2018年山东省泰安市新泰市九年级上学期数学期中试卷与解析(五四学制)

合集下载

山东省泰安市九年级上学期期中数学试卷

山东省泰安市九年级上学期期中数学试卷

山东省泰安市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有()A . 1个B . 2个C . 3个D . 4个2. (2分)以下列各组线段长为边能组成三角形的是()A . 1cm,2cm,4cmB . 8cm,6cm,4cmC . 12cm,5cm,6cmD . 2cm,3cm,6cm3. (2分)用1、2、3、4、5这5个数字(数字可重复,如“522”)组成3位数,这个3位数是奇数的概率为()A .B .C .D .4. (2分) (2017九下·萧山开学考) 如图,AB,CD都垂直于x轴,垂足分别为B,D,若A(6,3),C(2,1),则△OCD与四边形ABDC的面积比为()A . 1:2B . 1:3C . 1:4D . 1:85. (2分)(2018·通城模拟) 已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为()A . 等腰三角形B . 等边三角形C . 直角三角形D . 任意三角形6. (2分)已知,那么下列等式中,不一定正确的是()A .B .C .D .7. (2分)某县政府2015年投资0.2亿元用于保障性房建设,计划到2017年投资保障性住房建设的资金为0.288亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是()A . 50%B . 40%C . 30%D . 20%8. (2分) (2020九上·邓州期末) 如图,在4×4的正方形网格中,是相似三角形的是()A . ①③B . ①②C . ②③D . ②④二、填空题 (共8题;共8分)9. (1分)(2017·松北模拟) 在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为________.10. (1分)如图所示,E,F分别是矩形ABCD的边BC,CD上的点,用S△CEF表示△CEF的面积,若S△CEF=3,S△ABE=4,S△ADF=5,则S△AEF=________.11. (1分)与相似且对应中线的比为3:5,则与面积的比为________.12. (1分)(2018·黄浦模拟) 如图,在四边形ABCD中,,M、N分别是AC、BD的中点,则线段MN的长为________13. (1分)关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是________.14. (1分) (2016九上·广饶期中) 如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15. (1分)(2017·濮阳模拟) 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.16. (1分)若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:①以a2,b2,c2的长为边的三条线段能组成一个三角形;②以,,的长为边的三条线段能组成一个三角形;③以a+b,c+h,h的长为边的三条线段能组成直角三角形;④以 , ,的长为边的三条线段能组成直角三角形,正确结论的序号为________.三、解答题 (共10题;共66分)17. (5分)解方程:(1)2x2+x﹣3=0(用公式法)(2)(x﹣1)(x+3)=12.18. (5分)在一个不透明的口袋中,装有分别标有数字2,3,4的3个小球(小球除数字不同外,其余都相同),甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数,若该两位数能被4整除,则甲胜,否则乙胜,问这个游戏公平吗?请说明理由.19. (5分)关于x的一元二次方程x2+(m﹣1)x﹣2m+1=0.(1)求证:当m≠0时,原方程总有两个不相等的实数根;(2)若原方程的两根之和为8,求m的值.20. (5分)李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.21. (5分)如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.22. (5分)如图,有一段15m长的旧围墙AB,现打算利用该围墙的一部分(或全部)为一边,再用32m长的篱笆围成一块长方形场地CDEF.(1)怎样围成一个面积为126m2的长方形场地?(2)长方形场地面积能达到130m2吗?如果能,请给出设计方案,如果不能,请说明理由.23. (10分)(2012·内江) 如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.24. (11分)(2017·吉林模拟) 利用图1,图2提供的某公司的一些信息,解答下列问题.(1) 2016年该公司工资支出的金额是________万元;(2) 2014年到2016年该公司总支出的年平均增长率;(3)若保持这种增长速度,请你预估该公司2017年的总支出.25. (10分) (2017九下·六盘水开学考) 如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.26. (5分)两个相似三角形一组对应边的长分别是24cm和12cm,若它们周长的和是240cm,求这两个三角形的周长.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共66分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、。

泰安市九年级上学期期中数学试卷

泰安市九年级上学期期中数学试卷

泰安市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)二次函数y=-(x-1)2+b图象有两个点(2,y1),(3,y2).则下面选项正确的是()A . y1>y2B . y1 =y2C . y1<y2D . 无法判断2. (2分)(2018·沈阳) 下列事件中,是必然事件的是()A . 任意买一张电影票,座位号是2的倍数B . 13个人中至少有两个人生肖相同C . 车辆随机到达一个路口,遇到红灯D . 明天一定会下雨3. (2分)如图,AB⊥CD,∠BAD=30°,则∠AEC的度数等于()A . 30°B . 50°C . 60°D . 70°4. (2分) (2018七上·合浦期末) 若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()x…-10123…y…- - - …A . 二次函数图像与x轴交点有两个B . x≥2时y随x的增大而增大C . 二次函数图像与x轴交点横坐标一个在-1~0之间,另一个在2~3之间D . 对称轴为直线x=1.55. (2分) (2019九上·融安期中) 抛物线y=x2-4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A . 向左平移1个单位B . 向左平移2个单位C . 向右平移1个单位D . 向右平移2个单位6. (2分)一个多边形的内角和是720°,这个多边形的边数是()A . 4B . 5C . 6D . 77. (2分)(2019·保定模拟) 对于反比例函数y=,下列说法正确是()A . 图象经过点(2,﹣1)B . 图象位于第二、四象限C . 图象是中心对称图形D . 当x<0时,y随x的增大而增大8. (2分)在下列命题中:①三点确定一个圆;②同弧或等弧所对圆周角相等;③所有直角三角形都相似;④所有菱形都相似;其中正确的命题个数是()A . 0B . 1C . 2D . 39. (2分)如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A . 30°≤x≤60°B . 30°≤x≤90°C . 30°≤x≤120°D . 60°≤x≤120°10. (2分) (2019九上·博白期中) 已知,抛物线与x轴的公共点是(-6,0),(2,0),则这条抛物线的对称轴是直线()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2017九上·顺义月考) 抛物线在在轴上截得的线段长度是________.12. (1分) (2019九上·台安月考) 已知正六边形的外接圆的半径是,则正六边形的周长是________.13. (1分)如图,将3枚相同的硬币放入一个3×4的长方形格子中(每个小正方形格子只能放1枚硬币).则所放的3枚硬币中,任意两枚都不同行且不同列的概率为________.14. (1分)如图是二次函数y=ax2+bx+c图象的一部分,图象经过点A(﹣3,0)对称轴为直线x=﹣1,给出以下5个结论:①abc>0;②b2>4ac;③2a+b=0;④a+bc>0;⑤若点B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1<y2 .其中正确的序号为________.15. (1分)(2020·东莞模拟) 如图,AB是⊙O的直径,点C、D在圆上,∠D=67°,则∠ABC等于________度.16. (1分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是________ cm,面积是________ cm2 .三、解答题 (共7题;共68分)17. (6分) (2017九上·宝坻月考) 如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2) A的对应点为A1 ,写出点A1的坐标;(3)求出BB1的长.(直接作答)18. (10分)(2014·南通) 盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=________,y=________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?19. (2分)(2014·杭州) 在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.20. (10分) (2018九上·惠阳期中) 已知:m , n是方程x2﹣6x+5=0的两个实数根,且m<n ,抛物线y=﹣x2+bx+c的图象经过点A(m , 0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C ,抛物线的顶点为D ,试求出点C , D的坐标和△BCD 的面积.21. (10分) (2019九上·孝感月考) 如图,两个圆都是以为圆心.(1)求证:;(2)若,,小圆的半径为,求大圆的半径的值.22. (15分)(2019·上海模拟) 已知抛物线y=ax2﹣2ax﹣2,与x轴交于A,B两点,与y轴交于点C,A (﹣2,0)(1)直接写出:a=________(2)如图1,点P在第一象限内抛物线上的一点,过点P作x轴的垂线交CB的延长线于点D,交AC的延长线于点Q,当△QAP与△QCD相似时,求P点的坐标;(3)如图2,抛物线的对称轴交x轴于点M,N为第二象限内抛物线上的一点,直线NA,NB分别交y轴于D,E两点,分别交抛物线的对称轴于F,G两点.①求tan∠FAM﹣tan∠GAM的值;②若,求N点的坐标.23. (15分)(2018·番禺模拟) 如图本题图①,在等腰Rt中,, ,为线段上一点,以为半径作交于点 ,连接、,线段、、的中点分别为、、 .(1)试探究是什么特殊三角形?说明理由;(2)将绕点逆时针方向旋转到图②的位置,上述结论是否成立?并证明结论;(3)若 ,把绕点在平面内自由旋转,求的面积y的最大值与最小值的差.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共68分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-3、23-1、23-2、23-3、。

2018年山东省泰安市中考数学试卷有答案

2018年山东省泰安市中考数学试卷有答案

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前山东省泰安市2018年初中学业水平考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:()()022--+-的结果是( )A .3-B .0C .1-D .3 2.下列运算正确的是( )A .33623y y y +=B .236y y y = C .()32639y y =D .325y y y -÷=3.如图是下列哪个几何体的主视图与俯视图( )(第3题)A .B .C .D . 4.如图,将一张含有30︒角的三角形纸片的两个顶点叠放在矩形的两条对边上,若2=44∠︒,则1∠的大小为( )(第4题)A .14︒B.16︒C.90α︒-D.44α-︒5.某中学九(2)班六组的8名同学在一次排球垫球测试中的成绩(单位:个)如下: 353842444047 45 45 则这组数据的中位数、平均数分别是( )A .42,42B .43,42C .43,43D .44,436.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问:A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .5300,20015030x y x y +=⎧⎨+=⎩B.5300,15020030x y x y +=⎧⎨+=⎩C.30,2001505300x y x y +=⎧⎨+=⎩D.30,1502005300x y x y +=⎧⎨+=⎩ 7.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y ax b =+在同一直角坐标系内的大致图象是( )(第7题)ABCD 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)8.不等式组()()111,32412x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B.65a -<≤-C.65a -<<-D.65a -≤≤-9.如图,BM 与O 相切于点B ,若140MBA ∠=︒,则ACB ∠的度数为( )(第9题)A.40︒B.50︒C.60︒D.70︒ 10.一元二次方程()()1325x x x +-=-根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC △经过平移后得到111A B C △,若AC 上一点()1.2,1.4P 平移后的对应点为1P ,点1P 绕原点顺时针旋转180︒,对应点为2P ,则点2P 的坐标为( )(第11题)A .()2.8,3.6B .()2.8, 3.6--C .()3.8,2.6D .()3.8, 2.6--12.如图,M 的半径为2,圆心M 的坐标为()3,4,点P 是M 上的任意一点,PA PB ⊥,且PA ,PB 与x 轴分别交于A ,B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )(第12题) A .3B .4C .6D .8第II 卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg .将这个数据用科学记数法表示为 kg . 14.如图,O 是ABC △的外接圆,45A ∠=︒,4BC =,则O 的直径为 .(第14题)15.如图,在矩形ABCD 中,6AB =,10BC =,将矩形ABCD 沿BE 折叠,点A 落在点A '处,若EA '的延长线恰好过点C ,则sin ABE ∠的值为 .(第15题)16.观察“田”字中各数之间的关系:,,,,,,⋅⋅⋅,,则c的值为 .17.如图,在ABC △中,=6AC ,10BC =,3tan 4C =,点D 是边AC 上的动点(不与点C 重合),过点D 作DE BC ⊥,垂足为点E ,点F 是BD 的中点,连接EF ,设=CD x ,数学试卷 第5页(共24页) 数学试卷 第6页(共24页)DEF △的面积为S ,则S 与x 之间的函数关系式为 .(第17题)18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,问:出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为 步.(第18题)三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分) 先化简,再求值: 2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中 2.m20.(本小题满分9分)文美书店决定用不多于20 000元购进甲、乙两种图书1 200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书售价的1.4倍,若用1 680元在文美书店可购买甲种图书的本数比用1 400元购买乙种图书的本数少10本.(1)甲、乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问:书店应如何进货才能获得最大利润?(购进的两种图书全部销售完)21.(本小题满分8分)为增强学生的安全意识,我市某中学组织初三年级1 000名学生参加了校园安全知识竞赛,随机抽取一个班的学生成绩进行整理,将成绩分为A ,B ,C ,D 四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(第21题)(1)请估计该校初三年级成绩等级为A 的学生人数.(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)22.(本小题满分9分)如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数my x =的图象经过点E ,与AB 交于点F . (1)若点B 的坐标为()6,0-,求m 的值及图象经过A ,E 两点的一次函数的表达式. (2)若2AF AE -=,求反比例函数的表达式.(第22题)23.(本小题满分11分) 如图,在ABC ∆中,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连接GE ,GD . (1)求证:CG GHD ≅△△.(2)小亮同学经过探究发现:AD AC EC =+.请你帮助小亮同学证明这一结论. (3)若30B ∠=︒,判定四边形AEGF 是否为菱形,并说明理由.(第23题)24.(本小题满分11分)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴点于点()4,0A -,()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式.(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值. (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.(第24题)25.(本小题满分12分)如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,EF AB ,EAB EBA ∠=∠,过点B 作DA 的垂线,交DA 的延长线于点G .(1)DEF ∠和AEF ∠是否相等?若相等,请证明;若不相等,请说明理由. (2)找出图中与AGB △相似的三角形,并证明. (3)BF 的延长线交CD 的延长线于点H ,交AC 于点M .求证:2BM MF MH =.(第25题)数学试卷 第9页(共24页) 数学试卷 第10页(共24页)2018年山东省泰安市初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】原式=2+1=3. 【考点】实数的运算. 2.【答案】D【解析】A 项,33323y y y +=.B 项,235y y y =.C 项,()326327y y =.D 项,正确.【考点】整式的运算. 3.【答案】C【解析】主视图为半圆的有B ,C ,D 项,俯视图为长方形的只有C 项. 【考点】主视图与俯视图. 4.【答案】A 【解析】如图,AB CD ∥,2=44∠︒,244.BAD ∴∠=∠=︒30E ∠=︒,1443014.BAD E ∴∠=∠-∠=︒-︒=︒(第4题)【考点】平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和. 5.【答案】B【解析】将这组数据按从小到大的顺序排列为35,38,40,42,44,45,45,47,∴中位数为42+44=432,平均数为()35+38+40+42+44+45+45+478=42÷. 【考点】中位数和平均数.6.【答案】C【解析】①A 型风扇的销售数量+B 型风扇的销售数量=30台,所列方程为30x y +=;②A 型风扇的销售收入+B 型风扇的销售收入=5 300元,所列方程为2001505300x y +=.∴所列方程组为30,2001505300.x y x y +=⎧⎨+=⎩【考点】列二元一次方程组解应用题. 7.【答案】C 【解析】抛物线开口向上,0.a ∴>抛物线的对称轴在y 轴的左侧,a ∴与b 同号,即0.ab y x>∴=的图象位于第一、三象限,y ax b =+的图象经过第一、二、三象限,与y 轴的正半轴相交.【考点】二次函数、反比例函数、一次函数的图象与性质. 8.【答案】 B【解析】原不等式组的解集为42.x a <≤-原不等式组有3个整数解,∴可知这3个整数解为5,6,7,728a ∴≤-<,解得65a -<≤-.【考点】解不等式组及不等式组解集的确定. 9.【答案】A【解析】如图,连接,.OB OA BM 是O 的切线,,90.140,50.,50,BM OB OBM MBA ABO OB OA BAO ABO ∴⊥∴∠=︒∠=︒∴∠=︒=∴∠=∠=︒11180180505080,8040.22AOB ABO BAO ACB AOB ∴∠=︒-∠-∠=︒-︒-︒=︒∴∠=∠=⨯︒=︒(第9题)数学试卷 第11页(共24页) 数学试卷 第12页(共24页)【考点】切线的性质、等边对等角、三角形内角和定理及圆周角定理. 10.【答案】D【解析】原方程整理成一般形式为()22420.441280,x x -+=∆=--⨯⨯=>∴原方程有两个不相等的实数根.解这个方程,得1222x x ==2+23,20,>->2+23,20,>∴原方程有两个正根,且有一根大于3.【考点】一元二次方程根的判别式及解一元二次方程. 11.【答案】A【解析】将ABC △向下平移5个单位长度,再向左平移4个单位长度得到111.A B C △点P 的坐标为()1.2,1.4∴,由平移的性质知,()1 2.8,3.6.P --由旋转的性质知,()22.8,3.6.P【考点】平移、旋转. 12.【答案】C【解析】如图,连接,.OP OM 由题意,得,90,OA OB OP APB ==∠=︒∴点P 在以点O 为圆心,以12r AB =长为半径的圆上.又点P 在M 上,∴当M 与O 相切时,为满足条件且r 最小的情况,即此时AB的长最小.此时,252 3.2 6.r OM AB r =-=-=∴==(第12题)【考点】直径所对的圆周角为90︒及两圆相切的性质.第Ⅱ卷二.填空题13.【答案】269.310-⨯【解析】260.000000000000000000000000093=9.310.-⨯【考点】科学记数法. 14.【答案】【解析】如图,连接,.45,2O B O C A B O CA ∠=︒∴∠=∠=⨯是等腰直角三角形,45.OBC ∴∠=︒在Rt OBC∆中,24,sin 42 2.2BC OC BC OBCO =∴=∠=⨯=∴的直径为2242.OC =⨯=(第14题)【考点】圆周角定理、等腰三角形的性质与判定及解直角三角形.15.【解析】四边形ABCD是矩形,6,10,90,10, 6.AB BC A D AD BC CD AB ==∴∠=∠=︒====由折叠的性质可知,'6,'90,'90.A B AB BA E A BA C ==∠=∠=︒∴∠=︒在'Rt BA C △中,由勾股定理,得'8.A C =设,AE x =则',10,''8.A E AE x DE AD AE x CE A C A E x ===-=-=+=+在Rt CDE △中,222,CD DE CE +=即()()2226+108,x x -=+解得 2.x =在Rt BAE △中,sin AE BE ABE BE=∴∠=== 【考点】矩形的性质、折叠的性质、勾股定理及解直角三角形. 16.【答案】270(或82+14)数学试卷 第13页(共24页) 数学试卷 第14页(共24页)【解析】“田”字左上角的数=21n -,左下角的数=2n ,右下角的数=左上角的数+左下角的数,右上角的数=右下角的数81.2115,8,2256,1515256271,n n a b a --=∴=∴===+=+=2711c =-=(或88815152,1521214b a c =+=+=+-=+)【考点】探索规律. 17.【答案】233252S x x =-+ 【解析】33,tan ,.44DE DE BC C CE ⊥=∴=又,CD x =∴易知344,.10,10.555DE x CE x BC BE BC CE x ===∴=-=-点F 是BD 的中点,211114333,10222455252DEF BED DF BF S S BE DE x x x x ∆∆⎛⎫∴=∴==⨯=-=-+ ⎪⎝⎭,即233.252S x x =-+ 【考点】勾股定理、三角形的面积及根据几何图形中的等量关系确定解析式.18.【答案】20003【解析】如图,由题意知,四边形DHMK 是正方形,15AH =步,100DH MH MK ∴===步,15100115AM AH MH ∴=+=+=(步).易证,,DH AHAHD AMC CM AM∴=△△即100152000,100+1153KC KC =∴=步.(第18题)【考点】相似三角形的判定与性质. 三、解答题19.【答案】原式()()()()()()()2222231=1122211211222.2mm m m m m m mm m m mm m mm--+÷---+-=÷----=-+--=+当2m =时,原式 1.==【解析】原式()()()()()()()2222231=1122211211222.2m m m m m m mm m m m mm m mm --+÷---+-=÷----=-+--=+当2m =时,原式 1.==20.【答案】(1)设乙种图书的售价为每本x 元,则甲种图书的售价为每本1.4x 元.由题意,得14001680101.4x x-=,解得20x =.经检验,20x =是原方程的解. ∴甲种图书的售价为每本1.420=28⨯(元).答:甲种图书的售价为每本28元,乙种图书的售价为每本20元. (2)设甲种图书进货a本,总利润为w 元,则()()()282032014212004800.w a a a =--+---=+又()2014120020000,a a +⨯-≤解得1600.3a ≤w 随a 的增大而增大,∴当a 最大时,w 最大,即当533a =时,w 最大.此时,乙种图书进货本数为1200533667.-=答:甲种图书进货533本,乙种图书进货667本时利润最大.数学试卷 第15页(共24页) 数学试卷 第16页(共24页)【解析】(1)设乙种图书的售价为每本x 元,则甲种图书的售价为每本1.4x 元.由题意,得14001680101.4x x-=,解得20x =.经检验,20x =是原方程的解. ∴甲种图书的售价为每本1.420=28⨯(元).答:甲种图书的售价为每本28元,乙种图书的售价为每本20元. (2)设甲种图书进货a本,总利润为w 元,则()()()282032014212004800.w a a a =--+---=+又()2014120020000,a a +⨯-≤解得1600.3a ≤w 随a 的增大而增大,∴当a 最大时,w 最大,即当533a =时,w 最大.此时,乙种图书进货本数为1200533667.-=答:甲种图书进货533本,乙种图书进货667本时利润最大.21.【答案】(1)由题意,得所抽取班级的学生人数为820%=40÷,该班成绩等级为A 的学生人数为4025825---=,该校初三年级成绩等级为A 的学生人数约为511000=1000=125.408⨯⨯答:估计该校初三年级成绩及等级为A 的学生人数约为125.(2)设2名得满分的男生分别为1m ,2m ,3名得满分的女生分别为1g ,2g ,3g .从这5名学生中选3名学生的所有可能情况为()121,,m m g ,()122,,m m g ,()123,,m m g ,()112,,m g g ,()113,,m g g ,()123,,m g g ,()212,,m g g ,()213,,m g g ,()223,,m g g ,()123,,g g g ,共10种等可能情况.其中恰好有2名女生,1名男生的情况为()112,,m g g ,()113,,m g g ,()123,,m g g ,()212,,m g g ,()213,,m g g ,()223,,m g g ,共6种情况.∴恰好抽到2名女生和1名男生的概率为63=.105【解析】(1)由题意,得所抽取班级的学生人数为820%=40÷,该班成绩等级为A 的学生人数为4025825---=,该校初三年级成绩等级为A 的学生人数约为511000=1000=125.408⨯⨯ 答:估计该校初三年级成绩及等级为A 的学生人数约为125.(2)设2名得满分的男生分别为1m ,2m ,3名得满分的女生分别为1g ,2g ,3g . 从这5名学生中选3名学生的所有可能情况为()121,,m m g ,()122,,m m g ,()123,,m m g ,()112,,m g g ,()113,,m g g ,()123,,m g g ,()212,,m g g ,()213,,m g g ,()223,,m g g ,()123,,g g g ,共10种等可能情况.其中恰好有2名女生,1名男生的情况为()112,,m g g ,()113,,m g g ,()123,,m g g ,()212,,m g g ,()213,,m g g ,()223,,m g g ,共6种情况.∴恰好抽到2名女生和1名男生的概率为63=.10522.【答案】(1)()6,0,3,8,B AD AB E -==为CD 的中点,()()3,4,6,8.E A ∴--反比例函数的图象过点()3,4,3412.Em -∴=-⨯=-设图象经过A ,E 两点的一次函数的表达式为y kx b =+,则68,34,k b k b -+=⎧⎨-+=⎩解得4,30.k b ⎧=-⎪⎨⎪=⎩4.3y x ∴=-(2)连接.AE 3,8,AD AB E ==为DC 的中点,4, 5.DE AE ∴=∴=2,7, 1.AF AE AF BF -=∴=∴=设点E 的坐标(),4a 为,则点F 的坐标为()3,1.a -,E F 两点在m y x=的图象上,43,a a ∴=-解得 1.a =-()1,4,4,E m ∴-∴=-4.y x ∴=-【解析】(1)()6,0,3,8,B AD AB E -==为CD 的中点,()()3,4,6,8.E A ∴--反比例函数的图象过点()3,4,3412.Em -∴=-⨯=-设图象经过A ,E 两点的一次函数的表达式为y kx b =+,则68,34,k b k b -+=⎧⎨-+=⎩解得4,30.k b ⎧=-⎪⎨⎪=⎩4.3y x ∴=-(2)连接.AE 3,8,AD AB E ==为DC 的中点,4, 5.DE AE ∴=∴=2,7, 1.AF AE AF BF -=∴=∴=设点E 的坐标(),4a 为,则点F 的坐标为()3,1.a -,E F 两点在m y x=的图象上,43,a a ∴=-解得 1.a =-()1,4,4,E m ∴-∴=-4.y x ∴=-23.【答案】(1)证明:,.AF FG FAG FGA =∴∠=∠AG 平分数学试卷 第17页(共24页) 数学试卷 第18页(共24页),,CAB CAG FAG ∠∴∠=∠,.CAG FGA AC FG ∴∠=∠∴∥,.DE AC FG DE ⊥∴⊥,,FG BC DE BC ⊥∴∥,90,.AC BC C DHG CGE GED ∴⊥∴∠=∠=︒∠=∠F 是AD 的中点,,FG AE H ∴∥是ED 的中点,FG ∴是线段ED 的垂直平分线,,,,GE GD GDE GED CGE GDE ∴=∠=∠∴∠=∠.ECG GHD ∴≅△△(2)证明:如图,过点G 作GP AB ⊥于点P .(第23题).GC GP ∴=又,AG AG ∴=,.Rt CAG Rt PAG AC AP ∴≅∴=△△由(1)知,,EG DG =,,.Rt ECG Rt DPG EC DP AD AP DP AC EC ∴≅∴=∴=+=+△△ (3)解:四边形AEGF 是菱形.理由如下:30,B ∠=︒由(1)知,,DE BC ∥30,ADE ∴∠=︒∴在Rt ADE ∆中,1,.2AE AD AE AF FG =∴==由(1),得,AE FG ∥AEGF ∴四边形是平行四边形.,AE AF AEGF ∴=∴又是菱形. 【解析】(1)证明:,.AF FG FAG FGA =∴∠=∠AG 平分,,CAB CAG FAG ∠∴∠=∠,.CAG FGA AC FG ∴∠=∠∴∥,.DE AC FG DE ⊥∴⊥,,FG BC DE BC ⊥∴∥,90,.AC BC C DHG CGE GED ∴⊥∴∠=∠=︒∠=∠F 是AD 的中点,,FG AE H ∴∥是ED 的中点,FG ∴是线段ED 的垂直平分线,,,,GE GD GDE GED CGE GDE ∴=∠=∠∴∠=∠.ECG GHD ∴≅△△(2)证明:如图,过点G 作GP AB ⊥于点P .(第23题).GC GP ∴=又,AG AG ∴=,.Rt CAG Rt PAG AC AP ∴≅∴=△△由(1)知,,EG DG =,,.Rt ECG Rt DPG EC DP AD AP DP AC EC ∴≅∴=∴=+=+△△(3)解:四边形AEGF 是菱形.理由如下:30,B ∠=︒由(1)知,,DE BC ∥30,ADE ∴∠=︒∴在Rt ADE ∆中,1,.2AE AD AE AF FG =∴==由(1),得,AE FG ∥AEGF ∴四边形是平行四边形.,AE AF AEGF ∴=∴又是菱形.24.【答案】解:(1)由题意,得1640,420,6,a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得3,43,26.a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴二次函数的表达式为2336.42y x x =--+(2)由()()4,0,0,2,A E --可求得AE 所在直线的表达式为12.2y x =--如图1,过点D 作DN 与y 轴平行,交AE 于点F ,交x 轴于点G ,过点E 作EH DN ⊥,垂足为点H .(第24题)设点D 的坐标为200033,6,42x x x ⎛⎫--+ ⎪⎝⎭则点F 的坐标为001,2,2x x ⎛⎫-- ⎪⎝⎭则22000003313628.4224DF x x x x x ⎛⎫=--+---=--+ ⎪⎝⎭又,ADE ADF EDF S S S ∆∆∆=+数学试卷 第19页(共24页) 数学试卷 第20页(共24页)20020112214232843250.233ADE S DF AG DF EHDF x x x ∴=+=⨯⨯⎛⎫=⨯--+ ⎪⎝⎭⎛⎫=-++ ⎪⎝⎭△ ∴当023x =-时,ADE △的面积取得最大值,为50.3(3)点P 的坐标为()(1,1,--或(1,-或(1,2--+或(1,2.---【解析】解:(1)由题意,得1640,420,6,a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得3,43,26.a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴二次函数的表达式为2336.42y x x =--+(2)由()()4,0,0,2,A E --可求得AE 所在直线的表达式为12.2y x =--如图1,过点D 作DN 与y 轴平行,交AE 于点F ,交x 轴于点G ,过点E 作EH DN ⊥,垂足为点H .(第24题)设点D 的坐标为200033,6,42x x x ⎛⎫--+ ⎪⎝⎭则点F 的坐标为001,2,2x x ⎛⎫-- ⎪⎝⎭则22000003313628.4224DF x x x x x ⎛⎫=--+---=--+ ⎪⎝⎭又,ADE ADF EDF S S S =+△△△20020112214232843250.233ADE S DF AG DF EHDF x x x ∴=+=⨯⨯⎛⎫=⨯--+ ⎪⎝⎭⎛⎫=-++ ⎪⎝⎭△ ∴当023x =-时,ADE △的面积取得最大值,为50.3(3)点P 的坐标为()(1,1,--或(1,-或(1,2--+或(1,2.--【提示】若AEP △为等腰三角形,则有,,AE AP EA EP PA PE ===三种情况.由题意知,抛物线的对称轴为1,x =-∴设点P 的坐标为()1,a -.①如图2,当A E A P =,则22AE AP =,即()()()()222240+0+2=410a ---++-,整理,得2110a -=,解得12a a ==.此时点P 的坐标为(-或(1,-.(第24题)②如图3,当EA EP =时,则22EA EP =,即()()()()222240+0+2=012a --++--,整理,得24150a a +-=,解得1222a a =-=-.此时点P 的坐标为(1,2--或(1,2.--数学试卷 第21页(共24页) 数学试卷 第22页(共24页)(第24题)③如图4,当PA PE =时,则22PA PE =,即()()()()22221+4+0=102a a ----++,解得1a =.此时点P 的坐标为()1,1-.(第24题)综上所述,点P 的坐标为()(1,1,--或(1,-或(1,2--或(1,2.--25.【答案】解:(1).DEF AEF ∠=∠证明如下:,,.EF AB DEF EBA AEF EAB ∴∠=∠∠=∠∥又,.EAB EBA DEF AEF ∠=∠∴∠=∠(2).EOA AGB △△证明如下:四边形ABCD 是菱形,,,AC BD AB AD ∴⊥=2.GAB ABE ADB ABE ∴∠=∠+∠=∠又2,.OEA ABE BAE ABE OEA GAB ∠=∠+∠=∠∴∠=∠又90,.EOA AGB EOA AGB ∠=∠=︒∴△△(3)如图,连接.DM(第25题)四边形ABCD 是菱形,由对称性可知,.,,BM DM ABM ADM AB CH ABM H =∠=∠∴∠=∠∥.ADM H ∴∠=∠又,,FMD DMH MFD MDH ∠=∠∴∆∆22,,.DM MF DM MF MH BM MF MH HM MD ∴=∴=∴=【解析】解:(1).DEF AEF ∠=∠证明如下:,,.EF AB DEF EBA AEF EAB ∴∠=∠∠=∠∥又,.EAB EBA DEF AEF ∠=∠∴∠=∠ (2).EOA AGB △△证明如下:四边形ABCD 是菱形,,,AC BD AB AD ∴⊥=2.GAB ABE ADB ABE ∴∠=∠+∠=∠又2,.OEA ABE BAE ABE OEA GAB ∠=∠+∠=∠∴∠=∠又90,.EOA AGB EOA AGB ∠=∠=︒∴△△(3)如图,连接.DM(第25题)数学试卷 第23页(共24页) 数学试卷 第24页(共24页)四边形ABCD 是菱形,由对称性可知,.,,BM DM ABM ADM AB CH ABM H =∠=∠∴∠=∠∥.ADM H ∴∠=∠又,,FMD DMH MFD MDH ∠=∠∴△△22,,.DM MF DM MF MH BM MF MH HM MD ∴=∴=∴=。

山东省泰安市新泰市2017-2018学年九年级(上)期末数学试卷(五四学制)(含答案解析)

山东省泰安市新泰市2017-2018学年九年级(上)期末数学试卷(五四学制)(含答案解析)

2017-2018学年山东省泰安市新泰市九年级(上)期末数学试卷(五四学制)姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) 若点A(a+1,b-1)在第二象限,则点B(-a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限2、(3分) 方程x(x-2)=x-2的根是()A.x=1B.x1=2,x2=0C.x1=1,x2=2D.x=23、(3分) 一元二次方程2x2+1=2√2x的根的情况是()A.只有一个根B.有两个不等的实数根C.有两个相等的实数根D.无实数根4、(3分) 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B. C.D.5、(3分) 如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.2−π4B.32−π4C.2−π8D.32−π86、(3分) 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.√32B.32C.√3D.2√37、(3分) AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B 等于()A.20°B.25°C.30°D.40°8、(3分) 如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cmB.50cmC.60cmD.80cm9、(3分) 已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是()A.1B.2C.3D.410、(3分) 如图,在平面直角坐标系xOy中,直线y=k1x+2与y轴交于点C,与反比例函数y=k2x 在第一象限内的图象交于点B,连接BO,若S△OBC=1,tan∠BOC=13,则k2的值是()A.-3B.1C.2D.311、(3分) 一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A.1 6B.13C.12D.2312、(3分) 如图,是直立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为()A.4√3米B.(2√3+2)米C.(4√2-4)米D.(4√3-4)米二、填空题(本大题共 6 小题,共 18 分)13、(3分) 计算cos245°+tan60°cos30°的值为______.14、(3分) 已知m和n是方程2x2-5x-3=0的两根,则1m +1n=______.15、(3分) 若用一张直径为20cm的半圆做成一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为______cm.16、(3分) 如图,在△ABC中,∠B=45°,∠ACB=15°,AC=6,则AB的长为______(结果精确到0.01).(√3=1.732,√2=1.414)17、(3分) 如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=8x (x>0)和y=kx(x>0)的图象交于P、Q两点,若S△POQ=14,则k的值为______.18、(3分) 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2√6,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为______.三、计算题(本大题共 1 小题,共 8 分)19、(8分) 按要求解下列方程.(1)4x2+4x-3=0 (用配方法解)(2)0.3y2+y=0.8 (用公式法解)四、解答题(本大题共 6 小题,共 58 分)20、(10分) 如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:√3≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为______米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?21、(10分) 如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数y=k2的图象在第一象限内的交点为M,若△OBM的面积为2.x(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.22、(8分) 把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.23、(10分) 草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.24、(10分) 如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.(1)求证:AB是⊙O的切线;(2)若AB=4cm,AD=2cm,求tanA的值和DB的长.25、(10分) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.2017-2018学年山东省泰安市新泰市九年级(上)期末数学试卷(五四学制)【第 1 题】【答案】A【解析】解:由A(a+1,b-1)在第二象限,得a+1<0,b-1>0.由不等式的性质1,得a<-1,b>1.由不等式的性质3,得-a>1.由不等式的性质1,得b+2>3,点B(-a,b+2)在第一象限,故选:A.根据第二象限内点的横坐标小于零,纵坐标大于零,根据不等式的性质,可得-a,(b+2)的取值范围,根据第一象限内点的横坐标大于零,纵坐标大于零,可得答案.本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-);不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【第 2 题】【答案】C【解析】解:方程变形得:x(x-2)-(x-2)=0,分解因式得:(x-1)(x-2)=0,可得x-1=0或x-2=0,解得:x1=1,x2=2.故选:C.方程右边整体移项到左边,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【第 3 题】【答案】C【解析】解:原方程可变形为2x2-2√2x+1=0,∵△=(−2√2)2-4×2×1=0,∴一元二次方程2x2+1=2√2x有两个相等的实数根.故选:C.将原方程边形为一般式,再根据根的判别式即可找出△=0,由此即可得出原方程有两个相等的实数根.本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.【第 4 题】【答案】C【解析】解:从正面看易得第一列有2个正方形,第二列有3个正方形,第三列有1个正方形..故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.【 第 5 题 】【 答 案 】B【 解析 】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=√2,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD -S △ABE -S 扇形EBF=1×2-12×1×1-45π×(√2)2360=32-π4. 故选:B .利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD -S △ABE -S 扇形EBF ,求出答案.此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.【 第 6 题 】【 答 案 】C【 解析 】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为G 、E 、F ,作AD⊥BC 于D ,设BD=x ,则CD=5-x .由勾股定理可知:AD 2=AB 2-BD 2=AC 2-CD 2,即72-x 2=82-(5-x )2,解得x=1,∴AD=4√3, ∵1•BC•AD=1(AB+BC+AC )•r ,12×5×4√3=12×20×r , ∴r=√3,故选:C .如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为G 、E 、F ,作AD⊥BC 于D ,设BD=x ,则CD=5-x .由AD 2=AB 2-BD 2=AC 2-CD 2,可得72-x 2=82-(5-x )2,解得x=1,推出AD=4√3,由12•BC•AD=12(AB+BC+AC )•r ,列出方程即可解决问题.本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.【 第 7 题 】【 答 案 】B【 解析 】解:∵PA 切⊙O 于点A ,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°-40°=50°,∵OC=OB ,∴∠B=∠BCO=25°,故选:B .由切线的性质得:∠PAB=90°,根据直角三角形的两锐角互余计算∠POA=50°,最后利用同圆的半径相等得结论.本题考查了切线的性质、等腰三角形的性质,属于常考题型,熟练掌握圆的切线垂直于过切点的半径是关键.【 第 8 题 】【 答 案 】A【 解析 】解:∵圆锥的底面直径为60cm ,∴圆锥的底面周长为60πcm ,∴扇形的弧长为60πcm ,设扇形的半径为r ,则270πr 180=60π,解得:r=40cm ,故选:A .首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.【第 9 题】【答案】B【解析】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2-4a(c+2)=0,∴b2-4ac=8a>0,∴结论②不正确;∵对称轴x=-b2a =-1,∴b=2a,∵b2-4ac=8a,∴4a2-4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;∵对称轴是x=-1,而且x=0时,y>2,∴x=-2时,y>2,∴4a-2b+c+2>2,∴4a-2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:③④.故选:B.①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2-4a(c+2)=0,b2-4ac=8a>0,据此解答即可.③首先根据对称轴x=-b2a =-1,可得b=2a,然后根据b2-4ac=8a,确定出a的取值范围即可.④根据对称轴是x=-1,而且x=0时,y>2,可得x=-2时,y>2,据此判断即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【第 10 题】【答案】D【解析】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,过B作BD⊥y轴于D,∵S△OBC=1,∴BD=1,∵tan∠BOC=13,∴BD OD =1 3,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=k2x 在第一象限内的图象交于点B,∴k2=1×3=3.故选:D.先根据直线求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD 的长,从而求得点B 的坐标,求得结论.本题考查了反比例函数与一次函数的交点坐标,解题的关键是作辅助线构造直角三角形.【 第 11 题 】【 答 案 】B【 解析 】解:列表得:∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况, ∴这两个乒乓球上的数字之和大于5的概率为:412=13.故选:B .首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和大于5的情况,然后利用概率公式求解即可求得答案.此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【 第 12 题 】【 答 案 】D【 解析 】解:在Rt△CMB 中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×√33=4√3, 在Rt△ADM 中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM-DM=(4√3-4)米,故选:D .在Rt△CMB 中求出CM ,在Rt△ADM 中求出DM 即可解决问题.本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题中考常考题型.【 第 13 题 】【 答 案 】2【 解析 】解:cos 245°+tan60°cos30°=(√22)2+√3×√32=12+32 =2.故答案为:2.直接利用特殊角的三角函数值代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【 第 14 题 】【 答 案 】-53【 解析 】解:∵m 和n 是方程2x 2-5x-3=0的两根,∴m+n=-b a =-−52=52,m•n=c a =-32, ∴1m +1n =m+n mn =52−32=-53故答案为-53.利用根与系数的关系可以求得m+n=-b a ,m•n=c a 代入代数式求解即可.本题考查了根与系数的关系,解题的关键是牢记根与系数的关系并对代数式进行正确的变形.【 第 15 题 】【 答 案 】5√3【 解析 】解:设这个圆锥的底面半径为r ,根据题意得2πr=180⋅π⋅10180,解得r=5,所以这个圆锥的高=√102−52=5√3(cm ).故答案为:5√3设这个圆锥的底面半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=180⋅π⋅10180,解得r=5,然后利用勾股定理计算这个圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【 第 16 题 】【 答 案 】2.20【 解析 】解:如图,作CH⊥AB 交BA 的延长线于H .在Rt△ACH 中,∵∠CAH=∠B+∠ACB=45°+15°=60°,AC=6,∴∠ACH=30°, ∴AH=12AC=3,∴CH=AC•sin60°=3√3,∵∠B=∠BCH=45°,∴HC=BH=3√3,∴AB=3√3-3≈2.20,故答案为2.20.如图,作CH⊥AB 交BA 的延长线于H .在Rt△ACH 中,解直角三角形求出CH ,AH 即可解决问题;本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.【 第 17 题 】【 答 案 】-20【 解析 】解:∵S △POQ =S △OMQ +S △OMP ,∴12|k|+12×|8|=14,∴|k|=20,而k <0,∴k=-20.故答案为-20.由于S △POQ =S △OMQ +S △OMP ,根据反比例函数比例系数k 的几何意义得到12|k|+12×|8|=14,然后结合函数y=k x 的图象所在的象限解方程得到满足条件的k 的值.本题考查了反比例函数比例系数k 的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.也考查了反比例函数与一次函数的交点问题.【 第 18 题 】【 答 案 】3【 解析 】解:由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径最短,如图,连接OE ,OF ,过O 点作OH⊥EF ,垂足为H , 在Rt△ADB 中,∠ABC=45°,AB=2√6,∴AD=BD=2√3,即此时圆的直径为2√3,∵∠EOF=2∠BAC=120°,而∠EOH=∠FOH ,∴∠EOH=60°, 在Rt△EOH 中,EH=OE•sin∠EOH=√3•sin60°=32,∴EH =FH ,∴EF=2EH=3,即线段EF 长度的最小值为3.故答案为3.由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径最短,如图,连接OE ,OF ,过O 点作OH⊥EF ,垂足为H ,由Rt△ADB 为等腰直角三角形,则AD=BD=1,即此时圆的直径为1,再根据圆周角定理可得到∠EOH=60°,则在Rt△EOH 中,利用锐角三角函数可计算出EH=32,然后根据垂径定理即可得到EF=2EH=√32.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了垂线段最短和解直角三角形.【 第 19 题 】【 答 案 】解:(1)4x 2+4x+1=4,(2x+1)2=4,2x+1=±2, 所以x 1=12,x 2=-32; (2)移项得0.3y 2+y-0.8=0,b 2-4ac=12-4×0.3×(-0.8)=1.96,y=−1±√1.962×0.3=−1±1.42×0.3, ∴y 1=23,y 2=-4.【 解析 】(1)利用配方得到(2x+1)2=4,然后利用直接开平方法解方程;(2)先把方程化为一般式,再计算出判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-公式法:用求根公式解一元二次方程的方法是公式法,记住求根公式是解决问题的关键.【 第 20 题 】【 答 案 】解:(1)∵修建的斜坡BE 的坡角(即∠BEF )不大于45°,∴∠BEF 最大为45°,当∠BEF=45°时,EF 最短,此时ED 最长,∵∠DAC=∠BDF=30°,AD=BD=30, ∴BF=EF=12BD=15,故:DE=DF-EF=15(√3-1)≈10.9(米);若修建的斜坡BE 的坡角(即∠BEF )不大于45°,则平台DE 的长最多为10.9m ;(2)过点D 作DP⊥AC ,垂足为P .在Rt△DPA 中,DP=12AD=12×30=15,PA=AD•cos30°=√32×30=15√3.在矩形DPGM 中,MG=DP=15,DM=PG=15√3+27,在Rt△DMH 中,HM=DM•tan30°=√33×(15√3+27)=15+9√3.GH=HM+MG=15+15+9√3≈45.6.答:建筑物GH 高约为45.6米.【 解析 】(1)根据题意得出,∠BEF 最大为45°,当∠BEF=45°时,EF 最短,此时ED 最长,进而得出EF 的长,即可得出答案; (2)利用在Rt△DPA 中,DP=12AD ,以及PA=AD•cos30°进而得出DM 的长,利用HM=DM•tan30°得出即可.此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.【 第 21 题 】【 答 案 】解:(1)∵直线y=k1x+b过A(0,-2),B(1,0)两点∴{k=−2k1+b=0,∴{b=−2 k1=2∴一次函数的表达式为y=2x-2.(3分)∴设M(m,n),作MD⊥x轴于点D∵S△OBM=2,∴,∴1 2n=2∴n=4(5分)∴将M(m,4)代入y=2x-2得4=2m-2,∴m=3∵M(3,4)在双曲线y=k2x上,∴4=k23,∴k2=12∴反比例函数的表达式为y=12x(2)过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO=OAOB =21=2(8分)∴在Rt△PDM中,PDMD =2,∴PD=2MD=8,∴OP=OD+PD=11∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)【解析】(1)根据一次函数y=k1x+b的图象经过A(0,-2),B(1,0)可得到关于b、k1的方程组,进而可得到一次函数的解析式,设M(m,n)作MD⊥x轴于点D,由△OBM的面积为2可求出n的值,将M(m,4)代入y=2x-2求出m的值,由M(3,4)在双曲线y=k2x上即可求出k2的值,进而求出其反比例函数的解析式;(2)过点M(3,4)作MP⊥AM交x轴于点P,由MD⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.本题考查的是反比例函数与一次函数的交点问题,涉及到的知识点为用待定系数法求一次函数与反比例函数的解析式、锐角三角函数的定义,熟知以上知识是解答此题的关键.【 第 22 题 】【 答 案 】解:(1)画树状图得:,由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为奇数的结果有4种.∴P (取出的两张卡片数字之和为奇数)=49.(2)不公平,理由如下:由(1)可得出:取出的两张卡片数字之和为偶数的概率为:59.∵49<59, ∴这个游戏不公平.【 解析 】(1)依据题意画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率;(2)根据(1)中所求,进而求出两人获胜的概率,即可得出答案.此题主要考查了游戏公平性,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.【 第 23 题 】【 答 案 】解:(1)设y 与x 的函数关系式为y=kx+b ,根据题意,得:{20k +b =30030k +b =280, 解得:{k =−2b =340, ∴y 与x 的函数解析式为y=-2x+340,(20≤x≤40).(2)由已知得:W=(x-20)(-2x+340)=-2x 2+380x-6800=-2(x-95)2+11250,∵-2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为-2(40-95)2+11250=5200元.【解析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W 的最大值.本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.【第 24 题】【答案】(1)证明:连结OB,如图所示:∵OB=OD,∴∠ODB=∠OBD,∵DC是⊙O的直径,∴∠DBC=90°,∴∠CDB+∠C=90°,∵∠ABD=∠C,∴∠OBD+∠ABD=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:设半径为r,则OA=x+2,在Rt△A OB中,根据勾股定理得:x2+42=(x+2)2,解得:r=3,∴tanA=OBAB =3 4,∵∠A=∠A,∠ABD=∠C,∴△ADB∽△ACB,∴DB BC =ADAB=24=12,设DB=x,则BC=2x,∵CD=6,∴由勾股定理得:x2+(2x)2=62,- 21 -- 22 - 解得:x=65√5, 即DB 的长为65√5.【 解析 】(1)连结OB ,由等腰三角形的性质和圆周角定理证出∠CDB+∠C=90°,再由已知条件得出∠OBD+∠ABD=90°,得出∠OBA=90°即可;(2)设半径为r ,则OA=x+2,在Rt△AOB 中,根据勾股定理得出方程,解方程求出半径,由三角函数求出得出tanA=OB AB =34,证明△ADB∽△ACB ,得出DB BC =AD AB =12,设DB=x ,则BC=2x ,由勾股定理得出方程,解方程即可.本题考查了切线的判定、圆周角定理、等腰三角形的性质、勾股定理、三角函数、相似三角形的判定与性质;熟练掌握切线的判定方法,由勾股定理求出半径是解决问题(2)的关键.【 第 25 题 】【 答 案 】解:(1)依题意得:{−b 2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y=-x 2-2x+3∵对称轴为x=-1,且抛物线经过A (1,0),∴把B (-3,0)、C (0,3)分别代入直线y=mx+n , 得{−3n +n =0n =3, 解之得:{m =1n =3, ∴直线y=mx+n 的解析式为y=x+3;(2)设直线BC 与对称轴x=-1的交点为M ,则此时MA+MC 的值最小. 把x=-1代入直线y=x+3得,y=2,- 23 - ∴M (-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(-1,2);(3)设P (-1,t ),又∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2-6t+10解之得:t=-2;②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2-6t+10=4+t 2解之得:t=4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2-6t+10=18解之得:t 1=3+√172,t 2=3−√172; 综上所述P 的坐标为(-1,-2)或(-1,4)或(-1,3+√172) 或(-1,3−√172).【 解析 】(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,则此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。

(完整版),山东省泰安市2018年中考数学试卷及答案(Word版),推荐文档

(完整版),山东省泰安市2018年中考数学试卷及答案(Word版),推荐文档

,…,
,则 c 的值为
17.如图,在 ABC 中, AC 6 , BC 10 , tan C 3 ,点 D 是 AC 边上的动点(不与点 C 重合), 4
过 D 作 DE BC ,垂足为 E ,点 F 是 BD 的中点,连接 EF ,设 CD x , DEF 的面积为 S ,则
S 与 x 之间的函数关系式为
(1)请估计本校初三年级等级为 A 的学生人数;
(2)学校决定从得满分的 3 名女生和 2 名男生中随机抽取 3 人参加市级比赛,请求出恰好抽到 2 名女生 和 1 名男生的概率.
22.如图,矩形 ABCD 的两边 AD 、 AB 的长分别为 3、8, E 是 DC 的中点,反比例函数 y m 的图象 x
解得: x 20 . 经检验, x 20 是原方程的解. 所以,甲种图书售价为每本1.4 20 28 元,
答:甲种图书售价每本 28 元,乙种图书售价每本 20 元.
(2)设甲种图书进货 a 本,总利润 w 元,则 w (28 20 3)a (20 14 2)(1200 a) a 4800 . 又∵ 20a 14 (1200 a) 20000 ,
所以恰有 2 名女生,1 名男生的概率为 6 3 . 10 5
22.解:(1)∵ B(6, 0) , AD 3 , AB 8 , E 为 CD 的中点,
∴ E(3, 4) , A(6,8) ,
∵反比例函数图象过点 E(3, 4) , ∴ m 3 4 12 . 设图象经过 A 、 E 两点的一次函数表达式为: y kx b ,
6-10: CCBAD 11、12:AC
13. 9.31026
14. 4 2
10
15.
10
16. 270(或 28 14 )

2018-2019学年山东省泰安市泰山区九年级(上)期中数学试卷(五四学制)

2018-2019学年山东省泰安市泰山区九年级(上)期中数学试卷(五四学制)

2018-2019学年山东省泰安市泰山区九年级(上)期中数学试卷(五四学制)一、选择题(本大题共12小题,共48.0分)1.sin60°的值等于()A. B. C. D.2.若函数y=(m+1)是反比例函数,则m的值为()A. B. C. D.3.函数y=ax+a与y=(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.4.正方形网格中,∠AOB如图放置,则sin∠AOB的值为()A. B. C. D. 15.将抛物线y=3x2+2向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为()A. B. C.D.6.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(1,5),则另一个交点的坐标是()A. B. C. D.7.如图,在Rt△ABC中,∠C=90°,AB=6,AC=2,CD⊥AB于D,设∠ACD=α,则cosα的值为()A. B. C. D.8.下列函数:①y=,②y=-2x+8,③y=5x,④y=x2,⑤y=-(x+3)2(x<-3时)中,y的值随x的值增大而增大的函数共有()A. 1个B. 2个C. 3个D. 4个9.2当y<6时,x的取值范围是()A. B. C. 或 D. 或10.已知点A(3,y1)、B(-2,y2)、C(1,y3)都在反比例函数y=(k>0)的图象上,那么()A. B. C. D.11.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=4m,则坡面AB的长度是()A. B. C. D.12.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,①abc<0;②b-2a=0;③a+b+c<0;④4a+c<2b;⑤am2+bm+c≥a-b+c,下列给出的结论,其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共24.0分)13.在△ABC中,∠A、∠B都为锐角,且|sin A-|+(-cos B)2=0,求∠C的度数______.14.抛物线y=x2+3x+2的顶点坐标是______.15.计算:2sin60°+cos30°-tan60°=______.16.如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD的面积为12,则k的值为______.17.若二次函数y=mx2+2x+1的图象于x轴有交点,则m的取值范围为______.18.如图所示是一抛物线形拱桥的示意图,在给出的平面直角坐标系中,当水位在AB位置时,水面宽为8米,此时,水面到拱桥的距离是3米,则抛物线的解析式是______.三、计算题(本大题共1小题,共6.0分)19.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?四、解答题(本大题共6小题,共72.0分)20.如图,一次函数y1=kx+b与反比例函数y2=的图象相较于A(2,3),B(-1,n)两点,直线AB交x轴于点C,连接AO、连接BO.(1)求一次函数与反比例函数的表达式;(2)求S△AOB;(3)根据图象直接写出当x取何值时,y1>y2?21.已知抛物线y=-2x2+bx+c与x轴交于A(2,-1),B(-1,-4)两点.(1)求抛物线的解析式;(2)用配方法求抛物线的顶点坐标.22.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B 处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)23.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(-,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴的正半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△AOB绕点B按顺时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,并说明理由.24.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)25.如图,已知抛物线y=-x2+bx+c与一直线相交于A(1,0)、C(-2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:sin60°=.故选:C.直接利用特殊角的三角函数值求出答案.此题主要考查了特殊角的三角函数值,正确把握定义是解题关键.2.【答案】A【解析】解:由题意得:m2-2=-1且m+1≠0;解得m=±1,又m≠-1;∴m=1.故选:A.根据反比例函数的定义.即y=(k≠0),只需令m2-2=-1、m+1≠0即可.本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx-1(k≠0)的形式.3.【答案】B【解析】解:A、双曲线经过第二、四象限,则a<0.则直线应该经过第二、四象限,故本选项错误.B、双曲线经过第一、三象限,则a>0.所以直线应该经过第一、三象限,且与y轴交于正半轴,故本选项正确.C、双曲线经过第二、四象限,则a<0.所以直线应该经过第二、四象限,且与y轴交于正半轴,故本选项错误.D、双曲线经过第一、三象限,则a>0.所以直线应该经过第一、三象限,且与y轴交于正半轴,故本选项错误.故选:B.根据反比例函数图象所在的象限可以判定a的符号,根据a的符号来确定直线所经过的象限.此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系,难度不大,属于基础题.4.【答案】B【解析】解:连接AD,CD,设正方形网格的边长是1,则根据勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.则CD=,∴sin∠AOB=,故选:B.连接AD,CD,根据勾股定理可以得到OD=AD,则OC是等腰三角形底边上的中线,根据三线合一定理,可以得到△ODC是直角三角形.根据三角函数的定义就可以求解.本题考查锐角三角函数的概念:注意到图中的等腰三角形是解决本题的关键.5.【答案】C【解析】解:将抛物线y=3x2+2向左平移2个单位所得直线解析式为:y=3(x+2)2+2;再向下平移3个单位为:y=3(x+2)2+2-3,即y=3(x+2)2-1.故选:C.根据“左加右减、上加下减”的原则进行解答即可.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.【答案】C【解析】解:∵正比例函数图象与反比例函数图象的两个交点关于原点成中心对称,且一个交点为(1,5)∴另一个交点的坐标(-1,-5)故选:C.利用正比例函数图象与反比例函数图象的两个交点关于原点成中心对称,可求另一个交点的坐标.本题考查了反比例函数与一次函数的交点问题,利用中心对称的性质解决问题是本题的关键.7.【答案】A【解析】解:∵∠C=90°,AB=6,AC=2,∴BC==4,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B=α,∴cosα=cosB===,故选:A.根据勾股定理得到BC==4,根据余角的性质得到∠ACD=∠B=α,根据三角函数的定义即可得到结论.本题考查了解直角三角形,锐角三角函数的定义,勾股定理,同角的余角相等的性质,熟记各性质并求出∠α=∠B是解题的关键.8.【答案】B【解析】解:①∵k=2>0,当x<0时,y的值随x的值增大而减小,x>0时,y的值随x 的值增大而减小,①不正确;②∵k=-2,∴y的值随x的值增大而减小,②错误;③k=5,故y随着x的增大而增大,③正确;④y=x2,x≤0时,y的值随x的值增大而减小,x≥0时,y的值随x的值增大而增大,③不正确;⑤y=-(x+3)2(x<-3时)中,x≤-3时,y的值随x的值增大而增大,⑤正确故选:B.①根据反比例函数的性质判断即可;②③根据一次函数性质判断即可;④⑤根据二次函数的性质进行分析即可.本题考查的是一次函数、反比例函数和二次函数的性质,掌握一次函数、反比例函数和二次函数的增减性是解题的关键.9.【答案】D【解析】解:∵当x=1时,y=6;当x=3时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),∴当y<6时,x<1或x>3.故选:D.由二次函数图象上点的坐标(1,6)和(3,6),利用二次函数的性质可得出二次函数图象的对称轴,进而可得出顶点坐标,结合二次函数图象的顶点坐标,即可找出y<6时x的取值范围.本题考查了二次函数的图象、二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是:(1)由点的坐标,利用二次函数的性质找出二次函数图象的顶点坐标.10.【答案】D【解析】解:∵k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小,∵-2<0,∴点B(-2,y2)位于第三象限,∴y2<0;∵3>1>0,∴A(3,y1)、C(1,y3)在第一象限,∴y3>y1>0,∴y2<y1<y3.故选:D.根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.【答案】D【解析】解:∵迎水坡AB的坡比是1:,∴BC:AC=1:,BC=4m,∴AC=4m,则AB==4(m).故选:D.首先根据坡比求出AC的长度,然后根据勾股定理求出AB的长度.本题考查了解直角三角形的应用,解答本题的关键是根据坡比构造直角三角形,利用三角函数的知识求解.12.【答案】A【解析】解:①由图象可知:a>0,b>0,c<0,abc<0,故①正确;②∵对称轴为x=-1,∴-=-1,∴b=2a,∴b-2a=0,故②正确;③由图象可知:当x=1时,y=a+b+c>0,故③错误;④∵当x=0时,y<0,∴y=-2时,y=4a-2b+c<0,∴4a+c<2b,故④正确;⑤当x=-1时,y的值最小.此时,y=a-b+c,而当x=m时,y=am2+bm+c,所以am2+bm+c≥a-b+c,故⑤正确.故①②④⑤正确.故选:A.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.13.【答案】105°【解析】解:由题意得,sinA-=0,-cosB=0,即sinA=,cosB=,∴∠A=30°,∠B=45°,∴∠C=180°-30°-45°=105°.故答案为:105°.根据非负数的性质可得:sinA-=0,-cosB=0,求出∠A和∠B度数,然后可求出∠C的度数.本题考查了特殊角的三角函数值和非负数的性质,解答本题的关键是掌握几个特殊角的三角函数值.14.【答案】(-,-)【解析】解:∵抛物线y=x2+3x+2=(x+)2-,∴顶点坐标是(-,-).故答案为:(-,-).化为顶点式直接求得顶点坐标即可此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.15.【答案】【解析】解:原式=2×+×-=.故答案为:.直接利用特殊角的三角函数值代入进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.【答案】-12【解析】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD =S矩形ADOE,而S矩形ADOE=|-k|,∴|-k|=12,而k<0,即k<0,∴k=-12.故答案为-12.作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD =S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|-k|,利用反比例函数图象得到.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.17.【答案】m≤1且m≠0【解析】解:根据题意得m≠0且△=22-4m≥0,解得m≤1且m≠0.故答案为m≤1且m≠0.利用二次函数的定义和判别式的意义得到m≠0且△=22-4m≥0,然后求出两个不等式的公共部分即可.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.18.【答案】y=-x2【解析】解:由题意得:函数表达式为y=ax2,点B的坐标为(4,-3),把点B的坐标代入y=ax2,解得:a=-,故答案是y=-x2.把点B的坐标代入y=ax2,即可求解.本题考查的是二次函数的应用,关键不要弄错B点坐标,这是一道基本题.19.【答案】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55-30-x)•y=(25-x)(200+10x)=-10x2+250x+5000=-10(x-25)(x+20),W与x的函数关系式为W=-10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.【解析】(1)y与x的函数关系式为:y=200+10x;(2)W=(55-30-x)•y,即可求解;(3)函数对称轴为x=2.5,即可求解.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.20.【答案】解:(1)把A(2,3)代入反比例函数y2=得,a=2×3=6,∴反比例函数的解析式为y=,把B(-1,n)代入得,-1×n=6,解得n=-6,∴B点坐标为(-1,-6),把A(2,3),B(-1,-6)代入一次函数y=kx+b得,解得,∴一次函数的解析式为y=3x-3;(2)对于y=3x-3,令y=0,则3x-3=0,解得x=1,∴C点坐标为(1,0),∴S△AOB=×1×3+×1×6=;(3)-1<x<0或x>2时y1>y2.【解析】(1)把A(2,3)代入反比例函数y2=的即可求出a=6,把B(-1,n)代入y=可求出n,从而确定B点坐标为(-1,-6),然后利用待定系数法即可求出一次函数的解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象得到当-1<x<0或x>2时,一次函数的图象都在反比例函数的图象的上方,即一次函数的值大于反比例函数的值.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.21.【答案】解:(1)把A(2,-1),B(-1,-4)两点代入y=-2x2+bx+c,得.解得,故该抛物线解析式为:y=-2x2+3x+1.(2)由(1)知,抛物线解析式为:y=-2x2+3x+1.y=-2x2+3x+1=-2(x2-x+)+1+=-2(x-)2+.所以抛物线的顶点坐标是(,).【解析】(1)利用待定系数法确定函数关系式;(2)利用配方法将所求的函数解析式转化为顶点式,即可直接得到答案.考查了抛物线与x轴的交点坐标,二次函数的三种形式以及待定系数法确定函数解析式,掌握配方法是将二次函数解析式的三种形式间转换的关键.22.【答案】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF-GE=100,∴x-x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【解析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF-GE=100,构造关系式求解.本题考查的是解直角三角形的应用-仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.【答案】解:(1)把A(-,1)代入反比例函数y=,则k=-,∴反比例函数y=-;(2)设P(m,0),m>0,从点A(-,1)的坐标,tan∠AOC=,∴∠AOC=30°,∵OA⊥OB,AB⊥x轴,∴∠ABO=30°,∴OB=2OC=2,S△AOP=•OP•AC=m,S△AOB=AO•BO=×2=2,S△AOP=S△AOB,∴m=4,∴点P的坐标为(4,0);(3)△AOB绕点B按顺时针方向旋转60°得到△BDE,∴∠OBE=60°-30°=30°,如下图,连接OE,∵AB=BE,BO=BO,∠BOA=∠BOE=30°,∴△BOA≌△BOE,∴AO=EO,而OA⊥OB,∴A、O、E在一条直线上,∴点E是点A关于原点的对称点,∴E(,-1),也在反比例函数上.【解析】(1)把A(-,1)代入反比例函数y=,即可求解;(2)设P(m,0),m>0,利用S△AOP=S△AOB,即可求解;(3)△AOB绕点B按顺时针方向旋转60°得到△BDE,可证△BOA≌△BOE,则A、O、E在一条直线上,∴点E是点A关于原点的对称点,即可求解.此题综合考查了反比例函数的性质,正三角形等多个知识点.此题综合性比较强,注意对各个知识点的灵活应用.24.【答案】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(-1),17(-1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【解析】本题考查了解直角三角形的应用-方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型;判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.25.【答案】解:(1)将A(1,0),C(-2,3)代入y=-x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=-x2-2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(-2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=-x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,-x2-2x+3)(-2<x<1),则点E的坐标为(x,0),点F的坐标为(x,-x+1),∴PE=-x2-2x+3,EF=-x+1,EF=PE-EF=-x2-2x+3-(-x+1)=-x2-x+2.∵点C的坐标为(-2,3),∴点Q的坐标为(-2,0),∴AQ=1-(-2)=3,∴S△APC=AQ•PF=-x2-x+3=-(x+)2+.∵-<0,∴当x=-时,△APC的面积取最大值,最大值为,此时点P的坐标为(-,).(3)当x=0时,y=-x2-2x+3=3,∴点N的坐标为(0,3).∵y=-x2-2x+3=-(x+1)2+4,∴抛物线的对称轴为直线x=-1.∵点C的坐标为(-2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=-1时,y=-x+1=2,∴此时点M的坐标为(-1,2).∵点A的坐标为(1,0),点C的坐标为(-2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(-1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【解析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,-x2-2x+3)(-2<x<1),则点E的坐标为(x,0),点F的坐标为(x,-x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=-x2-x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=-x2-x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.。

2018-2019学年山东省新泰市九年级上期中数学试卷及答案解析

2018-2019学年山东省新泰市九年级上期中数学试卷及答案解析

第 1 页 共 21 页 2018-2019学年山东省新泰市九年级上期中数学试卷
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)
1.(3分)对于反比例函数y =−2x
,下列说法中不正确的是( )
A .图象分布在第二、四象限
B .当x >0时,y 随x 的增大而增大
C .图象经过点(1,﹣2)
D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2
2.(3分)已知在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( )
A .43
B .45
C .54
D .34 3.(3分)给出下列函数:①y =﹣3x +2;②y =3x ;③y =2(x +1)2;④y =2x ﹣3,上述函
数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )
A .①③
B .③④
C .②④
D .②③
4.(3分)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列
用线段比表示cos α的值,错误的是( )
A .BD BC
B .B
C AB C .A
D DC D .CD AC
5.(3分)如图,函数y =ax 2﹣2x +1和y =ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐
标系的图象可能是( )
A .
B .
C .
D .。

2018年度山东泰安市中考数学试卷(含内容规范标准答案解析版)

2018年度山东泰安市中考数学试卷(含内容规范标准答案解析版)

2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A .42、42B .43、42C .43、43D .44、436.(3分)(2018•泰安)夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .{x +y =5300200x +150y =30B .{x +y =5300150x +200y =30C .{x +y =30200x +150y =5300D .{x +y =30150x +200y =53007.(3分)(2018•泰安)二次函数y=ax 2+bx +c 的图象如图所示,则反比例函数y=a x与一次函数y=ax +b 在同一坐标系内的大致图象是( )A .B .C .D .8.(3分)(2018•泰安)不等式组{x−13−12x <−14(x −1)≤2(x −a)有3个整数解,则a 的取值范围是( )A .﹣6≤a <﹣5B .﹣6<a ≤﹣5C .﹣6<a <﹣5D .﹣6≤a ≤﹣59.(3分)(2018•泰安)如图,BM 与⊙O 相切于点B ,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A .3B .4C .6D .8二、填空题(本大题共6小题,满分18分。

山东省泰安市2018届九年级 中考数学样题(解析版)

山东省泰安市2018届九年级 中考数学样题(解析版)

2018届山东省泰安市中考数学样题一、选择题(本大题共12个小题,满分36分,)1. 在1,-2,0,-3.6这四个数中,最大的数是()A. -2B. 0C. -3.6D. 1【答案】D【解析】分析:根据正数大于零,零大于负数,可得答案.详解:由正数大于零,零大于负数,得-3.6<-2<0<1.∴最大的数是1,故选D.点睛:本题考查了有理数的大小比较,注意两个负数比较大小,绝对值大的数反而小.2. 下列计算正确的是()A. B. C. D.【答案】C详解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D正确;故选C.点睛:本题考查整式的运算,熟记法则并根据法则计算是解题关键.3. 如图的几何体是由五个相同的小立方体搭成,它的左视图是()A. B. C. D.【答案】A【解析】分析:左视图是从左面看而得出的图形,根据几何体得出即可.详解:几何体的左视图是:,故选A.点睛:本题考查了简单组合体的三视图,能理解三视图的定义是解此题的关键.4. 鲁教版五四制初中数学教科书共八册,总字数约计1655000,用科学记数法可将1655000表示为()A. B. C. D.【答案】B详解:1655000用科学记数法表示为:,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5. 如图,直角三角板的直角顶点在正方形的顶点上,若,则下列结论错误的是()A. B. C. ∠4=450 D. ∠5=300【答案】B【解析】分析:如图,由对顶角相等知,由正方形知∠A=90°,∠ABD=45°,由∠2=60°可求∠ABE=30°,故可求∠3的度数,由∠ABD=45°,得∠4=45°,根据90°-∠3-∠4可求∠5.详解:如图,∵∴∠2=60°,故A正确;∵四边形ABCD是正方形,∴∠A=90°,∠ABD=45°,∠ABC=90°,∵∠2=60°,∴∠ABE=30°,∴∠3=∠ABD-∠ABE=45°-30°=15°,故B错误;∵∠ABD=45°,∴∠4=45°,故C正确;∵∠EBF=90°,∴∠5=90°-∠3-∠4=90°-15°-45°=30°,故D正确.故选B.点睛:本题考查了正方形的性质,对顶角相等,直角三角形两锐角互余等性质.6. 下列图形:任取一个是中心对称图形的概率是()A. B. C. D. 1【答案】C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定①③④是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=,因此本题正确选项是C.7. 若关于的不等式组有解,则实数的取值范围是()A. a >4B. a< 4C.D.【答案】A【解析】分析:解出不等式组的解集,根据已知不等式组有解,可求出a的取值范围.详解:由(1)得x>2,由(2)得x<,∵不等式组有解,∴解集应是2<x<,则>2,即a>4实数a的取值范围是a>4.故选A.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8. 如图,将□ABCD分别沿BF、CE折叠,使点A、D分别落在BC上,折痕分别为BF、CE,若AB=6,EF=2,则BC长为()A. 8B. 10C. 12D. 14【答案】B【解析】分析:根据折叠的性质可以找到相等的角,再根据平行四边形的性质可得到AF=AB=6,DE=CD=6.故可求出BC的长.详解:如图,由题意知,ABCD中,EF=2,BC=AD,CD=AB=6,∠1=∠2,∠5=∠6,AD∥BC.∴∠2=∠4,∠5=∠3.∴∠1=∠4,∠6=∠3.∴AF=AB=6,DE=CD=6.∴BC=AD=AF+DE-EF=6+6-2=10.故选B.点睛:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9. 下列函数中,对于任意实数,,当时,满足的是()A. y=﹣3x+2B. y=2x+1C. y=2x2+1D. y=﹣【答案】A【解析】分析:根据一次函数、二次函数和反比例函数图象的特点可以判断各个选项中函数图象的变化,从而可以判断各个选项是否符合题意.详解:∵y=-3x+2,∴y随x的增大而减小,则对于任意实数x1,x2,当x1>x2时,满足y1<y2,故选项A正确,∵y=2x+1,∴y随x的增大而增大,则对于任意实数x1,x2,当x1>x2时,满足y1>y2,故选项B错误,∵y=2x2+1,∴当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,则对于任意实数x1,x2,当x1>x2时,足y1不一定大于y2,故选项C错误,∵y=﹣,∴y随x的增大而增大,则对于任意实数x1,x2,当x1>x2时,满足y1>y2,故选项D错误,故选:A.点睛:本题考查二次函数图象上点的坐标特征、一次函数图象上点的坐标特征,解答本题的关键是明确一次函数和二次函数图象的变化特点.10. 工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()cm.A. B. C. D.【答案】B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2πr=,解得:r=10,故这个圆锥的高为:(cm).故选B.点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.11. 如图,抛物线(a≠0)的对称轴为直=1,与轴的一个交点坐标为(-1,0),其部分图象如图所示.下列结论:① ;②方程=0的两个根是,;③;④当时,的取值范围是;⑤当x1<x2<0时,y1<y2.其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】分析:利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=-2a,然后根据x=-1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.详解:∵抛物线与x轴有2个交点,∴b2-4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(-1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=-1,x2=3,所以②正确;∵x=-=1,即b=-2a,而x=-1时,y=0,即a-b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(-1,0),(3,0),∴当-1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故答案为①②⑤.点睛:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12. 如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点 D,C.若∠ACB=30°,AB=,则阴影部分的面积是()A. B. C. - D. -【答案】C【解析】试题分析:连接OB,根据同弧所对的圆心角和圆周角的关系可得:∠BOD=60°,根据切线可得:∠OBA=90°,根据AB=可得:OB=1,OA=2,则阴影部分的面积=1×÷2-.二、填空题(本大题共6小题,满分18分。

山东省泰安市九年级上学期数学期中考试试卷

山东省泰安市九年级上学期数学期中考试试卷

山东省泰安市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·定兴模拟) 某小组同学在一周内参加家务劳动时间与人数情况如表所示:劳动时间(小时)234人数321下列关于“劳动时间”这组数据叙述正确的是()A . 中位数是2B . 众数是2C . 平均数是3D . 方差是02. (2分) (2019九上·龙湾期中) 同一平面内,一个点到圆的最小距离为,最大距离为,则该圆的半径为A .B .C . 或D . 或3. (2分)已知一元二次方程,下列判断正确的是()。

A . 方程有两个相等的实数根B . 方程有两个不相等的实数根C . 方程无实数根D . 方程根的情况不确定4. (2分)用配方法解方程时,配方后所得的方程为()A .B .C .D .5. (2分) (2018九上·泗洪月考) 下列说法中,正确的是()A . 90°的圆周角所对的弦是直径B . 平分弦的直径垂直于弦,并且平分弦所对的两条弧C . 经过半径的端点并且垂直于这条半径的直线是这个圆的切线D . 长度相等的弧是等弧6. (2分)(2016·泸州) 以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A .B .C .D .7. (2分)(2017·肥城模拟) 如图所示,在扇形BAD中,点C在上,且∠BDC=30°,AB=2 ,∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A . π﹣2B . π﹣1C . 2π﹣2D . 2π+18. (2分)若关于x的方程的解是正数,则一元二次方程mx2=1的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 只有一个实数根二、填空题 (共10题;共11分)9. (1分) (2020九上·柳州期末) 一元二次方程x(x﹣3)=0的解是________.10. (1分) (2019九上·东台月考) 圆锥的底面半径是,母线长为,则这个圆锥的侧面积是________ (结果保留)11. (1分)(2018·苏州) 在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是________.12. (1分)(2019·莲湖模拟) 初2018级某班文娱委员,对该班“肆月”学习小组同学购买不同单价的毕业照(单位:元)情况进行了统计,绘制了如图所示的条形统计图,则所购毕业照平均每张的单价是________元.13. (1分) (2018九上·江苏期中) 如图,AB是半圆的直径,点C、D是半圆上两点,∠ADC = 144°,则∠ABC =________14. (2分)(2017·广东模拟) 如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.15. (1分)(2017·黄冈模拟) 如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为________(结果用含π的式子表示).16. (1分) (2019七上·萧山期中) 阅读下列运算程序,探究其运算规律:m△n=a ,且m△(n+x)=a-x ,(m+x)△n= a+3x ,若1△1=-2,则1△2=________,2△1=________,20△19=________.17. (1分) (2018七下·花都期末) 如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是________.18. (1分)(2017·德惠模拟) 如图,⊙C过原点,且与两坐标轴分别交于点A和点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径长为________.三、解答题 (共8题;共82分)19. (20分)解下列方程:(1)(x﹣2)2=9(2) x2﹣6x﹣7=0.20. (10分)(2020·南通模拟) 已知:关于x的方程x2﹣2(m+1)x+m2+2=0.(1)若方程总有两个实数根,求m的取值范围.(2)若两实数根x1、x2满足x1+x2=x1x2,求m的值.21. (10分)(2019·顺德模拟) 甲、乙两名同学参加少年科技创新选拔赛,六次比赛的成绩如下:甲:87 93 88 93 89 90乙:85 90 90 96 89 a(1)甲同学成绩的中位数是________;(2)若甲、乙的平均成绩相同,则a=________;(3)已知乙的方差是,如果要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由.(方差公式:S2=22. (10分)(2017·渠县模拟) 如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动.设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.23. (10分)(2017·岳池模拟) 某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若要求总利润不低于17560元,有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?24. (2分)(2017·西华模拟) 如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P 是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.25. (10分)销售某种商品,根据经验,销售单价不少于30元件,但不超过50元件时,销售数量件与商品单价元件的函数关系的图象如图所示中的线段AB.(1)求y关于x的函数关系式;(1)由A,B两点的坐标,利用待定系数法即可求出y关于x的函数关系式;(2)如果计划每天的销售额为2400元时,那么该商品的单价应该定多少元?26. (10分) (2016九上·西湖期末) 如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H 为CE延长线上一点,且AH= ,CH=5 .(1)求证:AH是⊙O的切线;(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;(3)在(2)的条件下,求EF的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共82分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

山东省泰安市九年级(五四学制)上学期期中考试数学样题

山东省泰安市九年级(五四学制)上学期期中考试数学样题

B.二次函数 y 6x2 中,当 x 0 时, y 有最大值 0
C. a 越大图象开口越小, a 越小图象开口越大 D.不论 a 是正数还是负数.抛物线 y ax2 (a 0) 的顶点一定是坐标原点
8.平面直角坐标系中,抛物线 y x 2 x 6 经变换后得到抛物线 y x 6 x 2 ,则这个变换可以是
x1 ,
y1 , x2 ,
y2
,
x3 ,
y3
,
.若
x1
x2
0
x3

y1 ,
y2 ,
y3
的大小关
系是( )
A. y1 y2 y3
B. y2 y1 y3
C. y2 y3 y1
D. y1 y3 y2
7.下列说法错误的是( )
A.二次函数 y 3x2 中,当 x 0 时, y 随 x 的增大而增大
15. x 1 或 x 3 ;
16. y 3 x 3 ; 2
20. ( n n 1, n n 1)
三、解答题(本大题共 7 个小题,满分 60 分)
21. 解:
(1)原式= 2 3 3 1 1 3
2
22
3 3 1 3 4
4 3 4
(2) 原式= 2 3 1 1 1 22
第一学期期中学情抽测 初四数学试题参考答案及评分标准
一、选择{每小题 3 分,共 36 分} 题 1 2 3 4 5 6 7 8 9 10 11 12 号 答B C A D A B C B C D A D

二、填空(每小题 3 分,共 24 分}
13.5; 14.(3,-4);
18.70;
19. 5 5
3
3
则 OC 7 . 3

泰安市新泰市九年级上期中数学试卷含答案解析

泰安市新泰市九年级上期中数学试卷含答案解析

山东省泰安市新泰市九年级上学期期中数学试卷一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请将正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.2.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对3.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个4.如图,一个高为1m的油筒内有油,一根木棒长1.2m,从桶盖小口斜插入桶内,一端到底部,另一端正好到小口,抽出木棒,量得棒上浸油部分的长0.36m,则桶内油的高度为()A.0.28m B.0.385m C.0.4m D.0.3m5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:16.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.7.已知a为锐角,且sin(a﹣10°)=,则a等于()A.50° B.60°C.70°D.80°8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.45° B.60°C.90°D.30°9.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④长度相等的弧的度数相等.其中正确的有()A.1个B.2个C.3个D.4个10.用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1)②可以画出∠AOB的平分线OP,如图(2)③可以检验工件的凹面是否成半圆,如图(3)④可以量出一个圆的半径,如图(4)上述四个方法中,正确的个数是()A.4个B.3个C.2个D.1个11.如图,在⊙O中,A、B、C、D均在圆上,∠BAC=25°,∠CED=30°,则∠BOD的度数是()A.55° B.110°C.125°D.150°12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.C.AD=2BD D.∠BCD=∠BDC13.在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为()A.6分米B.8分米C.10分米D.12分米14.如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.15.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B.m C.15m D.m16.如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则tan∠DBE的值为()A.B.C.D.17.已知如图,CO、CB是⊙O′的弦,⊙O′与坐标系x、y轴交于B、A两点,∠OCB=60°,点A 的坐标为(0,1),则⊙O′的弦OB的长为()A.1 B.2 C.D.218.如图所示,在圆⊙O内有折线OABC,其中OA=6,BC=16,∠A=∠B=60°,则AB的长为()A.8 B.10 C.12 D.1419.如图,已知△OAB与△OCD是相似比为1:3的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OCD内一点P′是一对对应点,则点P′的坐标是()A.(﹣x,﹣y)B.(﹣3x,3y)C.(3x,﹣3y)D.(﹣3x,﹣3y)20.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为()A.2+B.2+C.1 D.2二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.2cos30°﹣tan45°﹣=.22.如图,在△ABC中,D是AB边上一点,连接CD,要使△ADC与△ABC相似,应添加的条件是.23.一艘轮船向正东航行,在A处测得灯塔P在A的北偏东60°方向,航行2小时到达B处,此时测得灯塔P在B的北偏东15°方向上,且灯塔P到轮船航线的距离PD是(10+10)海里,则轮船的航行速度为海里/小时.24.如图,已知⊙O的半径为3,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCPE是平行四边形,则AD的长为.三、解答题(本大题共5小题,满分48分。

山东省泰安市九年级上学期期中数学试卷

山东省泰安市九年级上学期期中数学试卷

山东省泰安市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2018七上·宜兴月考) 下列结论错误的是()A . 0既不是正数,也不是负数B . 相反数是本身的数是正数C . 一个有理数不是整数就是分数D . 0的绝对值是02. (2分) (2017七上·丹江口期末) 如图,直线a∥b,∠1=125°,则∠2的度数为()A . 75°B . 65°C . 55°D . 45°3. (2分)(2014·杭州) 3a•(﹣2a)2=()A . ﹣12a3B . ﹣6a2C . 12a3D . 6a24. (2分) (2017八下·重庆期末) 要使式子有意义,字母x应满足的条件为()A . x>2B . x<2C . x≥2D . x>-25. (2分) (2015九上·淄博期中) 下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.正确的有()B . 2个C . 3个D . 4个6. (2分) (2015七上·深圳期末) 已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A . ﹣10B . 7C . ﹣9D . 87. (2分)一个袋子中装有10个球,其中有6个黑球和4个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到黑球的概率为A .B .C .D .8. (2分)(2018·通城模拟) 如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移d个单位长度后,点A,B恰好同时落在反比例函数(x>0)的图象上,则d等于()A . 3B . 4C . 5D . 69. (2分)一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是()A . 9B . 8C . 710. (2分)观察下列图形,则第7个图形中三角形的个数是()A . 10B . 28C . 24D . 3211. (2分)(2017·铁西模拟) 如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A . 2 mB . 2 mC . (2 ﹣2)mD . (2 ﹣2)m12. (2分) (2017七下·德州期末) 若点P(a-2,a)在第二象限,则a的取值范围是()A . 0<a<2B . -2<a<0C . a>2D . a<0二、填空题: (共6题;共6分)13. (1分) (2017七上·启东期中) 太阳的半径约为696000千米,这个数据用科学记数法表示为________千米.14. (1分) =________.15. (1分)(2018·鄂尔多斯模拟) 如图,已知直线与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线(x>0)正好经过C,M两点,则直线AC的解析式为:________.16. (1分)(2018·龙东模拟) 同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是________.17. (1分)(2018·广水模拟) 在一条笔直的高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的横坐标表示两车第二次相遇的时间;⑤点E的坐标为(7,180)其中正确的有________(把所有正确结论的序号都填在横线上).18. (1分)(2017·天门模拟) 如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C 分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.三、解答题 (共8题;共90分)19. (5分) (2016八上·青海期中) 如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM 上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.20. (20分)(2017·邢台模拟) 近年来,为加强生态城市建设,邢台市大力发展绿色交通,构建公共、绿色交通体系,2016年11月28日公共自行车陆续放置在车桩中,琪琪随机调查了若干市民租用公共自行车的骑车时间:(单位:h),将获得的数据分成五组,绘制了如下统计图,请根据图中信息,解答下列问题.(1)这次被调查的总人数是多少?(2)试求表示D组的扇形圆心角的度数,并补全条形统计图;(3)公共自行车系统投入使用后,按规定市民借车1小时内免费,1小时至2小时收费1元,2小时至3小时收费3元,3小时以上,在3元的基础上,每小时加收3元(不足1小时均按1小时计算)请估算,在租用公共自行车的市民中,缴费超过3元的人数所占的百分比.(4) A组5人中3女2男,从中随机抽取2人,则恰好是一男一女的为事件A,用列表法或者树状图法求出事件A的概率P.21. (5分) (2018八上·顺义期末) 先化简,再求值:,其中满足 .22. (10分)(2018·崇明模拟) 如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB的长;(2)求⊙O的半径.23. (10分)全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2) 2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.①求2014年社区购买药品的总费用;②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数.24. (10分)(2018·重庆) 对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.25. (15分)(2019·夏津模拟) 已知:正方形ABCD,等腰直角三角板DEF的直角顶点落在正方形的顶点D 处,使三角板绕点D旋转。

2018届山东省泰安市中考数学样题含答案

2018届山东省泰安市中考数学样题含答案

2018年泰安学生学业水平测试数学样题一、选择题(本大题共12个小题,满分36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分.)1.在1,-2,0,-3.6 这四个数中,最大的数是( ) A .-2 B . 0 C .-3.6 D .12.下列计算正确的是A .()235x x -=B .()23636x x -=C .()221x x--= D .632x x x ÷=3.如图的几何体是由五个相同的小立方体搭成,它的左视图是( )A .B .C .D .4.鲁教版五四制初中数学教科书共八册,总字数约计1655000,用科学记数法可将1655000表示为 ( )A . 3165510⨯B .61.65510⨯C .516.5510⨯D . 70.165510⨯ 5.如图,直角三角板的直角顶点在正方形的顶点上,若0160∠=,则下列结论错误的是( ) A .0260∠= B .0360∠= C .∠4=450 D . ∠5=300 6.下列图形:任取一个是中心对称图形的概率是( )A .B .C .D .17.若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是( )A .a >4B .a < 4C .4≥aD . 4≤a8.如图,将□ABCD 分别沿BF 、CE 折叠,使点A 、D 分别落在BC 上,折痕分别为BF 、CE , 若AB=6,EF=2,则BC 长为( )A .8B . 10C . 12D . 149. 下列函数中,对于任意实数1x ,2x ,当12x x >时,满足12y y <的是( ) A .y=﹣3x +2B .y=2x +1C .y=2x 2+1D .y=﹣10.工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm .A . 119B .1192C .64D . 1192111.如图,抛物线c bx ax y ++=2(a ≠0)的对称轴为直x =1,与x 轴 的一个交点坐标为(-1,0),其部分图象如图所示.下列结论:① 24ac b <;②方程c bx ax++2=0的两个根是11-=x ,32=x ; ③30a c +>;④当0y >时,x 的取值范围是-13x ≤<;⑤当x1<x2<0时,y1<y 2.其中结论正确的个数是( )A.1个B.2个C.3个D.4个12.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点 D ,C.若∠ACB=30°,AB=3,则阴影部分的面积是( )A.32B.6πC.32-6πD.33-6π二、填空题(本大题共6小题,满分18分。

山东省泰安市新泰市2018届中考数学模拟考试试题(附答案)

山东省泰安市新泰市2018届中考数学模拟考试试题(附答案)

山东省泰安市新泰市2018届中考数学模拟考试试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分。

考试时间120分钟。

注意事项:1.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。

2.考试结束后,监考人员将本试卷和答题纸一并收回。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列四个数中,最大的一个数是A.2 B C.0 D.﹣22.下列计算正确的是A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=03.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是A. B. C. D.第3题图第5题图4.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为A.5 B.6 C.7 D.85.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是A .B .C .D .6.解不等式组()111212x x <-≤-⎧⎪⎨⎪⎩,该不等式组的最大整数解是A.3B.4C.2D.-37.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是A .23π B.3π-C.23π D.23π-第7题图 第8题图 第9题图8.如图,⊙O 的直径AB=4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC=5,则AD 的长为A .65 B .85CD9.如图,在□ABCD 中,DAB ∠的平分线交CD 于点E ,交BC 的延长线于点G ,ABC ∠的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE .下列结论错误的是 A .OH BO = B .CE DF = C.CG DH = D .AE AB = 10.某班45名同学某天每人的生活费用统计如下表:A.平均数是20B.众数是20C.中位数是25D.方差是2011.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ).A .10B .7C .5D .4A B CDE第11题图 第12题图12.已知二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0 ②2a +b =0 ③a -b +c >0 ④4a -2b +c <0 其中正确的是( ) A . ①② B .只有①C .③④D .①④第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,满分18分.)13.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .14.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数1y x=图象上的概率是 . 15.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90°的扇形OAB ,且点O 、A 、B 在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是__________cm.第15题图 第16题图16.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .17.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为_____________km (精确到0.1).第17题图 第18题图18.如图,在平面直角坐标系中,直线l :3333-=x y 与x 轴交于点1B ,以1OB 为边长作等边三角形11OB A ,过点1A 作21B A 平行于x 轴,交直线l 于点2B ,以21B A 为边长作等边三角形212B A A ,过点2A 作32B A 平行于x 轴,交直线l 于点3B ,以32B A 为边长作等边三角形323B A A ,…,则点2018A 的横坐标是________.三、解答题(本大题共7小题,满分66分,解答应写出必要的文字说明、证明过程或推演步骤)19.(本小题满分8分)先化简,再求值:1)1331(2+-÷+-+-x xx x x x ,其中x 的值从不等式组⎩⎨⎧<-≤142;3-2x x 的整数解中选取.20.(本小题满分8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题: (1)求m 的值;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为多少度?(4)已知该校共有1200名学生,请你估计该校约有多少名学生最喜爱足球活动?21.(本小题满分9分)如图,在平面直角坐标系中,OA ⊥OB ,AB⊥x 轴于点C ,点A (,1)在反比例函数ky x=的图象上.(1)求反比例函数ky x=的表达式; (2)在x 轴的负半轴上存在一点P ,使得S △A O P =12S △A O B,求点P 的坐标;(3)若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE .直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.22.(本小题满分10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而杏梅有所增产.(1)该地某果农今年收获樱桃和杏梅共400千克,其中杏梅的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、杏梅两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年杏梅的市场销售量为200千克,销售均价为20元/千克,今年杏梅的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和杏梅的销售总金额与他去年樱桃和杏梅的市场销售总金额相同,求m的值.23.(本小题满分10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.24.(本小题满分10分)如图(1)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC 于C1交AB的延长线于B1.⑴请你探究:AC CDAB DB=,1111AC C DAB DB=是否都成立?⑵请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问AC CDAB DB=一定成立吗?并证明你的判断.⑶如图(2)所示Rt △ABC 中,∠ACB =900,AC =8,BC =332,DE ∥AC 交AB 于点E,试求DFFA的值.图1 图225.(本小题满分11分)如图,抛物线252y ax bx =++与直线AB 交于点A (-1,0),B (4,52),点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD.(1)求抛物线的解析式;(2)设点D 的横坐标为m ,△ADB 的面积为S ,求S 关于m 的函数关系式,并求出当S 取最大值时的点C 的坐标。

2018-2019学年山东省新泰市九年级上期中数学试卷及答案解析

2018-2019学年山东省新泰市九年级上期中数学试卷及答案解析

第 1 页 共 21 页 2018-2019学年山东省新泰市九年级上期中数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.对于反比例函数y =−2x,下列说法中不正确的是( )A .图象分布在第二、四象限B .当x >0时,y 随x 的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 22.已知在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A .43B .45C .54D .34 3.给出下列函数:①y =﹣3x +2;②y =3x ;③y =2(x +1)2;④y =2x ﹣3,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③4.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A .BD BCB .BC AB C .AD DC D .CD AC5.如图,函数y =ax 2﹣2x +1和y =ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .第 2 页 共 21 页6.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .7.将抛物线y =﹣2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( )A .y =﹣2(x +1)2﹣1B .y =﹣2(x +1)2+3C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x ﹣1)2+3 8.反比例函数y =3x 图象上三个点的坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 1<y 3<y 2 9.如图,点C 在反比例函数y =k x (x >0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB =BC ,△AOB 的面积为1,则k 的值为( )A .1B .2C .3D .410.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线x =﹣1,下列结论:①abc <0;②2a +b =0;③a ﹣b +c >0;④4a ﹣2b +c <0其中正确的是( )A .①②B .只有①C .③④D .①④11.如图,从热气球C 上测定建筑物A 、B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A 、D 、B 在同一直线上,建筑物A 、B 间的距离为( )。

山东省泰安市2018年中考数学试题(解析版)

山东省泰安市2018年中考数学试题(解析版)

泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB的面积S 等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析.【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析. 【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年山东省泰安市新泰市九年级(上)期中数学试卷(五四学制)一、选择题(本大题共20小题,每小题3分,共60分)1.(3分)关于反比例函数y=﹣,下列说法正确的是()A.图象过点(3,1)B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大2.(3分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.3.(3分)三角形中,α,β,γ为其三个内角,且满足|sinα﹣|+=0,则γ=()A.45°B.120°C.105° D.75°4.(3分)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.135.(3分)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c 的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y36.(3分)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.7.(3分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα8.(3分)如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里 D.2tan55°海里9.(3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin∠ABC=()A.2 B.C.D.10.(3分)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是()A.x>﹣3 B.x<﹣1 C.x<﹣3或x>﹣1 D.﹣3<x<﹣111.(3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣12.(3分)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4 B.﹣4C.2 D.﹣213.(3分)将抛物线y=(x﹣1)2﹣4的图象先向左平移2个单位,再向上平移3个单位,所得图象的函数解析式为y=x2+bx+c,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=214.(3分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB,则抛物线的表达式()A.y=x2+2x﹣3 B.y=﹣x2﹣2x+3 C.y=x2﹣2x﹣3 D.y=x2﹣3x﹣315.(3分)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B. C.D.16.(3分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.17.(3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是()A.+1 B.+1 C.2.5 D.18.(3分)如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m,那么水位下降1m时,水面的宽度为()m.A.2 B.2 C.3 D.619.(3分)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<820.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=3a;④am2+bm+a>0(m≠﹣1),其中正确的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共4小题,每小题3分,共12分)21.(3分)如图,一山坡的坡度i=1:,小颖从山脚A出发,沿山坡向上走了200m到达点B,则小颖上升了m.22.(3分)修建有一条边靠墙的矩形菜园(墙的长度足够),不靠墙的三边长度之和为60m,则可以围成的菜园最大面积是m2.23.(3分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.24.(3分)某旅社有客房144间,每间房的日租金为200元时,每天都客满,经市场调查发现,如果每间房的日租金每增加10元时,则每天客房出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到元时,客房的日租金总收入最高.三、解答题(本大题共5小题,共48分)25.(8分)如图,小红同学应仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).26.(10分)如图,点A的坐标为(0,2),点B的坐标为(0,﹣3),点C的坐标为(5,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于三角形ABC面积的2倍,求P点的坐标.27.(10分)如图,某海监船向正西方向航行,在A处望见一艘正在作业的渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,求A,B之间的距离.(≈1.732,结果精确到0.1海里).28.(10分)如图,已知矩形ABCD中,AB=6,BC=12,P,Q两点分别从点A,点B开始,沿AB和BC边以每秒1个单位长度的速度匀速运动,如果P,Q两点同时出发,当点P到达点B时,点Q的运动也随之停止,设运动时间为t秒,△PDQ的面积为y.(1)当t=时,PQ∥AC;(2)①求y与t之间的函数关系式;②当t为何值时,y有最小值?最小值是多少?29.(10分)如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N 点,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,当m为何值时,△BNC的面积最大.2017-2018学年山东省泰安市新泰市九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(3分)关于反比例函数y=﹣,下列说法正确的是()A.图象过点(3,1)B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大【解答】解:A、因为k=﹣3≠3×1,所以图象不过点(3,1),故本选项错误;B、因为k=﹣3<0,所以函数图象位于二、四象限,故本选项错误;C、因为k=﹣3<0,所以函数图象位于二、四象限,在每一象限内y随x的增大而增大,故本选项错误;D、因为k=﹣3<0,所以函数图象位于二、四象限,在每一象限内y随x的增大而增大,故本选项正确;故选:D.2.(3分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.3.(3分)三角形中,α,β,γ为其三个内角,且满足|sinα﹣|+=0,则γ=()A.45°B.120°C.105° D.75°【解答】解:由题意得,sinα﹣=0,tanβ﹣1=0,解得,sinα=,tanβ=1,则α=30°,β=45°,∴γ=180°﹣30°﹣45°=105°,故选:C.4.(3分)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13【解答】解:∵双曲线y=经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.故选:C.5.(3分)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c 的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,6.(3分)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.故选:A.7.(3分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,8.(3分)如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里 D.2tan55°海里【解答】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选:C.9.(3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin∠ABC=()A.2 B.C.D.【解答】解:连接AC,由正方形的性质可知,∠CAB=90°,由勾股定理得,AC==,BC==,则sin∠ABC==,故选:C.10.(3分)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是()A.x>﹣3 B.x<﹣1 C.x<﹣3或x>﹣1 D.﹣3<x<﹣1【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故选:D.11.(3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c 中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选:D.12.(3分)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4 B.﹣4C.2 D.﹣2【解答】解:∵∠ACB=30°,∠AOB=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴OB=OC=2,∴AB=OB=2,∴A点坐标为(﹣2,2),把A(﹣2,2)代入y=得k=﹣2×2=﹣4.故选:B.13.(3分)将抛物线y=(x﹣1)2﹣4的图象先向左平移2个单位,再向上平移3个单位,所得图象的函数解析式为y=x2+bx+c,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2【解答】解:抛物线y=(x﹣1)2﹣4的图象的顶点坐标为(1,﹣4),∵先向左平移2个单位,再向上平移3个单位,∴平移后的抛物线的顶点坐标为(﹣1,﹣1),∴所得抛物线的解析式为y=(x+1)2﹣1=x2+2x,∴b=2,c=0.故选:B.14.(3分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB,则抛物线的表达式()A.y=x2+2x﹣3 B.y=﹣x2﹣2x+3 C.y=x2﹣2x﹣3 D.y=x2﹣3x﹣3【解答】解:∵抛物线y=ax2+bx﹣3,∴当x=0时,y=﹣3,∴CO=3,∴BO=1,∴B(﹣1,0),∴把A,B点代入二次函数解析式得:,解得:,故抛物线的表达式为:y=x2﹣2x﹣3.故选:C.15.(3分)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B. C.D.【解答】解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.16.(3分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选:D.17.(3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是()A.+1 B.+1 C.2.5 D.【解答】解:∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,∴AB=BE,∠AEB=∠EAB=45°,∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,∴AE=EF,∠EAF=∠EFA==22.5°,∴∠FAB=67.5°,设AB=x,则AE=EF=x,∴tan∠FAB=tan67.5°===+1.故选:B.18.(3分)如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m,那么水位下降1m时,水面的宽度为()m.A.2 B.2 C.3 D.6【解答】解:设抛物线解析式为y=ax2,把(2,﹣2)代入得:﹣2=4a,解得:a=﹣,∴抛物线解析式为y=﹣x2,把y=﹣3代入得:x=±,则水面的宽度是2米,故选:A.19.(3分)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8【解答】解:对称轴为直线x=﹣=1,解得b=﹣2,所以二次函数解析式为y=x2﹣2x,y=(x﹣1)2﹣1,x=1时,y=﹣1,x=4时,y=16﹣2×4=8,∵x2+bx﹣t=0相当于y=x2+bx与直线y=t的交点的横坐标,∴当﹣1≤t<8时,在﹣1<x<4的范围内有解.故选:C.20.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=3a;④am2+bm+a>0(m≠﹣1),其中正确的个数是()A.4 B.3 C.2 D.1【解答】解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:直线x==﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③正确);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:A.二、填空题(本大题共4小题,每小题3分,共12分)21.(3分)如图,一山坡的坡度i=1:,小颖从山脚A出发,沿山坡向上走了200m到达点B,则小颖上升了100m.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为:100.22.(3分)修建有一条边靠墙的矩形菜园(墙的长度足够),不靠墙的三边长度之和为60m,则可以围成的菜园最大面积是450m2.【解答】解:设垂直于墙的一边长为xm,则平行于墙的一边长为(60﹣2x)m,所以菜园的面积S=x(60﹣2x)=﹣2x2+60x=﹣2(x﹣15)2+450∴当x=15时,S取得最大值,最大值为450,故答案为:450.23.(3分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣12.【解答】解:设点A的坐标为(a,﹣),∵点A是线段OB的中点,∴点B的坐标为(2a,﹣),∵点B在反比例函数y2=的图象上,∴,解得,k=﹣12,故答案为:﹣12.24.(3分)某旅社有客房144间,每间房的日租金为200元时,每天都客满,经市场调查发现,如果每间房的日租金每增加10元时,则每天客房出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到220元时,客房的日租金总收入最高.【解答】解:设租金提高x元,则房间租住的数量为144﹣6×=144﹣x(间),根据题意知,总收入y=(200+x)(144﹣x)=﹣x2+24x+28800=﹣(x﹣20)2+29040,∴当x=20时,总收入取得最大值,此时日租金为220元,故答案为:220.三、解答题(本大题共5小题,共48分)25.(8分)如图,小红同学应仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).【解答】解:根据题意得:四边形DCEF、DCBG是矩形,∴GB=EF=CD=1.5米,DF=CE=8米,设AG=x米,GF=y米,在Rt△AFG中,tan∠AFG=tan60°===,在Rt△ADG中,tan∠ADG=tan30°===,∴x=4,y=4,∴AG=4米,FG=4米,∴AB=AG+GB=4+1.5≈8.4(米).∴这棵树AB的高度约为8.4米.26.(10分)如图,点A的坐标为(0,2),点B的坐标为(0,﹣3),点C的坐标为(5,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于三角形ABC面积的2倍,求P点的坐标.【解答】解:(1)∵反比例函数y=的图象经过点C(5,﹣3),∴﹣3=,解得k=﹣15,∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于△ABC面积的2倍,∴×OA•|x|=×5×5×2,∴×2•|x|=25,解得x=±25.当x=25时,y=﹣=﹣;当x=﹣25时,y=﹣=.∴P点的坐标为(25,﹣)或(﹣25,).27.(10分)如图,某海监船向正西方向航行,在A处望见一艘正在作业的渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,求A,B之间的距离.(≈1.732,结果精确到0.1海里).【解答】解:作DE⊥AB于E,由题意得,∠DBA=∠DAB=45°,∴∠ADB=90°,∴DE=AB,设DE=x海里,则AB=2x海里,∵∠DCE=30°,∴CE=DE=x,由题意得,CE﹣BE=BC,即x﹣x=25,解得,x=(25+1),则AB=25(+1)≈68.3,答:A,B之间的距离为68.3海里.28.(10分)如图,已知矩形ABCD中,AB=6,BC=12,P,Q两点分别从点A,点B开始,沿AB和BC边以每秒1个单位长度的速度匀速运动,如果P,Q两点同时出发,当点P到达点B时,点Q的运动也随之停止,设运动时间为t秒,△PDQ的面积为y.(1)当t=4时,PQ∥AC;(2)①求y与t之间的函数关系式;②当t为何值时,y有最小值?最小值是多少?【解答】解:(1)由题可得,AP=t,BQ=t,AB=6,BC=12,∴PB=6﹣t,由PQ∥AC,可得=,即=,解得t=4,∴当t=4时,PQ∥AC,故答案为:4;(2)①由题可得,AP=BQ=t,AB=6,BC=12,∴PB=6﹣t,CQ=12﹣t,∴y=S四边形PBCD ﹣S△PBQ﹣S△CDQ=×(6﹣t+6)×12﹣×(6﹣t)×t﹣×(12﹣t)×6=t2﹣6t+36(0≤t≤6);②y=t2﹣6t+36=(t﹣6)2+18,∵>0,∴当t=6时,y有最小值,最小值为18.29.(10分)如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N 点,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,当m为何值时,△BNC的面积最大.【解答】解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图,由(2)知,MN=﹣m2+3m(0<m<3).∴S=S△MNC+S△MNB=MN(OD+DB)=MN•OB,△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

相关文档
最新文档