1.4.2正弦函数余弦函数的性质(周期性)

合集下载

正弦函数、余弦函数的性质

正弦函数、余弦函数的性质

2 T
二、奇偶性
y
o
x
正弦函数是奇函数, 余弦函数是偶函数.
三、最大值与最小值
y
o
x
正弦函数当且仅当x 2k 且仅当x 2k

2
, k Z时取得最大值1, 当

2 余弦函数当且仅当x 2k , k Z时取得最大值1,当且仅 当x 2k , k Z时取得最小值 1.
解:(1)∵
3cos( x 2 ) 3cos x
∴自变量x只要并且至少要增加到x+2
y 3cos x, x R 的值才能重复出现.
,函数
所以,函数 y 3cos x, x R 的周期是 2
(2) sin(2 x 2 ) sin 2( x ) sin 2 x
§ 1.4.2 正弦函数、 余弦函数的性质 (一)
引入
y
o
ห้องสมุดไป่ตู้
x
周期函数: 对于函数f(x),若存在一个非零常数 ,使 T
得当x取定义域内的每一个值 都有 时, f ( x T ) f ( x)
称之, 非零常数T叫做这个函数的周期.
新课
若在周期函数 的所有周期中存 f(x) 在一个最小的正数, 则这个最小正数就 叫做f(x)的最小正周期.
, k Z时取得最小值 1;
例2、求下列函数的最 及取得最值时自 值, 变量x的集合:
(1) y cos x 1, x R; ( 2) y 3 sin 2 x, x R;
小结
1. 周期函数的定义,周期,最小正周期
2. 三角函数的奇、偶性
3. 三角函数的单调性;
作业
一、 周期性 正弦函数是周期函数2k( k Z , k 0)都 ,

1[1].4.2正弦函数、余弦函数的性质——周期性

1[1].4.2正弦函数、余弦函数的性质——周期性
y -2π 0X
y=sinx(x∈R) ∈
2π x
X+2π π

自变量x增加 时函数值不断重复地出现的 自变量 增加2π时函数值不断重复地出现的 增加 时函数值不断重复地 y
x o 4π π
y o
Sin(x+2kπ)=sinx (k z) π)=sinx
x 6π π 12π π

8π π
周期函数的定义: 周期函数的定义:
Sin(x+2kπ)=sinx (k π)=sinx
∈z)
对于一个周期函数f(x),如果在它所有的周期中 对于一个周期函数f(x),如果在它所有的周期中 f(x), 存在一个最小的正数,那么这个最小的正数就 存在一个最小的正数, 最小的正数 叫做f(x) 最小正周期。 f(x)的 叫做f(x)的最小正周期。
求下列函数的周期: 例 求下列函数的周期: (1)y=3cosx(x∈R) ) ∈ ) (2)y=sin2x(x∈R) ) ∈
1 π 变式一: 变式一:y=2sin( x- 6 2
)(x∈R) ∈
变式二: = A sin(ωx + ϕ)(A ≠ 0, ω > 0)(x ∈ R) y
练习: 求下列函数的周期: 练习: .求下列函数的周期: 1
x 的周期为2π? 以说 y = cos 的周期为 3 2.等式f ( x + T ) = f ( x ),强调:自变 x 强调:
x x (2)由诱导公式 cos( + 2π) = cos ,是否可 由诱导公式 3 3
量x本身加的常数才是周期, 3
的周期。其周期应为 ( x + 6π ) = cos
周期性
[问题 问题] 问题 1、今天星期一? 、今天星期一? 7天后星期几? 天后星期几? 天后星期几 14天后呢 14天后呢? 天后呢? 98天后呢? 天后呢? 天后呢 7K天后呢?其中 是非零整数 天后呢? 天后呢 其中k是非零整数 2、在数学当中,有没有周期性现 、在数学当中, 象?

1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数、余弦函数的性质知识点一 正弦函数、余弦函数的周期性函数的周期性1、(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2、A sin[(ωx +φ)+2π]=A sin(ωx +φ),A sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x +2πω+φ=A sin(ωx +φ),即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(Aω≠0)是周期函数,2πω就是它的一个周期.3、由sin(x +2k π)=sin_x ,cos(x +2k π)=cos_x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π.知识点二 正弦函数、余弦函数的奇偶性(1)对于y =sin x ,x ∈R ,恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. (2)对于y =cos x ,x ∈R ,恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.知识点三 正弦、余弦函数的单调性[-1,1][-1,1]对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 1、求下列函数的最小正周期. (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R );(2)y =|sin x |(x ∈R ).2、下列函数是以π为周期的函数是( )A .y =sin xB .y =sin x +2C .y =cos2x +2D .y =cos3x -13.函数f (x )是周期函数,10是f (x )的一个周期,且f (2)=2,则f (22)=________.4.函数y =sin ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为2,则ω的值为________.类型二 三角函数的奇偶性对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断. 判断函数奇偶性应把握好两个关键点关键点一:看函数的定义域是否关于原点对称; 关键点二:看f (x )与f (-x )的关系.1、判断下列函数的奇偶性.(1) f (x )=sin(-x )(2)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (3)f (x )=1-2cos x +2cos x -1.2、若函数y =cos(ωx +φ)是奇函数,则( )A .ω=0B .φ=k π(k ∈Z )C .ω=k π(k ∈Z )D .φ=k π+π2(k ∈Z )3、已知函数f (x )=ax +b sin x +1,若f (2018)=7,则f (-2018)=________.类型三 三角函数的奇偶性与周期性的综合应用1.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数2、定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.2、已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2020)的值.3、设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2018)=________.类型四 求正弦、余弦函数的单调区间用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.求单调区间时,需将最终结果写成区间形式.1.函数y =sin2x 的单调递减区间。

1.4.2 正弦函数、余弦函数的性质(一)

1.4.2 正弦函数、余弦函数的性质(一)

∴f(x)为奇函数.
返回导航 上页 下页
人教版数学·必修4
返回导航 上页 下页
探究三 三角函数的奇偶性与周期性的综合应用
[例 4] (1)下列函数中是奇函数,且最小正周期是 π 的函数是( )
A.y=cos|2x|
B.y=|sin x|
C.y=sinπ2+2x
D.y=cos32π-2x
[答案] D
∴f-π3=fπ3=sinπ3= 23.
∴f53π=
3 2.
人教版数学·必修4
返回导航 上页 下页
方法技巧 三角函数的周期性、奇偶性都是函数的整体性,两者结合起来,可使 更全面的研究函数图象特征.
人教版数学·必修4
返回导航 上页 下页
延伸探究 5.(1)若将例 3(2)题中的“偶函数”改为“奇函数”,其他条件不变, 结果如何?
而 z+2π=2x+π3+2π=2(x+π)+π3,所以自变量 x 只要且至少要增加到 x+π,函
数值才能重复取得,所以函数 f(x)=sin2x+π3(x∈R)的最小正周期是 π.
人教版数学·必修4
返回导航 上页 下页
2.将本例(2)改为:求函数 y=|1+sin x|的最小正周期. 解析:∵y=|1+sin x|=1+sin x,∴T=2π.
f(5)=cos53π=12,f(6)=cos 2π=1,
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.
同理可得,每连续六项的和均为 0,
即周期为 6.
∴f(1)+f(2)+f(3)+…+f(2 019)=336×0+f(1)+f(2)+f(3)=12-12-1=-1. [答案] -1
人教版数学·必修4
返回导航 上页 下页

1.4.2正弦函数余弦函数的性质

1.4.2正弦函数余弦函数的性质

讲授新课
例1. 求下列三角函数的周期:
练习1. 求下列三角函数的周期:
讲授新课 一般结论:
讲授新课
三个函数的周期是什么?
讲授新课 一般结论:
讲授新课 正弦、余弦函数的性质2——奇偶性
请同学们观察正、余弦函数的图形, 说出函数图象有怎样的对称性?其特点 是什么?
y=sinx
y=cosx
讲授新课 正弦、余弦函数的性质2——奇偶性
讲授新课
例4.不通过求值,指出下列各式大于 0还是小于0.
例5、求函数y=sin(
1 2
x
3
),
x
2
,
2
的单调递增区间。
课堂小结
1. 正弦函数、余弦函数的周期性; 2.正弦函数、余弦函数的奇偶性; 3. 正弦函数、余弦函数的单调性.
补充作业:
1.已知sin(x ) 1 ,求sin(5 x) sin2 ( x)的值.
前提:定义域关于原点对称
讲授新课
例2.判断下列函数的奇偶性
讲授新课 正弦、余弦函数的性质3——单调性
增函数
减函数
讲授新课 正弦、余弦函数的性质3——单调性
增函数 减函数
对称轴 y=sinx的对称轴为
y=cosx的思考. 教材P.46习题1.4第11题.
讲授新课
例3.下列函数有最大值、最小值吗?如果 有,请写出取最大值、最小值时的自变 量x的集合,并说出最大值、最小值分别 是什么.
(3) 这个规律由诱导公式sin(2k+x)=sinx 可以说明.
结论:象这样一种函数叫做周期函数.
讲授新课
周期函数定义:
对于函数f(x),如果存在一个非零 常数T,使得当x取定义域内的每一个 值时,都有:f (x+T)=f(x).那么函数 f(x)就叫做周期函数,非零常数T叫做 这个函数的周期.

正弦函数余弦函数函数周期性

正弦函数余弦函数函数周期性

最大值和最小值?若存在,其最大值和最小值分别为多少?
y 1
y=sinx
-6π -4π -2π -5π -3π

O
π
3π 5π x
2π 4π 6π
-1
y y=cosx
2
2
1 22
2
2
x
2
O
2
2
-1
2
2
2
思 考 2: 当 自 变 量 x 分 别 取 何 值 时 , 正 弦 函 数 y=sinx取得最大值1和最小值-1?
x
2
O
2
2-1
2
2
2
余弦函数当且仅当 x 2k 时取最大值1,
当且仅当 x (2k 1) 时取最小值-1.
思考4:根据上述结论函数y=Asinωx(ω≠0)的值域是什么?
[-|A| , |A|]
探究(三):正、余弦函数的正负值区间
1 y y=sinx
-6π -4π -2π -5π -3π
(1) y sin x T 2
y
Asin( x )
T
2 | |
(2) y cos x T 2
y Acos( x )
T 2 | |
练习
• 已知函数 y f ( x) 的周期是3,且当 x [0,3] 时, f ( x) x2 1 ,求 f (1), f (5), f (16).
解(1)令 z 2x 则 y sin(2x ) sin z
3
3
y sin z 的对称轴为 z k ,k Z
即2x k
2
32
解得:对称轴为
x
k ,k Z
12 2
(2) y sin z 的对称中心为 (k ,0) , k Z

1.4.2 正弦、余弦函数的性质(一)

1.4.2 正弦、余弦函数的性质(一)
2) y = sin 2 x 1
2π T= = 4π 3) y = 2 sin( x − ), x ∈ R 1 2 6 2 函数y = A sin(ω x + ϕ )及y = A cos(ω x + ϕ ), x ∈ R 2π ( A, ω , ϕ为常数, A ≠ 0, ω > 0)的周期T = ω
π
2π T= =π 2
课堂小结: 课堂小结:
1. 定义法 公式法: 2. 公式法:
周期求法
一般地, 一般地,函数 y=Asin(ωx+φ) 及 y=Acos(ωx+φ) (其中A ,ω,φ为常数, 为常数, 的周期是: 且 A≠0, ω≠0 )的周期是:
T= 2π
ω
(ω ≠ 0)
1、求下列函数的周期或函数值 、
利用正弦函数和余弦函数的图象, 例2.利用正弦函数和余弦函数的图象, 利用正弦函数和余弦函数的图象 求满足下列条件的x的集合 的集合: 求满足下列条件的 的集合:
2 (2) cos x ≤ 1 ,x ∈ (0, 5π ) (1) sin x ≥ 2 2 2
例3.求下列函数的定义域: 3.求下列函数的定义域: 求下列函数的定义域
π
2
,1 )
最低点: 最低点: ( 3π
2
,−1)
轴的交点: 与x轴的交点: (0, 0) (π , 0) (2π , 0) 轴的交点
y
-
y = cos x
x ∈ [0, 2π ]
1-
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
的图象上,关键点: 在函数 y = cos x, x ∈ [0, 2π ] 的图象上,关键点: 最高点: 最高点: (0,1) (2π ,1) 轴的交点: 与x轴的交点: ( 轴的交点 最低点: 最低点:

正弦函数、余弦函数的性质(一)

正弦函数、余弦函数的性质(一)

(2) 令 z 2x,x R,则 y sin z,z R
Q sin(z 2 ) sin z sin(2x 2 ) sin 2x 即 sin 2( x ) sin 2x,x R
y sin 2x 的周期是 ;
(3) y 2sin( 1 x ),x R .
26
解:令 z 1 x ,x R,则 y 2sin z,z R
有界性的条件.
例4 求函数 y 2sin x 1 的值域.
sin x 3
解:由已知得 (2 y)sin x 3 y 1
y 2, sin x 3 y 1
2 y 1 sin x 1 | 3 y 1 | 1 | 3 y 1 | | 2 y |
2 y
即 (3 y 1)2 (2 y)2 (4 y 1)(2 y 3) 0
y
y sin x , x R
1
3
5 2
2
3 2
2
0
-1
2
3 2
2 5 3 x
2
y
y cos x , x R
1
3
5 2
2
3 2
2
0
-1
2
3 2
2 5 3 x
2
观察正弦曲线与余弦曲线,可以得出以下结论: 1. 正弦函数和余弦函数的定义域、值域
y=sinx和y=cosx的定义域都是 ____R______. y=sinx和y=cosx的值域都是 __[-__1_,__1_]__.
即x∈[2kπ,2(k+1)π)(k∈Z)上的图象是完全相同的. 即自变量每相差2π,图象就“周而复始”重复出现. (这一特性从正弦线、余弦线的变化规律中也可以看出)
y
y sin x , x R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意: 1.定义是对定义域中的每一个x值来说的, 只有个别的x值满足:f ( x T ) f ( x ) 不能说T 是y f ( x )的周期. 例如 : sin(

2

4


2
) sin

4
, 但是 sin(
3


2
) sin

3
.
就是说 sin( x
不能对x在定义域内的每一个值使 ) sin x ,因此

2
2
不是y sin x的周期.
练习:判断下列说法是否正确
2 2 sin( x ) sin x 则 (1)x 时, 3 3 3
√) 一定不是 y sin x 的周期 (
2 2 7 x (2) 时,sin( x 3 ) sin x 则 3 6
一定是 y sin x 的周期
2 3
o -1
x
如何用数学语言刻画周期性
1、周期的定义
对于函数 f ( x) ,如果存在一个非零常
数 T,使得当 个值时,都有
x 取定义域内的每一
f ( x T ) f ( x),
那么函数 f ( x) 就叫做周期函数,
非零常数 T 叫做这个函数的周期。
正弦函数和余弦函数的周期都是 2kπ
1 1 (3) 2sin( x ) 2sin( x 2 ) 2 6 2 6 1 1 2sin( x ) 2sin ( x 4 ) 2 6 6 2
1 y 2sin( x ) 的周期为4π 2 6
另解
归纳总结
一般地,函数 y A sin( x )及 y A cos( x ) (其中 A, , 为常数,且 A 0, 0 )的周期是
T
2

2
若 0 则 T

练习:
(1) 求下列函数的最小正周期
(1) f ( x ) sin(2 x

5 1 x (2) f ( x) cos( ) 2 3 2
)
2 2 T 1 2
2 2 T 4 | | 2
P36
练习 1, 2
( ) ×
2、最小正周期的定义 对于一个周期函数 f ( x) 如果在它所 有的周期中存在一个最小的正数,
那么这个最小的正数就叫做 f ( x)的 最小正周期。
说明: 我们现在谈到三角函数周期时,如果不加特别说明,一般都 是指的最小正周期;
2.等式f ( x T ) f ( x ),强调:自变 量x本身加的常数才是周期, 例如:f (2 x T ) f (2 x ), T 不是周期, 而应写成 T T f (2 x T ) f 2( x ) f (2 x ), 此时 才是 2 2 函数y f ( x )的周期.
这里的周期指的 是最小正周期!
y 3cos x, x R的周期为2
例 求下列函数的周期: (1)y=3cosx,x∈R; (2)y=sin2x,x∈R;
1 (3) y 2sin( x ), x R 2 6
解:(2)
sin(2 x) sin(2 x 2 ) sin(2x) sin 2( x ) y sin 2 x 的周期为π .
诱导公式sin(x+2π ) =sinx,的几何意义.
y o X X X+2π X+2π x
正弦函数值是按照一定规律不断重复地出现的 能不能从正弦、余弦函数周期性归纳出一般函 数的规律性?
y
正弦曲线
-2பைடு நூலகம்-
1
y sinx , x R
x
o
-1

2
3
4
余弦曲线
-2 -
y 1
y cosx , x R
例 求下列函数的周期: (1)y=3cosx, x∈R; (2)y=sin2x, x∈R;
1 (3) y 2sin( x ), x R 2 6 解:(1) cos x 是以2π 为周期的周期函数.
cos( x 2 ) cos x, 3cos( x 2 ) 3cos x,
小结:
1.周期函数、最小正周期的定义;
2. y A sin( x ) 和 y A cos( x )
型函数的周期的求法。
课后思考
函数 y = tan x是周期函数吗? 如果是,那么它的最小正周期是 多少?
作业:P46
3
1 解:设f ( x ) 2sin x 的周期为T . 6 2 f ( x T ) f ( x) 1 1 2sin ( x T ) 2sin x 6 6 2 2 1 1 1 2sin x T 2sin x 6 2 6 2 2 1 1 令u x , 则 sin u T sin u 2 6 2 T y sin u 的周期为2 2 , 即T 4 . 2
§1.4 正弦余弦函数的性质
(1)周期性
举例:
生活中“周而复始”的变化规律。
日出 日落 、白天 黑夜 、四季更替
问题: 三角函数值是否具有“周而复始”的变化规律?

公式(一)
sin( 2k ) sin ( k Z ), cos( 2k ) cos ( k Z ), tan( 2k ) tan ( k Z ).
思考:一个周期函数的周期有多少个?
1﹑sinx,cosx 的周期是2π ﹑4π ﹑6π ﹑ -2π ﹑-4π ﹑-6π ……2kπ . 2﹑如果T是函数f (x) 的周期,那么2T ﹑ 3T ……kT也是函数f(x)的周期. 3 ﹑对周期函数定义中的“定义域中的每一个 值x ”的要求,而不是某一个值.
相关文档
最新文档