逻辑门符号及电路

合集下载

基本逻辑门电路

基本逻辑门电路

基本逻辑门电路————————————————————————————————作者:————————————————————————————————日期:第一节基本逻辑门电路1.1 门电路的概念:实现基本和常用逻辑运算的电子电路,叫逻辑门电路。

实现与运算的叫与门,实现或运算的叫或门,实现非运算的叫非门,也叫做反相器,等等(用逻辑1表示高电平;用逻辑0表示低电平)11.2 与门:逻辑表达式F=A B即只有当输入端A和B均为1时,输出端Y才为1,不然Y为0.与门的常用芯片型号有:74LS08,74LS09等.11.3 或门:逻辑表达式F=A+ B即当输入端A和B有一个为1时,输出端Y即为1,所以输入端A和B均为0时,Y才会为O.或门的常用芯片型号有:74LS32等.11.4.非门逻辑表达式F=A即输出端总是与输入端相反.非门的常用芯片型号有:74LS04,74LS05,74LS06,74LS14等.11.5.与非门 逻辑表达式 F=AB即只有当所有输入端A 和B 均为1时,输出端Y 才为0,不然Y 为1.与非门的常用芯片型号有:74LS00,74LS03,74S31,74LS132等.11.6.或非门: 逻辑表达式 F=A+B即只要输入端A 和B 中有一个为1时,输出端Y 即为0.所以输入端A 和B 均为0时,Y 才会为1.或非门常见的芯片型号有:74LS02等.11.7.同或门: 逻辑表达式F=A B+A BA F B11.8.异或门:逻辑表达式F=A B+A B=AF B11.9.与或非门:逻辑表逻辑表达式F=AB+CD AB C F D11.10.RS 触发器:电路结构把两个与非门G1、G2的输入、输出端交叉连接,即可构成基本RS 触发器,其逻辑电路如图7.2.1.(a)所示。

它有两个输入端R 、S 和两个输出端Q 、Q 。

工作原理 :基本RS 触发器的逻辑方程为:根据上述两个式子得到它的四种输入与输出的关系:1.当R=1、S=0时,则Q=0,Q=1,触发器置1。

基本逻辑门电路符号

基本逻辑门电路符号

基本逻辑门电路符号1、与逻辑(AND Logic)与逻辑又叫做逻辑乘,下面通过开关的工作状况加以说明与逻辑的运算。

从上图可以看出,当开关有一个断开时,灯泡处于灭的状况,仅当两个开关同时合上时,灯泡才会亮。

于是我们可以将与逻辑的关系速记为:“有0出0,全1出1”。

图(b)列出了两个开关的所有组合,以及与灯泡状况的情况,我们用0表示开关处于断开状况,1表示开关处于合上的状况;同时灯泡的状况用0表示灭,用1表示亮。

图(c)给出了与逻辑门电路符号,该符号表示了两个输入的逻辑关系,&在英文中是AND的速写,如果开关有三个则符号的左边再加上一道线就行了。

逻辑与的关系还可以用表达式的形式表示为:F=A·B上式在不造成误解的情况下可简写为:F=AB。

2、或逻辑(OR Logic)上图(a)为一并联直流电路,当两只开关都处于断开时,其灯泡不会亮;当A,B两个开关中有一个或两个一起合上时,其灯泡就会亮。

如开关合上的状况用1表示,开关断开的状况用0表示;灯泡的状况亮时用1表示,不亮时用0表示,则可列出图(b)所示的真值表。

这种逻辑关系就是通常讲的“或逻辑”,从表中可看出,只要输入A,B两个中有一个为1,则输出为1,否则为0。

所以或逻辑可速记为:“有1出1,全0出0”。

上图(c)为或逻辑门电路符号,后面通常用该符号来表示或逻辑,其方块中的“≥1”表示输入中有一个及一个以上的1,输出就为1。

逻辑或的表示式为:F=A+B3、非逻辑(NOT Logic)非逻辑又常称为反相运算(Inverters)。

下图(a)所示的电路实现的逻辑功能就是非运算的功能,从图上可以看出当开关A合上时,灯泡反而灭;当开关断开时,灯泡才会亮,故其输出F的状况与输入A的状相反。

非运算的逻辑表达式为图(c)给出了非逻辑门电路符号。

>复合逻辑运算在数字系统中,除了与运算、或运算、非运算之外,常常使用的逻辑运算还有一些是通过这三种运算派生出来的运算,这种运算通常称为复合运算,常见的复合运算有:与非、或非、与或非、同或及异或等。

与或非门电路

与或非门电路

4. 同或门
◆ 能够实现 A⊙B “同或”逻辑关系的 L A B A B 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。
同或门电路:
逻辑符号:
提 示
双输入端同或门波形图:
当输入端A、B 的电平 状态互为相反时,输出端L 一定为低电平;而当输入端 A、B 的电平状态相同时, 输出端 L 一定为高电平。

L A B

三态门真值表

三态门应用举例 (a)门电路选择 (b)数据双向传输 (c)总线结构

P50

2.6 2.7 2.8
(5)TTL与非门74LS00集成电路示意图
◆ 4个双输入与非门, ◆ 此类电路多数采用双列直插式封装。
2.2.2 MOSHale Waihona Puke 列门电路◆ CMOS门电路举例
▲ CMOS非门电路 ▲ CMOS与非门
2-2
▲ CMOS或非门
工作原理 A为高电平,T1截 止T2导通,L为低电 平,符合非逻辑关 系。
工作原理 A、 B同为高电平 时T1 、T2截止, T3 、 T4导通,L为低电平, 符合与非逻辑关系。 反之亦然。

OC门的逻辑符号

OC门线与的应用
L A B CD A B CD
2. 三态门
◆ ◆
什么是三态门 三态门的特点
除0、1外还有第三种状态——高阻抗状态 高阻抗状态时的输出阻抗非常大,输入与 输出视为开路,对外电路不起任何作用 计算机接口电路中广泛应用
三态与非门的原 理示意图及其符号
2.3.2 产品分类电路
1
1 1 1 1 1 1 1 1 1 1 1 1 1

3种基本逻辑门的符号和逻辑关系

3种基本逻辑门的符号和逻辑关系

3种基本逻辑门的符号和逻辑关系3种基本逻辑门的符号和逻辑关系1. 介绍逻辑门是数字电子电路的基本组成部分,用于执行逻辑运算。

其中最基本的逻辑门包括与门(AND gate)、或门(OR gate)和非门(NOT gate)。

这三种逻辑门分别代表了逻辑运算中的与、或和非关系。

在数字电子电路中,它们被用来执行布尔逻辑运算,控制电子设备的行为。

下面将对这三种基本逻辑门的符号和逻辑关系进行全面评估。

2. 与门(AND gate)与门是最基本的逻辑门之一,它具有两个输入和一个输出。

当且仅当两个输入同时为“1”时,输出才为“1”。

其符号为“∧”,表示逻辑与的关系。

在逻辑电路图中,与门通常用直线和一个弧线组成的图形来表示。

与门的逻辑关系体现了“两者都”的概念,它在逻辑系统中扮演着至关重要的角色。

3. 或门(OR gate)或门也是一种基本的逻辑门,它同样具有两个输入和一个输出。

与门不同的是,或门的输出在任何一个输入为“1”时就为“1”。

其符号为“∨”,表示逻辑或的关系。

在逻辑电路图中,或门通常用一个弧线和一个直线组成的图形来表示。

或门的逻辑关系体现了“其中之一”的概念,它也在逻辑系统中扮演着重要的角色。

4. 非门(NOT gate)非门是最简单的逻辑门,只有一个输入和一个输出。

它的作用是将输入取反,即当输入为“1”时,输出为“0”;当输入为“0”时,输出为“1”。

其符号为“¬”,表示逻辑非的关系。

在逻辑电路图中,非门通常用一个小圆圈来表示。

非门的逻辑关系体现了“相反的”概念,它在逻辑运算中起着至关重要的作用。

5. 总结以上就是对3种基本逻辑门的符号和逻辑关系的全面评估。

与门体现了“两者都”的关系,或门体现了“其中之一”的关系,非门体现了“相反的”关系。

它们在数字电子电路中扮演着不可或缺的角色,通过它们的组合可以实现各种复杂的逻辑运算。

这三种逻辑门的符号和逻辑关系对于理解数字电子电路和逻辑运算有着重要的意义。

(完整word版)数字电路逻辑符号大全

(完整word版)数字电路逻辑符号大全

标签:逻辑门符号
逻辑门符号
《逻辑门电路符号图》
逻辑门电路符号图包括与门,或门,非门,同或门,异或门,还有这些门电路的逻辑表达式,1.与逻辑
(1)与逻辑:当决定某一事件的所有条件都具备时,该事件才会发生.
(2)真值表:符号0和1分别表示低电平和高电平,将输入变量可能的取值组合状态及其对应的输出状态列成的表格。

表11。

2 与门真值表
A B Y
000
010
100
111
三态门逻辑符号如下:
E N=1,=0,
E N=0,Y为高阻状态=1,Y为高阻状态
常用逻辑门电路符号:
与门与非门非门(反相器)
/
或门或非门与或非门
Y=
4、异或逻辑运算(半加运算)
异或运算通常用符号"⊕"表示,其运算规则为:
0⊕0=0 0同0异或,结果为0
0⊕1=1 0同1异或,结果为1
1⊕0=1 1同0异或,结果为1
1⊕1=0 1同1异或,结果为0
即两个逻辑变量相异,输出才为1相同输出为零,只有完全相同的两个字节抑或才会全为零,表示校验
正确.
OC与非门三态与非门
(外接集电极电C="1",=0,
阻后) C="0",高阻=1,高阻
C=1,Y=A =0,Y=A
C=0,Y高阻=1,Y高阻
C=1,=0,
C=0,Y高阻=1,Y高阻
系统分类: 消费电子 | 用户分类:专业术语解释 | 来源: 转贴 | 【推荐给朋友】|【添加到收藏夹】
该用户于2009/2/17 16:14:05编辑过该文章。

7种逻辑门电路的逻辑符号和逻辑表达式

7种逻辑门电路的逻辑符号和逻辑表达式

序在现代电子学和计算机科学中,逻辑门电路是至关重要的基础组成部分。

而逻辑门电路最基本的形式就是7种逻辑门,它们分别是与门、或门、非门、异或门、与非门、或非门以及同或门。

每种逻辑门都有其独特的逻辑符号和逻辑表达式,它们在数字电子电路中扮演着不可或缺的角色。

接下来,我们将深入探讨这7种逻辑门电路的逻辑符号和逻辑表达式,并从浅到深逐步分析它们的原理和应用。

一、与门与门是最简单的逻辑门之一,它的逻辑符号是一个“Λ”形状,而其逻辑表达式可以用“Y=A·B”来表示。

在与门电路中,只有当输入的布尔值均为1时,输出才会为1;否则输出为0。

这个逻辑表达式实际上就表明了与门的原理,即只有当所有输入为真时,输出才为真。

二、或门或门的逻辑符号是一个“V”形状,而其逻辑表达式可以用“Y=A+B”来表示。

与与门相反,或门只要有一个输入为1,输出就为1;只有当所有输入为0时,输出才为0。

可以看出,或门的逻辑表达式和与门的逻辑表达式是相对应的。

三、非门非门的逻辑符号是一个“¬”形状,而其逻辑表达式可以用“Y=¬A”来表示。

非门的原理是将输入的布尔值取反,即如果输入为1,则输出为0;如果输入为0,则输出为1。

四、异或门异或门的逻辑符号是一个带有一个加号的“⊕”形状,而其逻辑表达式可以用“Y=A⊕B”来表示。

异或门的原理是只有当输入不同时为1时,输出为1;否则输出为0。

异或门也常被用于比较两个输入是否相等的情况。

五、与非门与非门实际上是与门和非门的组合,其逻辑符号是一个与门后加上一个小圆点的符号,而其逻辑表达式可以用“Y=¬(A·B)”表示。

与非门的原理是先进行与运算,再对结果取反。

六、或非门或非门实际上是或门和非门的组合,其逻辑符号是一个或门后加上一个小圆点的符号,而其逻辑表达式可以用“Y=¬(A+B)”表示。

或非门的原理是先进行或运算,再对结果取反。

七、同或门同或门的逻辑符号是一个带有一个加号和一个横线的“⊙”形状,而其逻辑表达式可以用“Y=¬(A⊕B)”表示。

逻辑门符号及电路

逻辑门符号及电路

R1
R2
+VCC R4
VCC 2B 2C 2D 2E 2F 2Y
T3
A
T1
T2
T4 Y
14 13 12 11 10 9 8 74LS51
B
R'1
T5 R3 R5
1234567
C
T'1
T'2
D
TTL与或非门电路
2A 1A 1B 1C 1D 1Y GND 74LS51 的引脚排列图
①A和B都为高电平(T2导通)、或C和D都为高电平(T‘2导通) 时,T5饱和导通、T4截止,输出Y=0。 ②A和B不全为高电平、并且C和D也不全为高电平(T2和T‘2同时 截止)时,T5截止、T4饱和导通,输出Y=1。
导通 截止
&
Y
5V 0V 0.7V 截止 导通 B
5V 5V 2021/5/25
5V
截止 截止
11
2.二极管或门
5V A
D1 0V B
D2
uA uB
0V 0V 0V 5V 5V 0V 5V 5V
2021/5/25
uY
0V 4 .3 V 4 .3 V 4 .3 V
AB
Y
00
0
Y
R
3kΩ
01
1
10
1
11
①A、B中只要有一个为1,即高电平,如A=1,则iB1就会经过 T1集电结流入T2基极,使T2、T5饱和导通,输出为低电平,即Y =②0A。=B=0时,iB1、i'B1均分别流入T1、T'1发射极,使T2、T'2、T5 均截止,T3、T4导通,输出为高电平,即Y=1。
2021/5/25

三种基本逻辑门电路

三种基本逻辑门电路

三种基本逻辑门电路三种基本的门:全部其它组合规律功能都可由这三种门单之产生。

规律门表示法符号希尔符号NOT (非)ā 或/A — 或/ (非、负)AND (与)A * B * 与(积)OR (或)A+B + (和)二规律门等效于AND 和NOT : NAND 与非门OR 和NT : NOR 或非任何规律功能都可以表示为“ 与非门” 或者“ 或非门” 的功能。

三种基本规律门的真值表运算符的优先级正常的运算次序是:NOT ,AND ,OR, 括号中的内容总是比表达式的其它部分先进行运算。

例:交换律、结合律和安排律AND 功能和OR 功能可以交换和结合。

操作数可以任何次序消失,而不会影响功能的运算结果:1. 交换律2. 结合律3. 安排律1. A*(B+C) = (A*B)+(A*C) :象标准的代数规章(乘对加)2. A+(B*C) = (A+B)*(A+C) :真值表或规律变换证明( 加对乘)4.对偶性对偶性原理:– 假如用*替换+,+替换*,1替换0,0替换1,则替换后的表达式与原等式等同。

– 因此只要证明第一条安排律是正确的,通过对偶性就能证明其次条安排律的正确性。

5. 规律运算的法则四条基本公理– 公理1 :a. X+0=X b. X*0=0– 公理2 :a. X+/X=1 b. X*/X=0– 公理3 :a. X+Y=Y+X b. X*Y=Y*X– 公理4 :a. X*(Y+Z)=(X*Y)+(X*Z) b. X+(Y*Z)=(X+Y) *(X+Z)九条基本交理– 定理1 :a. X+X=X b. X*X=X– 定理2 :a. X+1=1 b. X*0=0– 定理3 :/(/X)=X ( 不包括具有对偶的元素+ 、* 、1 或0) – 定理4 :a. X+(Y+Z)=(X+Y)+Z l b. X*(Y*Z)=(X*Y) *Z– 定理5 :a. /(X+Y)=/X*/Y b. /(X*Y)=/X+/Y– 定理6 :a. X+(X*Y)=X b. X*(X+Y)=X– 定理7 :a. (X+Y)+(X*/Y)=X b. (X+Y) *(X+/Y)=X– 定理8 :a. X+(/X*Y)=X+Y b. X*(/X+Y)=X*Y– 定理9 : a. (X*Y)+(/X*Z)+(Y*Z)=(X*Y)+(/X*Z) b. (X+Y) *(/X+Z)*(Y*Z)=(X+Y)*(/X+Z)除定理3 ,每个定理或公理都有二种形式,属对偶性原理的关系。

基本逻辑门符号

基本逻辑门符号

基本逻辑门符号
基本逻辑门符号主要有以下几种:
1. 与门(AND Gate):使用符号"&"表示。

当输入信号都为1时,输出为1,否则输出为0。

2. 或门(OR Gate):使用符号"|"表示。

当输入信号至少有一
个为1时,输出为1,否则输出为0。

3. 非门(NOT Gate):使用符号"~"表示。

当输入信号为1时,输出为0;当输入信号为0时,输出为1。

4. 异或门(XOR Gate):使用符号"^"表示。

当输入信号仅有
一个为1时,输出为1,否则输出为0。

5. 与非门(NAND Gate):使用符号"⊼"表示。

与门的输出取反。

6. 或非门(NOR Gate):使用符号"↓"表示。

或门的输出取反。

7. 异或非门(XNOR Gate):使用符号"⊕"表示。

异或门的输
出取反。

这些符号在逻辑电路图中用于表示不同的逻辑运算。

基本逻辑门电路符号和口诀

基本逻辑门电路符号和口诀

无论多么复杂的单片机电路,都是由若干基本电路单元组成的。

常用的逻辑门电路最基本的门电路是与、或、非门,把它们适当连接可以实现任意复杂的逻辑功能。

用小规模集成电路构成复杂逻辑电路时,最常用的门电路是与(AND)、或(OR)、非(INV BUFF)、恒等(BUFF)、与非(NAND)、或非(NOR)、异或(XOR)。

主要是因为这7种电路既可以完成基本逻辑功能,又具有较强的负载驱动能力,便于完成复杂而又实用的逻辑电路设计。

1.与门与门是一个能够实现逻辑乘运算的、多端输入、单端输出的逻辑电路,逻辑函数式:F=A·B 其记忆口诀为:有0出0,全1才1。

2.或门或门是一个能够实现逻辑加运算的多端输入、单端输出的逻辑电路,逻辑函数式:F=A+B 其记忆口诀为:有1出1,全0才0。

3.非门实现非逻辑功能的电路称为非门,有时又叫反相缓冲器。

非门只有一个输入端和一个输出端,逻辑函数式是:F =A非非门逻辑符号4.恒等门实现恒等逻辑功能的电路称为恒等门,又叫同相缓冲器。

恒等门只有一个输入端和一个输出端,逻辑函数式是:F = A同相缓冲器和反相缓冲器在数字系统中用于增强信号的驱动能力。

5.与非门与和非的复合运算称为与非运算,逻辑函数式是:F = 非其记忆口诀为:有0出1,全1才0。

6.或非门或与非的复合运算称为或非运算,逻辑函数式是:F = A+B非其记忆口诀为:有1出0,全0才1。

7.异或门异或逻辑也是一种广泛应用的复合逻辑,其记忆口诀为:相同出0,不同出1。

逻辑门电路是单片机外围电路运算、控制功能所必需的电路。

在单片机系统中我们经常使用集成逻辑电路(常称为集成电路)。

一片集成逻辑门电路中通常含有若干个逻辑门电路,如7400为4重二输入与非门,即7400内部有4个二输入的与非门。

高速CMOS74HC逻辑系列集成电路具有低功耗、宽工作电压、强抗干扰的特性,是单片机外围通用集成电路的首选系列。

随着单片机内部功能的不断增强和硬件软件化,外部所用的逻辑门电路将越来越少。

八种逻辑门电路符号

八种逻辑门电路符号

八种逻辑门电路符号
基本逻辑门电路符号是:
“!”(逻辑非)、“&&”(逻辑与)、“||”(逻辑或)是三种逻辑运算符。

“逻辑与”相当于生活中说的“并且”,就是两个条件都同时成立的情况下“逻辑与”的运算结果才为“真”。

“门”是这样的一种电路:它规定各个输入信号之间满足某种逻辑关系时,才有信号输出,通常有下列三种门电路:与门、或门、非门(反相器)。

扩展资料;
在逻辑中,经常使用一组符号来表达逻辑结构。

因为逻辑学家非常熟悉这些符号,他们在使用的时候没有解释它们。

所以,给学逻辑的人的下列表格,列出了最常用的符号、它们
的名字、读法和有关的数学领域。

此外,第三列包含非正式定义,第四列给出简短的例子。

要注意,在一些情况下,不同的符号有相同的意义,而同一个符号,依赖于上下文,有不同的意义。

基本逻辑门电路

基本逻辑门电路

LxxSky
三、非逻辑和非门电路
能实现非逻辑功能的电路称为非门电路, 又称反相器, 简称非门
非门电路的电路图形符号
非逻辑函数表达式:

=
非逻辑功能为: “有0出1,有1出0”
LxxSky
连连看
逻辑功能
逻辑门电路
有0出1, 有1出0
与门
有1出1, 全0出0
或门
有0出0, 全1出1
非门
真值表
逻辑表达式
或逻辑的真值表
Y=A+B
3.真值表
若用0表示低电平,1表示高电平,或门电路的真值表
从真值表分析可以看出, 或逻辑功能为“有1出1, 全0出0”。
LxxSky
二、或逻辑和或门电路
能实现或逻辑功能的电路称为或门电路, 简称或门。
或门电路的电路图形符号
或逻辑函数表达式:
Y=A+B
或逻辑功能为: “有1出1,全0出0”
LxxSky
基本逻辑门电路
蓝魔
LxxSky
学习目标
1
了解基本逻辑门电路
2
熟练掌握与、或、非门的逻辑表达式、逻辑符号
3
能够独立绘制与、或、非门的真值表, 并分析其
逻辑功能
LxxSkyຫໍສະໝຸດ 概念在数字电路中往往用输入信号表示“条件”, 用输出信号表示“结果”,
而条件与结果之间的因果关系称为逻辑关系, 能实现某种逻辑关系的数字电
Y=A·B或Y=AB
3.真值表
若用0表示低电平, 1表示高电平, 这种表示门电路输入与输
出逻辑关系的表格称为真值表。
LxxSky
一、与逻辑和与门电路
4.与门电路
能实现与逻辑功能的电路称为与门电路, 简称与门, 门电路可以用二极管、三

数学逻辑电路基本逻辑门和符号

数学逻辑电路基本逻辑门和符号

数学逻辑电路基本逻辑门和符号
数学逻辑电路是现代电子技术中不可或缺的一部分,它广泛应用于计算机、通信、控制等领域。

而逻辑门是数学逻辑电路的核心组成部分,它用于实现逻辑运算,是我们进行数字逻辑分析和设计的基础。

逻辑门有多种类型,其中最基本的有三种:与门、或门和非门。

它们的符号分别为“∧”、“∨”、“”,其含义如下:
与门:当且仅当所有输入信号都为1时,输出信号才为1。

或门:当输入信号中至少有一个为1时,输出信号才为1。

非门:当输入信号为1时,输出信号为0;当输入信号为0时,输出信号为1。

此外,组合逻辑电路可以由以上基本门组合而成,实现更为复杂的逻辑运算。

在实际应用中,我们可以通过逻辑门的组合来构建各种数字电路,包括算术逻辑单元、存储器、计数器等。

总的来说,数学逻辑电路的基本逻辑门和符号是我们进行数字逻辑设计的基础,在理解和掌握它们的基础上,我们可以更好地进行数字电路设计和优化。

- 1 -。

基本逻辑门电路符号和口诀

基本逻辑门电路符号和口诀

无论多么复杂的单片机电路,都是由若干基本电路单元组成的。

2.2.1 常用的逻辑门电路最基本的门电路是与、或、非门,把它们适当连接可以实现任意复杂的逻辑功能。

用小规模集成电路构成复杂逻辑电路时,最常用的门电路是与(AND)、或(OR)、非(INV BUFF)、恒等(BUFF)、与非(NAND)、或非(NOR)、异或(XOR)。

主要是因为这7种电路既可以完成基本逻辑功能,又具有较强的负载驱动能力,便于完成复杂而又实用的逻辑电路设计。

1.与门与门是一个能够实现逻辑乘运算的、多端输入、单端输出的逻辑电路,逻辑函数式:F = A·B 其记忆口诀为:有0出0,全1才1。

2.或门或门是一个能够实现逻辑加运算的多端输入、单端输出的逻辑电路,逻辑函数式:F = A+B其记忆口诀为:有1出1,全0才0。

3.xx实现非逻辑功能的电路称为xx,有时又叫反相缓冲器。

xx 只有一个输入端和一个输出端,逻辑函数式是:F =A非xx逻辑符号4.恒等门实现恒等逻辑功能的电路称为恒等门,又叫同相缓冲器。

恒等门只有一个输入端和一个输出端,逻辑函数式是:F = A同相缓冲器和反相缓冲器在数字系统中用于增强信号的驱动能力。

5.与xx与和非的复合运算称为与非运算,逻辑函数式是:F = A.B 非其记忆口诀为:有0出1,全1才0。

6.或xx或与非的复合运算称为或非运算,逻辑函数式是:F = A+B非其记忆口诀为:有1出0,全0才1。

7.异或门异或逻辑也是一种广泛应用的复合逻辑,其记忆口诀为:相同出0,不同出1。

逻辑门电路是单片机外围电路运算、控制功能所必需的电路。

在单片机系统中我们经常使用集成逻辑电路(常称为集成电路)。

一片集成逻辑门电路中通常含有若干个逻辑门电路,如7400为4重二输入与xx,即7400内部有4个二输入的与xx。

高速CMOS74HC逻辑系列集成电路具有低功耗、宽工作电压、强抗干扰的特性,是单片机外围通用集成电路的首选系列。

数学逻辑电路基本逻辑门和符号

数学逻辑电路基本逻辑门和符号

数学逻辑电路基本逻辑门和符号逻辑门,是电子电路中的一种基本组件,用于进行逻辑运算,包括布尔代数运算、位运算等。

根据其所实现的逻辑运算类型不同,逻辑门可分为多种类型。

1. 逻辑门的分类最基本的逻辑门有三种,分别是与门、或门、非门。

下面分别来介绍这三种逻辑门。

1.1 与门(AND Gate)与门是两个或多个输入信号进行逻辑乘法操作的逻辑门,只有当所有输入均为高电平时,输出才为高电平。

与门的符号为“&”,其真值表如下:| 输入A | 输入B | 输出A & B || :---: | :---: | :-------: || 0 | 0 | 0 || 0 | 1 | 0 || 1 | 0 | 0 || 1 | 1 | 1 |非门是对一个输入信号进行逻辑取反操作的逻辑门,输出为其输入信号的反相信号。

| 输入A | 输出~A || :---: | :----: || 0 | 1 || 1 | 0 |在基本逻辑门的基础上,还可以通过组合实现其他类型的逻辑门。

例如,通过组合两个或门和一个非门可以实现与非门(NAND Gate);通过组合两个与门和一个非门可以实现或非门(NOR Gate)等。

逻辑门在数字电路中广泛运用,可用于实现各种逻辑电路功能。

例如,可以通过组合多个与门和或门实现加法器、减法器等算术逻辑电路;通过组合多个与门和非门实现存储器、触发器等时序逻辑电路;通过组合多个与门和异或门实现编码器、译码器等组合逻辑电路。

除了数字电路,逻辑门还广泛应用于计算机组成原理、通信电路、自动控制等领域。

它们在这些领域中的作用是关键且不可替代的。

总之,逻辑门作为数字电路中的基本组件,具有重要的理论和实际应用价值。

更好地掌握逻辑门的基本概念和原理,对于理解数字电路、计算机系统和各种电子设备的工作原理将大有帮助。

逻辑门电路

逻辑门电路

当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为高电平;当输入端A 一定为高电平;当输入端A、 B的电平状态相同时输出L 的电平状态相同时输出L 一定为低电平。 一定为低电平。
4. 同或门
◆ 能够实现 同或” L = A ⋅ B + A ⋅ B = A⊙B “同或”逻辑关系的 电路均称为“同或门” 由非门、 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。 及逻辑符号如下图所示。
(5)TTL与非门74LS00集成电路示意图 TTL与非门 与非门74LS00集成电路示意图
◆ 4个双输入与非门, 个双输入与非门, 此类电路多数采用双列直插式封装。 ◆ 此类电路多数采用双列直插式封装。
2.2.2 MOS系列门电路 MOS系列门电路
◆ CMOS门电路举例 CMOS门电路举例
▲ CMOS非门电路 CMOS非门电路 ▲ CMOS与非门 CMOS与非门
第2章
2.1 逻辑门电路
逻辑门电路
◆ 基本门电路:与门、或门、非门(又称反相器)。 基本门电路:与门、或门、非门(又称反相器 反相器)。
与门
或门
非门
2.1.1 非门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“非”逻辑关系。 逻辑关系。
非门电路: 非门电路:
● A=1(+5V)时,T导通,L A=1(+5V) 导通, 输出0.2V 0.3V,即 L=0; 输出0.2V~0.3V,即:L=0; ● A=0(0V)时,T截止,L A=0(0V) 截止, 输出近似+5V,即 L=1; 输出近似+5V,即:L=1; 逻辑符号: 逻辑符号: 波形图: 波形图:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
0 0 1 1
B
0 1 0 1
Y=AB
Y
0 0 0 1
5V 0V
Y
uA uB
0V 0V 0V 5V 5V 0V
2014年10月15日星期三8时14 分29秒
uY
0.7V 0.7V 0.7V 5V
D1 D2 导通 导通 导通 截止 截止 导通 截止 截止
A B
&
Y
11
5V 5V
2.二极管或门
5V 0V A D1 B D2 R Y
D
S
ui
0
工作原理电路 截止状态
UT
uGS(V) 0
uDS(V)
转移特性曲线
输出特性曲线
+VDD RD D S uo=+VDD
导通状态
+VDD RD D S
uo≈0
10
G ui<UT
2014年10月15日星期三8时14 分29秒
G
ui>UT
二、三种基本门电路
1、二极管与门
D1 A D2 B +VCC(+5V) R 3kΩ
5 0.7 iB mA 1mA 4.3 2014年10月15日星期三8时14
分29秒
YA
13
RD 20kΩ
+VDD +10V Y D B A 1 Y
A
G S
电路图
逻辑符号
①当uA=0V时,由于uGS=uA=0V,小于开启电压UT,所以MOS管 截止。输出电压为uY=VDD=10V。 ②当uA=10V时,由于uGS=uA=10V,大于开启电压UT,所以 MOS管导通,且工作在可变电阻区,导通电阻很小,只有几百欧 姆。输出电压为uY≈0V。
7
Rc Rb
+VCC iC
c
iB(μ A)
iC (mA)
直流负载线
80μ A 60μ A
b iB
uo
VCC Q2 Rc 饱

ui
和 区
Q
大 40 μ A 区20μ
Q1 i =0 B VCC A
e
0 工作原理电路 0.5
uBE (V)
0 UCES
uCE (V)
输入特性曲线
输出特性曲线
截止区
截止状态
+VCC b c Rc uo=+VCC
2014年10月15日星期三8时14 分29秒
Y A
14
任务基础知识二——TTL集成门电路
1.TTL与非门
R1 3kΩ A B T1 R2 750Ω T3 T2 R3 360Ω R5 3kΩ R4 100Ω
+VCC(+5V)
+VCC(+5V)
T4 T5
Y
A B
D1 D2
R1 3kΩ b1 D3 c1
2014年10月15日星期三8时14 分29秒
I BS 0.094mA
因为iB>IBS,三极管工作在饱 和状态。输出电压: uo=UCES=0.3V
9
uo=uCE=VCC-iCRc=5-1.5×1=3.5V
3.MOS管的开关特性 +VDD RD G ui
iD (mA)
iD (mA)
uGS=10V 8V 6V 4V 2V
Y
74LS04 1 2 3 4 5 6 7
1A 1Y TTL 反相器电路
2A 2Y 3A 3Y GND
6 反相器 74LS04 的引脚排列图
①A=0时,T2、T5截止,T3、T4导通,Y=1。 ②A=1时,T2、T5导通,T3、T4截止,Y=0。
2014年10月15日星期三8时14 分29秒
YA
20
TTL 与非门电路
2014年10月15日星期三8时14 分29秒
T 1 的等效电路
15
+VCC(+5V) R1 1V 3kΩ
0.3V A 3.6V B
R2 750Ω + T 2 0.7V R3 360Ω
R4 100Ω T3 T4 + 0.7VT5
T1
Y
R5 3kΩ
①输入信号不全为1:如uA=0.3V, uB=3.6V
图2-1 获得高、低电平的方法
2014年10月15日星期三8时14 分29秒
图2-2 高、低电平的逻辑赋值 a) 正逻辑 b) 负逻辑
4
一、二极管、三极管的开关特性
1.二极管的开关特性
二极管符号: Ui<0.5V时,二极 管截止,iD=0。
UBR
+ uD

正极
iD(mA)
IF
负极
D
uD(V)
0
0.5 0.7
Y A B
21
TTL与或非门
+VCC R1 T1 R'1 T '1 T '2 R2 T3 A B T2 R3 R5 R4 T4 T5 VCC 2B 2C 2D 2E 2 F 2 Y 14 Y 1 2 3 13 12 11 10 9 8
74LS51 4 5 6 7
C D
2 A 1A
1B 1C 1D 1Y GND
真值表
uA uB
0.3V 0.3V 0.3V 3.6V 3.6V 0.3V 3.6V 3.6V
uY
3.6V 3.6V 3.6V 0.3V
A
0 0 1 1
B
0 1 0 1
Y
1 1 1 0
输入有低,输出为高; 输入全高,输出为低。
2014年10月15日星期三8时14 分29秒
逻辑表达式
观看TTL与非门原理动画
NC 1C 1D 1Y GND
74LS00 的引脚排列图
74LS20 的引脚排列图
74LS00内含4个2输入与非门,74LS20内含2个4输 入与非门。
2014年10月15日星期三8时14 分29秒
74LS00管脚介绍动画演示
19
2.TTL非门、或非门、与或非门、与门、或门及异或门
TTL非门
+VCC R1 3kΩ A T1 R2 750Ω T3 T2 R3 360Ω R5 3kΩ R4 100Ω T4 T5 VCC 4A 4 Y 5 A 5 Y 6A 6 Y 14 13 12 11 10 9 8
逻辑门符号及电路
仪表自动化应用常识 马德红
2012.12.12
2014年10月15日星期三8时14 分29秒 1
任务目标与要求
1.知道常用集成逻辑门电路的符号、逻辑功能。 2.用仪器仪表测试常用集成逻辑门电路的逻辑功能。 3.用仪器仪表测试常用集成逻辑门电路的应用电路。 4.分析和仿真常用集成逻辑门电路及其应用电路。 5.编写文档记录常用集成逻辑门电路的学习过程和测试结 果。(一组交一份) 6.相互交流和学习。
2014年10月15日星期三8时14 分29秒






iB=0 发射结反偏 集电结反偏 uBE<0,uBC<0 iC=0 uCE=VCC 很大, 相当开关断开
0<iB<IBS 发射结正偏 集电结反偏 uBE>0,uBC<0 iC=β iB uCE=VCC- iC Rc 可变
iB>IBS 发射结正偏 集电结正偏 uBE>0,uBC>0 iC=ICS uCE=UCES= 0.3V 很小, 相当开关闭合
A
0 0 1 1
B
0 1 0 1
Y=A+B
Y
0 1 1 1
3kΩ
uA uB
0V 0V 0V 5V 5V 0V
2014年10月15日星期三8时14 分29秒
uY
0V 4.3V 4.3V 4.3V
D1 D2 截止 截止 截止 导通 A 导通 截止 B 导通 导通
≥1
Y
12
5V 5V
3.三极管非门
+5V
TTL或非门
+VCC R1 T1 R'1 B T '1 T '2 TTL 或非门电路 R2 T3 A T2 R3 R5 R4 T4 T5 VCC 3Y 3B 3 A 4 Y 4B 4 A 14 13 12 11 10 9 8
Y
1 2 3
74LS02 4 5 6 7
1Y 1B
1A 2Y 2B 3A
GND
1k Ω
A
4.3k Ω
Y
β =40
A
1
Y
三极管临界饱和时 的基极电流为: 5 0.3 I BS 0.16 mA 30 1 iB>IBS,三极管工作在 饱和状态。输出电压uY =UCES=0.3V。
电路图逻辑符号源自A 1Y 1 0①uA=0V时,三极管截止,iB=0,iC=0,输 0 出电压uY=VCC=5V ②uA=5V时,三极管导通。基极电流为:
Y A B C D
22
与 门 或 门
A B
& AB
1
Y=AB=AB
1
A B
A B
&
Y
A B
A B
≥1 A+B
&
Y=A+B=A+B
≥1
Y
异 或 门
≥1 ≥1
Y
A B
=1
Y
Y A B A B A B( A B) ( A B )( A B) A B AB
伏安特性
2014年10月15日星期三8时14 分29秒
Ui>0.5V时, 二极管导通。
+ ui - 开关电路
RL
+ uo -
相关文档
最新文档