可求出解析式,进而求出点C 的坐标即可.【详解】设抛物线的解析式为y=ax 2+bx+c , 把A (0,﹣3),B (1,0),D (﹣1,﹣2)代入得302c a b c a b c =-⎧⎪++=⎨⎪-+=-⎩,解得213a b c =⎧⎪=⎨⎪=-⎩,∴抛物线的解析式为y=2x 2+x ﹣3,把C (m ,2m+3)代入得2m 2+m ﹣3=2m+3,解得m 1=﹣32,m 2=2, ∴C 点坐标为(﹣32,0)或(2,7). 【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.。

2019年江西省南昌市中考数学二模试卷(解析版)

2019年江西省南昌市中考数学二模试卷(解析版)

2019年江西省南昌市中考数学二模试卷一、选择题(共18.0分)1.|-2019|等于()A. 2019B. −2019C. 12019D. −120192.计算(-2b)3的结果是()A. −8b3B. 8b3C. −6b3D. 6b33.李克强总理在2019年的政府工作报告中指出:三大攻坚战开局良好.其中精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,数据1386万用科学记数法可表示为()A. 1386×104B. 1.386×106C. 1.386×107D. 0.1386×1084.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的茶杯(茶口的直径与托盘的直径相同),则这只茶杯的俯视图大致是()A. B. C.D.5.如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论错误的是()A. AD=BDB. FC=DFC. ∠ACD=∠BCDD. 四边形DECF是正方形6.如图,P是抛物线y=x2-x-4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A. 10B. 8C. 7.5D. 5√3二、填空题(共18.0分)7.分解因式:4x2-1=______.8.已知关于x的一元二次方程x2+ax+b=0的两根分别为-1和2,则b2=______.9.如图,在Rt△ABC中,∠ACB=90°,AC=BC,以AB为直径作⊙O,在ABC⏜上取一点D,使BD⏜=2AD⏜,则∠CBD=______.第1页,共18页10.已知a,b,c三个数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为______.11.《孙子算经》有这样一道题:今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?大意是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺,则木条长______尺.12.如图,反比例函数y=k(x>0)的图象与直线AB交于点Ax(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是______.三、解答题(共84.0分)13.(1)解不等式:1-x+5<-1-x2(2)解方程组:14.如图,在▱ABCD中,E是BC延长线上的一点,AE与CD交于点F.求证:△ADF∽△EBA.15.甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:A工地B工地甲工程队800元750元乙工程队600元570元设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y 元.(1)求y与x之间的函数关系式;(2)请判断y是否能等于62000,并说明理由.16.如图,四边形ABCD为菱形,且∠BAD=120°,以AD为直径作⊙O,与CD交于点P.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点C作AB边上的高CE;(2)在图2中,过点P作⊙O的切线PQ,与BC交于点Q.17.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹之一”当车辆经过这座大桥的收费站时,需从已开放的4个收费通道A、B、C、D中随机选择一个通过晶晶和贝贝两位同学的爸爸相约分别驾车经港珠澳大桥到香港旅行.(1)晶晶的爸爸驾车通过收费站时,选择A通道通过的概率是多少?(2)用画树状图或列表法求这两辆车经过此收费站时,选择不同通道通过的概率.18.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)第3页,共18页19.某居委会为了了解本辖区内家庭月平均用水情况,随机调查了该辖区内的部分家庭,调查数据统计结果如下:月平均用水量x(吨)频数频率0<x≤560.125<x≤10a0.2410<x≤15160.3215<x≤20100.2020<x≤2540.0825<x≤3020.04请解答以下问题:(1)频数分布表中a=______,并把频数分布直方图补充完整;(2)求被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该辖区内有1000户家庭,根据调查数据估计,该辖区月平均用水量超过20吨的家庭有多少户?20.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF=√10,求OA的长.21.如图,在平面直角坐标系中,次函数y=ax+b(a≠0)(k≠0)的图象交于第一、的图象与反比例函数y=kx三象限内的A、B两点,与y轴交于C点,过点A作AM⊥x轴于点M,作AN⊥y轴于点N,OM=2,tan∠AOM=3,点B的坐标为(m,-2).2(1)求四边形AMON的周长和面积;(2)求该反比例函数和一次函数的解析式.22.【操作发现】(1)如图1,将△ABC绕点A逆时针旋转90°得到△ADE,连接BD,则∠ABD的度数是______.【类比探究】(2)如图2,在等腰直角三角形ABC内取一点P,使∠APB=135°,将△ABP绕顶点A逆时针旋转90°得到△ACP',连接PP'.请猜想BP与CP'有怎样的位置关系,并说明理由.【解决问题】(3)如图3,在等腰直角三角形ABC内任取一点P,连接PA、PB、PC.求证:PC+√2PA>PB.第5页,共18页23.我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y=2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标.(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式.(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D两点,动点P为二次函数y=-x2-4x+8对称轴右侧上的动点,求△PCD的面积的最大值.答案和解析1.【答案】A【解析】解:|-2019|=2019.故选:A.利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】A【解析】解:(-2b)3=-8b3.故选:A.直接利用积的乘方运算法则计算得出答案.此题主要考查了积的乘方运算,正确将原式变形是解题关键.3.【答案】C【解析】解:1386万=1.386×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.4.【答案】B【解析】解:俯视图如选项B所示,故选:B.根据从上面看得到的图象是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.第7页,共18页5.【答案】A【解析】解:∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴四边形DECF是矩形,∵CD是∠ACB的平分线,∴∠FCD=∠ECD,故C正确;∵∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形DECF是正方形,故D正确;∴CF=DF,故B正确,故选:A.根据已知条件推出四边形DECF是平行四边形,求得四边形DECF是矩形,根据角平分线的定义得到∠FCD=∠ECD,故C正确;推出四边形DECF是正方形,故D正确;根据正方形的性质得到CF=DF,故B正确.本题考查了正方形的判定,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.6.【答案】A【解析】解:设P(x,x2-x-4),四边形OAPB周长=2PA+2OA=-2(x2-x-4)+2x=-2x2+4x+8=-2(x-1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故选:A.设P(x,x2-x-4)根据矩形的周长公式得到C=-2(x-1)2+10.根据二次函数的性质来求最值即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.【答案】(2x+1)(2x-1)【解析】解:4x2-1=(2x+1)(2x-1).故答案为:(2x+1)(2x-1).直接利用平方差公式分解因式即可.平方差公式:a2-b2=(a+b)(a-b).本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.8.【答案】-1【解析】解:∵关于x的一元二次方程x2+ax+b=0的两根分别为-1和2,∴b=-1×2=-2,∴=-1.故答案为:-1.由方程的两根结合根与系数的关系可求出b=-2,进而可求出的值,此题得解.本题考查了根与系数的关系,牢记“两根之积等于”是解题的关键.9.【答案】75°【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CBA=45°,∵在Rt△ABC中,∠ACB=90°,=2,∴∠ABD=30°,∴∠CBD=75°,故答案为:75°根据直径所对的圆周角是90°,再根据圆周角定理解答即可.此题考查圆周角定理,关键是根据根据直径所对的圆周角是90°解答.10.【答案】8【解析】解:d=5×4-4×3=20-12=8.答:d的值为8.故答案为:8.第9页,共18页根据总数=平均数×数据总和,分别求出a ,b ,c ,d 四个数的总数,a ,b ,c 三个数的总数,再相减即可求解.本题考查了平均数的概念.平均数等于所有数据的和除以数据的个数. 11.【答案】6.5【解析】解:设绳子长x 尺,木条长y 尺, 依题意,得:,解得:.故答案为:6.5.设绳子长x 尺,木条长y 尺,根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.【答案】(2,32)或(2,92)或(6,-32)【解析】解:把点A (2,3)代入y=(x >0)得:k=xy=6, 故该反比例函数解析式为:y=.∵点B (4,0),BC ⊥x 轴, ∴把x=4代入反比例函数y=,得 y=. 则C (4,).第11页,共18页①如图,当四边形ACBD 为平行四边形时,AD ∥BC 且AD=BC .∵A (2,3)、B (4,0)、C (4,),∴点D 的横坐标为2,y A -y D =y C -y B ,故y D =.所以D (2,).②如图,当四边形ABCD′为平行四边形时,AD′∥CB 且AD′=CB .∵A (2,3)、B (4,0)、C (4,),∴点D 的横坐标为2,y D′-y A =y C -y B ,故y D′=.所以D′(2,).③如图,当四边形ABD″C 为平行四边形时,AC=BD″且AC ∥BD″. ∵A (2,3)、B (4,0)、C (4,),∴x D″-x B =x C -x A 即x D″-4=4-2,故x D″=6.y D″-y B =y C -y A 即y D″-0=-3,故y D″=-.所以D″(6,-).综上所述,符合条件的点D 的坐标是:(2,)或(2,)或(6,-). 故答案为:(2,)或(2,)或(6,-).先将A 点的坐标代入反比例函数求得k 的值,然后将x=4代入反比例函数解析式求得相应的y 的值,即得点C 的坐标;然后结合图象分类讨论以A 、B 、C 、D 为顶点的平行四边形,如图所示,找出满足题意的D 的坐标即可.此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答本题时,采用了“数形结合”和“分类讨论”的数学思想.13.【答案】解:(1)2-(x +5)<-2-2x ,2-x -5<-2-2x ,-x +2x <-2-2+5,x <1;(2)①+②,得:5x =5,x =1,将x =1代入②,得:1+y =4,y =3,则方程组的解为{y =3x=1.【解析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)加减消元法求解可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.【答案】证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,AB ∥CD ,∴∠DFA =∠BAE ,∴△ADF ∽△EBA .【解析】由平行四边形的性质得出∠B=∠D ,由平行线的性质得出∠DFA=∠BAE ,即可证出△ADF ∽△EBA .本题主要考查相似三角形的判定、平行四边形的性质,熟练掌握平行四边形的性质,由平行线的性质得出∠DFA=∠BAE 是解题的关键.15.【答案】解:(1)y =800x +(40-x )×750+(70-x )×600+[20-(40-x )]×570=20x +60600 (2)当20x +60600=62000时,解得x =70,∵20≤x ≤40∴x =70不符合题意∴y 不能等于62000.【解析】第13页,共18页(1)根据题意可以写出y 与x 的函数关系式;(2)将y=62000代入(1)中的函数解析式即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.16.【答案】解:(1)如图1,CE 为所;(2)如图2,PQ 为所作.【解析】(1)连接BD ,则P 点和BD 与⊙O 的交点的延长线与AB 的交点即为E 点; (2)连接BD ,则O 点和BD 与⊙O 的交点的延长线与BC 的交点即为Q 点. 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定和菱形的性质.17.【答案】解:(1)晶晶的爸爸驾车通过收费站时,选择A 通道通过的概率=14; (2)画树状图为:共有16种等可能的结果数,其中这两辆车经过此收费站时,选择不同通道通过的结果数为12,所以这两辆车经过此收费站时,选择不同通道通过的概率=1216=34.【解析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,找出这两辆车经过此收费站时,选择不同通道通过的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.18.【答案】解:(1)在Rt△ODE中,DE=15cm,∠ODE=67°,∵cos∠ODE=DE,OD∴OD≈15≈38.46(cm),0.39∴OA=OD-AD≈38.46-14≈24.5(cm).答:半径OA的长约为24.5cm.(2)∵∠ODE=67°,∴∠BOC=157°,∴扇形BOC的面积≈157×3.14×24.52≈822(cm2).360答:扇形BOC的面积约为822cm2.【解析】(1)在Rt△ODE中,DE=15cm,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD即为OA.(2)根据扇形的面积公式即可求解.考查了解直角三角形的应用,本题首先把实际问题转化成数学问题,主要利用了三角函数中余弦定义来解题.19.【答案】12【解析】解:(1)本次调查的家庭数为:6÷0.12=50,则a=50×0.24=12,故答案为:12,补充完整的频数分布直方图如右图所示;(2)(0.12+0.24+0.32)×100%=68%,即被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比是68%;(3)1000×(0.08+0.04)=120(户),答:该辖区月平均用水量超过20吨的家庭有120户.(1)根据统计表中的数据可以求得本次调查的家庭数,从而可以得到a的值,进而可以将直方图补充完整;(2)根据统计表中的数据可以得到被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)根据统计表中的数据可以得到该辖区月平均用水量超过20吨的家庭有多少户.本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)连接OE,∴∠AOE=2∠ACE,∵∠B=2∠ACE,∴∠AOE=∠B,∵∠P=∠BAC,∴∠ACB=∠OEP,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OEP=90°,∴PE是⊙O的切线;(2)∵OA=OE,∴∠OAE=∠OEA,∵AE=EF,∴∠EAF=∠AFE,∴∠OAE=∠OEA=∠EAF=∠AFE,∴△AEF∽△AOE,∴AE OA =AFAE,∵AF=2,AE=EF=√10,∴OA=5.【解析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论..本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.第15页,共18页21.【答案】解:(1)∵AM ⊥x 轴∴∠AMO =90°在Rt △AMO 中,tan ∠AOM =32=AMOM ,∴AM =3∵AM ⊥x 轴,AN ⊥y 轴∴四边形AMON 是矩形∴四边形AMON 的周长=2×(2+3)=10四边形AMON 的面积=2×3=6; (2)由(1)可知AM =3,OM =2,∴A (2,3)将点A (2,3)代入y =k x (k ≠0)中得:k =6,∴反比例函数的解析式为y =6x将B (m ,-2)代入y =6x ,得m =-3,∴B (-3,-2)将点A (2,3)和B (-3,-2)代入一次函数y =ax +b (a ≠0)中得:{−3a +b =−22a+b=3,解得:{b =1a=1,∴一次函数的解析式为y =x +1.【解析】(1)利用矩形的判定得四边形AMON 是矩形,而又由tan ∠AOM=,OM=2可求出AM=3,代入周长和面积公式即可;(2)由(1)得A (2,3),将点A (2,3)代入y=(k≠0)中得反比例函数的解析式;将B (m ,-2)代入反比例函数得到B (-3,-2),由A 、B 两点坐标即可求出一次函数的解析式.本题考查了反比例函数与一次函数的综合应用,找到相应点的坐标,利用待定系数法求解析式是解题的关键.22.【答案】45°【解析】解:(1)如图1,由旋转得:∠BAD=90°,AB=AD ,∴△BAD 是等腰直角三角形,∴∠ABD=45°, 故答案为:45°;第17页,共18页 (2)BP ⊥CP',理由是:如图2,由旋转得:AB=AC ,AP=AP',∠BAC=∠PAP'=90°,∴△ABP ≌△ACP'(SAS ),∴∠APB=∠AP'C=135°, ∵AP=AP',∠PAP'=90°, ∴△APP'是等腰直角三角形,∴∠AP'P=45°, ∴∠APB+∠APP'=180°, ∴B 、P 、P'三点共线,∴∠CP'B=135°-45°=90°, ∴BP ⊥CP';(3)如图3,将△ABP 绕点A 逆时针旋转90°得到△ACP',∴△ACP'≌△ABP ,∴P'C=PB ,PA=P'A ,连接PP',∵∠PAP'=90°, ∴PP'=PA , 在△PCP'中,PC+PP'>P'C ,∴PC+PA >PB .(1)根据旋转的定义可得:△BAD 是等腰直角三角形,从而得结论; (2)根据旋转的性质,证明△ABP ≌△ACP'(SAS ),得∠APB=∠AP'C=135°,又计算∠AP'P=45°,相减可得结论;(3)如图3,利用旋转作辅助三角形,则△ACP'≌△ABP ,得P'C=PB ,PA=P'A ,根据等腰直角三角形的性质得:PP'=PA ,最后利用三边关系得结论. 本题是三角形的综合题,考查了旋转变换,等腰直角三角形的性质,勾股定理等知识,解题的关键是利用旋转添加辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考压轴题.23.【答案】解:(1)由题意得:a =1,b =-4,故抛物线的表达式为:y =x 2-4x +c ,将点C 的坐标代入得:c =3,故抛物线的表达式为:y =x 2-4x +3=(x -2)2-1,故抛物线的顶点坐标为(2,-1);(2)“子函数”y =x -6的“母函数”为:y =12x 2-6x +c ,∵y =12(x 2-12x )+x =12(x -6)2-18+c ,故-18+c=1,解得:c=19,x2-6x+19;故“母函数”的表达式为:y=12(3)如图所示,连接OP,设点P(m,-m2-4m+8),由题意得:直线l的表达式为:y=-2x-4,故点C、D的坐标分别为(-2,0)、(0,-4),∴S△PCD=S△POD+S△OCD+S△POD=-m2-4m+8+4+2m=-(m+1)2+13,∵-1<0,∴S△PCD=有最大值,当m=-1时,其最大值为13.【解析】(1)由题意得:a=1,b=-4,故抛物线的表达式为:y=x2-4x+c,将点C的坐标代入得:c=3,即可求解;(2)“子函数”y=x-6的“母函数”为:y=x2-6x+c,则y=(x2-12x)+x=(x-6)2-18+c,故-18+c=1,即可求解;(3)由S△PCD=S△POD+S△OCD+S△POD=-m2-4m+8+4+2m=-(m+1)2+13,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、三角形面积计算,此类阅读型题目通常按照题设条件顺次求解,难度一般不大.。

江西省南昌市2019-2020学年中考第四次模拟数学试题含解析

江西省南昌市2019-2020学年中考第四次模拟数学试题含解析

江西省南昌市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A.5B.3C.5+1 D.32.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.720173.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同4.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车在行驶过程中进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等5.函数y=4x和y=1x在第一象限内的图象如图,点P是y=4x的图象上一动点,PC⊥x轴于点C,交y=1x的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB 的面积大小不会发生变化;④CA =13AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④6.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是( )A .B .C .D .7.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠oC .1903∠=+∠oD .以上都不对8.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A .这10名同学体育成绩的中位数为38分B .这10名同学体育成绩的平均数为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为29.已知二次函数y=(x+a )(x ﹣a ﹣1),点P (x 0,m ),点Q (1,n )都在该函数图象上,若m <n ,则x 0的取值范围是( )A.0≤x0≤1B.0<x0<1且x0≠1 2C.x0<0或x0>1 D.0<x0<110.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135°B.115°C.65°D.50°11.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.3101012.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90o D.绕原点顺时针旋转90o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.14.因式分解:212x x--=.15.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是_____.16.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.17.一个凸边形的内角和为720°,则这个多边形的边数是__________________18.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB 交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.20.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值.21.(6分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.22.(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?23.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)解方程组:113311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩25.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.26.(12分)先化简,再求代数式(222311aa a--+-)÷11a+的值,其中a=2sin45°+tan45°.27.(12分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.2.B【解析】【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.3.B【解析】试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.考点:由三视图判断几何体;简单组合体的三视图.4.B【解析】【分析】①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A错误,轿车在行驶过程中进行了提速,故选项B正确,货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D错误,设货车对应的函数解析式为y=kx,5k=300,得k=60,即货车对应的函数解析式为y=60x,设CD段轿车对应的函数解析式为y=ax+b,2.5804.5300a ba b+=⎧⎨+=⎩,得110195ab=⎧⎨=-⎩,即CD段轿车对应的函数解析式为y=110x-195,令60x=110x-195,得x=3.9,即货车出发3.9小时后,轿车追上货车,故选项C错误,故选:B.【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式5.C【解析】解:∵A、B是反比函数1yx=上的点,∴S△OBD=S△OAC=12,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是4yx=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣12﹣12=3,故③正确;连接OP,212POCOACS PCS AC∆∆===4,∴AC=14PC,PA=34PC,∴PAAC=3,∴AC=13AP;故④正确;综上所述,正确的结论有①③④.故选C.点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.6.A【解析】【分析】【详解】解:分析题中所给函数图像,-段,AP随x的增大而增大,长度与点P的运动时间成正比.O E-段,AP逐渐减小,到达最小值时又逐渐增大,排除C、D选项,E F-段,AP逐渐减小直至为0,排除B选项.F G故选A.【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.7.C【解析】【分析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.8.C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39; 平均数==38.4 方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64; ∴选项A ,B 、D 错误;故选C .考点:方差;加权平均数;中位数;众数.9.D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12; 当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1. 综上所述:m <n ,所求x 0的取值范围0<x 0<1.故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.10.B【解析】【分析】由OA=OB 得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB ,然后根据圆内接四边形的性质求解. 【详解】解:在圆上取点 P ,连接 PA 、 PB.∵OA=OB ,∴∠OAB=∠OBA=25° ,∴∠AOB=180°−2×25°=130° ,∴∠P=12∠AOB=65°, ∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键. 11.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC=3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.12.C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,。

江西省南昌市2019-2020学年中考数学模拟试题(2)含解析

江西省南昌市2019-2020学年中考数学模拟试题(2)含解析

江西省南昌市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 2.如图,已知点A 、B 、C 、D 在⊙O 上,圆心O 在∠D 内部,四边形ABCO 为平行四边形,则∠DAO 与∠DCO 的度数和是( )A .60°B .45°C .35°D .30°3.如图,甲圆柱型容器的底面积为30cm 2,高为8cm ,乙圆柱型容器底面积为xcm 2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y (cm )与x (cm 2)之间的大致图象是( )A .B .C .D .4.如图,长度为10m 的木条,从两边各截取长度为xm 的木条,若得到的三根木条能组成三角形,则x 可以取的值为( )A .2mB .52 mC .3mD .6m 5.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <26.下列二次根式中,为最简二次根式的是( )A.45B.22a bC.12D. 3.67.-5的倒数是A.15B.5 C.-15D.-58.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.459.下列交通标志是中心对称图形的为()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.2511.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.12.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .14.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm15.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.16.如图,a ∥b ,∠1=110°,∠3=40°,则∠2=_____°.17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是____. 18.抛物线y=(x ﹣3)2+1的顶点坐标是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项a ,b ,c ,第二道单选题有4个选项A ,B ,C ,D ,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是b ,第二道题的正确选项是D ,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率; (3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.20.(6分)已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.21.(6分)已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .22.(8分)如图,直线y =2x +6与反比例函数y =k x(k >0)的图像交于点A(1,m),与x 轴交于点B ,平行于x 轴的直线y =n(0<n <6)交反比例函数的图像于点M ,交AB 于点N ,连接BM.求m 的值和反比例函数的表达式;直线y =n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?23.(8分)已知,关于x 的方程x 2+2x-k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2是这个方程的两个实数根,求121211x x x x +++的值; (3)根据(2)的结果你能得出什么结论?24.(10分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.25.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE =45°,BE=4,DE=10, 求直角梯形ABCD的面积.26.(12分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上,90OAB∠=︒且65OA AB OB OC===,,.(1)求点A和点B的坐标;(2)点P是线段OB上的一个动点(点P不与点O B、重合) ,以每秒1个单位的速度由点O向点B运动,过点P的直线a与y轴平行,直线a交边OA或边AB于点Q,交边OC或边BC于点R,设点P.运动时间为t,线段QR的长度为m,已知4t=时,直线a恰好过点C.①当03t<<时,求m关于t的函数关系式;②点P出发时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设QREV的面积为S,求S与t的函数关系式;③直接写出②中S的最大值是.27.(12分)先化简分式:(a-3+4+3aa)÷-2+3aa∙+3+2aa,再从-35、2、-2中选一个你喜欢的数作为a的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】 试题分析:方程22311x x x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D. 考点:解分式方程的步骤.2.A 【解析】试题解析:连接OD ,∵四边形ABCO 为平行四边形,∴∠B=∠AOC ,∵点A. B. C.D 在⊙O 上,180B ADC ∴∠+∠=o ,由圆周角定理得, 12ADC AOC ∠=∠, 2180ADC ADC ∴∠+∠=o ,解得, 60ADC ∠=o ,∵OA=OD ,OD=OC ,∴∠DAO=∠ODA ,∠ODC=∠DCO ,60.DAO DCO ∴∠+∠=o 故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.3.C【解析】【分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x⨯=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.4.C【解析】【分析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断. 【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:55 2x<<.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.5.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.6.B【解析】【分析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(整式)(分母中不含根号)2.被开方数中不含能开提尽方的(因数)或(因式).【详解】A. 不是最简二次根式;B. ,最简二次根式;C. =2,不是最简二次根式;D. ,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.7.C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 -.故选C.8.B 【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba=故选B9.C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.C【解析】在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF 为线段AB 的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD 的周长为AC+CD+AD=AC+AB=5+13=18.故选C.11.B【解析】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 故选B .12.D【解析】试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.27【解析】 试题分析:根据一元二次方程根与系数的关系,可知1x +2x =5,1x ·2x =-1,因此可知2212x x +=212()x x +-212x x =25+2=27.故答案为27. 点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:12b x x a +=-,12c x x a⋅=,确定系数a ,b ,c 的值代入求解,然后再通过完全平方式变形解答即可.14.503 【解析】 试题分析:根据67AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质.15.6n+1.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒, 第1个图形有14=6×1+8根火柴棒, 第3个图形有10=6×1+8根火柴棒, ……,第n 个图形有6n+1根火柴棒.16.1【解析】试题解析:如图,∵a ∥b ,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.17.1a b- 【解析】原式=()()()()1·b a b a b a b a b a b a b a b a b b a b +-+÷==+-++-- , 故答案为1a b -. 18. (3,1)【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).点睛:主要考查了抛物线顶点式的运用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)19;(3)一.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=13;故答案为13;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是19.理由如下:画树状图为:(用Z表示正确选项,C表示错误选项)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=19;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=18,由于18>19,所以建议小敏在答第一道题时使用“求助”.本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.20.见解析【解析】【分析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE .【详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (SAS ).∴BC=DE .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .21.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB ≌△AEB 即可. 试题解析:∵AB=AC,点D 是BC 的中点,∴AD ⊥BC,∴∠ADB=90°.∵AE ⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB ≌△AEB(AAS),∴AD=AE.22.(1)m =8,反比例函数的表达式为y =8x;(2)当n =3时,△BMN 的面积最大. 【解析】【分析】(1)求出点A 的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.解:(1)∵直线y=2x+6经过点A (1,m ),∴m=2×1+6=8,∴A (1,8),∵反比例函数经过点A (1,8),∴8=1k , ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n ,n ),N (62n -,n ), ∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254, ∴n=3时,△BMN 的面积最大.23.(1)k >-1;(2)2;(3)k >-1时,121211x x x x +++的值与k 无关. 【解析】【分析】(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可. (3)结合(1)和(2)结论可见,k >-1时,121211x x x x +++的值为定值2,与k 无关. 【详解】(1)∵方程有两个不等实根,∴△>0,即4+4k >0,∴k >-1(2)由根与系数关系可知x 1+x 2=-2 ,x 1x 2=-k , ∴121211x x x x +++ 1221(1)(1)(1)(1)x x x x x x +++=++12121212212221x x x x x x x x k k ++=+++--==--(3)由(1)可知,k >-1时,121211x x x x +++的值与k 无关. 【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键. 24.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x 3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,225.(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE ≌△CDF ,从而得出CE=CF ;(2)延长AD 至F ,使DF=BE ,连接CF ,根据(1)知∠BCE=∠DCF ,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG ≌△FCG ,即GE=GF ,即可得出答案GE=DF+GD=BE+GD ;(3)过C 作CF ⊥AD 的延长线于点F .则四边形ABCF 是正方形,设DF=x ,则AD=12-x ,根据(2)可得:DE=BE+DF=4+x ,在直角△ADE 中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD 中,∵BC=CD ,∠B=∠CDF ,BE=DF ,∴△CBE ≌△CDF ,∴CE=CF ;(2)如图2,延长AD 至F ,使DF=BE ,连接CF ,由(1)知△CBE ≌△CDF ,∴∠BCE=∠DCF .∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF ,∠GCE=∠GCF ,GC=GC ,∴△ECG ≌△FCG ,∴GE=GF ,∴GE=DF+GD=BE+GD ;(3)过C 作CF ⊥AD 的延长线于点F .则四边形ABCF 是正方形.AE=AB-BE=12-4=8,设DF=x ,则AD=12-x ,根据(2)可得:DE=BE+DF=4+x ,在直角△ADE 中,AE 2+AD 2=DE 2,则82+(12-x )2=(4+x )2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.26.(1)()()3,3 , 6,0A B ;(2)①74m t =;②当0 3t <<时,S 272144t t =+; 当34t <<时, S 21271844t t =-+-;当416≤<时, S 25454522t t =-+-;③458. 【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;【详解】解:(1)由题意OAB V 是等腰直角三角形,6OB =Q()()3,3 , 6,0A B ∴(2) ()()3,3 , 6,0A B Q ,∴线直OA 的解析式为y x =,直线AB 的解析式6y x =-+4t ∴=时,直线a 恰好过点 , 5C OC =.()4,3C ∴-,∴直线OC 的解析式为34y x =-,直线BC 的解析式为392y x =- ①当03t <<时,(),Q t t ,3,4R t t ⎛⎫-⎪⎝⎭ 3744m t t t ∴=+= ②当0 3t <<时,()11762224S PE QR t t =⋅=⋅-⋅272144t t =+ 当34t <<时, ()113266224S PE QR t t t ⎛⎫=⋅=⋅-⋅-++ ⎪⎝⎭21271844t t =-+- 当416≤<时, ()1132669222S PE QR t t t ⎛⎫=⋅=⋅-⋅-+++ ⎪⎝⎭25454522t t =-+- ③当03t <<时,227217363444216S t t x ⎛⎫=-+=--+ ⎪⎝⎭Q , 32t ∴=时, S 的最大值为6316. 当34t <<时,2221271271271818444244S t t t ⎛⎫∴=-+-=--+⨯- ⎪⎝⎭. 4t ∴=时, S 的值最大,最大值为5. 当416≤<时,2254559454522228S t t t ⎛⎫=-+-=--+ ⎪⎝⎭, 945综上所述,最大值为45 8故答案为45 8.【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.27.3a+;5【解析】【详解】原式=((3)3a aa++-3+4+3aa)32aa+⋅-∙+3+2aa=(3)343a a aa+--+32aa+⋅-∙+3+2aa=243aa-+32aa+⋅-∙+3+2aa=3a+a=2,原式=5。

2019年江西省南昌市十校联考中考数学模拟试卷(5月份)

2019年江西省南昌市十校联考中考数学模拟试卷(5月份)

2019年省市十校联考中考数学模拟试卷(5月份)一、选择题(本大题共6个小题,每小题3分,共18分)1.(3分)下列式子值最小的是()A.﹣1+2019B.﹣1﹣2019C.﹣1×2019D.2019﹣12.(3分)下列计算正确的是()A.2a2+3a2=5a4B.3a﹣2a=1C.2a2×a3=2a6D.(a2)3=a63.(3分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1084.(3分)如图所示的几何体的俯视图是()A.B.C.D.5.(3分)如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab6.(3分)如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6B.4C.2D.﹣2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)分解因式:my2﹣9m=.8.(3分)如图,在▱ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则EC:AB=.9.(3分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=.10.(3分)定义:若两个函数的图象关于直线y=x对称,则称这两个函数互为反函数.请写出函数y=2x+1的反函数的解析式.11.(3分)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.12.(3分)如图,矩形ABCD中,AB=6,AD=4,点E是BC的中点,点F在AB上,FB =2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为.三、解答题(本大题共5个小题,每小题6分,共30分,解答应写出文字说明、证明过程或演算步骤)13.(6分)(1)计算:(2)解不等式组,并把解集在数轴上表示出来.14.(6分)解分式方程:+1=.15.(6分)请在如图所示的正方形和等边三角形网格,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.16.(6分)为落实“垃圾分类”,环保部门要求垃圾要按A,B,C,D四类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收物,D类指出其他垃圾,小明、小亮各投放了一袋垃圾.(1)直接写出小明投放的垃圾恰好是A类的概率;(2)求小亮投放的垃圾与小明投放的垃圾是同一类的概率.17.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=36°,求∠CAO度数.四、(本大题共3小题,每小题8分:共24分.)18.(8分)下表是2018年三月份某居民小区随机抽取20户居民的用水情况::月用水量/吨15202530354045户数24m4301(1)求出m=,补充画出这20户家庭三月份用电量的条形统计图;(2)据上表中有关信息,计算或找出下表中的统计量,并将结果填入表中:统计量名称众数中位数平均数数据(3)为了倡导“节约用水绿色环保”的意识,江赣市自来水公司实行“梯级用水、分类计费”,价格表如下:月用水梯级标准Ⅰ级(30吨以)Ⅱ级(超过30吨的部分)单价(元/吨) 2.44如果该小区有500户家庭,根据以上数据,请估算该小区三月份有多少户家庭在Ⅰ级标准?(4)按上表收费,如果某用户本月交水费120元,请问该用户本月用水多少吨?19.(8分)如图,点A、B是双曲线y=(k为正整数)与直线AB的交点,且A、B两点的横坐标是关于x的方程:x2+kx﹣k﹣1=0的两根(1)填表:K 1 2 3…n(n为正整数)A点的横坐标B点的横坐标(2)当k=n(n为正整数)时,试求直线AB的解析式(用含n的式子表示);(3)当k=1、2、3、…n时,△ABO的面积,依次记为S1、S2、S3…S n,当S n=40时,求双曲线y=的解析式.20.(8分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC 可绕着转轴B旋转.已知压柄BC的长度为15cm,BD=5cm,压柄与托板的长度相等.(1)当托板与压柄夹角∠ABC=37°时,如图①点E从A点滑动了2cm,求连接杆DE 的长度;(2)当压柄BC从(1)中的位置旋转到与底座AB的夹角∠ABC=127°,如图②.求这个过程中点E滑动的距离.(答案保留根号)(参考数据:sin37°≈0.6,cos37°≈0.8.tan37°≈0.75)五、(本大题共2题,每题9分,共18分)21.(9分)如图,四边形ABCD接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=4,EF=6,求⊙O的半径.22.(9分)【问题情境】在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P 作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)【变式探究】(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值.【迁移拓展】(3)在直角坐标系中,直线l1:y=x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.六、(本大题共1小题,共12分)23.(12分)已知:抛物线C1:y=﹣(x+m)2+m2(m>0),抛物线C2:y=(x﹣n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=﹣(x+1)2+1与抛物线C2:y=(x﹣)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C1与D.(1)已知抛物线①y=﹣x2﹣2x,②y=(x﹣3)2+3,③y=(x﹣)2+2,④y=x2﹣x+,则抛物线①②③④中互为派对抛物线的是(请在横线上填写抛物线的数字序号);(2)如图1,当m=1,n=2时,证明AC=BD;(3)如图2,连接AB,CD交于点F,延长BA交x轴的负半轴于点E,记BD交x轴于G,CD交x轴于点H,∠BEO=∠BDC.①求证:四边形ACBD是菱形;②若已知抛物线C2:y=(x﹣2)2+4,请求出m的值.2019年省市十校联考中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)1.(3分)下列式子值最小的是()A.﹣1+2019B.﹣1﹣2019C.﹣1×2019D.2019﹣1【分析】根据有理数的运算法则以与幂的运算性质求解即可.【解答】解:A、﹣1+2019=2018;B、﹣1﹣2019=﹣2020;C、﹣1×2019=﹣2019;D、.故最小的是﹣1﹣2019.故选:B.【点评】本题主要考查了有理数的四则运算以与幂的性质,熟练掌握运算法则是解答本题的关键.2.(3分)下列计算正确的是()A.2a2+3a2=5a4B.3a﹣2a=1C.2a2×a3=2a6D.(a2)3=a6【分析】根据合并同类项,单项式乘单项式以与幂的乘方与积的乘方的计算法则解答.【解答】解:A、原式=5a2,故本选项错误.B、原式=a,故本选项错误.C、原式=2a5,故本选项错误.D、原式=a6,故本选项正确.故选:D.【点评】考查了合并同类项,单项式乘单项式以与幂的乘方与积的乘方,属于基础题,熟记计算法则即可解题.3.(3分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以与n的值.4.(3分)如图所示的几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上往下看,得到的是同心圆,且下面的圆不能直接看到,俯视图用虚线表示,故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【分析】根据图形确定出图1与图2的面积,即可作出判断.【解答】解:根据题意得:(a﹣b)2=a2﹣2ab+b2,故选:B.【点评】此题考查了完全平方公式的几何背景,弄清阴影部分面积的求法是解本题的关键.6.(3分)如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6B.4C.2D.﹣2【分析】当P在M点时,x1有最小值﹣4,此时x2=2;x2与对称轴的距离是3;当P在N点时,x1有最小值4;【解答】解:由题意可知,当P在M点时,x1有最小值﹣4,此时x2=2;∴x2与对称轴的距离是3;当P在N点时,x1有最小值4;故选:B.【点评】本题考查二次函数与x轴交点的特点;掌握二次函数与x轴的交点到对称轴的距离随着图象的移动始终保持不变是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)分解因式:my2﹣9m=m(y+3)(y﹣3).【分析】首先提取公因式m,进而利用平方差公式进行分解即可.【解答】解:my2﹣9m=m(y2﹣9)=m(y+3)(y﹣3).故答案为:m(y+3)(y﹣3).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.8.(3分)如图,在▱ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则EC:AB=.【分析】根据平行四边形的性质可得出DE∥AB、DC=AB,进而可得出△DEF∽△BAF,根据相似三角形的性质可得出=,再结合EC=CD﹣DE即可求出结论.【解答】解:∵四边形ABCD为平行四边形,∴DE∥AB,DC=AB,∴△DEF∽△BAF.∵△DEF的面积与△BAF的面积之比为9:16,∴=,∵===3.∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质以与平行四边形的性质,根据相似三角形的性质求出DE、BA之间的关系是解题的关键.9.(3分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=1.【分析】根据根与系数的关系与一元二次方程的解可得出:α2﹣2019α=﹣1,β2﹣2019β=﹣1,αβ=1,将其代入(α﹣2019)(β﹣2019)=中即可求出结论.【解答】解:∵α、β是一元二次方程x2﹣2019x+1=0的两实根,∴α2﹣2019α=﹣1,β2﹣2019β=﹣1,αβ=1,∴(α﹣2019)(β﹣2019)==1.故答案为:1.【点评】本题考查了根与系数的关系以与一元二次方程的根,根基根与系数的关系与一元二次方程的解,找出α2﹣2019α=﹣1,β2﹣2019β=﹣1,αβ=1是解题的关键.10.(3分)定义:若两个函数的图象关于直线y=x对称,则称这两个函数互为反函数.请写出函数y=2x+1的反函数的解析式y=x﹣.【分析】求出函数和x轴、y轴的交点坐标,求出对称的点的坐标,再代入函数解析式求出即可.【解答】解:y=2x+1,当x=0时,y=1,当y=0时,x=﹣,即函数和x轴的交点为(﹣,0),和y轴的交点坐标为(0,1),所以两点关于直线y=x对称的点的坐标分别为(0,﹣)和(1,0),设反函数的解析式是y=kx+b,代入得:,解得:k=,b=﹣,即y=x﹣,故答案为:y=x﹣.【点评】本题考查了用待定系数法求一次函数的解析式,能求出对称的点的坐标是解此题的关键.11.(3分)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.(3分)如图,矩形ABCD中,AB=6,AD=4,点E是BC的中点,点F在AB上,FB =2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为4或8或4.【分析】如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心画⊙O 交CD于P3.只要证明∠EP1F=∠FP2F=∠FP3E=30°,即可推出FP1=4,FP2=8,FP3=4解决问题.【解答】解:如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心画⊙O交CD于P3.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵BF=2,BE=2,AF=4,AD=4,∴tan∠FEB=tan∠ADF=,∴∠ADF=∠FEB=30°,易知EF=OF=OD=4,∴△OEF是等边三角形,∴∠EP1F=∠FP2F=∠FP3E=30°,∴FP1=4,FP2=8,FP3=4,故答案为4或8或4.【点评】本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5个小题,每小题6分,共30分,解答应写出文字说明、证明过程或演算步骤)13.(6分)(1)计算:(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)原式利用特殊角的三角函数值,二次根式性质,以与零指数幂法则计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:(1)原式=2×﹣2+1=﹣+1;(2),由①得:x>1,由②得:x>3,则不等式组的解集为x>3,【点评】此题考查了解一元一次不等式组,以与实数的运算,熟练掌握运算法则是解本题的关键.14.(6分)解分式方程:+1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4+x2﹣1=x2﹣2x+1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(6分)请在如图所示的正方形和等边三角形网格,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.【分析】利用正方形网格以与等边三角形网格中,网格线的位置关系以与格点连线的位置关系进行作图即可.【解答】解:如图所示,PQ即为所求.【点评】本题主要考查了平行线的判定以与等边三角形的性质的运用,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.16.(6分)为落实“垃圾分类”,环保部门要求垃圾要按A,B,C,D四类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收物,D类指出其他垃圾,小明、小亮各投放了一袋垃圾.(1)直接写出小明投放的垃圾恰好是A类的概率;(2)求小亮投放的垃圾与小明投放的垃圾是同一类的概率.【分析】(1)直接利用概率公式求出小明投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C,D四类分别装袋,小明投放了一袋垃圾,∴小明投放的垃圾恰好是A类的概率为:;(2)如图所示:由图可知,共有16种可能结果,其中小亮投放的垃圾与小明投放的垃圾是同一类的结果有4种,所以小亮投放的垃圾与小明投放的垃圾是同一类的概率为=.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.17.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=36°,求∠CAO度数.【分析】(1)根据HL证明Rt△ABC≌Rt△BAD;(2)利用全等三角形的性质证明即可.【解答】证明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=36°,∵∠C=90°,∴∠BAC=54°,∴∠CAO=∠CAB﹣∠BAD=18°.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等.四、(本大题共3小题,每小题8分:共24分.)18.(8分)下表是2018年三月份某居民小区随机抽取20户居民的用水情况::月用水量/吨15202530354045户数24m4301(1)求出m=6,补充画出这20户家庭三月份用电量的条形统计图;(2)据上表中有关信息,计算或找出下表中的统计量,并将结果填入表中:统计量名称众数中位数平均数数据252526.5(3)为了倡导“节约用水绿色环保”的意识,江赣市自来水公司实行“梯级用水、分类计费”,价格表如下:月用水梯级标准Ⅰ级(30吨以)Ⅱ级(超过30吨的部分)单价(元/吨) 2.44如果该小区有500户家庭,根据以上数据,请估算该小区三月份有多少户家庭在Ⅰ级标准?(4)按上表收费,如果某用户本月交水费120元,请问该用户本月用水多少吨?【分析】(1)根据各用户数之和等于数据总和即可求出m的值,根据表格数据补全统计图;(2)根据众数、中位数、平均数的定义计算即可;(3)用达标的用户数除以总用户数,乘以500即可;(4)设该用户本月用水x吨,列方程2.4×30+4(x﹣30)=108,解答即可.【解答】解:(1)m=20﹣2﹣4﹣4﹣3﹣0﹣1=6,这20户家庭三月份用电量的条形统计图:故答案为6;(2)根据题意可知,25出现的次数最多,则众数为25,由表可知,共有20个数据,则中位数为第10、11个的平均数,即为25;平均数为(15×2+20×4+25×6+30×4+45×1)÷20=26.5,故答案为25,25,26.5;(3)小区三月份达到ⅠI级标准的用户数:(户),答:该小区三月份有100户家庭在ⅠI级标准;(4)∵2.4×30=72<120,∴该用户本月用水超过了30吨,设该用户本月用水x吨,2.4×30+4(x﹣30)=120,解得x=42,答:该用户本月用水42吨.【点评】本题考查了条形统计图,熟练掌握条形统计图的相关知识是解题的关键.19.(8分)如图,点A、B是双曲线y=(k为正整数)与直线AB的交点,且A、B两点的横坐标是关于x的方程:x2+kx﹣k﹣1=0的两根(1)填表:K 1 2 3…n(n为正整数)A点的横坐标111 (1)B点的横坐标﹣2﹣3﹣4…﹣n﹣1(2)当k=n(n为正整数)时,试求直线AB的解析式(用含n的式子表示);(3)当k=1、2、3、…n时,△ABO的面积,依次记为S1、S2、S3…S n,当S n=40时,求双曲线y=的解析式.【分析】(1)根据k的值,即可得到一元二次方程的解,进而得到A点的横坐标,B点的横坐标;(2)根据当k=n(n为正整数)时,A点的横坐标为1,B点的横坐标为﹣n﹣1,可得A (1,n+1),B(﹣n﹣1,﹣1),运用待定系数法即可得出直线AB的解析式;(3)先求得直线AB与y轴交于(0,n),再根据当S n=40时,×n(n+1+1)=40,即可得到n=8,进而得出A(1,9),据此可得双曲线的解析式为:y=.【解答】解:(1)当k=1时,方程x2+x﹣2=0的解为:x1=1,x2=﹣2;当k=2时,方程x2+2x﹣3=0的解为:x1=1,x2=﹣3;k=3时,方程x2+3x﹣4=0的解为:x1=1,x2=﹣4;k=n时,方程x2+nx﹣n﹣1=0的解为:x1=1,x2=﹣n﹣1;∵点A在第一象限,点B在第三象限,∴A点的横坐标依次为:1,1,1, (1)B点的横坐标依次为:﹣2,﹣3,﹣4,…,﹣n﹣1;故答案为:1,1,1,…,1;﹣2,﹣3,﹣4,…,﹣n﹣1;(2)当k=n(n为正整数)时,A点的横坐标为1,B点的横坐标为﹣n﹣1,令x=1,则y==n+1;令x=﹣n﹣1,则y==﹣1;∴A(1,n+1),B(﹣n﹣1,﹣1),设直线AB的解析式为y=px+q,则,解得,∴直线AB的解析式为y=x+n;(3)∵直线y=x+n中,令x=0,则y=n,即直线AB与y轴交于(0,n),∴当S n=40时,×n(n+1+1)=40,解得n=8(负值已舍去),∴A(1,9),∴双曲线的解析式为:y=.【点评】本题主要考查了一次函数与反比例函数交点问题以与一元二次方程的解,解题时注意:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20.(8分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC 可绕着转轴B旋转.已知压柄BC的长度为15cm,BD=5cm,压柄与托板的长度相等.(1)当托板与压柄夹角∠ABC=37°时,如图①点E从A点滑动了2cm,求连接杆DE 的长度;(2)当压柄BC从(1)中的位置旋转到与底座AB的夹角∠ABC=127°,如图②.求这个过程中点E滑动的距离.(答案保留根号)(参考数据:sin37°≈0.6,cos37°≈0.8.tan37°≈0.75)【分析】(1)作DH⊥BE于H,在Rt△BDH中用三角函数算出DH和BH,再求出EH,在三角形DEH中用勾股定理即可求得DE;(2)作DH⊥AB的延长线于点H,在Rt△DBH和Rt△DEH中,用三角函数分别求出BH,DH,EB的长,从而可求得点E滑动的距离.【解答】解:(1)如图①,作DH⊥BE于H,在Rt△BDH中,∠DHB=90°,BD=5,∠ABC=37°,∴,=cos37°,∴DH=5sin37°≈5×0.6=3(cm),BH=5cos37°=5×0.8=4(cm).∵AB=BC=15cm,AE=2cm,∴EH=AB﹣AE﹣BH=15﹣2﹣4=9(cm),∴DE===3(cm).答:连接杆DE的长度为cm.(2)如图②,作DH⊥AB的延长线于点H,∵∠ABC=127°,∴∠DBH=53°,∠BDH=37°,在Rt△DBH中,==sin37°=0.6,∴BH=3cm,∴DH=4cm,在Rt△DEH中,EH2+DH2=DE2,∴(EB+3)2+16=90,∴EB=()(cm),∴点E滑动的距离为:15﹣(﹣3)﹣2=(16﹣)(cm).答:这个过程中点E滑动的距离为(16﹣)cm.【点评】本题属于解直角三角形的应用题,出题角度新颖,既贴近生活,又需要借助三角函数勾股定理等数学知识才能解决,难度中等偏大.五、(本大题共2题,每题9分,共18分)21.(9分)如图,四边形ABCD接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=4,EF=6,求⊙O的半径.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的性质得到DE=EF=3,根据勾股定理得到CD,根据相似三角形的性质即可得到结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=6,∵CE=4,∠BCD=90°,∴∠DCE=90°,∴CD==2,∵∠BDE=90°,CD⊥BE,∴△CDE∽△CBD,∴=,∴BD==3,∴⊙O的半径=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.22.(9分)【问题情境】在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P 作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)【变式探究】(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值.【迁移拓展】(3)在直角坐标系中,直线l1:y=x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【分析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【解答】证明:【变式探究】连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴AB•CF=AC•PE﹣AB•PD.∵AB=AC,∴CF=PD﹣PE;【结论运用】过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=10,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=10.∵∠C=90°,∴DC===8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;【迁移拓展】,如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB==10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P2的纵坐标为10又点P2在直线l2上,∴y=2x+8=10,∴x=1,即点P2的坐标为(1,10)【点评】本题主要考查一次函数的综合运用,涉与等腰三角形的性质、三角形的面积、勾股定理和等积法等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.六、(本大题共1小题,共12分)23.(12分)已知:抛物线C1:y=﹣(x+m)2+m2(m>0),抛物线C2:y=(x﹣n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=﹣(x+1)2+1与抛物线C2:y=(x﹣)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C1与D.(1)已知抛物线①y=﹣x2﹣2x,②y=(x﹣3)2+3,③y=(x﹣)2+2,④y=x2﹣x+,则抛物线①②③④中互为派对抛物线的是①与③;①与④(请在横线上填写抛物线的数字序号);(2)如图1,当m=1,n=2时,证明AC=BD;(3)如图2,连接AB,CD交于点F,延长BA交x轴的负半轴于点E,记BD交x轴于G,CD交x轴于点H,∠BEO=∠BDC.①求证:四边形ACBD是菱形;②若已知抛物线C2:y=(x﹣2)2+4,请求出m的值.【分析】(1)先把四个解析式配成顶点式,然后根据派对抛物线的定义进行判断;(2)利用抛物线C1:y=﹣(x+1)2+1,抛物线C2:y=(x﹣2)2+4得到A(﹣1,1),B(2,4),再计算出C(﹣1,13),D(2,﹣8),则AC=12,BD=12,于是可判断AC =BD;(3)①先表示出A(﹣m,m2);B(n,n2),再表示出C(﹣m,m2+2mn+2n2),D(n,﹣2mn﹣n2),接着可计算出AC=BD=2mn+2n2,则可判断四边形ACBD为平行四边形,然后利用三角形角和,由∠BEO=∠BDC得到∠EFH=∠DGH=90°,从而可判断四边形ACBD是菱形;②由抛物线C2:y=(x﹣2)2+4得到B(2,4),即n=2,则AC=BD=4m+8,再利用A(﹣m,m2)可表示出C(﹣m,m2+4m+8),所以BC2=(m+2)2+(m+2)4,然后利用BC=BD得(m+2)2+(m+2)4=(4m+8)2,最后利用m>0可求出m的值.【解答】(1)解:①y=﹣x2﹣2x=﹣(x+1)2+12,②y=(x﹣3)2+3=(x﹣3)2+()2,③y=(x﹣)2+()2,④y=x2﹣x+=(x﹣)2+()2,所以①与③互为派对抛物线;①与④互为派对抛物线;故答案为①与③;①与④;(2)证明:当m=1,n=2时,抛物线C1:y=﹣(x+1)2+1,抛物线C2:y=(x﹣2)2+4,∴A(﹣1,1),B(2,4),∵AC∥BD∥y轴,∴点C的横坐标为﹣1,点D的横坐标为2,当x=﹣1时,y=(x﹣2)2+4=13,则C(﹣1,13);当x=2时,y=﹣(x+1)2+1=﹣8,则D(2,﹣8),∴AC=13﹣1=12,BD=4﹣(﹣8)=12,∴AC=BD;(3)①抛物线C1:y=﹣(x+m)2+m2(m>0),则A(﹣m,m2);抛物线C2:y=(x﹣n)2+n2(n>0),则B(n,n2);当x=﹣m时,y=(x﹣n)2+n2=m2+2mn+2n2,则C(﹣m,m2+2mn+2n2);当x=n时,y=﹣(x+m)2+m2=﹣2mn﹣n2,则D(n,﹣2mn﹣n2);∴AC=m2+2mn+2n2﹣m2=2mn+2n2,BD=n2﹣(﹣2mn﹣n2)=2mn+2n2,∴AC=BD;∴四边形ACBD为平行四边形,∵∠BEO=∠BDC,而∠EHF=∠DHG,∴∠EFH=∠DGH=90°,∴AB⊥CD,∴四边形ACBD是菱形;②∵抛物线C2:y=(x﹣2)2+4,则B(2,4),∴n=2,∴AC=BD=2mn+2n2=4m+8,而A(﹣m,m2),∴C(﹣m,m2+4m+8),∴BC2=(﹣m﹣2)2+(m2+4m+8﹣4)2=(m+2)2+(m+2)4,∵四边形ACBD是菱形,∴BC=BD,∴(m+2)2+(m+2)4=(4m+8)2,即(m+2)4=15(m+2)2,∵m>0,∴(m+2)2=15,∴m+2=,∴m=﹣2.【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的判定方法;会利用乘法公式进行代数式的变形;理解坐标与图形性质,记住两点间的距离公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年南昌市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

) 1.我国每年淡水为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500用科学记数法表示为A .275×102B .2.75×103C .2.75×104D .0.275×1052. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是3.下列各式运算中正确的是A.336)2-(y y -=B.0130=C.448a a a -=÷- D.13169±=4. 一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是 A .4 B .5 C .10 D .115.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是A .主视图B .左视图C .俯视图D .主视图和俯视图 6. 函数a ax y -=与)0(≠=a xay 在同一坐标系中的图象可能是7. 已知关于x 的不等式组有四个整数解,则实数a 的取值范围A. -3<a ≤ 2B. -3≤a ≤ 2C.-3<a ≤-2D. -3≤ a <-28.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是A .5B .6C .7D .8 9.对于二次函数y =-14x 2+x -4,下列说法正确的是A .当x >0时,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点10. 如图,已知∠AOB=30°,以O 为圆心、a 为半径画弧交OA 、OB 于A 1、B 1,再分别以A 1、B 1为圆心、a 为半径画弧交于点C 1,以上称为一次操作.再以C 1为圆心,a 为半径重新操作,得到C 2.重复以上步骤操作,记最后一个两弧的交点(离点O 最远)为C K ,则点C K 到射线OB 的距离为A.a 2B.32a C .a D.3a 第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11.多项式ab ab b a --222的次数是 .12.函数y=的自变量x 的取值范围为 .13. Rt△ABC 中,∠C =90°,AC =3,BC =4.把它沿边BC 所在的直线旋转一周,所得到的几何体 的全面积为 .14.实数a 在数轴上的位置如图所示,化简()__12=+-a a15. 已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =3cm ,则线段AC =__________.16.如图,直线l :y =-12x +1与坐标轴交于A ,B 两点,点M(m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M 与直线l 相切时,则m 的值为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:(cos --+-︒-0122601.18.(本题8分)先化简,再求值:(x 2-4x 2-4x +4 -2x -2 )÷ x 2+2xx-2 , 然后选取一个你喜欢的数代入求值.19.(本题10分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A (绿博园),B (人民公园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生? (2)补全条形统计图;(3)若该学校共有3 600名学生,试估计该校最想去湿地公园的学生人数.20.(本题10分)定义:在△ABC 中,∠C =30°,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作 thi A ,即thi A =∠A 的对边∠C 的对边=BCAB .请解答下列问题:已知:在△ABC 中,∠C =30°.(1)若∠A =45°,求thi A 的值; (2)若thi A =3,则∠A = °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系 . 21.(本题12分)将△ABC绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′ C′ ,如图①所示,∠BAB′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] .(1]得到△AB′ C′ ,则'AB C S ''∆:ABC S ∆ =_______ ;直线BC 与直线B′C′所夹的锐角为_______度;(2)如图②,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换[θ,n]得到△AB′ C′ ,使 点B 、C 、C '在同一直线上,且四边形ABB′C′为矩形,求θ和n 的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换[θ,n]得到△AB′C′ , 使点B 、C 、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n 的值.22.(本题12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式。

当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?参考答案第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

)1.C2.C3.C4.B5.B6.D7.D8.C9.B 10.C第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11.3 12.35≥x 13. 24π 14. 1 15. 11或5cm 16. 2-25或2+2 5三、解答题(共7小题,计72分) 17.解:原式=2+﹣﹣1=118.(本小题满分8分)原式=(x +2x -2 -2x -2 )·x -2x (x +2)·······3分=x x -2 ·x -2x (x +2)······5分 =1x +2 ······3分 X ≠2,-2,0即可······8分19.(1)本次调查的学生人数为15÷25%=60(名).……3分 (2)选择的人数为60-15-10-12=23(人),……6分 (3) 380160036023=⨯(人)……9分20.解:(1)如图,作BH ⊥AC ,垂足为H .在Rt △BHC 中,sin C =BH BC =12,即BC =2BH .在Rt △BHA 中,sin A =BH AB =22,即AB =2BH .∴thi A =BC AB=2. ……3分(2)60或120. ……5分(3)在Rt △ABC 中,thi A =BC AB. 在Rt △BHA 中,sin A =BH AB.在Rt △BHC 中,sin C =BH BC =12,即BC =2BH .∴thi A =2sin A . ……8分21. (1) 3 ; 60°. ----------------------------------------------------2分 (2)∵四边形ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°. --------------------4分 在Rt △ABB ′中,∠ABB′=90°, ∠BAB′=60°,∴n=AB AB=2. ------------6分 (3)∵四边形ABB′C′是平行四边形, ∴AC′∥BB′,又∵∠BAC=36° ∴θ=∠CAC′=∠ACB=72° --------------------8分 ∴∠C′AB′=∠ABB′=∠BAC=36°, 又∵∠B=∠B,BACH∴△ABC ∽△B′BA, --------------------------9分∴AB 2=CB·B′B=CB ·(BC+CB′), ---------------------------10分 ∵CB′=AC =AB =B′C′, BC=1, ∴AB 2=1·(1+AB)∴AB=12±,∵AB>0, ∴n=B C BC''=12+. ----------------------------12分22.解:(1)设y 与x 之间的函数关系式y=kx+b ,把(10,40),(18,24)代入得,解得,∴y 与x 之间的函数关系式y=﹣2x+60(10≤x ≤18);(2)W=(x ﹣10)(﹣2x+60)=﹣2x 2+80x ﹣600,对称轴x=20,在对称轴的左侧y 随着x 的增大而增大,∵10≤x ≤18,∴当x=18时,W 最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)由150=﹣2x 2+80x ﹣600,解得x 1=15,x 2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.23.(本题12分)设二次函数2(1)()y x x a a=-+-(a 为正常数)的图象与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于C 点.直线l 过M (0,m )(02m <<且1≠m )且与x 轴平行,并与直线AC 、BC 分别相交于点D 、E .二次函数2(1)()y x x a a=-+-的图象关于直线l 的对称图象与y 轴交于点P .设直线PD 与x 轴交点为Q ,则:⑴ 求A 、C 两点的坐标;⑵ 求AD 的值(用含m 的代数式表示); ⑶ 是否存在实数m ,使C D A Q P Q D E ⋅=⋅?若能,则求出相应的m 的值;若不能,请说明理由.23.解:⑴ 点C 的坐标为(0,2).点A 坐标为(-1,0). --------------------- 3分⑵ AD=m 25. ------------------------------------------------------------ 6分 ⑶ 要使DE PQ AQ CD ⋅=⋅,由于∠PQA=∠PDE ,所以只须PQA ∆∽CDE ∆,即须PQA ∆∽PDE ∆.当0 <m<1时,点P 在x 轴下方,此时∠PQA 显然为钝角,而∠PDE 显然为锐角,故此时不能有PQA ∆∽CDE ∆. ----------- 8分○2 当1<m<2时, aa m 1+=,而此时1<m<2, 则应有211<+<aa ,由此知a >1.---------------------------- 10分综上所述,当a >1时,才存在实数m 使得PQA ∆∽CDE ∆, 从而有DE PQ AQ CD ⋅=⋅,此时aa m 1+=;当0<≤a 1时, 不存在实数m 使得DE PQ AQ CD ⋅=⋅. ----------------------- 12分。

相关文档
最新文档