五年级奥数题精选

合集下载

小学五年级奥数试题(含答案)

小学五年级奥数试题(含答案)

小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。

2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。

答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。

总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。

不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。

希望大家能够通过不断的练习和思考,提高自己的数学水平。

五年级小学生奥数题3篇

五年级小学生奥数题3篇

五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。

2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。

3、小华参加数学竞赛, 共有10道赛题。

规定答对一题给十分, 答错一题扣五分。

小华十题全部答完, 得了85分。

小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。

图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。

6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。

问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。

8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。

的比最小的大()岁。

9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。

小学五年级奥数题五篇

小学五年级奥数题五篇

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第⼀届国际数学奥林匹克竞赛。

以下是⽆忧考整理的《⼩学五年级奥数题五篇》相关资料,希望帮助到您。

1.⼩学五年级奥数题 22.5-(□×32-24×□)÷3.2=10在上⾯算式的两个⽅框中填⼊相同的数,使得等式成⽴。

那么所填的数应是多少? 答案与解析:22.5-(□×32-24×□)÷3.2 =22.5-□×(32-24)÷3.2 =22.5-□×8÷3.2 =22.5-□×2.5 因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10)÷2.5=5 答:所填的数应是5。

 2.⼩学五年级奥数题 某⼩学的六年级有⼀百多名学⽣。

若按三⼈⼀⾏排队,则多出⼀⼈;若按五⼈⼀⾏排队,则多出⼆⼈;若按七⼈⼀⾏排队,则多出⼀⼈。

该年级的⼈数是______。

答案与解析: 苏教版⼩学五年级奥数题及答案-排队:符合第⼀、第三条条件的⼈数为的最少⼈数为3×7+1=22⼈,经检验,22也符合第⼆个条件,所以22也是符合三个条件的最⼩值,但该⼩学有⼀百多名学⽣,所以学⽣总⼈数为22+3×5×7=127。

3.⼩学五年级奥数题 1、甲、⼄、丙、丁约定上午10时在公园门⼝集合.见⾯后,甲说:“我提前了6分钟,⼄是正点到的.” ⼄说:“我提前了4分钟,丙⽐我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收⾳机报北京时间10时整.” 请根据以上谈话分析,这4个⼈中,谁的表最快,快多少分钟? 2、甲、⼄、丙、丁4个同学同在⼀间教室⾥,他们当中⼀个⼈在做数学题,⼀个⼈在念英语,⼀个⼈在看⼩说,⼀个⼈在写信.已知: ①甲不在念英语,也不在看⼩说; ②如果甲不在做数学题,那么丁不在念英语; ③有⼈说⼄在做数学题,或在念英语,但事实并⾮如此; ④丁如果不在做数学题,那么⼀定在看⼩说,这种说法是不对的; ⑤丙既不是在看⼩说,也不在念英语. 那么在写信的是谁? 3、在国际饭店的宴会桌旁,甲、⼄、丙、丁4位朋友进⾏有趣的交谈,他们分别⽤了汉语、英语、法语、⽇语4种语⾔.并且还知道: ①甲、⼄、丙各会两种语⾔,丁只会⼀种语⾔; ②有⼀种语⾔4⼈中有3⼈都会; ③甲会⽇语,丁不会⽇语,⼄不会英语; ④甲与丙、丙与丁不能直接交谈,⼄与丙可以直接交谈; ⑤没有⼈既会⽇语,⼜会法语. 请根据上⾯的情况,判断他们各会什么语⾔? 4、甲、⼄、丙3个学⽣分别戴着3种不同颜⾊的帽⼦,穿着3种不同颜⾊的⾐服去参加⼀次争办奥运的活动.已知: ①帽⼦和⾐服的颜⾊都只有红、黄、蓝3种: ②甲没戴红帽⼦,⼄没戴黄帽⼦; ③戴红帽⼦的学⽣没有穿蓝⾐服: ④戴黄帽⼦的学⽣穿着红⾐服: ⑤⼄没有穿黄⾊⾐服. 试问:甲、⼄、丙3⼈各戴什么颜⾊的帽⼦,穿什么颜⾊的⾐服? 5、5位学⽣A,B,C,D,E参加⼀场⽐赛.某⼈预测⽐赛结果的顺序是ABCDE,结果没有猜对任何⼀个名次,也没有猜中任何⼀对相邻的名次(意即某两个⼈实际上名次相邻,⽽在此⼈的猜测中名次也相邻,且先后顺序相同);另⼀个⼈预测⽐赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次⽐赛的结果。

五年级奥数题100题(附答案)

五年级奥数题100题(附答案)

五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19998×19991999解:(19981998+1)×19998×19991999=19981998×19998×19991999+19991998=19998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。

技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。

你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。

那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。

9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。

(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。

11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。

小学五年级经典奥数题带答案

小学五年级经典奥数题带答案

小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元,如果每千克西瓜降价元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+(28-x)==x=328-x=25答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是⽆忧考整理的《⼩学五年级奥数题及答案6篇》相关资料,希望帮助到您。

1.⼩学五年级奥数题及答案 ⼀排椅⼦只有15个座位,部分座位已有⼈就座,乐乐来后⼀看,他⽆论坐在哪个座位,都将与已就座的⼈相邻。

问:在乐乐之前已就座的最少有⼏⼈? 将15个座位顺次编为1:15号。

如果2号位、5号位已有⼈就座,那么就座1号位、3号位、4号位、6号位的⼈就必然与2号位或5号位的⼈相邻。

根据这⼀想法,让2号位、5号位、8号位、11号位、14号位都有⼈就座,也就是说,预先让这5个座位有⼈就座,那么乐乐⽆论坐在哪个座位,必将与已就座的⼈相邻。

因此所求的答案为5⼈。

 2.⼩学五年级奥数题及答案 1、某⼯车间共有77个⼯⼈,已知每天每个⼯⼈平均可加⼯甲种部件5个,或者⼄种部件4个,或丙种部件3个。

但加⼯3个甲种部件,⼀个⼄种部件和9个丙种部件才恰好配成⼀套。

问应安排甲、⼄、丙种部件⼯⼈各多少⼈时,才能使⽣产出来的甲、⼄、丙三种部件恰好都配套? 解:设加⼯后⼄种部件有x个。

3/5X+1/4X+9/3X=77 x=20 甲:0.6×20=12(⼈)⼄:0.25×20=5(⼈)丙:3×20==60(⼈) 2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁? 解:设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3 x=18 弟弟30-18=12(岁)3.⼩学五年级奥数题及答案 对任意两个不同的⾃然数,将其中较⼤的数换成这两数之差,称为⼀次变换。

如对18和42可进⾏这样的连续变换:18,42→18,24→18,6→12,6→6,6。

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全1.五年级小学生奥数题及答案大全篇一1、火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2、甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3、小方从家到学校,每分钟走60米,要14分钟,如果她每分钟多走10米,需要多少分钟?参考答案:1、200+200÷4=250(千米)2、210÷(210÷6+7)=5(小时)3、60×14÷(60+10)=12(分钟)2.五年级小学生奥数题及答案大全篇二1、一个平行四边形,四条边长度相等,都是5厘米,高是3厘米求这个平行四边形面积是多少?2、一个长方形长是18厘米,宽是长的一半多2厘米,求这个长方形面积和周长分别是多少?3、一个正方形边长9厘米,把它分成四个相等大小的小正方形,请问小正方形的面积是多少?参考答案:1、5×3=15(平方厘米)2、18÷2+2=11(厘米)面积是:18×11=198(平方厘米)周长是:(18+11)×2=58(厘米)3、9×9÷4=20.25(平方厘米)3.五年级小学生奥数题及答案大全篇三1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米4.五年级小学生奥数题及答案大全篇四1、将一个四位数的数字顺序颠倒过来,得到一个新的四位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有一天,村长慢羊羊带着3只羊去吃草。

已知,慢羊羊和喜羊羊共吃了总草量的1/2,喜羊羊和沸羊羊共吃了总草量的1/3,美羊羊和喜羊羊共吃了总草量的1/5。

最后,草都被吃完了。

那么,喜羊羊吃了总草量的几分之几?2、计算:解答:对于小数和分数混合计算,先把小数统一化为分数,或者把分数统一化为小数。

有一串数1、3、8、22、60、164、448,.......其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍,那么在这串数中,第2000个数除以9的余数是几?解答:根据递推关系把这串数除以9的余数列出来如下:1、3、8、4、6、2、7、0、5、1、3,......发现恰好每9个一循环,2000被9除余数是2,所以第2000个和第2个一样除以9的余数是3.4、求数有一个三位数是8的倍数,把它的各位数字的顺序颠倒过来所得到的新三位数与原三位数的和恰好是1111.那么原来的三位数是多少?解答:设原三位数为abc,则新三位数为cba,根据位置原理有,abc+cba=101(a+c)+20b.又因为1111=101×11,且b为一位数,所以a+c=11,b=0;原数为8的倍数,则c=4,a=7,所以原来的三位数是704.5、时钟时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.解答:(1)当时,有可能不能覆盖12个数,比如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.(2)每个扇形覆盖4个数的情况可能是:(1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数(2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数(3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数(4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数当时,至少有3个扇形在上面4个组中的一组里,恰好覆盖整个钟面的全部12个数.所以n的最小值是9.6、行船问题某人乘坐观光游船沿河流方向从港前行.发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过.已知、两港之间货船发出的间隔时间相同,且船在静水中速度相同,均是水速的7倍.那么货船的发出间隔是____________分钟.7、浓度问题8、金字塔埃及著名的胡夫金字塔为正四棱锥形,正方形底座边长为230.4,塔高l46.7米,假定建筑金字塔所用材料全部是石英石,每立方米重2700千克那么胡夫金字塔的总重量是()千克。

9、求面积右上图中五个相同的圆的圆心连线构成一个边长为l0厘米的正五边形。

求五边形内阴影部分的面积。

(π=3.l4)解答:我们用两条绿线将五边形分成了三个三角形,可以看出,这个五边形的五个角的度数和是180×3=540度,即阴影部分面积相当于1.5个半径为5的圆的面积,所以阴影部分的面积是π×52×1.5≈3.14×25×1.5=111.75(平方厘米).10、追及与相遇(高等难度)甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【答案解析】要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)由(1)、(2)可得:8(V车-V人)=7(V车+V人),所以,V车=l5V人。

②火车头遇到甲处与火车头遇到乙处之间的距离是:(8+5×6O)×(V车+V人)=308×16V人=4928V人。

③求火车头遇到乙时甲、乙二人之间的距离。

火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。

④求甲、乙二人过几分钟相遇?11、奇偶问题用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=1991a×b×c×d-b=1993a×b×c×d-c=1995a×b×c×d-d=1997试说明:符合条件的整数a、b、c、d是否存在。

解:由原题等式组可知:a(bcd-1)=1991,b(acd-1)=1993,c(abd-1)=1995,d(abc-1)=1997。

∵1991、1993、1995、1997均为奇数,且只有奇数×奇数=奇数,∴a、b、c、d分别为奇数。

∴a×b×c×d=奇数。

∴a、b、c、d的乘积分别减去a、b、c、d后,一定为偶数.这与原题等式组矛盾。

∴不存在满足题设等式组的整数a、b、c、d。

12、带余除法69、90和125被某个正整数N除时,余数相同,试求N的最大值。

分析在解答此题之前,我们先来看下面的例子:15除以2余1,19除以2余1,即15和19被2除余数相同(余数都是1)。

但是19-15能被2整除.由此我们可以得到这样的结论:如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。

反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。

解答:∵三个整数被N除余数相同,∴N|(90-69),即N|21,N|(125-90),即N|35,∴N是21和35的公约数。

∵要求N的最大值,∴N是21和35的最大公约数。

∵21和35的最大公约数是7,∴N最大是7。

13、时钟问题现在是3点,什么时候时针与分针第一次重合?14、简单的统筹规划某工地A有20辆卡车,要把60车渣土从A运到B,把40车砖从C运到D(工地道路图如右图所示),问如何调运最省汽油?解:分析把渣土从A运到B或把砖从C运到D,都无法节省汽油.只有设法减少跑空车的距离,才能省汽油。

解:如果各派10辆车分别运渣土和砖,那么每运一车渣土要空车跑回300米,每运一车砖则要空车跑回360米,这样到完成任务总共空车跑了300×60+360×40=32400(米)。

如果一辆车从A→B→C→D→A跑一圈,那么每运一车渣土、再运一车砖要空车跑240+90=330(米).因此,先派20辆车都从A开始运渣土到B,再空车开往C运砖到D后空车返回A,这样每辆车跑两圈就完成了运砖任务.然后再派这20辆车都从A运渣土到B再空车返回A,则运渣土任务也完成了.这时总共空车跑了330×40+300×20=19200(米).后一种调运方案比前一种减少跑空车13200米,这是最佳节油的调运方案。

15、计算计算:212+222+232+……+502解答:这道题看着很熟悉,其实就是平方和公式。

16、比赛六个排球队进行单循环赛(每两队之间都要赛一场),现知各队的得分各不相同(比赛中不出现平局,胜队得1分,负队得0分),且A队名列第三,B对名列第四。

请你分析一下:在A,B两队比赛时,哪一队获胜?解答:比赛总场次:6×5÷2=15,每场比赛得分:1分,所以六个人总得分:15分。

根据题意:所有对得分都不相同,那么最少就是0+1+2+3+4+5=15。

即六个队得分依次是5,4,3,2,1,0分。

也就是A得3分,B得2分,很显然每个队都要和其他队比赛5场,所以第一名得5分,全胜。

第二名得4分,即输给第一名,胜了其他人。

A得3分,但是输给第一、二名,赢的是后面的人。

所以A,B两队比赛时,A队获胜。

17、分组问题学而思五年级有100名学生参加活动,男生两人一组,女生三人一组,共有41组。

那么男、女生各有多少名?假如全为男生,则只需41×2=82人,实际为100人,则说明女生有100-82=18组,男生则有41-18=23组。

所以男生人数为23×2=46人,女生人数为18×3=54人。

18、定义新运算"⊙"表示一种新的运算符号,已知:2⊙3 2+3+4;7⊙2 7+8:3⊙5 3+4+5+6+7,……按此规则,如果n⊙8 68,那么,n ____.解答:因为从已知条件可归纳出的运算规则:⊙表示几个连续自然数之和,⊙前面的数表示第一个加数,⊙后面的数表示加数的个数,于是n+(n+1)+(n+2)+……+(n+7)=68,则n=519、梯形面积如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知△BOC的面积为35平方厘米,AO:OC=5:7.那么梯形ABCD的面积是________平方厘米.解答:因为AO:OC=5:7,且△AOB与△BOC等高,所以他们的面积比等于底边比。

(等积变换模型)即△AOB:△BOC= AO:OC=5:7,可得△AOB的面积为25.同理,△ADC与△BCD等底等高,所以△ADC面积=△BCD面积,那么△AOD面积也为35 再由等积变换可得:△AOD与△DOC的面积比等于AO与OC之比,等于5:7.所以三角形DOC面积为49.则梯形ABCD面积为25+35+35+49=144平方厘米。

20、卡片有三张卡片,它们上面各写着数字2,3,4,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.解答:抽一张卡片,可写出一位数2,3,4;抽两张卡片,可写出两位数23,24,32,34,42,43;抽三张卡片,可写出三位数234,243,324,342,423,432;其中三位数的数字和均为9,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,23,43.。

相关文档
最新文档