平面向量历年高考题汇编难度高
高考数学专题复习题:平面向量
高考数学专题复习题:平面向量一、单项选择题(共8小题)1.已知向量(1,)x =a ,(1,3)=−b .若向量2+a b 与向量b 垂直,则x 的值为( ) 33||||4AC CB =.若AB BC λ=,则λ34 C.74 3.已知向量a ,b 不共线,设k =+u a b ,2=−v a b ,若//u v ,则实数k 的值为( )A.4.如图所示,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近点C 的三等分点,点F 为线段BC 的中点,则FE =( )A.1151818AB AC −+B.1111189AB AC −+C.114189AB AC −+D.1526AB AC −+第4题图 第5题图 第6题图5.如图,在等边三角形ABC 中,如果3BD DC =,那么向量AB 在向量AD 上的投影向量为( )AD AD AD AD 6.如图,在ABC △中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,如果AM AB λ=,(0,0)AN AC μλμ=>>,那么μ值是( )7−7.单位向量a ,b ,c 满足22−+=0a b c ,则cos ,2〈−〉=a b c ( )8.若AB AC ⊥,||AB t =,1||AC =,ABC 平面内一点,2||||AB AC AP AB AC =+,则的最大值为( )A.13B.二、多项选择题(共2小题)9.已知向量,,其中,则下列说法中正确的是( )A.若,则B.若a 与b 的夹角为锐角,则C.若1x =,则a 在b 上的投影向量为bD.若,则10.在ABC △中,90A ∠=︒,3AB =,4AC =,点D 为线段AB 上靠近A 点的三等分点,E 为CD 的中点,则下列结论正确的是( )A.16AE AB AC = AE 与EB 的夹角的余弦值为 C.AE CD ⋅=三、填空题(共5小题)11.图1是某晶体的阴阳离子单层排列的平面示意图,其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,如果A ,B ,C ,D 是其中四个圆的圆心,那么AB CD ⋅=________.12.已知向量(2,5)=a ,(,4)λ=b ,若//a b ,则λ=________.13.平面向量(1,2)=a ,(4,2)=b ,()m m =+∈R c a b ,且c 与a 的夹角等于c 与b 的夹PB PC ⋅5−−+(1,3)=a (2,2)x x =−b x ∈R ⊥a b 6x =6x <||||||+=+a b a b 27x =角,则m =________.14.在ABC △中,2AB =,3AC =,A =3255AD AB AC =+,则AB 与AD 夹角的大小为________.15.如图,在平行四边形ABCD 中,已知M 是BC 中点,DE AM ⊥于E ,2AB AD =,cos DAB ∠=AB =a ,,以,为基底表示EC ,则EC =________.AD =b a b。
高中数学平面向量(有难度含答案)
AM 2 .设 OA x , 0 x 2
OAOB OAOC OA OB OC 2OAOM
2 OA OM 2x 2 x 2 x2 2x
2 x
2 2
2
1
所以当 x
2
,即
OA
2 时,原式取得最小值为 1.
2
2
故选:C. 【点睛】
方法点睛:(1)向量求和经常利用平行四边形法则转化为中线的 2 倍; (2)利用向量三点共线,可以将向量的数量积转化为长度的乘积; (3)根据向量之间模的关系,二元换一元,转化为二次函数求最值即可. 11.B 【分析】
示 在 上的射影. 解:∵△ABC 是等腰三角形,CP 是∠ACB 的角平分线, ∴CP⊥AB,AP=BP= =3.
∵M 在 PC 上,∴ 在 上的射影为 BP=3.
即 BMBA =3. BA
故选 C.
考点:平面向量数量积的运算;平面向量的基本定理及其意义.
10.C
【分析】
根据向量求和的平行四边形法则可以得出 OA OB OA OC 2OA OM ,再利用向量的
点,且满足 = +λ(
+
)(λ>0),则 BMBA 的值为( )
BA
A.1 B.2 C.3 D.4
10. ABC 中, AB AC , M 是 BC 中点, O 是线段 AM 上任意一点,且
AB
AC
2
,则
OAOB
OAOC
的最小值为(
)
A.-2
B.2
C.-1
D.1
11.如图是由等边△ AIE 和等边△ KGC 构成的六角星,图中的 B , D , F , H , J ,
以点 O 为坐标原点, OD 为 x 轴, OA 为 y 轴建立平面直角坐标系,设等边三角形的边长为
高考数学(理)真题专题汇编:平面向量
高考数学(理)真题专题汇编:平面向量一、选择题1.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .33.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π64.【来源】2018年高考真题——理科数学(天津卷)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅AE BE 的最小值为(A) 2116(B) 32(C) 2516(D) 35.【来源】2018年高考真题——理科数学(全国卷II ) 已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )= A .4B .3C .2D .06.【来源】2018年高考真题——理科数学(全国卷Ⅰ) 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A.43AB -41ACB. 41AB -43AC C. 43AB +41AC D. 41AB +43AC7.【来源】2016年高考真题——理科数学(天津卷)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( )(A )85-(B )81(C )41(D )8118.【来源】2017年高考真题——数学(浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OB OA ⋅,I 2=OC OB ⋅,I 3=OD OC ⋅,则A .I 1<I 2<I 3B .I 1<I 3 <I 2C .I 3<I 1<I 2D . I 2<I 1<I 39.【来源】2017年高考真题——理科数学(全国Ⅲ卷)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .22C 5D .210.【来源】2017年高考真题——理科数学(全国Ⅱ卷)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A.-2B.23-C. 43-D.-111.【来源】2016年高考真题——理科数学(新课标Ⅱ卷)12.【来源】2014高考真题理科数学(福建卷)在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e二、填空题13.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【来源】2019年高考真题——理科数学(天津卷)在四边形ABCD 中,,23,5,30ADBC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= . 15.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知a ,b 为单位向量,且a ·b =0,若25=-c a b ,则cos ,<>=a c ___________. 16.【来源】2019年高考真题——理科数学(全国卷Ⅰ)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.17.【来源】2019年高考真题——数学(江苏卷)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.18.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 19.【来源】2018年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 20.【来源】2017年高考真题——数学(浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是_______.21.【来源】2017年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若20≤⋅PB PA ,则点P 的横坐标的取值范围是 .22.【来源】2017年高考真题——数学(江苏卷)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°。
专题11 平面向量专项高考真题总汇(带答案及解析)
专题11平面向量1.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.2.【2021·全国高考真题】已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP = B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC3.【2020年高考全国III 卷理数】6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b A .3135-B .1935-C .1735D .1935【答案】D【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.4.【2020年新高考全国Ⅰ卷】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-【答案】A 【解析】如图,AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB⋅的取值范围是()2,6-,故选:A .【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.5.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.6.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .−3B .−2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=- ,1BC == ,得3t =,则(1,0)BC = ,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅ ,即22||||AB AC AC AB +>- ,因为AC AB BC -= ,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.8.【2021·浙江高考真题】已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.9.【2021·全国高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.10.【2021·全国高考真题】已知向量0a b c ++= ,1a =,2b c == ,a b b c c a ⋅+⋅+⋅=_______.【答案】92-【分析】由已知可得()20a b c++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=- .故答案为:92-.11.【2021·全国高考真题(理)】已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.12.【2021·北京高考真题】(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅=_______;a b ⋅=_______.【答案】03【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+= ,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.13.【2020年高考全国Ⅰ卷理数】设,a b 为单位向量,且||1+=a b ,则||-=a b ______________.【解析】因为,a b 为单位向量,所以||||1==a b所以||1+====a b ,解得:21⋅=-a b ,所以||-===a b ,故答案为:.【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.14.【2020年高考全国II 卷理数】已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.15.【2020年高考天津】如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.【答案】(1).16;(2).132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠= ,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=,以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴ ,,∵3,60AB ABC =∠=︒,∴A 的坐标为333,22A ⎛⎫⎪⎪⎝⎭,∵又∵16AD BC = ,则5,22D ⎛⎫⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤),5,22DM x ⎛⎫=-- ⎪⎝⎭,3,22DN x ⎛⎫=-- ⎪⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭ ,所以,当2x =时,DM DN ⋅ 取得最小值132.故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.16.【2020年高考北京】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.;1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.17.【2020年高考浙江】已知平面单位向量1e ,2e满足122||-≤e e .设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ的最小值是_______.【答案】2829【解析】12|2|e e -≤u r u r Q 124412e e ∴-⋅+≤u r u r,1234e e ∴⋅≥u r u r ,222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅u r u r u r u r r r u r u r u r u r u r u rr r 12424228(1(1)3332953534e e =-≥-=+⋅+⨯u r u r .故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.18.【2020年高考江苏】在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是▲.【答案】185【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>,∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭ ,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC = ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=> .19.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________.【答案】23【解析】因为2=-c a ,0⋅=a b ,所以22⋅=-⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.20.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= ___________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5(,)22D .因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒,因为AE BE =,所以30BAE ∠=︒,所以直线BE 的斜率为33,其方程为3(3y x =-,直线AE 的斜率为33-,其方程为33y x =-.由(333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x 1y =-,所以1)E -.所以35(,)1)122BD AE =-=- .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.21.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是___________.3【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即,AB = 故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.22.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++ 的最小值是___________;最大值是___________.【答案】0; 0所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.。
平面向量历年考题汇编——难度高
数 学平面向量 平面向量的概念及其线性运算1.★★(2014·辽宁卷L) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是 ( )A .p ∨qB .p ∧qC .)()(q p ⌝∧⌝D .)(q p ⌝∨ 2.★★(·新课标全国卷ⅠL ) 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________.3.★★(2014·四川卷) 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 4. ★★ (2014·新课标全国卷ⅠW)设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点,则=+FC EB ( )A . B.21 C. D. 215. ★★(2014福建W)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OD OC OB OA +++等于 ( )A .OM B. OM 2 C. OM 3 D. OM 4 6. ★★(2011浙江L )若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
7. ★★(2014浙江 L )记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设,a b为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+8. ★★ (2013广东W)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ).A .1B .2C .3D .4 9. ★★(2010浙江L )已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°,则α的取值范围是__________________ .10. ★★(2010安徽L)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A )a b = (B)·a b = (C) a b -与b 垂直 (D )a b ∥ 11. ★★ (2013课标全国Ⅱ,理)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________.12. ★★(2013山东卷L )已知向量与的夹角为01203=2=,若+=λ,且⊥,则实数λ的值为 。
高考数学压轴专题2020-2021备战高考《平面向量》难题汇编及答案
【最新】高考数学《平面向量》专题解析(1)一、选择题1.已知ABC V 为直角三角形,,6,82C BC AC π===,点P 为ABC V 所在平面内一点,则()PC PA PB ⋅+u u u r u u u r u u u r的最小值为( )A .252-B .8-C .172-D .1758-【答案】A 【解析】 【分析】根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值.【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r, 则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭.故选:A. 【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.2.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.3.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r(λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得: ()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.4.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u vC .5163BD OA OC =-u u u v u u u v u u u vD .1163BD OA OC =+u u u v u u u v u u u v【答案】A 【解析】 【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v ,∴1263BD OA OC =-u u u v u u u v u u u v ,故选:A. 【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.5.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r,则λ+μ的值为( )A .65B .85C .2D .83【答案】B 【解析】【分析】建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r,列出方程组求解即可. 【详解】建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u rCA CE DB λμ=+u u u r u u u r u u u r Q∴(-2,2)=λ(-2,1)+μ(1,2),2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=.故选:B 【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.6.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r( )A .2133BA AC +u uu r u u u rB .2133BA AC -u uu r u u u rC .1233BA AC +u uu r u u u rD .4233BA AC +u uu r u u u r【答案】A 【解析】 【分析】连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,则()()221121332333OD BO BE BA BC BA BA AC BA AC ===⨯+=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r . 故选:A.【点睛】本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题.7.在ABC V 中,4AC AD =u u u r u u u r,P 为BD 上一点,若14AP AB AC λ=+u u u r u u u r u u u r ,则实数λ的值( )A .34B .320C .316D .38【答案】C 【解析】 【分析】根据题意,可得出144λ=+u u u r u u u r u u u rAP AB AD ,由于B ,P ,D 三点共线,根据向量共线定理,即可求出λ. 【详解】解:由题知:4AC AD =u u u r u u u r ,14AP AB AC λ=+u u ur u u u r u u u r ,所以144λ=+u u u r u u u r u u u r AP AB AD ,由于B ,P ,D 三点共线,所以1414λ+=, ∴316λ=. 故选:C.【点睛】本题考查平面向量的共线定理以及平面向量基本定理的应用.8.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,则向量AF u u u r在向量BC uuu r 方向上的投影为( )A .2B .32C .1D .3【答案】A 【解析】 【分析】由1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r ,然后套用公式向量AF u u u r 在向量BC uuu r 方向上的投影||AF BCBC ⋅=u u u r u u u ru u u r ,即可得到本题答案. 【详解】因为点E 为BC 的中点,所以1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r,又因为EF BC ⊥,所以()22111()()()12222AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||AF BCBC ⋅=u u u r u u u ru u u r . 故选:A. 【点睛】本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.9.已知点1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,过原点O 且倾斜角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r,则椭圆C的离心率为( )A 1B .2C .12D .2【答案】A 【解析】 【分析】由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,,a c 的关系,求出离心率可得选项. 【详解】将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r两边平方,得120MF MF ⋅=u u u u r u u u u r ,即12121||2MF MF OM F Fc ⊥==,. 又60MOF ∠=︒,∴2MF c =,13MF c =,∴23a c c =+,∴31ce a==-. 故选:A. 【点睛】考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.10.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.11.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r( )A .134-B .54C .5D .154【答案】B 【解析】 【分析】据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果. 【详解】设AC 与BD 交于点O ,以O 为原点,BD u u u r的方向为x 轴,CA u u u r 的方向为y 轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.12.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( ) A .13-B .13C .12-D .12【解析】 【分析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点, 由向量的加减法运算, 得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩,则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.13.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( )A .233B .355C .322D .98【答案】A 【解析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a-因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-.所以,,bu c u cλλ+=-= 解之得,.22b c c bu c cλ+-==因为225+=8λμ,所以225()(),228b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ.14.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r,利用数量积的分配律即得解.【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r, ()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C 【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.15.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,则当,1[]2t ∈-时,a tb-r r 的最大值为( )AB C .2 D 【答案】D【解析】【分析】 根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用a tb -==r r 求解.【详解】 因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r , 所以1a =r ,1b =r ,0a b ⋅=r r ,所以a tb -==r r当[]2,1t ∈-时,maxa tb -=r r 故选:D【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.16.已知向量()()75751515a b ︒︒︒︒==r r cos ,sin ,cos ,sin ,则a b -r r 的值为 A .12 B .1 C .2 D .3【答案】B【解析】【分析】【详解】 因为11,1,cos75cos15sin 75sin15cos602a b a b ==⋅=︒︒+︒︒=︒=r r r r ,所以||1a b -===r r ,故选B. 点睛:在向量问题中,注意利用22||a a =r ,涉及向量模的计算基本考虑使用此公式,结合数量积的运算法则即可求出.17.设a r ,b r 不共线,3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,3CD a mb =+u u u r r r ,若A ,C ,D 三点共线,则实数m 的值是( )A .23B .15C .72D .152【答案】D【解析】【分析】 计算25AC a b =+u u u r r r ,得到()253a b a mb λ+=+r r r r ,解得答案. 【详解】 ∵3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,∴25AC AB BC a b =+=+u u u r u u u r u u u r r r ,∵A ,C ,D 三点共线,∴AC CD λ=u u u r u u u r ,即()253a b a mb λ+=+r r r r , ∴235m λλ=⎧⎨=⎩,解得23152m λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D .【点睛】本题考查了根据向量共线求参数,意在考查学生的计算能力和转化能力.18.已知向量(sin ,cos )a αα=r ,(1,2)b =r , 则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α= C .若()f a b α=⋅r r 取得最大值,则1tan 2α=D .||a b -r r1 【答案】B【解析】【分析】 根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确. D 选项,||a b -==r r的最大值为1=,选项D 正确.故选:B .【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.19.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u ur u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). A .3 B .23 C .2 D .3 【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】圆O 圆心为()0,0,半径为2,而||2AB =u u u r,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.20.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .52D .410【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.。
平面向量分类专题(难度)(含答案)
《平面向量分类专题》难度 姓名:一、【向量的代数形式】3.(08·广东)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b [答案] B[解析] 由E 是线段OD 的中点,∴BE →=3ED →,由平行四边形ABCD ,∴|AB ||DF |=|EB ||ED |,∴|DF |=13|AB |∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →)=a +23(12b -12a )=23a +13b . 故选B.5.在▱ABCD 中,AB →=a ,AD →=b ,AM →=4MC →,P 为AD 的中点,则MP →=( )A.45a +310b B.45a +1310b C .-45a -310b D .-34a -14b [答案] C[解析] 如图,MP →=AP →-AM →=12AD →-45AC →=12AD →-45(AB →+BC →)=12b -45(a +b )=-45a -310b . 8.(2010·全国)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若C B →=a ,C A →=b ,|a|=1,|b|=2,则CD →=( )A.13 a +23 b B.23 a +13b C.35 a +45b D.45 a +35b [答案] B[解析] 如图,由题设条件知∠1=∠2,∴|BD ||DA |=|CB ||CA |=12,∴BD →=13BA →=13(CA →-CB →)=13b -13a ,∴CD →=CB →+BD →=a +⎝⎛⎭⎫13b -13a =23a +13b .二、【求角度】2、设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉= 120°【解】∵|a |=|b |=|c |≠0,且a +b =c ∴如图所示就是符合题设条件的向量,易知OACB 是菱形, △OBC 和△OAC 都是等边三角形.∴〈a ,b 〉=120°.18、若非零向量a ,b ,c 满足230a b c ++=,且a b b c c a ⋅=⋅=⋅,则b 与c 的夹角为 43π19、若两个非零向量,a b a b a 2==,则向量+与-的夹角是32π20、已知两向量,的夹角为60°,且,2||2||==在△ABC 中,b a AB -=,a =则A 的值为150°21、已知两点()()2,3,1,4,AB 满足()1sin ,cos ,,(,)222AB ππαβαβ=∈-,则αβ+= 62ππ-或22、已知→a 、→b 是非零向量且满足→→→⊥⎪⎭⎫ ⎝⎛-a b a 2,→→→⊥⎪⎭⎫ ⎝⎛-b a b 2,则向量⎪⎭⎫ ⎝⎛-→a 与→b 的夹角是23π 为ABC ∆的外心,且0543=++OC OB OA ,则ABC ∆的内角C 的值为 4π【方法】基底选择C AOB ∠=∠2 , o 22900)5()43(=∠⇒=•⇒-=+→→→→→AOB OB OA OC OB OA3、不共线的向量1m ,2m 的模都为2,若2123m m a -=,2132m m b -= ,则两向量b a +与b a - 的夹角为 90°6、已知在ABC ∆中,120A ∠=,记||cos ||cos BA BC BA A BC C α=+,||cos ||cos CA CBCA A CB Bβ=+,则向量α与β夹角的大小为 o60三、【求三角函数值】10、设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 0 【解析】02cos 0cos 212=⇔=+-⇔⊥θθ13、设单位向量e 1、e 2的夹角为60°,则向量3e 1+4e 2与向量e 114、已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=4319、在△OAB 中,O 为直角坐标系的原点,A ,B 的坐标分别为A (3,4),B (-2,y ),向量AB 与x 轴平行,则向量OA 与AB 所成的余弦值是 -3525、在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅AF AC AE AB ,则与的夹角的余弦值等于23【解】因为2=⋅+⋅AF AC AE AB ,所以2)()(=+⋅++⋅, 即22=⋅+⋅+⋅+BF AC AB AC BE AB AB 。
专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。
(完整版)全国卷高考题汇编—平面向量
2011年——2016年高考题专题汇编专题3 平面向量1、(16年全国1 文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .2、(16年全国1 理)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .3、(16年全国2 文)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.4、(16年全国2 理)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8 (B )-6 (C )6 (D )85、(16年全国3 文)已知向量BA →=(12,2),BC →=(2,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°6、(16年全国3 理)已知向量1(,)22BA = ,31(),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)12007、(15年新课标2 文)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .38、(15年新课标2理)设向量,不平行,向量与平行,则实数_________.9、(15年新课标1文)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 10、(15年新课标1理)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-11、(14年新课标3 文)已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .212、(14年新课标3 理)若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1 D13、(14年新课标2 文)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 514、(14年新课标2 理)设向量a,b 满足|a+b |=|a -b ,则a ⋅b = ( )A. 1B. 2C. 3D. 515、(14年新课标1文)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC 21 D. BC16、(14年新课标1理)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .17、(13全国2 文 理)已知正方形ABCD 的边长为2, E 为CD 的中点,,则 =_______.18、(12全国2 文)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=19、(11全国2 文)若向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A B CD 20、(11全国2 理)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1。
平面向量全国高考难题荟萃
平面向量全国高考难题荟萃1.(2006年高考•四川)如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( ) (A )1213PP PP ( B )1214PP PP (C )1215PP PP (D )1216PP PP2.(2007年高考•浙江)若非零向量a 与b 满足a b b +=,则( ) (A )22a a b >+ (B )22a a b <+ (C )22b a b >+ (D )22b a b <+3.(2005年高考•全国)点O 是三角形ABC 所在平面内的一点,满足OA OB OB OC OC OA ==,则点O 是∆ABC 的 ( )(A )三个内角的角平分线的交点 ( B )三条边的垂直平分线的交点 (C )三条中线的交点 (D )三条高的交点4.(2007年高考•山东) 在Rt ⊿ABC 中,CD 是斜边AB 上的高,则下列等式不成立的是( ) (A )2AC AC AB = (B )2BC BA BC = (C )2AB AC CD = (D )22())AC AB BA BC CD AB⨯(=5.(2007年高考•重庆)如图,在四边形ABCD 中,4A B B D D C ++=, 4AB BD BD DC ⋅+⋅=,0AB BD BD DC ==, 则()AB DC AC +⋅的值为( )(A ) 2 ( B )22 (C ) 4 (D )42P1P2P3P6P5P4 AB CD第1题图 第5题图6.(2007年高考•北京)已知O 是⊿ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( ) (A )AO OD = (B )2AO OD = (C )3AO OD = (D )2AO OD =7.(2007年高考⋅辽宁)0()a aa b a b c a b a c a b⋅⋅≠=-⋅若向量与不共线,,且,则向量与的夹角为( ) A.0 B.6π C.3π D.2π8.(2005年高考•全国)已知点A (3,1),(0,0)B ,(3,0)C 。
(完整版)平面向量历年高考题汇编——难度高
平面向量平面向量的概念及其线性运算1.★★ (2014 辽·宁卷 L) 设 a ,b ,c 是非零向量,已知命题 p :若 a ·b =0,b ·c =0,则 a ·c = 0,命题 q :若 a ∥b ,b ∥ c ,则 a ∥c ,则下列命题中真命题是 ( )A .p ∨qB .p ∧qC . ( p) ( q)D . p ( q)→ 1 → → →若AO =2(AB +AC ),则AB与A →C 的夹角为 _____3.★★ (2014 四·川卷 ) 平面向量 a = (1, 夹角等于 c 与 b 的夹角,则 m =( ) 2),b =(4,2),c =ma + b(m ∈R) ,且 c 与a 的5. ★★ (2014福建 W)设M 为平行四边形 ABCD 对角线的交点, O 为平行四边形 ABCD1 平行四边形的面积为 1,则 与 的夹角 的取值范围是2x,x yy,x y r r7. ★★( 2014浙江 L )记max{ x, y},min{ x,y} ,设 a,by,x yx,x y数学A .-2B .-1C .1D .2则 EB FC ()A . A D1B. ADC. BCD. 1 BC224. ★★ (2014 新·课标全国卷Ⅰ 2.★★ ( ·新课标全国卷Ⅰ L) 已知 A ,B ,C 为圆 O 上的三点,W) 设 D 、E 、F 分别为△ ABC 的三边 BC 、 CA 、AB 的中点,所在平面内任意一点,则 OA OB OC OD 等于A . OMB. 2OMC. 3OMD. 4OM6. ★★( 2011 浙江 L ) 若平面向量满足 a 1, 1,且以向量为邻边的8. ★★ (2013 广东 W )设 a 是已知的平面向量且 a ≠0.关于向量 a 的分解,有如下四个命题:① 给定向量 b ,总存在向量 c ,使 a = b +c ;② 给定向量 b 和 c ,总存在实数 λ 和 μ,使 a = λb + μc ; ③ 给定单位向量 b 和正数 μ,总存在单位向量 c 和实数 λ,使 a = λb + μc ; ④给定正数 λ 和 μ,总存在单位向量 b 和单位向量 c ,使 a = λb + μc . 上述命题中的向量 b , c 和 a 在同一平面内且两两不共线,则真命题的个数是 ( ) .A .1B .2C . 3D . 49. ★★( 2010 浙江 L )已知平面向量 , ( 0, ) 满足 1,且 与 的夹1110. ★★ (2010 安徽 L )设向量 a (1,0) , b ( , ) ,则下列结论中正确的是22uuur uuur11. ★★ (2013课标全国Ⅱ,理)已知正方形 ABCD 的边长为 2,E 为CD 的中点 ,则AE BD12. ★★( 2013 山东卷 L )已知向量 AB 与 AC 的夹角为 1200 ,且 ABA. min{| a b|,|a b|} min{| a |,| b |}B. min{| ab|,|a b|} min{| a |,| b |} C. min{| a b|2,|a b|2} |a|2 |b|2 D. min{| ab|2,|a b|2}|a|2 |b|2为平面向量,则()角为 120°,则 的取值范围是__________________ A ) a b(B)a ·b2(C)a b 与 b 垂直 D ) a ∥b3, AC 2 ,若AP AB AC ,且AP BC ,则实数的值为13. ★★(2012 山东L )如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动。
(7)历届高考中的“平面向量”试题精选(自我测试)
17.解:(Ⅰ)由题意得,f(x)=a· (b+c)=(sinx,-cosx)· (sinx-cosx,sinx-3cosx)
=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+ 2 sin(2x+
2 = . 2 3 k 3 3 (Ⅱ)由 sin(2x+ )=0 得 2x+ =k. ,即 x= ,k∈Z, 4 2 8 4 k 3 k 3 2 于是 d=( ,-2) ,d ( ) 4 , k∈Z. 2 8 2 8
8. (2005 北京理、文)若 | a | 1,| b | 2, c a b ,且 c a ,则向量 a 与 b 的夹角为( (A)30° (B)60° (C)120° (D)150° 9.(2007全国Ⅱ文、理)在∆ABC中,已知D是AB边上一点,若 AD =2 DB , CD = 则=( (A) ) (B)
sin 2 2sin 1 cos 2 2 cos 1 2(sin cos ) 3 2 2 sin( ) 3 4
当 sin(
) =1 时 a b 有最大值,此时 4 4
2 1
最大值为 2 2 3
cos PQ BC | PQ | | BC | cx by . a2
cx by a 2 cos . BP CQ a 2 a 2 cos . 故当cos 1, 即 0( PQ与BC方向相同)时, BC CQ最大, 其最大值为 0.
2. (2001 江西、山西、天津理)若向量 a=(1,1) ,b=(1,-1) ,c=(-1,2) ,则 c= ( 1 1 3 3 3 1 3 1 (A) a+ b (B) a- b (C) a b (D)- a b 2 2 2 2 2 2 2 2
2024年全国高考数学真题分类( 复数和平面向量)汇编(附答案)
2024年全国高考数学真题分类(复数和平面向量)汇编一、单选题 1.(2024ꞏ全国)若1i 1zz =+-,则z =( ) A .1i --B .1i -+C .1i -D .1i +2.(2024ꞏ全国)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A .2-B .1-C .1D .23.(2024ꞏ全国)已知1i z =--,则z =( )A .0B .1C D .24.(2024ꞏ全国)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ( )A .12B .2C .2D .15.(2024ꞏ全国)设z =,则z z ⋅=( ) A .-iB .1C .-1D .26.(2024ꞏ全国)设5i z =+,则()i z z +=( ) A .10iB .2iC .10D .2-7.(2024ꞏ全国)已知向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件 B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b”的充分条件8.(2024ꞏ北京)已知i 1iz=-,则z =( ). A .1i -B .i -C .1i --D .19.(2024ꞏ北京)已知向量a ,b ,则“()()ꞏ0a b a b +-=”是“a b = 或a b =- ”的( )条件.A .必要而不充分条件B .充分而不必要条件C .充分且必要条件D .既不充分也不必要条件二、填空题10.(2024ꞏ天津)已知i 是虚数单位,复数))i 2i ⋅-= .11.(2024ꞏ天津)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+= ;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为 .12.(2024ꞏ上海)已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 .13.(2024ꞏ上海)已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 .参考答案1.C【详细分析】由复数四则运算法则直接运算即可求解. 【答案解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C. 2.D【详细分析】根据向量垂直的坐标运算可求x 的值. 【答案解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D. 3.C【详细分析】由复数模的计算公式直接计算即可.【答案解析】若1i z =--,则z ==故选:C. 4.B【详细分析】由()2b a b -⊥ 得22b a b =⋅,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【答案解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而= b 故选:B. 5.D【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案解析】依题意得,z =,故22i 2zz =-=. 故选:D 6.A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案解析】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A 7.C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案解析】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.8.C【详细分析】直接根据复数乘法即可得到答案. 【答案解析】由题意得()i i 11i z =-=--, 故选:C.9.A【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b = ,结合充分、必要条件详细分析判断.【答案解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:A.10.7【详细分析】借助复数的乘法运算法则计算即可得.【答案解析】))i 2i 527⋅=-+=.故答案为:7.11.43518-【详细分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设BF BE k =uu u r uur ,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ⋅的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ⋅的最小值.【答案解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=; 由题意可知:1,0BC BA BA BC ==⋅= , 因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭, 可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅取到最小值518-; 解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=; 因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭, 可得()131,3,,122a AF a a DG a +⎛⎫=+-=-- ⎪⎝⎭, 则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.12.15【详细分析】根据向量平行的坐标表示得到方程,解出即可. 【答案解析】//a b,256k ∴=⨯,解得15k =. 故答案为:15. 13.2【详细分析】设1i z b =+,直接根据复数的除法运算,再根据复数分类即可得到答案. 【答案解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+-+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m∈R ,2232311bmbb bb⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,解得2m=,故答案为:2.。
平面向量高考经典试题
平面向量测试题-f T-5a -3b,则下列关系式中正确的是 (B) AD =2 BC(D) AD = - 2 BC—f5.将图形5按2= (h,k )(其中h>0,k>0)平移,就是将图形 F ()向x 轴正方向平移 向x 轴负方向平移 向x 轴负方向平移 向x 轴正方向平移 h 个单位,同时向 h 个单位,同时向 h 个单位,同时向 h 个单位,同时向y 轴正方向平移 y 轴正方向平移 y 轴负方向平移 y 轴负方向平移6 •已知a = (12,1),b=( -零,"^),下列各式正确的是(e 与e 2是不共线的非零向量, 且ke + 62与6+卜32共线,则k 的值是()(A) 1(B) — 1 (C) ±1 (D)任意不为零的实数ABCD^, AB = DC ,且 AC • BD =0,则四边形 ABCD^ ( ) (A )矩形 (B )菱形(C )直角梯形(D )等腰梯形、选择题:1。
已知ABCD 为矩形,E 是DC 的中点,且 AB='a ,AD = b ,则 BE =i .(A) b + 2 a (B), * i- i , >b — 2 a (C) a + ^b一 * i J(D) a - ib2.已知B 是线段AC 的中点,则下列各式正确的是(一— -1 -一 「 一 -1 ~(A) AB = 一 BC (B)AC = 2 BC ( C) BA = BC (D)BC = AC3.已知ABCDEF 是正六边形,且AE = b ,则 BC =(A) 4(a _b) (B) 1(b —a)—f(C) a +1 - i ,2 b (D)笃(a+b)4.设a, b 为不共线向量,ABT T =a +2b , ---- 3 —f T ------------- 令BC=-4a-b ,CD =(A) AD = BC (C) AD =- BC(A) (B) (C) (D) k 个单位。
高考文科数学真题汇编平面向量高考题老师版
a 、b 都是非零向量||||a b a b =成立的充分条件是a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =2.2014新标1文设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A AD B. 12AD C. 12BC D. BC 3. 2014福建文设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点OA OB OC OD +++等于 D4.2012大纲ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =A .1133a b -B 23a b -C .3355a b -D .4455a b - 简解由0a b ⋅=可得ACB ∠︒,故5AB =,用等面积法求得255CD =,所以455AD =,故4444()5555AD AB CB CA a b ==-=-,故选答案5.2012浙江 设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥b ;B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λb.若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |a +b |=|a |-|b |,两边平方得到a b ⋅=-|a ||b |,则a 与b 反向,选C2013四川 在平行四边形ABCD 中,对角线AC 与BD 交于点O ,错误!+错误7.2014新标1理 已知A,B,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为历年高考试题集锦——平面向量a ()2,4a =,()1,1b =-,a b -= AB.()5,9C.()3,7D.()2,3BA =,()4,7CA =,则BC = AB.()2,4C.()6,10 已知向量(1,2)a =,(3,1)b =,则b a -= B 1,1)、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为 C .322- D .3152- a = 1,—1,b = 2,x.若a ·b = 1,则x = DC 12D1 1,3,B 4,-1,则与向量A 错误!同方向的单位向量为(1,2)AC =(4,2)BD =- C .5 D ,a b 满足32a b a b ==+,则,a b 夹角的余弦值为错误!sin x ,sin x ,b →=cos x ,sin x ,x ∈错误!的值; 2设函数fx =a →·b →,求fx 的最大值..b →b →AP AC = 18 .解析设AC BD O =,则2()AC AB BO =+,AP AC = 2()AP AB BO +=22AP AB AP BO +222()2AP AB AP AP PB AP ==+=18=.23.2012江苏如图,在矩形ABCD 中,AB=,BC=2,点E 为BC 的中点,点F 在边CD 上,若=,则的值是 . 24.2014江苏如图,在□ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是 . 简解AP AC -=3AD AP -,14AP AD AB =+;34BP AD AB =-;列式解得结果22 25.2015北京文设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的 AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件26.2015年广东文在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A = DA .2B .3C .4D .527.2015年安徽文ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC +=→2,则下列结论中正确的是 ①④⑤ ;写出所有正确结论得序号①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( ;28.2013天津在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若错误!·错误!=1,则AB 的长为________.简解如图建系:由题意AD=1, 60=∠DAB ,得)0,21(-A ,),23,0(D 设DE=x,)23,(x E ,)0,212(-x B , 13(2,)22AC x =+,13(,)22BE x =-由题意 .1AD BE = 得:143)21)(212(=+-+x x ,得41=x ,∴AB 的长为21; 29.2012福建文已知向量)2,1(-=→x a,)1,2(=→b ,则→→⊥b a 的充要条件是 D A .21-=x B .1-=x C .5=x D .0=x 30.2012陕西文设向量a =1.cos θ与b =-1, 2cos θ垂直,则cos2θ等于 C(1,OA =|||OA OB =0OA OB ⋅=||AB =51,t ,错误2,2,若∠ABO =90°,则实数t 的值为=90°,即错误!错误!,所以错误!·错误!=错误!(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 53- C .53 D .32文已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a C.1 D .2,a b ,下列关系式中不恒成立的是|||||a b a b •≤ B .|||||||a b a b -≤- C .22()||a b a b +=+ D .22)()a b a b a b +-=- 37.2015年天津文在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠= 点E 和点F 分别在线BC 和CD 上,且21,,36BE BC DF DC == 则AE AF ⋅的值为 2918 . 38.2015年江苏已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-R n m ∈,, n m -的值为___-3___.已知△ABC 是边长为1的等边三角形,点E D ,分别是边,则AF BC •的值为 B81 C 41 卷已知向量1(,2BA =3(2BC = B 450 C 60 D1203),(=b ,则a 与b 夹角的大小为30.______.中,D 是BC 的中点,F 是AD 上的两个三等分点4BC CA ⋅=,1BF CF ⋅=-BE CE ⋅ 的值是、2016年山东已知向量5-____.。
历届高考中的向量试题汇编大全
A
D
B
图1
C
5、 (2006 湖北文)已知非零向量 a、b,若 a+2b 与 a-2b 互相垂直,则
a b
( )
A.
1 4
B. 4
C.
1 2
D. 2
6. (2006 湖北理)已知向量 a ( 3,1) ,b 是不平行于 x 轴的单位向量,且 a b
3 ,则 b
1 3 133 , 1 ) , ) C. ( , ) D. (0 2 2 4 4 7. (2006 湖南文)已知向量 a (2, t ),b (1,2), 若 t t1 时, a ∥ b ; t t 2 时, a b ,则 A. t1 4,t 2 1 B. t1 4,t 2 1 C. t1 4,t 2 1 D. t1 4,t 2 1
o
)
A. b1 b2 b3 0 C. b1 b2 b3 0
B. b1 b2 b3 0 D. b1 b2 b3 0
Hale Waihona Puke 14. (2006全国Ⅱ卷文)已知向量 a =(4,2) ,向量 b =( x ,3) ,且 a // b ,则 x = (A)9 (B)6 (C)5 (D)3
15. (2006 山东文)设向量 a=(1,-3),b=(-2,4),若表示向量 4a、3b-2a,c 的有向线段首尾相接 能构成三角形,则向量 c 为( ) (A)(1,-1) (B)(-1, 1) (C) (-4,6) (D) (4,-6) 16. (2006 山东理)设向量 a=(1, -2),b=(-2,4),c=(-1,-2),若表示向量 4a,4b-2c,2(a-c),d 的有向线段首尾相接能构成四边形,则向量 d 为( ) (A)(2,6) (B)(-2,6) (C)(2,-6) (D)(-2,-6) → → → → 1 AB AC AB AC → → → 17. (2006 陕西文、 理) 已知非零向量AB与AC满足( + )· BC=0 且 · = , 则 → | |AC →| → | |AC →| 2 |AB |AB △ABC 为( ) A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 ) C B
十年高考真题(2013-2022)专题09平面向量(原卷版)
大数据之十年高考真题(2013-2022)与优质模拟题(新高考卷与新课标理科卷)专题09平面向量1.【2022年全国乙卷理科03】已知向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=√3,|a ⃑−2b ⃑⃑|=3,则a ⃑⋅b⃑⃑=( ) A .−2B .−1C .1D .22.【2022年新高考1卷03】在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃑⃑⃑⃑⃑⃑=m ⃑⃑ ,CD ⃑⃑⃑⃑⃑⃑=n ⃑ ,则CB ⃑⃑⃑⃑⃑⃑=( ) A .3m ⃑⃑ −2n ⃑B .−2m ⃑⃑ +3n ⃑C .3m ⃑⃑ +2n ⃑D .2m ⃑⃑ +3n ⃑3.【2022年新高考2卷04】已知向量a ⃑=(3,4),b ⃑⃑=(1,0),c ⃑=a ⃑+tb ⃑⃑,若<a ⃑,c ⃑>=<b ⃑⃑,c ⃑>,则t =( ) A .−6B .−5C .5D .64.【2020年全国3卷理科06】已知向量a ,b 满足|a|=5,|b|=6,a ⋅b =−6,则cos ⟨a,a +b ⟩=( ) A .−3135 B .−1935 C .1735D .19355.【2020年山东卷07】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ⃑⃑⃑⃑⃑⃑⋅AB ⃑⃑⃑⃑⃑⃑ 的取值范用是( ) A .(−2,6) B .(−6,2) C .(−2,4)D .(−4,6)6.【2020年海南卷07】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ⃑⃑⃑⃑⃑⃑⋅AB ⃑⃑⃑⃑⃑⃑ 的取值范用是( ) A .(−2,6) B .(−6,2) C .(−2,4)D .(−4,6)7.【2019年全国新课标2理科03】已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →•BC →=( ) A .﹣3 B .﹣2 C .2D .38.【2019年新课标1理科07】已知非零向量a →,b →满足|a →|=2|b →|,且(a →−b →)⊥b →,则a →与b →的夹角为( ) A .π6B .π3C .2π3D .5π69.【2018年新课标1理科06】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )真题汇总A .34AB →−14AC →B .14AB →−34AC →C .34AB →+14AC →D .14AB →+34AC →10.【2018年新课标2理科04】已知向量a →,b →满足|a →|=1,a →⋅b →=−1,则a →•(2a →−b →)=( ) A .4B .3C .2D .011.【2017年新课标2理科12】已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →•(PB →+PC →)的最小值是( ) A .﹣2 B .−32 C .−43D .﹣112.【2017年新课标3理科12】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3B .2√2C .√5D .213.【2016年新课标2理科03】已知向量a →=(1,m ),b →=(3,﹣2),且(a →+b →)⊥b →,则m =( )A .﹣8B .﹣6C .6D .814.【2016年新课标3理科03】已知向量BA →=(12,√32),BC →=(√32,12),则∠ABC =( )A .30°B .45°C .60°D .120°15.【2015年新课标1理科07】设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A .AD →=−13AB →+43AC →B .AD →=13AB →−43AC →C .AD →=43AB →+13AC →D .AD →=43AB →−13AC →16.【2014年新课标2理科03】设向量a →,b →满足|a →+b →|=√10,|a →−b →|=√6,则a →•b →=( ) A .1B .2C .3D .517.【2021年新高考1卷10】已知O 为坐标原点,点P 1(cosα,sinα),P 2(cosβ,−sinβ),P 3(cos(α+β),sin(α+β)),A(1,0),则( ) A .|OP 1⃑⃑⃑⃑⃑⃑⃑ |=|OP 2⃑⃑⃑⃑⃑⃑⃑ | B .|AP 1⃑⃑⃑⃑⃑⃑⃑ |=|AP 2⃑⃑⃑⃑⃑⃑⃑ | C .OA ⃑⃑⃑⃑⃑ ⋅OP ⃑⃑⃑⃑⃑ 3=OP 1⃑⃑⃑⃑⃑⃑⃑ ⋅OP 2⃑⃑⃑⃑⃑⃑⃑D .OA ⃑⃑⃑⃑⃑ ⋅OP 1⃑⃑⃑⃑⃑⃑⃑ =OP 2⃑⃑⃑⃑⃑⃑⃑ ⋅OP 3⃑⃑⃑⃑⃑⃑⃑18.【2022年全国甲卷理科13】设向量a ⃑,b ⃑⃑的夹角的余弦值为13,且|a ⃑|=1,|b ⃑⃑|=3,则(2a ⃑+b ⃑⃑)⋅b ⃑⃑=_________.19.【2021年全国甲卷理科14】已知向量a =(3,1),b ⃑ =(1,0),c =a +kb ⃑ .若a ⊥c ,则k =________. 20.【2021年全国乙卷理科14】已知向量a =(1,3),b ⃑ =(3,4),若(a −λb ⃑ )⊥b ⃑ ,则λ=__________. 21.【2021年新高考2卷15】已知向量a +b ⃑ +c =0⃑ ,|a |=1,|b ⃑ |=|c |=2,a ⋅b ⃑ +b ⃑ ⋅c +c ⋅a =_______.22.【2020年全国1卷理科14】设a,b 为单位向量,且|a +b|=1,则|a −b|=______________. 23.【2020年全国2卷理科13】已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________. 24.【2019年新课标3理科13】已知a →,b →为单位向量,且a →•b →=0,若c →=2a →−√5b →,则cos <a →,c →>= .25.【2018年新课标3理科13】已知向量a →=(1,2),b →=(2,﹣2),c →=(1,λ).若c →∥(2a →+b →),则λ= .26.【2017年新课标1理科13】已知向量a →,b →的夹角为60°,|a →|=2,|b →|=1,则|a →+2b →|= . 27.【2016年新课标1理科13】设向量a →=(m ,1),b →=(1,2),且|a →+b →|2=|a →|2+|b →|2,则m = ﹣2 . 28.【2015年新课标2理科13】设向量a →,b →不平行,向量λa →+b →与a →+2b →平行,则实数λ= . 29.【2014年新课标1理科15】已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为 .30.【2013年新课标1理科13】已知两个单位向量a →,b →的夹角为60°,c →=t a →+(1﹣t )b →.若b →•c →=0,则t = .31.【2013年新课标2理科13】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →•BD →= .1.已知向量a ⃑,b ⃑⃑满足|b ⃑⃑|=2,a ⃑与b ⃑⃑的夹角为60∘,则当实数λ变化时,|b ⃑⃑−λa ⃑|的最小值为( ) A .√3B .2C .√10D .2√32.已知△ABC 为等边三角形,AB =2,设点P 、Q 满足AP ⃑⃑⃑⃑⃑⃑=λAB ⃑⃑⃑⃑⃑⃑, AQ ⃑⃑⃑⃑⃑⃑=(1−λ)AC ⃑⃑⃑⃑⃑⃑,λ∈R ,若BQ ⃑⃑⃑⃑⃑⃑⋅CP⃑⃑⃑⃑⃑⃑=−32,则λ=( ) A .18B .14C .12D .343.已知△ABC 的外接圆圆心为O ,且2AO⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑,|OA ⃑⃑⃑⃑⃑⃑|=|AB ⃑⃑⃑⃑⃑⃑|,则向量OC ⃑⃑⃑⃑⃑⃑在向量CA ⃑⃑⃑⃑⃑⃑上的投影向量为模拟好题( )A .12CA⃑⃑⃑⃑⃑⃑ B .√32OC⃑⃑⃑⃑⃑⃑ C .−12CA⃑⃑⃑⃑⃑⃑ D .−√32OC⃑⃑⃑⃑⃑⃑ 4.已知P 是等边三角形ABC 所在平面内一点,且AB =2√3,BP =1,则AP ⃑⃑⃑⃑⃑⃑⋅CP ⃑⃑⃑⃑⃑⃑的最小值是( ) A .1B .√2C .√3D .25.已知单位向量a ⃑与向量b ⃑⃑=(0,2)垂直,若向量c ⃑满足|a ⃑+b ⃑⃑+c ⃑|=1,则|c ⃑|的取值范围为( ) A .[1,√5−1]B .[√3−12,√3+12]C .[√5−1,√5+1]D .[√3+12,3]6.已知向量a ⃑,b ⃑⃑ 满足a ⃑=(√3,1),a ⃑·b ⃑⃑=4,则|b ⃑⃑|的最小值为( ) A .1B .√2C .√3D .27.在平行四边形ABCD 中,E,F 分别是BC,CD 的中点,DE 交AF 于点G ,则AG⃑⃑⃑⃑⃑⃑=( )A .25AB ⃑⃑⃑⃑⃑⃑−45BC ⃑⃑⃑⃑⃑⃑ B .25AB ⃑⃑⃑⃑⃑⃑+45BC ⃑⃑⃑⃑⃑⃑ C .−25AB ⃑⃑⃑⃑⃑⃑+45BC ⃑⃑⃑⃑⃑⃑ D .−25AB⃑⃑⃑⃑⃑⃑−BC ⃑⃑⃑⃑⃑⃑ 8.已知点O 为△ABC 所在平面内的一点,且OA ⃑⃑⃑⃑⃑⃑2=OB ⃑⃑⃑⃑⃑⃑2=OC ⃑⃑⃑⃑⃑⃑2,OA ⃑⃑⃑⃑⃑⃑⋅OB ⃑⃑⃑⃑⃑⃑= OB ⃑⃑⃑⃑⃑⃑⋅OC ⃑⃑⃑⃑⃑⃑=OC ⃑⃑⃑⃑⃑⃑⋅OA ⃑⃑⃑⃑⃑⃑=−2,则△ABC 的面积为( ) A .√3B .2√3C .3√3D .5√349.在△ABC 中,AB ⃑⃑⃑⃑⃑⃑⋅AC ⃑⃑⃑⃑⃑⃑=9,sin (A +C )=cosAsinC ,S △ABC =6,P 为线段AB 上的动点,且CP⃑⃑⃑⃑⃑⃑=x ⋅CA⃑⃑⃑⃑⃑⃑|CA⃑⃑⃑⃑⃑⃑|+y ⋅CB ⃑⃑⃑⃑⃑⃑|CB ⃑⃑⃑⃑⃑⃑|,则2x +1y 的最小值为( ) A .116+√63B .116C .1112+√63D .111210.△ABC 中,AC =√2,AB =2,A =45°,P 是△ABC 外接圆上一点,AP ⃑⃑⃑⃑⃑⃑=λAB ⃑⃑⃑⃑⃑⃑+μAC ⃑⃑⃑⃑⃑⃑,则λ+μ的最大值是( ) A .√2+12B .√2−12C .√3−√22D .√3+√2211.已知复数z 1对应的向量为OZ 1⃑⃑⃑⃑⃑⃑⃑⃑,复数z 2对应的向量为OZ 2⃑⃑⃑⃑⃑⃑⃑⃑,则( ) A .若|z 1+z 2|=|z 1−z 2|,则OZ 1⃑⃑⃑⃑⃑⃑⃑⃑⊥OZ 2⃑⃑⃑⃑⃑⃑⃑⃑ B .若(OZ 1⃑⃑⃑⃑⃑⃑⃑⃑+OZ 2⃑⃑⃑⃑⃑⃑⃑⃑)⊥(OZ 1⃑⃑⃑⃑⃑⃑⃑⃑−OZ 2⃑⃑⃑⃑⃑⃑⃑⃑),则|z 1|=|z 2|C .若z 1与z 2在复平面上对应的点关于实轴对称,则z 1z 2=|z 1z 2|D .若|z 1|=|z 2|,则z 12=z 22 12.已知△ABC 是半径为2的圆O 的内接三角形,则下列说法正确的是( ) A .若角C =π3,则AB ⃑⃑⃑⃑⃑⃑⋅AO ⃑⃑⃑⃑⃑⃑=12 B .若2OA ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑=0⃑ ,则|BC⃑⃑⃑⃑⃑⃑|=4 C .若|OA ⃑⃑⃑⃑⃑⃑−OB ⃑⃑⃑⃑⃑⃑|=OA ⃑⃑⃑⃑⃑⃑⋅OB ⃑⃑⃑⃑⃑⃑,则OA ⃑⃑⃑⃑⃑⃑,OB ⃑⃑⃑⃑⃑⃑的夹角为π3 D .若(BC⃑⃑⃑⃑⃑⃑+BA ⃑⃑⃑⃑⃑⃑)⋅AC ⃑⃑⃑⃑⃑⃑=|AC ⃑⃑⃑⃑⃑⃑|2,则AB 为圆O 的一条直径 13.中华人民共和国的国旗图案是由五颗五角星组成,这些五角星的位置关系象征着中国共产党领导下的革命与人民大团结.如图,五角星是由五个全等且顶角为36°的等腰三角形和一个正五边形组成.已知当AB =2时,BD =√5−1,则下列结论正确的为( )A .|DE⃑⃑⃑⃑⃑⃑|=|DH ⃑⃑⃑⃑⃑⃑⃑| B .AF⃑⃑⃑⃑⃑⃑⋅BJ ⃑⃑⃑⃑⃑=0 C .AH⃑⃑⃑⃑⃑⃑⃑=√5+12AB ⃑⃑⃑⃑⃑⃑ D .CB⃑⃑⃑⃑⃑⃑+CD ⃑⃑⃑⃑⃑⃑=JC ⃑⃑⃑⃑⃑−JH ⃑⃑⃑⃑⃑ 14.已知△ABC 中,AB =3,AC =5,BC =7,O 为△ABC 外接圆的圆心,I 为△ABC 内切圆的圆心,则下列叙述正确的是( ) A .△ABC 外接圆半径为14√33B .△ABC 内切圆半径为√32C .AO ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =8D .AI⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =1 15.定义平面向量的一种运算“Θ”如下:对任意的两个向量a ⃑=(x 1,y 1),b ⃑⃑=(x 2,y 2),令a ⃑Θb ⃑⃑=(x 1y 2−x 2y 1,x 1x 2+y 1y 2),下面说法一定正确的是( ) A .对任意的λ∈R ,有(λa ⃑)Θb ⃑⃑=λ(a ⃑Θb⃑⃑) B .存在唯一确定的向量e ⃑使得对于任意向量a ⃑,都有a ⃑Θe ⃑=e ⃑Θa ⃑=a ⃑成立 C .若a ⃑与b ⃑⃑垂直,则(a ⃑Θb ⃑⃑)Θc ⃑与a ⃑Θ(b ⃑⃑Θc ⃑)共线 D .若a ⃑与b ⃑⃑共线,则(a ⃑Θb ⃑⃑)Θc ⃑与a ⃑Θ(b ⃑⃑Θc ⃑)的模相等16.在平面直角坐标系xOy 中,r >0,⊙M :(x −r )2+y 2=3r 24与抛物线C :y 2=4x 有且仅有两个公共点,直线l 过圆心M 且交抛物线C 于A ,B 两点,则OA⃑⃑⃑⃑⃑⃑⋅OB ⃑⃑⃑⃑⃑⃑=______.17.已知△ABC 是等边三角形,E ,F 分别是AB 和AC 的中点,P 是△ABC 边上一动点,则满足PE ⃑⃑⃑⃑⃑⃑⋅PF ⃑⃑⃑⃑⃑⃑=BE⃑⃑⃑⃑⃑⃑⋅CF ⃑⃑⃑⃑⃑⃑的点P 的个数为______. 18.已知平面向量e 1⃑⃑⃑⃑,e 2⃑⃑⃑⃑满足|2e 2⃑⃑⃑⃑−e 1⃑⃑⃑⃑|=2,设a =e 1⃑⃑⃑⃑+4e 2⃑⃑⃑⃑,b ⃑ =e 1⃑⃑⃑⃑+e 2⃑⃑⃑⃑,若1≤a ⋅b ⃑ ≤2,则|a |的取值范围为________.19.已知△ABC 的内角A,B,C 所对的边分别为a,b,c ,A =π3,c =3,asinB =√3,D,E 分别为线段AB,AC 上的动点,ADAB =CECA ,则DE 的最小值为__________.20.在平行四边形ABCD 中,|AB ⃑⃑⃑⃑⃑⃑+AD ⃑⃑⃑⃑⃑⃑|=|BD ⃑⃑⃑⃑⃑⃑⃑|=3,|AB ⃑⃑⃑⃑⃑⃑|=1,则AC ⃑⃑⃑⃑⃑⃑⋅BD ⃑⃑⃑⃑⃑⃑⃑=___________. 21.已知非零向量a ⃑,b⃑⃑ 满足|a ⃑|=|b ⃑⃑| ,且(a ⃑+b ⃑⃑)⊥b ⃑⃑,则a ⃑ 与b ⃑⃑的夹角为_______. 22.已知半径为1的圆O 上有三个动点A ,B ,C ,且|AB |=√2,则AC⃑⃑⃑⃑⃑⃑⋅BC ⃑⃑⃑⃑⃑⃑的最小值为______. 23.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE ⃑⃑⃑⃑⃑⃑=λBC ⃑⃑⃑⃑⃑⃑,DF ⃑⃑⃑⃑⃑⃑=μDC ⃑⃑⃑⃑⃑⃑.若λ+μ=23,则AE ⃑⃑⃑⃑⃑⃑⋅AF ⃑⃑⃑⃑⃑⃑的最小值为___________. 24.设a ⃑,b ⃑⃑为不共线的向量,满足c ⃑=λa ⃑+μb ⃑⃑,3λ+4μ=2(λ,μ∈R ),且|c ⃑|=|a ⃑−c ⃑|=|b ⃑⃑−c ⃑|,若|a ⃑−b ⃑⃑|=3,则(|a ⃑|⋅|b ⃑⃑|)2−(a ⃑⋅b⃑⃑)2的最大值为________. 25.已知平面向量a ,b ⃑ ,c 满足|a |=1,|b ⃑ |=|c |=2√2,且(a −b ⃑ )⋅(a −c )=0,θ=⟨a,b ⃑ ⟩(0≤θ≤π4),则b ⃑ ⋅(a ⃑ −c )|a⃑ −c |的取值范围是_____________.。
完整版)平面向量历年高考题汇编——难度高
完整版)平面向量历年高考题汇编——难度高1.题目中给出了两个命题p和q,要求判断哪个是真命题。
p是关于向量a、b、c的等式,q是关于向量a、b、c的平行关系。
因为p和q都是关于向量a、b、c的命题,所以可以将它们合并成一个命题,即“若a·b=,b·c=,且a∥b,b∥c,则a·c=”。
然后通过代入向量的坐标进行计算,可以得出a·c =,因此命题p和q都是真命题,答案为B。
2.已知AO=(AB+AC),需要求出∠BAC的大小。
可以通过向量的几何意义进行推导,将向量AB和AC分别平移至点O,得到向量AO=AB+AC,这说明向量AO是向量AB和AC的合成向量。
根据三角形余弦定理,有cos∠BAC=(AB·AC)/(AB*AC),化简后得到cos∠BAC=1/2,所以∠BAC =60°,答案为60.3.首先计算出向量a和向量b的夹角θ,有cosθ=a·b/(|a||b|),代入向量的坐标计算得到cosθ=9/(√5*√21),然后可以根据向量的线性运算得到向量c=(m+4.2m+4),并且c与a的夹角等于θ,c与b的夹角也等于θ。
根据向量的数量积公式,有cosθ=c·a/(|c||a|)=(m+6)/(√[(m+4)²+(2m+4)²]*√5),代入cosθ的值计算得到m=-2,因此答案为A。
4.根据中线定理,有EB=FC=AB/2,因此EB+FC=AB=11,答案为A。
5.根据平行四边形对角线的性质,有OA+OC=OB+OD=2OM,因此OA+OB+OC+OD=4OM,答案为4OM。
6.根据向量的数量积公式,有a·b=|a||b|cosθ,其中θ为向量a和向量b的夹角。
因为a=1,|b|≤1,所以a·b=|b|cosθ≤cosθ。
根据平行四边形面积公式,有|a×b|=|a||b|sinθ/2,因此|a×b|≤|a||b|/2=1/2.将a=1,b=1/2代入可得cosθ≥1/4,因此-3π/4≤θ≤3π/4,答案为[-3π/4.3π/4]。
高考数学压轴专题2020-2021备战高考《平面向量》难题汇编附答案
新高中数学《平面向量》专题解析一、选择题1.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.2.如图,在ABC ∆中,12AN NC =u u u r u u u r,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B 【解析】 【分析】根据题意,以AB u u u r ,AC u u ur 为基底表示出AP u u u r 即可得到结论. 【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r,所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r, 又15AP mAB AC =+u u u r u u u r u u u r ,所以,1135λ-=,且m λ=,解得25m λ==. 故选:B. 【点睛】本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.3.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.4.如图,在ABC V 中,AD AB ⊥,3BC BD =u u u v u u u v ,1AD =u u u v ,则AC AD ⋅=u u u v u u u v( )A .3B 3C 3D 3【答案】D 【解析】∵3AC AB BC AB =+=u u u v u u u v u u u v u u u v u u v,∴(3)3AC AD AB AD AB AD BD AD ⋅=+⋅=⋅⋅u u u v u u u v u u u v u u v u u u v u u u v u u u v u u u v ,又∵AB AD ⊥,∴0AB AD ⋅=uuu r,∴33cos 3cos 33AC AD AD AD ADB BD ADB AD u u u v u u u v u u u v u u u v u u v u u u v u u u v u u u v⋅=⋅=⋅∠=⋅∠==, 故选D .5.已知向量a r 与向量b r 满足||2a =r ,||2b =r ||||5a b a b +⋅-=r r r r ,则向量a r与向量b r的夹角为( )A .4π或34π B .6π或56πC .3π或23πD .2π 【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||1282a b θ+=+r r ,2||1282a b θ-=-r r ,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 4882a b a b a b θθ+=++=++r r r r r r1282θ=+,222||||||2||||cos 48821282a b a b a b θθθ-=+-=+-=-r r r r r r,所以2222||||144128cos (45)80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.6.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u vC .5163BD OA OC =-u u u v u u u v u u u vD .1163BD OA OC =+u u u v u u u v u u u v【答案】A 【解析】 【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v ,∴1263BD OA OC =-u u u v u u u v u u u v ,故选:A. 【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.7.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u rC .3142DF AB AC =-+u u u r u u u r u u u rD .1126DF AB AC =--u u u r u u u r u u u r【答案】A 【解析】 【分析】设AB AF λ=u u u r u u u r,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r,即可得出答案.【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u ur u u u r r u u u r u u u r因为C E F 、、三点共线,则1=144λ+,=3λ 所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.8.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r( )A .134-B .54C .5D .154【答案】B 【解析】 【分析】据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果. 【详解】设AC 与BD 交于点O ,以O 为原点,BD u u u r的方向为x 轴,CA u u u r 的方向为y 轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B. 【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9.已知平面直角坐标系xOy 中有一凸四边形ABCD ,且AB 不平行于,CD AD 不平行于BC .设AD 中点(,),E a b BC 中点(,)F b a -,且222a b +=,求||||AB DC +u u u r u u u r的取值范围( ) A .(4,)+∞ B .[4,)+∞C .(0,4)D .(2,4)【答案】A 【解析】 【分析】根据AD 中点(,),E a b BC 中点(,)F b a -,通过向量运算得到2EF AB DC =+u u u r u u u r u u u r,从而有2AB DC EF +=u u u r u u u r u u u r ,用两点间距离公式得到EF u u u r,再根据AB 不平行于CD ,由||||AB D AB DC C ++>u u u r u u u r u u u r u u u r求解.【详解】因为,EF ED DC CF EF EA AB BF =++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以2EF AB DC =+u u u r u u u r u u u r ,又因为2EF ===u u u r,所以24AB DC EF +==u u u r u u ,因为AB 不平行于CD ,所以||||AB D AB DC C ++>u u u r u u u r u u u r u u u r ,所以||||4AB DC +>u u u r u u u r.故选:A 【点睛】本题主要考查平面向量在平面几何中的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.10.已知向量(b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( )A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r 6=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴62a b x b⋅+==-r rr 即12x +=-.又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.11.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( )A .12B .2C .D .﹣2【答案】B 【解析】 【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】因为向量m =r (1,cosθ),n =r(sinθ,﹣2),所以sin 2cos m n θθ⋅=-u r r因为m r ⊥n r ,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2.故选:B. 【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.12.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u vuu u v u u u v,则λ=( )A .14B .14-C .13D .13-【答案】B 【解析】 【分析】由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u ur u u u r u u u r ,32BD BC =u u u r u u u r ,代入化简即可得出.【详解】 13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v,带人可得()13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-,故选B. 【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.13.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u uv u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D14.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( ) A .4 B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则22OP FP x x y ⋅=++u u u r u u u r,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-,所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r的最大值为6故选:C 【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.15.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.16.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v( )A .43AD BE +u u u v u u u vB .53AD BE +u u u v u u u vC .4132AD BE +u u u v u u u v D .5132AD BE +u u u v u u u v 【答案】B【解析】【分析】利用向量的加减运算求解即可【详解】据题意,2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选B .【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题17.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r【答案】D【解析】【分析】【详解】由向量减法的运算法则可得123a e b e -=-+r r r u u r ,18.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( )A.8+B.8-C .12 D .4【答案】C【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.19.已知向量(),1a x =-r ,(b =r ,若a b ⊥r r ,则a =r ( ) ABC .2D .4 【答案】C【解析】 由a b r r ⊥,(),1a x =-r ,(b r =,可得:x 0x ,==,即)1a =-r 所以2a ==r 故选C20.已知单位向量,a b rr 满足3a b +=r r ,则a r 与b r 的夹角为 A .6π B .4π C .3π D .2π 【答案】C【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学平面向量 平面向量的概念及其线性运算1.★★(2014·辽宁卷L) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是 ( )A .p ∨qB .p ∧qC .)()(q p ⌝∧⌝D .)(q p ⌝∨ 2.★★(·新课标全国卷ⅠL ) 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________.3.★★(2014·四川卷) 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 4. ★★ (2014·新课标全国卷ⅠW)设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点,则=+FC EB ( )A . B.21 C. D. 215. ★★(2014福建W)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OD OC OB OA +++等于 ( )A .OM B. OM 2 C. OM 3 D. OM 4 6. ★★(2011浙江L )若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
7. ★★(2014浙江 L )记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a br r 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+8. ★★ (2013广东W)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ).A .1B .2C .3D .4 9. ★★(2010浙江L )已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°,则α的取值范围是__________________ .10. ★★(2010安徽L)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A )a b = (B)2·a b = (C) a b -与b 垂直 (D )a b ∥ 11. ★★ (2013课标全国Ⅱ,理)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅u u u r u u u r=__________.12. ★★(2013山东卷L )已知向量AB 与AC 的夹角为0120,且3=AB ,2=AC ,若AC AB AP +=λ,且BC AP ⊥,则实数λ的值为 。
13. ★★(2012山东L )如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,的坐标为______________。
14. ★★(2010浙江W )已知平面向量,,1,2,(2),αβαβααβ==⊥-则2a β+的值是 。
15. ★★★(2013重庆L)在平面上,1AB u u u r ⊥2AB u u u u r ,|1OB u u u r |=|2OB u u u u r |=1,AP u u u r =1AB u u u r +2AB u u u u r .若|OP uuu r |<12,则|OA u u u r |的取值范围是( ).A .5⎛ ⎝⎦B .57⎝⎦C .52⎝D .72⎝ 16. ★★★(2014浙江 W) 设θ为两个非零向量b a ,的夹角,已知对任意实数t ,a b 的最小值为1.则( )A.若θaB.若θb 唯一确定C.a θ唯一确定D.b 确定,则θ唯一确定平面向量基本定理及向量坐标运算1.★(2014·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.1522.★(2014·福建卷 )在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)3. ★(2014山东W )已知向量(1,3),(3,)a b m ==r r . 若向量,a b r r 的夹角为6π,则实数m =(A) 23(B)3(C) 0(D) 3-4. ★(2014广东W )已知向量)2,1(=a ,)1,3(=b ,则=-a b(A) 23(B)3(C) 0(D) 3-5. ★(2014北京W )已知向量)1,1(),4,2(-==b a ,则=-b a 2 A .(5,7) B. (5,9) C. (3,7) D. (3,9)6. ★(2013辽宁卷L )已知点)3,1(A ,)1,4(-B ,则与向量AB 同方向的单位向量为7. ★(2013陕西卷W )已知向量),1(m a =,)2,(m b =,若a ∥b ,则实数m 等于.A 2- .B 2 .C 2-或2 .D 08. ★(2012广东W )若向量AB u u u r=(1,2),BC uuu r =(3,4),则AC u u u r =( )A (4,6B (-4,-6)C (-2,-2)D (2,2) 9. ★★(2013福建卷L )在四边形ABCD 中,)2,1(=AC ,)2,4(-=BD ,则该四边形的面积为10. ★★(2014•四川)平面向量=(1,2),=(4,2),=m +(m ∈R ),且与的夹角等于与的夹角,则m=( ). A .﹣2B . ﹣1C . 1D . 211. ★★(2013浙江卷L )设0,P ABC ∆是边AB 上一定点,满足AB B P 40=,且对于边AB 上任一点P ,恒有C P B P 00•≥•。
则A. 090=∠ABCB. 090=∠BAC C. AC AB = D.BC AC =12. ★★(2012安徽L )在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP uuu r按逆时针旋转34π后,得向量OQ uuu r ,则点Q 的坐标是( )13. ★★(2011广东w ) 已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则 A .14 B .12C .1D . 2 14. ★★(2010新课标全国W ) a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665(D )1665-15. ★★(2013山东卷L )已知向量AB 与AC 的夹角为0120,且3=AB ,2=AC ,若AC AB AP +=λ,且BC AP ⊥,则实数λ的值为 。
16. ★★(2013江苏L )设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==。
若12DE AB AC λλ=+u u u r u u u r u u u r (1λ、2λ均为实数),则1λ+2λ的值为 。
17. ★★(2011北京L )已知向量a =(3,1),b =(0,-1),c =(k ,3)。
若a -2b 与c 共线,则k=___________________。
18. ★★(2010陕西L )已知向量a=(2,-1),b=(-1,m ),c=(-1,2),若(a+b )∥c则m= . 19. ★(2012福建W )若向量a=(1,1),b=(-1,2),则a ·b 等于_____________.20★(2014北京L ) 已知向量u r α、rb 满足1=r a ,()2,1=r b ,且()λλ+=∈0R r r a b ,则λ= .21. ★★(2014陕西L )设20πθ<<,向量()()sin 2cos cos 1a b θθθ==r r ,,,,若b a ρρ//,则=θtan _______.22. ★★(2014•江西W )已知单位向量与的夹角为α,且cos α=,若向量=3﹣2,则||= _________ .23.★★[2014·江西卷L] 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.24.★★(2014·山东卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.25.★★(2014·陕西卷L)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 26.★★(2014·陕西卷L) 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.平面向量的数量积及应用1.★(2014·北京卷) 已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.2.★★(2014·湖北卷) 设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.3.★★(2014·江西卷) 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.5.★★(2014·新课标全国卷Ⅱ) 设向量a ,b 满足|a +b |=10,|a -b |=6,则=•( )A .1B .2C .3D .56. ★★★(2014安徽L)设,a b r r 为非零向量,2b a =r r ,两组向量1234,,,x x x x u r u u r u u r u u r和1234,,,y y y y u u r u u r u u r u u r 均由2个a r 和2个b r 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r所有可能取值中的最小值为24a r ,则a r 与b r的夹角为( )A.23π B.3π C.6πD.0 7. ★★(2014重庆L)已知向量(,3),(1,4),(2,1)a k b c ===r r r ,且()c b a ⊥-32,则实数=k ( )8. ★★(2014山东L )在ABC ∆中,已知tan AB AC A ⋅=u u u r u u u r ,当6A π=时,ABC ∆的面积为 .9.★★(2014·天津卷) 已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.71210. ★★(2014湖北L )设向量(3,3)a =r ,(1,1)b =-r,若()()a b a b λλ+⊥-r r r r ,则实数λ=________.11. ★★(2014陕西)设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==b a ,若0=⋅b a ,则=θtan ______.12. ★★★(2013湖南卷L )已知b a ,是单位向量,0=⋅b a ,若向量c 满足b a c --=1,则c 的取值范围是13. ★★ (2011·广东卷L ) 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c·(a +2b )=( )A .4B .3C .2D .014. ★★ (2011·湖南卷L ) 在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.15. ★★ (2011·辽宁卷L ) 若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2 D .216. ★★ (2011·全国卷)设向量a ,b ,c 满足|a |=|b |=1,a ·b =-12,〈a -c ,b -c 〉=60°,则|c |的最大值等于( )A .2 B. 3 C. 2 D .1 17. ★( 2011·重庆卷) 已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a·b 的值( )A .1B .2C .3D .418. ★★ (2011·江苏卷) 已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2, 若a ·b =0,则实数k 的值为________.19. ★★ (2011·江西卷)已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________. 20. ★★ (2011·湖北卷)若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于 ( )A .-π4 B.π6 C.π4 D .3π421. ★ (2011·安徽卷) 已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________. 22. ★★(2011·浙江卷) 若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是________.23. ★★(2011·山东卷)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA1A2→(λ∈R),A1A4→=μA1A2→(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,0)(c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点B .D 可能是线段AB 的中点C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上24. ★★(2013安徽卷W )若非零向量,a b r r 满足32a b a b ==+r r r r ,则,a b r r夹角的余弦值为_______.25. ★★(2013浙江卷W )设1e ,2e 的是单位向量,非零向量21e y e x b +=(R y x ∈,)若21,e e 的夹角为6π的最大值等于 。