2013-2014第一学期八年级数学期中试题
2013-2014学年度第一学期初二期中考试数学试卷(含答案)

2013-2014学年度第一学期初二期中考试数学试卷一、选择题:(每题3分,共15分)1.如图所示,图中不是轴对称图形的是 ( ).2.如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B=30°, 则∠AOD 的度数为 ( ). A .50° B .30°C .80°D .100°3.点M (3,5)关于X 轴对称的点的坐标为 ( ) A 、(-3,-5) B 、(-3,5) C 、(3,-5) D 、(5,-3)4.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图),可以证明,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是( )A 、“边角边”B 、“角边角”C 、“边边边”D 、“斜边、直角边”5.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为 ( )(A )50° (B )51° (C )61° (D )71°第5题二、填空题:(每题4分,共20分)6.等腰三角形的底角是70°,则它的顶角是___________. 7.正方形有 条对称轴,正五边形有 条对称轴.8.如图,在△ABC 中,BC=5,BC 边上的垂直平分线 DE 交BC 、AB 分别于点D 、E ,△AEC 的周长是11 则△ABC 的周长等于 。
O DCBA第2题ACED B第8题9.如图,等边△ABC 的边长为2 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长..为 cm .10.在直角坐标系中,已知A (-3,3),在x 轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。
2013~2014学年度第一学期期中质量检测八年级数学试题

2013~2014学年度第一学期期中质量检测八年级数学试题【友情提醒】全卷共三大题,23小题,满分150分,考试时间120分钟。
一、选择题(每小题4分,共40分)1.点A (5-,4)在第 象限。
( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各曲线中,能够表示y 是x 的函数的是( )3.函数y =中自变量x 的取值范围是( ) A .x ≥3- B .x ≥3-且1x ≠ C .1x ≠ D .3x ≠-且1x ≠ 4.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?5.一个三角形的两边长分别为3和8,则第三边长可能是( )A .5B .6C .3D .116.点1P (1x ,1y )、2P (2x ,2y )是一次函数b kx y +=(0<k )图象上的两个点,且21x x <,则1y 与2y 的大小关系是( )A .21y y >B .21y y =C .21y y <D .无法确定 7.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125°B .120°C .140°D .130°9.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(1-,2-),“象”位于点(4,1-),则“炮”位于点( ) A .(2,1-) B .(1-,2) C .(2-,1) D .(2-,2) 10.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2,3-)、(4-,6)B .(2-,3)、(4,6)C .(2-,3-)、(4,6-)D .(2,3)、(4-,6) 二、填空题(每小题5分,共20分)11.在直角坐标系中,把点A (3-,2)先向右平移3个单位,再向下平移2个单位,得到的点的坐标是 。
2013-2014年八年级上册数学期中试卷及答案

2013-2014年八年级上册数学期中试卷及答案八年级数学试卷一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC=EFB 、∠A=∠DC 、AC=DFD 、∠C=∠F 2、下列命题中正确个数为( ) ①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等; ④有两边对应相等的两个三角形全等.A .4个B 、3个C 、2个D 、1个 3、已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 ( )A 、 80°B 、40°C 、 120°D 、 60° 4、已知等腰三角形其中一个内角为70°,那么那个等腰三角形的顶角度数为( )A 、70°B 、70°或55°C 、40°或55°D 、70°或40° 5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你能够推断这时的实际时刻是( )A 、10:05B 、20:01C 、20:106、等腰三角形底边上的高为腰的一半,则它的顶角为( ) A、120° B 、90° C 、100° D 、60° 7、点P (1,-2)关于x 轴的对称点是P1,P1关于y 轴的对称点坐标是P2,则P2的坐标为( )A 、(1,-2)B 、(-1,2)C 、(-1,-2)D 、(-2,-1)8、已知()221x y -++=0,求yx 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB =10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm 10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是A D 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、8cm ²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若2)(11y x x x +=-+-,则x-y= .14、如图,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为__ .15、如图,△ABE ≌△ACD ,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置?请将上述两种情形下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)ED ABCFE DBE DBAA B CD第9题图第10题图第14题图第15题图•A•BD E CB A O 17、 27x ³=-343 18、 (3x-1)²=(-3)²五、解答题(5分)19、已知5+11的小数部分为a ,5-11的小数部分为b ,求 (a+b)2012的值。
2013-2014学年度上期期中考试八年级数学试题

2013-2014学年度上期期中考试八年级数学试卷一、选择题(3×7=21分)1.给出四个数-1,0,13 ,7 其中无理数是( )A .-1 B.0 C.13 D.72.估计 6 +1的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间 3.下列运算正确的是( )A. 4 =±2B.a 2·a 4=a 8C.(-2a 3)2=4a 6D.a 2+a 2=2a 4 4.下列各式因式分解错误的是( )A.1-9a 2=(1+3a)(1-3a)B.a 2-a+14 =(a -12)2C .-mx+my=-m(x+y)D .-1+14 a 2b 2=(12 ab+1)(12ab -1)5.以下列各组数据为边长能构成直角三角形的有( ) ①6,7,8 ②8,15,17 ③7,24,25 ④12,35,37 A.1个 B.2个 C.3个 D.4个6.在一块平地上,张大爷家前9米远处有一棵大树,在一次强风中,这棵大树从离地6米处折断倒下,量得倒下部分的长是10米出门在外的张大爷担心,自己的房子被倒下的大树砸倒,大树倒下时能砸到张大爷的房子吗?(如 (6题) 图所示)正确选项是( )A.一定不会B.可能会C.一定会D.以上答案都不对 7.如图在矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 上的F 处,若AB=8,AD=10,则EF 的长为__________A.3B.4C.5D.6 二、填空题(3×9=27分)8.27的立方根是a,16的算术平分根是b ,则b a=__________9.一个长方形面积为81m 2-25n 2,一边长为9m+5n ,则另一边长为__________ 10.若a+b=4,ab=3,则a 2+b 2=____________11.若代数式2a 2+3a+1的值为6,则代数式6a 2+9a+5的值为________12.如图示(单位:mm )的矩形零件上两孔中心A 和B的距离为_______mm.(12题) (13题) (14题)13.如图所示分别以直角三角形ABC 三边长为直径作半圆,并且斜边AB=4,则面积S 1+S 2=______14.如图示,有一个圆柱它的高等于12cm ,底面半径等于3cm ,在圆柱下底面的A 点,有一只壁虎,它想吃到上底面与A 点相对的B 点处的小虫,则它需要爬行的最短路程为________cm(π=3)15.将4个数a,b,c,d排成两行,两列,两边各画一条竖线段记作a bc d定义a bc d=ad-bc上述记号就叫做二阶行列式若1111x xx x+--+=8,则x=________16.如图所示,在△ABC中,AB=AC=5,BC=6,点M是BC的中点,MN⊥AC于N,则MN=_____三、解答题(3×4=12分)(16题)17.计算(1)20012-2002×2000 (2)1002-992+982-972+…+22-1(3)(-2x2)·(-y)+3xy(1-13x) (4)(2a4+18a3-3a2)÷(-3a2)18.将下列多项式因式分解(4×4=16分)(1).2x3-8x (2) n(m-2)-2(2-m)(3)mn2+6mn+9m (4)(ab+a)+(b+1)19.化简再求值(16分)(1)a(a+b)-(a-b)(a+b)-b2其中a=0.252012 ,b=42012(2)已知x+y=12,xy=20,求x(x+y)(x-y)-x(x+y)2的值。
2013-2014学年八年级上册期中考试试题及答案

八年级数学期中试题一.选择题(1-6题每题2分;7-16题每题3分,共42分) 1.下列各组中的三条线段能组成三角形的是( ). A.3,4,8 B.5,6,11 C.5,6,10 D.4,4,82.下列图形不具有稳定性的是( ).3. 下列条件不能判定两个三角形全等的是 ( ) A. 有两边和夹角对应相等 B. 有三边分别对应相等 C. 有两边和一角对应相等 D. 有两角和一边对应相等4. 如图所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角形( )ABCDO第3题A. 1对B. 2对C. 4对 D. 8对5.如图,下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.4 6.下列图形中对称轴最多的是( )A.圆B.正方形C.等腰三角形D.长方形7.如图3,五角星的五个角的和是( ). A.360° B.180° C.90° D.60° 8.一个多边形的内角和等于1 260°,那么它是( ). A.六边形 B.七边形 C.八边形 D.九边形 9.在下面的四种正多边形中,用一种图形不能进行平面镶嵌的是( ).A.三角形 B.正方形 C.正五边形 D.正六边形 10.如果一个等腰三角形的两边长分别为3cm 和5cm ,那么它的周长是( ). A.11cm B.13cm C.11cm 或13cm D.以上答案都不对 11. 如图所示,AB ∥EF ∥CD ,∠ABC =90°,AB =DC ,那么图中的全等三角形有 ( )ABC DEF第7题A. 1对B. 2对C. 3对D. 4对A. B. C. D.A. B. C. D.12. 如图所示,DE ⊥AB ,DF ⊥AC ,AE =AF ,则下列结论成立的是( )ABCD E F第9题 A. BD =CD B. DE =DF C. ∠B =∠CD. AB =AC13.已知等腰三角形的一个外角等于100°,则它的顶角是( )A.80°B.20°C.80°或20°D.不能确定14.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个15. 小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ) A 、21:10 B 、10:21 C 、10:51 D 、12:0116.到△ABC 的三个顶点距离相等到的点是( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点 D 三条边的垂直平分线的交点二. 填空题 (每题3分,共12分)17.已知等腰三角形中的一边长为5,另一边长为9,则它的周长为_ __。
2013--2014第一学期八年级期中考试数学试题

2013—2014第一学期八年级期中考试数学试题(友情提醒:全卷满分120分,请你在120分钟内完成)学号班级姓名成绩一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下)1、下列说法中正确的是()A、两个直角三角形全等B、两个等腰三角形全等C、两个等边三角形全等D、两条直角边对应相等的直角三角形全等2、下列图案中,不是轴对称图形的是()A BC D3、下列长度的三线段,能组成等腰三角形的是()A . 1 1 2 B. 2 2 5C. 3 3 5D. 3 4 5A B DC M N4、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( )A .4个B .3个C .2个D .1个 5、如图,已知MB=ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M =∠NB. AM ∥CNC.AB=CDD. AM=CN6、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( )A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 7、三角形中,到三边距离相等的点是( ) A.三条高线的交点 B.三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点。
8、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CE FCBADD.∠B或∠C9、如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3D.210.将一张长方形纸片按如图所示的方式折叠,BC BD,为折痕,则CBD∠的度数为()A.60°B.75°C.90°D.95°第9题第10题二、填空题(每小题3分,共30分)11、已知点P(-3,4),关于x轴对称的点的坐标为。
2013-2014学年八年级(上)期中数学试卷

钟书教育一对一辅导2013-2014学年八年级(上)期中数学试卷一、选择题.(4分×10=40分)1.(4分)如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()A.B C=FD B.A C=EF C.∠A=∠DEF D.A E=BF2.(4分)如图,OA=OB,OC=OD,∠O=50°,∠C=28°,∠BED的度数是()A.62°B.55°C.74°D.50°3.(4分)下列条件中,不一定能证明两个三角形全等的是()A.两边和一角对应相等B.两角和一边对应相等C.三边对应相等D.两边对应相等的两个直角三角形4.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(4分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三个内角平分线交点D.三边垂直平分线交点6.(4分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A.4个B.3个C.2个D.1个7.(4分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,148.(4分)如图,△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点E、D,BE=6,则△BCE的周长是()A.16 B.22 C.26 D.219.(4分)三角形中下列结论可能存在的有()①最小内角是20°②最大内角是100°③最小内角为89°④三个内角都等于60°⑤有两个内角都等于80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤10.(4分)画△ABC一边上的高,下列画法正确的是()A.B.C.D.二、填空题.(5分×6=30分)11.(5分)等腰三角形中,有一个底角是65°,则另外两个角分别为_________.12.(5分)两边长分别为为4cm、8cm的等腰三角形的周长是_________.13.(5分)(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于_________度.14.(5分)如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件_________时,既可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)15.(5分)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=_________,∠B=_________,∠C=_________.16.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为_________.三、作图题.(保留作图痕迹,本题8分)17.(8分)已知:△ABC,求作:△A′B′C′,使△A′B′C′≌△ABC.四、解答题.(共72分)18.(8分)已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.19.(8分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.20.(10分)如图,AB=AC,BD⊥AC于点D,∠A=50°,求∠DBC的度数.21.(10分)(2012•横县一模)已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.22.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.23.(12分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2013-2014学年广东省汕尾市陆丰市内湖中学八年级(上)期中数学试卷参考答案与试题解析一、选择题.(4分×10=40分)1.(4分)如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()A.B C=FD B.A C=EF C.∠A=∠DEF D.A E=BF考点:全等三角形的性质.分析:根据全等三角形对应边相等,对应角相等对各选项分析判断后利用排除法求解.解答:解:A、∵△ABC≌△EFD,∴BC=FD,正确,故本选项错误;B、∵△ABC≌△EFD,∴AC=DE,故本选项正确;C、∵△ABC≌△EFD,∴∠A=∠DEF正确,故本选项错误;D、∵AB=EF,∴AB﹣EB=EF﹣EB,即AE=BF,故本选项错误.故选B.点评:本题考查了全等三角形的性质,是基础题,熟记性质是解题的关键.2.(4分)如图,OA=OB,OC=OD,∠O=50°,∠C=28°,∠BED的度数是()A.62°B.55°C.74°D.50°考点:全等三角形的判定与性质.分析:首先证明△AOD≌△BOC,可得∠C=∠D,再利用三角形内角和定理计算出∠OBC,然后再利用内角与外角的关系可得答案.解答:解:在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴∠C=∠D=28°,∵∠O=50°,∠C=28°,∴∠OBC=180°﹣50°﹣28°=102°,∴∠BED=102°﹣28°=74°,故选:C.点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形对应角相等.3.(4分)下列条件中,不一定能证明两个三角形全等的是()A.两边和一角对应相等B.两角和一边对应相等C.三边对应相等D.两边对应相等的两个直角三角形考点:全等三角形的判定.分析:根据三角形全等的判定定理,结合选项进行判定.解答:解:A、有两条边和一个角对应相等的三角形不一定全等,因为角的位置没有确定,不一定全等,故本选项正确;B、两角和一边对应相等,运用的是全等三角形判定定理中的AAS或ASA,可以证明两个三角形全等,故本选项错误;C、三边对应相等,运用的是全等三角形判定定理中的SSS,可以证明两个三角形全等,故本选项错误;D、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等,故本选项错误;故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选C.点评:稳定性是三角形的特性,这一点需要记忆.5.(4分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三个内角平分线交点D.三边垂直平分线交点考点:角平分线的性质.分析:根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,即可得出答案.解答:解:由角平分线的性质,得出到三角形三边距离相等的点是三个内角平分线交点.故选:C.点评:此题主要考查了角平分线的性质,熟练利用角平分线的性质是解决问题的关键.6.(4分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A.4个B.3个C.2个D.1个考点:全等三角形的判定与性质.分析:由∠E=∠F=90°,∠B=∠C,AE=AF,根据直角三角形全等的判定得到Rt△ABE≌Rt△ACF,则BE=C,∠EAB=∠FAC得到①②正确;易证Rt△AEM≌Rt△AFN,得到AM=AN,则MC=BN,易证得△ACN≌△ABM,得到④正确;△DMC≌△DMB,则DC=DB,得到③错误.解答:解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF,∴BE=CF,所以②正确;∴∠EAB=∠FAC,∴∠1=∠2,所以①正确;∴Rt△AEM≌Rt△AFN,∴AM=AN,而∠MAN公共,∠B=∠C,∴△ACN≌△ABM,所以④正确;∵AC=AB,AM=AN,∴MC=BN,而∠B=∠C,∴△DMC≌△DMB,∴DC=DB,所以③错误;故选B.点评:本题考查了全等三角形的判定与性质:有两组角对应相等,并且有一条边对应相等相等的两个三角形全等;全等三角形的对应边相等,对应角相等.也考查了直角三角形全等的判定.7.(4分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵5+6<11,∴不能组成三角形,故本选项错误;B、∵8+8=16,∴不能组成三角形,故本选项错误;C、∵5+4<10,∴不能组成三角形,故本选项错误;D、∵6+9>14,∴能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.8.(4分)如图,△ABC中,BC=10,边BC的垂直平分线DE分别交AB、BC于点E、D,BE=6,则△BCE的周长是()A.16 B.22 C.26 D.21考点:线段垂直平分线的性质.分析:由DE垂直平分线BC,可求得CE=BE=6,继而求得△BCE的周长.解答:解:∵DE垂直平分线BC,∴CE=BE=6,∵BC=10,∴△BCE的周长是:BE+CE+BC=22.故选B.点评:此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9.(4分)三角形中下列结论可能存在的有()①最小内角是20°②最大内角是100°③最小内角为89°④三个内角都等于60°⑤有两个内角都等于80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤考点:三角形内角和定理.分析:根据三角形内角和定理对各小题进行逐一分析即可.解答:解:①若最小内角为20°,则其余两角的和等于160°,故本小题正确;②若最大内角是100°,则其余两角的和等于80°,故本小题正确;③若最小内角为89°,则3×89°=267°>180°,故本小题错误;④三个内角都等于60°,则此三角形是等边三角形,故本小题正确;⑤若两个内角都等于80°,则另一个内角等于20°,故本小题正确.所以正确的有:①②④⑤.故选D.点评:本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.10.(4分)画△ABC一边上的高,下列画法正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:根据三角形的高线的定义对各选项分析判断后利用排除法求解.解答:解:A、AB、CD不垂直,所以CD不是AB边上的高,故本选项错误;B、AD、BC不垂直,所以AD不是BC边上的高,故本选项错误;C、AD⊥BC,所以CD是AB边上的高,故本选项正确;D、AD、BC不垂直,所以AD不是BC边上的高,故本选项错误.故选C.点评:本题考查了三角形的高线的定义,是基础题,熟记高线的定义及图形是解题的关键.二、填空题.(5分×6=30分)11.(5分)等腰三角形中,有一个底角是65°,则另外两个角分别为65°,50°.考点:等腰三角形的性质.分析:因为等腰三角形的两个底角相等,三角形的内角和是180°,从而可以分别求另外两个内角的度数.解答:解:另一个底角是65°,则顶角的度数:180°﹣65°×2=50°;则另外两个角分别为65°,50°.故答案为:65°,50°.点评:此题主要考查三角形的内角和及等腰三角形的性质:等腰三角形的两个底角相等.12.(5分)两边长分别为为4cm、8cm的等腰三角形的周长是20cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①8cm为腰,4cm为底,此时周长为20cm;②8cm为底,4cm为腰,则两边和等于第三边无法构成三角形,故舍去.∴其周长是20cm.故答案为:20cm.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)(2004•哈尔滨)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.考点:多边形内角与外角.专题:计算题;压轴题.分析:任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.解答:解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.点评:本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.14.(5分)如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=DE时,既可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)考点:全等三角形的判定.专题:开放型.分析:添加条件BC=DE,根据AD=CF可得AC=DF,再加上条件AD=FC,AB=FE可用SSS定理证明△ABC≌△FED.解答:解:添加条件BC=DE,理由:∵AD=CF,∴AD+DC=CF+DC,即AC=DF,在△ABC和△FED中,,∴△ABC≌△FED(SSS).故答案为:DE=BC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.(5分)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°.考点:三角形内角和定理.分析:设∠A=x°,∠B=2x°,∠C=3x°,根据∠A+∠B+∠C=180°得出方程x+2x+3x=180,求出x即可.解答:解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180,x=30,∴∠A=30°,∠B=60°,∠C=90°,故答案为:30°,60°,90°.点评:本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.16.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、作图题.(保留作图痕迹,本题8分)17.(8分)已知:△ABC,求作:△A′B′C′,使△A′B′C′≌△ABC.考点:作图—复杂作图;全等三角形的判定.分析:作AC=A′C′,A′B′=AB,BC=B′C′.根据全等三角形的判定可得△A′B′C′≌△ABC.解答:解:如图所示:点评:此题主要考查了复杂作图,关键是掌握三边对应相等的两个三角形全等.四、解答题.(共72分)18.(8分)已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.考点:全等三角形的判定;全等三角形的性质.分析:根据SSS推出△ABD≌△CDB,根据全等三角形性质推出即可.解答:证明:在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠A=∠C.点评:本题考查了全等三角形性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.19.(8分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.考点:角平分线的性质.分析:根据角平分线性质得出P在∠AOB的角平分线上,推出∠AOB=2∠BOC,求出即可.解答:解:∵PM⊥OA于M,PN⊥OB于N,PM=PN,∴P在∠AOB的角平分线上,∴∠AOB=2∠BOC=2×30°=60°.点评:本题考查了角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.20.(10分)如图,AB=AC,BD⊥AC于点D,∠A=50°,求∠DBC的度数.考点:等腰三角形的性质.分析:根据等腰三角形的性质和已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=50°,∴∠ABC=∠ACB=65°∵BD⊥AC,∴∠DBC=90°﹣65°=25°.故∠DBC的度数是25°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.21.(10分)(2012•横县一模)已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.考点:全等三角形的判定与性质.专题:证明题.分析:已知∠3=∠4,可知∠ABD=∠ABC,然后根据角边角定理可判断△ABD≌△ABC,即可求证AC=AD.解答:证明:∵∠3=∠4,∴∠ABD=∠ABC(等角的补角相等),在△ABD与△ABC中,,∴△ADB≌△ACB(ASA),∴AC=AD.点评:此题主要考查学生对全等三角形的判定与性质的理解和掌握,解答此题的关键是根据等角的补角相等的性质求出∠ABD=∠ABC.22.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.考点:全等三角形的判定与性质.分析:(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.解答:(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.(12分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据SAS证出△DOF≌△COF,得出DF=FC,再根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.解答:证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴Rt△OED≌Rt△OEC(HL),∴OC=OD;(3)在△DOF和△COF中,∵,∴△DOF≌△COF,∴DF=FC,∵ED=EC,∴OE是线段CD的垂直平分线.点评:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.24.(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴△BHF∽△CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.参与本试卷答题和审题的老师有:CJX;sd2011;sjzx;星期八;lf2-9;zhjh;HJJ;自由人;zjx111;dbz1018;zcx;HLing;zzz;hnaylzhyk;caicl;gsls;fxx;zhangCF(排名不分先后)菁优网2013年12月31日。
2013-2014学年第一学期期中联考八年级数学

2012~2013学年第一学期期中检测试卷(八年级数学)注意:本卷五大题,计23小题,满分120分,考试时间90分钟一、选择题(3分×10=30分)1、下列各点中,在第二象限内的点是 ( )A .(2,3)B .(2,-3)C .(-2,3)D .(-2, -3)2、如图,已知棋子“卒”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为 ( )A .(3,2)B .(3,1)C .(2,2)D .(-2,2) 3、在平面直角坐标系中,若点 ()1,3+-m m P 在第三象限,则m 的取值范围为 ( )A 、31〈〈-mB 、3〉mC 、1〈-mD 、1-〉m4、 函数21-=x y 中自变量x 的取值范围是 ( )A 、X≠2B 、X>2C 、X<2D 、X≥25、如右图能说明12∠>∠的是( )6、点(-1,-2)在下列哪条直线上 ( )A 、 X y 2=B 、12+-=X yC 、X y 2-=D 、X y 21-=7、在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ).A 4cmB 5cmC 9cmD 13cm8、如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是().A 锐角三角形B 直角三角形C 钝角三角形D 等边三角形9、下列四个命题中 ①同位角相等 ①相等的角是对顶角 ①直角三角 形两个锐角互余 ①三条边都相等的三角形是等边三角形 其中是真命题的有 ( )A .4个B .3个C .2个D .1个10、直线1l :b x k y +=1与直线2l :x k y 2=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21〉+的解为( )A 、1-〉xB 、1〈-xC 、2〈-xD 、无法确定二、填空题(4分×6=24分) 11、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_____________12、写出一个你喜欢的一次函数,使其图像经过第一、二、四象限_____________13、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若 通话x 分钟(x≥ 3),则需付电话费y (元)与x (分钟)之间的函数关系式是 ____________________________14、若一次函数y=kx+b 交于y①轴的 负半轴,①且y①的值随x①的增大而减少,①则k____0,b______0.(填“>”、“<”或“=”)15、若A ∠:B ∠:C ∠=1:2:3,那么ABC ∆是______三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C
D A
B
D
C
M N
2013—2014学年度第一学期八年级数学期中试卷
(考试时间:100分钟 试卷分值:120分)
一.选择题:(本大题共5小题,每小题3分,共15分.) 1.下列平面图形中,不是轴对称图形的是 ( )
2.点M (1,2)关于x 轴对称的点的坐标是( ) A .(﹣1,2) B.(1,-2) C.(2,-1) D.(-1,-2)
3.小明在镜子里看到自己的像在用右手拿着梳子向左梳头,那么他实际是
( )
A.用右手向左梳头
B.用左手向右梳头
C.用右手向右梳头
D.用左手向左梳头 4.已知实数y x ,满足0)8(42=-+-y x ,则y x ,的值为两边长的等腰三角形的周长是( )
A .20或16
B .16
C .20
D .以上答案均不对
5.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( ) A.∠M=∠N B.AM=CN C.AB=CD D.AM ∥CN
二.填空题:(本大题共5小题,每小题4分,共20分.)
6.一个正多边形的每个外角都是36°,这个正多边形的边数是 。
7.等腰三角形中有一个角等于50°,则另外两个角的度数为 。
8.如图,已知AD =BC ,根据“SSS ”,还需要一
个条件_______________,可证明ΔABC ≌ΔBAD ;根据“要SAS ”,还需要一个条件_____________,可证明ΔABC ≌ΔBAD 。
班级 姓 座 分
装 订 线
O
D
C
B
A
第8题
A B C
D
9.如图,
在△ABC 中,∠C =90°,AD 平分∠BAC ,若BC =5cm ,BD =2cm ,则点D 到AB 的距离为 cm 。
10. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有 个。
三.解答题:(本大题共5小题,每小题6分,共30分.) 11. 如上右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过
程,说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC
∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中
` _____________ ( )
∵ _________________ ( )
_________________ ( )
∴△ABD ≌△ACD ( )
12.已知多边形的内角和的度数为900°,求这个多边形的边数.
第10题
B 第9题 D
C
A
图6
D
C
B
A
12
13.如图,AB ∥CD,AD 、BC 相交于点O ,∠BAD=35°,∠BOD=76° ,
求∠C 的度数.
14. 如图6,∠1=∠2,∠ C =∠D ,求证:AC =AD .
B
C
O
A
D
15.如图,点D,E 在△ABC 的边BC 上,AB=AC,BD=CE,求证:AD=AE.
四.解答题:(本大题共4小题,每小题7分,共28分.) 16.如图5,在平面直角坐标系中,A (1, 2),B (3, 1),C (-2, -1). (1)在图中作出ABC △关于y 轴对称的1A B C △. (2)写出点111A B C ,,A 1 ______________ B 1 ______________ C 1 ______________
D E
B
A
C
17.如图,在四边形ABCD 中,AC 垂直平分BD 于点O 。
(1)求证:△ABC ≌△ADC.
(2)图中还有多少对全等的三角形?请把它们写出来.
、
18.一个三角形的两条边相等,周长为18cm,三角形一边长4cm,求其他两边的长.
O
B
A
C
班级 姓 座 分
订 线
D
19.已知:如图,△ABC 是等腰三角形,AB=AC ,且∠1=∠2, 求证:OA 平分∠BAC.
五.解答题:(本大题共3小题,每小题9分,共27分.)
20、如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O . (1)求证:AB =DC ;
(2)试判断△OEF 的形状,并说明理由.
C
B
A
O
2
1
A
D
B
E
F
C
O
第20题
21.如图,AD ⊥BD ,AF ⊥BF ,如果AD=AF,AC=AE,求证:BC=BE.
E
C
B
A
D
F
22.八(1)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
(Ⅰ)如图5-1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图5-2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.
(图5-1)(图5-2)
阅读后回答下列问题:
(1)方案(Ⅰ)是否可行?请说明理由。
(4分)
(2)方案(Ⅱ)是否可行?请说明理由。
(4分)
(3)若∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立? .(1分)。