八年级上学期数学期中考试压轴题训练
部编版初二数学八年级上册期中压轴专题(带答案解析)
初二期中压轴专题一、解答题1.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2个和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)2.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从D点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C→B→C,作匀速移动,点G 从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC.(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.3.如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,交AC于点D,AF⊥BD,垂足为点E,交BC于点F.求证:AD=CF.4.解答下列问题:(1)如图1,在△ABC中,AB=AC,点D在AC上,且AD=BD=BC,求∠A的度数.(2)如图2,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.①若∠EDM=84°,求∠A的度数:②若以E为圆心,ED为半径作弧,与射线DM没有交点(除D点外),直接写出∠A的取值范围.5.在△ABC中,AB=AC,∠BAC=90°,点D为AC上一动点.(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90°.求证:△ABE≌△ACF.(2)在(1)的条件下,求证:CF⊥BD.(3)由(1)我们知道∠AFB=45°,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.6.如图,已知△ABC中,AB=AC=10 cm,BC=8 cm,点D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1 s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?7.如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C,D在边AB的同侧),连接CD.(1)若∠ABC=90°,∠BAC=30°,求∠BDC的度数.(2)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由.(3)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.8.解答:(1)如图1,△ABC与△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE.(2)如图2,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:∠AEB的度数为;线段BE与AD之间的数量关系是.(3)拓展探究如图3,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.9.如图,已知△ABC中,AB=AC=24厘米,BC=18厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒得速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,设运动时间为x.①PC=____(用含x的代数式表示);②若点Q的运动速度与点P的运动速度相等,当x为何值时,以B,P,D为顶点的三角形与△CQP全等;③若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)如果点Q以(1)③中的运动速度从点C出发,点P以3厘米/秒的速度从点B出发,都逆时针沿△ABC 三边运动,点P,Q同时出发,运动时间为y.当y取何值时,点P与点Q第二次相遇?10.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A 向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC 和线段PQ的位置关系,请分别说明理由.(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.初二期中压轴专题答案及解析一、解答题1.【答案】(1)解:猜想:DE=BD+CE.理由:∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ ∠∠ ∠ ,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ ∠∠ ∠ ,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)解:①当0≤t<时,点P在AB上,点Q在AC上,此时有BP=2t,CG=3t,AB=22,AC=28.当PA=QA即22-2t=28-3t,也即t=6时,∵PF⊥l,QG⊥l,∠BAC=90°,∴∠PFA=∠QGA=∠BAC=90°,∴∠PAF=90°-∠GAQ=∠AQG.在△PFA和△AGQ中,∠ ∠∠ ∠ ,∴△PFA≌△AGQ(AAS).②当≤t≤11时,点P在AB上,点Q也在AB上,此时相当于两点相遇,则有2t+3t=50,解得t=10;③当11<t≤时,点Q停在点B处,点P在AC上,当PA=QA即2t-22=22,解得t=22(舍去).综上所述:当t等于6或10时,△PFA与△QAG全等.【解析】(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案;(3)易证∠PFA=∠QGA,∠PAF=∠AQG,只需PA=QA,就可得到△PFA与△QAG全等,然后只需根据点P和点Q不同位置进行分类讨论即可解决问题.2.【答案】(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∴AD∥BC.(2)解:设G点的移动距离为x,当△DEG与△BFG全等时,∵∠EDG=∠FBG,∴DE=BF、DG=BG或DE=BG、DG=BF,①∵BC=10,2,∴当点F由点C到点B,即0<t≤2时,则:,解得:,或,解得:(不合题意舍去);②当点F由点B到点C,即2<t≤4时,则,解得:,或,解得:,∴综上所述:△DEG与△BFG全等的情况会出现3次,此时的移动时间分别是秒、秒、秒,G点的移动距离分别是7、7、.【解析】(1)由SSS证得△ABD≌△CDB,得出∠ADB=∠CBD,即可得出结论;(2)设G点的移动距离为x,当△DEG与△BFG全等时,由∠EDG=∠FBG,得出DE=BF、DG=BG或DE=BG、DG=BF,①当点F由点C到点B,即0<t≤2时,则:,或,解方程组即可得出结果;②当点F由点B到点C,即2<t≤4时,则,或,解方程组即可得出结果.3.【答案】证明:过点A作∠BAC的平分线AG,交BD于点G,∵AB=AC,∴∠ABC=∠C.∵∠BAC=90°,∴∠ABC=∠C=45°.∵AG平分∠BAC,∴∠BAG=∠CAG=∠ABC=45°,∴∠BAG=∠C.∵AE⊥BD,∴∠ABG+∠BAE=90°.∵∠CAF+∠BAE=90°,∴∠ABG=∠CAF.在△ABG和△CAF中,∠ ∠,∠ ∠∴△ABG≌△CAF(ASA),∴AG=CF.∵BD平分∠ABC,∴∠ABG=∠CBD,∵∠ABG=∠CAF,∴∠CAF=22.5°.∵∠CAG=45°,∴∠GAE=∠CAG-∠CAF=45-22.5°=22.5°,∴∠GAE=∠CAF.∵AE⊥BD,∴∠AEG=∠AED=90°.在△GAE和△DAE中,∠ ∠,∠ ∠∴△GAE≌△DAE(ASA),∴AG=AD.∵AG=CF,∴AD=CF.【解析】过点A作∠BAC的平分线AG,交BD于点G,构造全等三角形:△ABG≌△CAF(ASA),△GAE≌△DAE(ASA),根据全等三角形的对应边相等和等量代换证得结论.4.【答案】(1)解:设∠A=x°,∵AD=BD,∴∠ABD=∠A=x°,∴∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠C=∠BDC=2x°,∵AB=AC,∴∠ABC=∠C=2x°,在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°.(2)解:①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得:∠A=21°;②∵以E为圆心,ED为半径作弧,与射线DM上没有交点(除D点外),∴E到射线AM的距离大于DE,∴∠EDM≥90°,则∠EDM=4∠A≥90°,即∠A≥22.5°,∵△CDE为等腰三角形,∴∠ECD=∠CED=3∠A<90°,∴∠A<30°,∴∠A的取值范围是22.5°≤∠A<30°.【解析】(1)先设∠A=x°,然后由等腰三角形的性质,求得∠ABC=∠C=2x°,然后由三角形的内角和定理,得到方程:x+2x+2x=180,解此方程即可求得答案;(2)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形外角的性质可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先判断出E到射线AM的距离小于DE,进而得出∠EDM≥90°,根据△CDE为等腰三角形,得到∠ECD=∠CED=3∠A<90°,解不等式组即可得出结论.5.【答案】(1)证明:∵∠BAC=∠BAE+∠EAD=90°,∠EAF=∠CAF+∠EAD=90°,∴∠BAE=∠CAF,在△ABE和△ACF中∠ ∠∴△ABE≌△ACF(SAS).(2)证明:∵∠BAC=90°,∴∠ABE+∠BDA=90°;由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDA+∠ACF=90°;又∵∠BDA=∠CDF,∴∠CDF+∠ACF=90°,∴∠BFC=90°,∴CF⊥BD.(3)解:∠AFB=45°不变化,理由如下:过点A作AF的垂线交BM于点E∵CF⊥BD,∴∠BAC=90°,∴∠ABD+∠ADB=90°,同理∠ACF+∠CDF=90°;∵∠CDF=∠ADB,∴∠ABD=∠ACF,同(1)理得∠BAE=∠CAF.在△ABE和△ACF中,∠ ∠,∠ ∠∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰直角三角形,∴∠AFB=45°.【解析】(1)根据SAS证明△ABE≌△ACF即可;(2)根据全等三角形的性质和垂直的判定解答即可;(3)根据全等三角形的判定和性质解答即可.6.【答案】(1)解:①全等,理由如下:∵t=1 s,∴BP=CQ=3×1=3 cm,∵AB=10 cm,点D为AB的中点,∴BD=5 cm.又∵PC=BC-BP,BC=8 cm,∴PC=8-3=5 cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∠ ∠ ,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4 cm,CQ=BD=5 cm,∴点P,点Q运动的时间t== s,∴ cm/s.(2)解:设经过秒后点P与点Q第一次相遇,由题意,得,解得,∴点P共运动了×3=80 cm.△ABC周长为:10+10+8=28 cm,若是运动了三圈即为:28×3=84 cm,∵84-80=4 cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过 s点P与点Q第一次在边AB上相遇.【解析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等;②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.7.【答案】(1)解:∵△ABD为等边三角形,∴∠BAD=∠ABD=60°,AB=AD.又∵∠BAC=30°,∴AC平分∠BAD,∴AC垂直平分BD,∴CD=CB,∴∠BDC=∠DBC=∠ABC-∠ABD=90°-60°=30°.(2)解:△ABC是等腰三角形.理由:设∠BDC=x,则∠BAC=2x,∠CAD=60°-2x,∠ADC=60°+x,∴∠ACD=180°-∠CAD-∠ADC=60°+x,∴∠ACD=∠ADC,∴AC=AD.∵AB=AD,∴AB=AC,即△ABC是等腰三角形.(3)解:当∠BCD=150°时,∠BAC=2∠BDC恒成立.如图:作等边△BCE,连接DE,则BC=EC,∠BCE=60°.∵∠BCD=150°,∴∠ECD=360°-∠BCD-∠BCE=150°,∴∠DCE=∠DCB.又∵CD=CD,∴△BCD≌△ECD,∴∠BDC=∠EDC,即∠BDE=2∠BDC.又∵△ABD为等边三角形,∴AB=BD,∠ABD=∠CBE=60°,∴∠ABC=∠DBE=60°+∠DBC.又∵BC=BE,∴△BDE≌△BAC(SAS),∴∠BAC=∠BDE,∴∠BAC=2∠BDC.【解析】(1)先由等腰三角形三线合一的性质证明AC为BD的垂直平分线,从而可得到CD=CB,则∠BDC=∠DBC=∠ABC-∠ABD;(2)设∠BDC=x,则∠BAC=2x,∠CAD=60°-2x,∠ADC=60°+x,然后可证明∠ACD=∠ADC,则AC=AD,于是可得到AB=AC;(3)当∠BCD=150°时,∠BAC=2∠BDC恒成立,如答图所示:作等边△BCE,连接DE,则BC=EC,∠BCE=60°.先证明△BCD≌△ECD,从而可得到∠BDE=2∠BDC,然后再证明△BDE≌△BAC,从而可得到∠BAC=∠BDE.8.【答案】(1)证明:∵∠BAC=∠DAE=40°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∠ ∠ ,∴△BAD≌△CAE,∴BD=CE.(2)60° BE=AD(3)解:∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∠ ∠ ,∴△ACD≌△BCE,∴BE=AD,∠BEC=∠ADC.∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°;∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∴AE=AD+DE=BE+2CM.【解析】(1)根据全等三角形的判定方法,判断出△BAD≌△CAE,即可判断出BD=CE;(2)∵△ACB和△DCE均为等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∠CDE=∠CED=60°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∠ ∠ ,∴△ACD≌△BCE,∴BE=AD;∠ADC=∠BEC,∵点A,D,E在同一直线上,∴∠ADC=180°-60°=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.故答案为:60°;BE=AD.(3)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE,然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°即可,最后根据∠DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM 即可.9.【答案】(1)解:①由运动知,BP=3x,∴PC=BC-BP=18-3x(0≤x≤6);②当点Q的运动速度与点P的运动速度相等时,由运动知,BP=CQ,∵△ABC是等腰三角形,∴∠B=∠C,∵以B,P,D为顶点的三角形与△CQP全等,∴只有PC=BD,∵点D是AB的中点,∴BD=AB=12,∴PC=18-3x=12,∴x=2;③∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=9,∵△BPD≌△CPQ,∴CQ=BD=12.∴点P的运动时间(秒),此时V Q=(厘米/秒).(2)解:因为V Q>V P,只能是点Q追上点P,即点Q比点P多走△ABC的周长和AB+AC的路程之和,设经过y秒后P与Q第二次相遇,依题意得4y=3y+2×24+2×24+18,解得y=114(秒),∴点P、Q在BC边上相遇,即经过了114秒,点P与点Q第二次在BC边上相遇.【解析】(1)①直接由运动即可得出结论;②先求得BP=CQ,PC=BD=12,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;③因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=9,根据全等得出CQ=BD=12,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走△ABC的周长和AB+AC的路程之和,据此列出方程,解这个方程即可求得.10.【答案】(1)解:当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∠ ∠ ,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.【解析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.。
八年级数学期中试卷压轴题
一、(15分)已知函数f(x)=2x+1,g(x)=x2-3x+2,求以下问题:(1)求函数f(x)和g(x)的交点坐标;(2)求函数f(x)和g(x)的图像的对称轴;(3)求函数f(x)和g(x)的图像的公共点个数。
二、(20分)已知数列{an}的通项公式为an=3n-1,求以下问题:(1)求数列{an}的前10项;(2)求数列{an}的前n项和Sn;(3)求数列{an}的项数n,使得Sn=100。
三、(20分)已知直角三角形ABC中,∠A=90°,∠B=30°,AB=6cm,求以下问题:(1)求直角三角形ABC的面积;(2)求直角三角形ABC的斜边AC的长度;(3)求直角三角形ABC的高BD的长度。
四、(20分)已知一次函数y=kx+b的图像与x轴、y轴分别相交于点A、B,其中A(-2,0),B(0,4),求以下问题:(1)求一次函数的解析式;(2)求一次函数的图像与直线y=-x的交点坐标;(3)求一次函数的图像与直线y=x+2的交点坐标。
五、(20分)已知等腰三角形ABC中,AB=AC,BC=8cm,AD是BC边上的高,求以下问题:(1)求三角形ABC的底边BC的长度;(2)求三角形ABC的面积;(3)求三角形ABC的周长。
答案:一、(1)令2x+1=x2-3x+2,得x2-5x+1=0,解得x=1或x=4,所以交点坐标为(1,3)和(4,9);(2)函数f(x)的对称轴为x=-1/2,函数g(x)的对称轴为x=3/2;(3)函数f(x)和g(x)的图像有3个公共点。
二、(1)a1=2,a2=5,a3=8,a4=11,a5=14,a6=17,a7=20,a8=23,a9=26,a10=29;(2)Sn=2n^2-n;(3)n=10。
三、(1)S=1/2×AB×BC=1/2×6×8=24cm^2;(2)AC=AB×√3=6×√3=6√3cm;(3)BD=BC×√3/2=8×√3/2=4√3cm。
部编数学八年级上册期中考试压轴题考点训练(一)(解析版)含答案
期中考试压轴题考点训练(一)1.如图,将ABC D 沿DE EF 、翻折,使其顶点A B 、均落在点O 处,若72CDO CFO Ð+Ð=o ,则C Ð的度数为( )A .36oB .54oC .64oD .72o 【答案】B 【详解】解:延长FO 交AC 于点M ,∵将ABC D 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,∴A DOE Ð=Ð,B EOF Ð=Ð,∴DOF A B Ð=Ð+Ð,∵180A B C Ð+Ð+Ð=°,∴180A B C Ð+Ð=°-Ð ,由三角形外角定理可知:DOF MDO DMO Ð=Ð+Ð,DMO C CFM Ð=Ð+Ð,∴DOF C CDO CFO Ð=Ð+Ð+Ð,即:180DOF C CDO CFO C Ð=Ð+Ð+Ð=°-Ð,∴72180C C Ð+°=°-Ð ,∴54CÐ=°,故选:B .2.如图,点D ,E 分别是△ABC 边BC ,AC 上一点,BD =2CD ,AE =CE ,连接AD ,BE 交于点F ,若△ABC 的面积为18,则△BDF 与△AEF 的面积之差S △BDF ﹣S △AEF 等于( )A .3B .185C .92D .63.如图,点C 在线段BD 上,AB BD ^于B ,ED BD ^于D .90ACE Ð=°,且5cm AC =,6cm CE =,点P 以2cm/s 的速度沿A C E ®®向终点E 运动,同时点Q 以3cm/s 的速度从E 开始,在线段EC 上往返运动(即沿E C E C ®®®®×××运动),当点P 到达终点时,P ,Q 同时停止运动.过P ,Q 分别作BD 的垂线,垂足为M ,N .设运动时间为s t ,当以P ,C ,M 为顶点的三角形与QCN △全等时,t 的值为( )A .1或3B .1或115C .1或115或235D .1或115或5【答案】C【详解】解:当点P 在AC 上,点Q 在CE 上时,∵以P ,C ,M 为顶点的三角形与△QCN 全等,∴PC =CQ ,∴5−2t =6−3t ,∴t =1,当点P 在AC 上,点Q 第一次从点C 返回时,4.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为( )A.105°B.115°C.120°D.130°【答案】B【详解】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图:此时BE+EF最小.∵AD是△ABC的角平分线,∠BAC=50°,∴∠BAD=∠B′AD=25°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,在△ABG 和△AB ′G 中,BAG B AG AG AGAGB AGB Ð=Ðìï=íïТ=Ðî¢,∴△ABG ≌△AB ′G (ASA ),∴BG =B ′G , AB =AB ′,∴AD 垂直平分BB ′,∴BE =BE ′,在△ABE ′和△AB ′E ′中,BE BE AE AE AB AB ¢¢¢¢ìï=íï=î=,∴△ABE ′≌△AB ′E ′(SSS ),∴∠AE ′B =AE ′B ′,∵AE ′B ′=∠BAD + AF ′E ′=25°+90°=115°,∴∠AE ′B =115°.即当BE +EF 的值最小时,∠AEB 的度数为115°.故选B .5.将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当n =3时,a 的值为( )A .1.8或1.5B .1.5或1.2C .1.5D .1.2则第3次操作时,剪下的正方形边长为2﹣a ,剩下的长方形的两边分别为2﹣a 、(2a ﹣2)﹣(2﹣a )=3a ﹣4,则2﹣a =3a ﹣4,解得a =1.5.故选:B .6.如图,图1是长方形纸带,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,若图3中108CFE Ð=°,则图1中的DEF Ð的度数是______.【答案】24°【详解】∵AD BC ∥,∴设∠DEF =∠EFB =a ,图2中,∠GFC =∠BGD =∠AEG =180°﹣2∠DEF =180°﹣2a ,图3中,∠CFE =∠GFC ﹣∠EFG =180°﹣2a ﹣a =108°.解得a =24°.即∠DEF =24°,故答案为:24°.7.如图,在等腰ABC V 中,120180BAC °<Ð<°,AD BC ^于点D ,以AC 为边作等边三角形ACE ,ACE V 与ABC V 在直线AC 的异侧,直线BE 交直线AD 于点F ,连接FC 交AE 于点M .若10BE =,2AF =,则FC =______.【答案】6【详解】解:如图1,∵AB AC =,∴12Ð=Ð,∵AD BC ^,∴直线AD 垂直平分BC ,∴FB FC =,∴FBC FCB Ð=Ð,∴12FBC FCB Ð-Ð=Ð-Ð,即34Ð=Ð,∴在等边三角形ACE 中,AC AE =,∴AB AE =,∴35Ð=Ð,∴45Ð=Ð,∵FME CMA Ð=Ð,∴EFC CAE Ð=Ð,∵在等边三角形ACE 中,60CAE Ð=°,∴60EFC Ð=°;在FC 上截取FN ,使FN FE =,连接EN ,∵60EFC Ð=°,FN FE =,∴EFN V 是等边三角形,∴60FEN Ð=°,EN EF =,∵ACE V 为等边三角形,∴60AEC Ð=°,EA EC =,∴FEN AEC Ð=Ð,∴FEN MEN AEC MEN -Ð=Ð-Ð,即56Ð=Ð,在EFA △和ENC △中,56EF EN EA EC =ìïÐ=Ðíï=î,∴()EFA ENC SAS △≌△,∴FA NC =,∴FE FA FN NC FC +=+=,∵102BE AF ==,,∴EF AF BF CF BE EF +===-,∴210EF EF +=-,∴4EF =,∴6CF =,故答案为:6.8.如图,在△ABC 中,AD⊥BC 于点D ,过A 作AE ∥BC ,且AE =AB ,AB 上有一点F ,连接EF .若EF =AC ,CD =4BD ,则ABC AEFS S V V =_____.9.如图1六边形的内角和123456Ð+Ð+Ð+Ð+Ð+Ð为m 度,如图2六边形的内角和123456Ð+Ð+Ð+Ð+Ð+Ð为n 度,则m n -=________.【答案】0【详解】如图1所示,将原六边形分成了两个三角形和一个四边形,∴123456m =Ð+Ð+Ð+Ð+Ð+Ð=180°×2+360°=720°如图2所示,将原六边形分成了四个三角形∴123456n =Ð+Ð+Ð+Ð+Ð+Ð=180°×4=720°∴m-n=0故答案为0.10.在ABC V 中,已知点D 、E 、F 分别是边AE 、BF 、CD 上的中点,若ABC V 的面积是14,则DEF V 的面积为_________.【答案】2【详解】解:如图,连接AF ,BD ,CE ,∵点D 是AE 的中点,点E 是BF 的中点,∴BD 是ABE D 的中线,DE 是BDF D 的中线,∴ABD BDE S S D D =,DEF BDE S S D D =,∴ABD BDE DEF S S S D D D ==;同理可得BCE CEF DEF S S S D D D ==;ACF ADF DEF S S S D D D ==;∴ABD BDE S S D D ==BCE CEF S S D D ==ACF ADF DEF S S S D D D ==,∵ABD BDE S S D D ++BCE CEF S S D D ++ACF ADF DEF ABC S S S S D D D D ++=,14ABC S D =,∴714DEF ABC S S D D ==,解得2DEF S D =,11.如图1,在等边三角形ABC 中,AD BC ^于,D CE AB ^于,E AD 与CE 相交于点O .(1)求证:2OA DO =;(2)如图2,若点G 是线段AD 上一点,CG 平分,60,BCE BGF GF ÐÐ=°交CE 所在直线于点F .求证:GB GF =.(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作60,BGF Ð=°边GF 交CE 所在直线于点F .猜想:,OG OF OA 、三条线段之间的数量关系,并证明.【答案】(1)见解析;(2)见解析;(3)OF =OG +OA ,理由见解析∵CA =CB ,CE ⊥AB,∴AE =BE ,∴OA =OB ,∴∠OAB =∠OBA =30°,∴∠AOB =120°,∠AOM =∠BOM =60°,∵OM =OG ,∴△OMG 是等边三角形,∴GM =GO =OM ,∠MGO =∠OMG =60°,∵∠BGF =60°,∴∠BGF =∠MGO ,∴∠MGF =∠OGB ,∵∠GMF =120°,∴∠GMF =∠GOB ,在△GMF 和△GOB 中,MGF OGB GM GOGMF GOB Ð=Ðìï=íïÐ=Ðî,∴△GMF ≌△GOB (ASA ),∴MF =OB ,∴MF =OA ,∵OF =OM +MF ,∴OF =OG +OA .12.阅读下列材料:阳阳同学遇到这样一个问题:如图1,在ABC D 中AB AC =,BD 是ABC D 的高,P 是BC 边上一点,PM 、PN 分别与直线AB ,AC 垂直,垂足分别为点M 、N .求证:BD PM PN =+.阳阳发现,连接AP ,有ABC ABP ACP S S S D D D =+,即111222AC BD AB PM AC PN ×=×+×.由AB AC =,可得BD PM PN =+.他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示,他猜想此时BD 、PM 、PN 之间的数量关系是:BD PN PM =-.请回答:(1)请补全阳阳同学证明猜想的过程;证明:连接AP .ABC APC S S D D =-Q ________,1122AC BD AC \×=×________12AB -×________.AB AC =Q ,BD PN PM \=-.(2)参考阳阳同学思考问题的方法,解决下列问题:在ABC D 中,AB AC BC ==,BD 是ABC D 的高.P 是ABC D 所在平面上一点,PM 、PN 、PQ 分别与直线AB 、AC 、BC 垂直,垂足分别为点M 、N 、Q .①如图3,若点P 在ABC D 的内部,猜想BD 、PM 、PN 、PQ 之间的数量关系并写出推理过程.②若点P 在如图4所示的位置,利用图4探究得此时BD 、PM 、PN 、PQ 之间的数量关系是:_______.(直接写出结论即可)【答案】(1)S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ,证明见解析②BD =PM +PQ −PN .【详解】解:(1)证明:连接AP .∵S △ABC =S △APC −S △APB ,13.如图,在△ABC 中,∠ABC 的平分线BD 交∠ACB 的平分线CE 于点O .(1)求证:1902BOC A Ð=Ð+°.(2)如图1,若∠A =60°,请直接写出BE ,CD ,BC 的数量关系.(3)如图2,∠A =90°,F 是ED 的中点,连接FO .①求证:BC −BE −CD =2OF .②延长FO 交BC 于点G ,若OF =2,△DEO 的面积为10,直接写出OG 的长.∵∠BOC=1∠A+90°=120°,2∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴OM=2OF.∵F是ED的中点,∴EF=DF,∵∠DFO=∠EFM,14.在ABC V 中,90,ACB AC BC Ð=°=,直线MN 经过点C ,且AD MN ^于D ,BE MN ^于E ,(1)当直线MN 绕点C 旋转到图1的位置时,显然有:DE AD BE =+(不必证明);(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.【答案】(1)见解析;(2)见解析;(3)DE =BE -AD【详解】解:(1)∵△ABC 中,∠ACB =90°,∴∠ACD +∠BCE =90°,又直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°∴∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC ECB AC BC Ð=ÐìïÐ=Ðíï=î,∴△ADC ≌△CEB (AAS ),∴CD =BE ,CE =AD ,∴DE =CD +CE =AD +BE ;(2)∵△ABC 中,∠ACB =90°,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =∠BCE +∠CBE =90°,而AC =BC ,∴△ADC ≌△CEB ,∴CD =BE ,CE =AD ,∴DE =CE -CD =AD -BE ;(3)如图3,∵△ABC 中,∠ACB =90°,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =∠BCE +∠CBE =90°,∴∠ACD =∠CBE ,∵AC =BC ,∴△ADC ≌△CEB ,∴CD =BE ,CE =AD ,∴DE =CD -CE =BE -AD ;DE 、A D 、BE 之间的关系为DE =BE -A D .15.在ABC V 中,90ABC Ð=°,AB BC =,D 为直线AB 上一点,连接CD ,过点B 作BE CD ^交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD =,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD +=;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.【答案】(1)见解析;(2)图②:BF MF CD -=;图③:FM BF CD+=【详解】(1)证明:如图,过点A 作AN AB ^交BF 的延长线于点N .0∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB ABC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB ABC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45NAF NAB BAC Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BN FN BF =+,∴BF MF CD +=.(2)图②:BF MF CD -=.证明:过点A 作AN AB ^交BF 于点N .∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB DBC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB DBC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45CAB MAF Ð=Ð=°,∵90NAM Ð=°∴45NAF NAM MAF Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BF FN BN -=,∴BF MF CD -=.图③:FM BF CD +=.证明:如图,过点A 作AN AB ^交BF 的延长线于点N .∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB ABC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB ABC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45NAF NAB BAC Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BN FN BF =+,∴BF MF CD +=.。
【压轴卷】八年级数学上期中试题(带答案)
【压轴卷】八年级数学上期中试题(带答案)一、选择题1.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣342.分式可变形为( )A .B .C .D .3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º5.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .xx y-B .22x yC .2x yD .3232x y6.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b)7.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .118.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.59.下列图形中,周长不是32 m 的图形是( )A .B .C .D .10.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯ B .113.410-⨯C .103.410-⨯D .93.410-⨯11.若分式 25x x -+的值为0,则x 的值是( ) A .2B .0C .-2D .-5 12.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8二、填空题13.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 14.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .15.如图,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD =2,AD =3,则图中阴影部分的面积是_______.16.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.17.已知1m n -=,则222m n n --的值为______. 18.若分式67x--的值为正数,则x 的取值范围_____. 19.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.先化简,再求值:2421a a a -⎛⎫÷- ⎪⎝⎭,其中5a =. 22.书店老板去图书批发市场购买某种图书,第一次用1200元购买若干本,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500元所购买的数量比第一次多10本.求第一次购买的图书,每本进价多少元?23.如图,AB =AC ,MB =MC .直线AM 是线段BC 的垂直平分线吗?24.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x 3+.(1)求被墨水污染的部分; (2)原分式的值能等于17吗?为什么? 25.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m mx x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32.故答案选B .2.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.5.A解析:A 【解析】 【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是. 【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x xx y x y x y=---,B 、224x 4xy y =, C 、()2222x 4222x x y y y==, D 、()()33322232x 243822x x y yy ⨯==, 故选A . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.6.C解析:C 【解析】 【分析】利用平方差公式的逆运算判断即可. 【详解】解:平方差公式逆运算为:()()22a b a b a b +-=-观察四个选项中,只有C 选项符合条件. 故选C. 【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键.7.C解析:C 【解析】 【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.8.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.9.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.10.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】11.A解析:A 【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x 的值. 详解: 根据题意得 :x-2=0,且x+5≠0,解得 x=2. 故答案为A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.12.D解析:D 【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -. 故选D考点:平方差公式二、填空题13.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠ 【解析】 【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可. 【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1) 解得:x=52a-∵x>0且x−1≠0,∴5025102aa -⎧>⎪⎪⎨-⎪-≠⎪⎩解得:a<5且a≠3 故答案为:a<5且a≠3 【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.14.【解析】试题分析:如图连接OA∵OBOC 分别平分∠ABC 和∠ACB∴点O 到ABACBC 的距离都相等∵△ABC 的周长是20OD⊥BC 于D 且OD=3∴S△ABC=×20×3=30考点:角平分线的性质解析:【解析】试题分析:如图,连接OA ,∵OB 、OC 分别平分∠ABC 和∠ACB , ∴点O 到AB 、AC 、BC 的距离都相等, ∵△ABC 的周长是20,OD ⊥BC 于D ,且OD=3, ∴S △ABC =12×20×3=30. 考点:角平分线的性质.15.3【解析】∵轴对称的两个图形全等∴阴影部分的面积是整个三角形面积的一半即阴影部分的面积等于ΔABD 的面积而ΔABD 的面积=05×2×3=3故答案为3解析:3 【解析】∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半, 即阴影部分的面积等于ΔABD 的面积, 而ΔABD 的面积=0.5×2×3=3, 故答案为3.16.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB ∥CD ∴∠BFC=∠ABE=66°在△EFD 中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC ﹣∠D=1解析:12° 【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答. 解:∵AB ∥CD , ∴∠BFC=∠ABE=66°,在△EFD 中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC ﹣∠D=12°.17.1【解析】【分析】利用平方差公式把变形再把m-n=1代入即可得答案【详解】∵m-n=1∴=(m+n)(m-n)-2n=(m+n)-2n=m-n=1故答案为:1【点睛】本题考查整式的运算熟练掌握平方差解析:1 【解析】 【分析】利用平方差公式把222m n n --变形,再把m-n=1代入即可得答案. 【详解】 ∵m-n=1, ∴222m n n -- =(m+n)(m-n)-2n =(m+n)-2n =m-n =1, 故答案为:1 【点睛】本题考查整式的运算,熟练掌握平方差公式并运用整体代入的思想是解题关键.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7 【解析】试题解析:由题意得:67x -->0, ∵-6<0, ∴7-x <0, ∴x >7.19.6cm 【解析】【分析】根据∠C =90°∠A =30°易求∠ABC =60°而BD 是角平分线易得∠ABD =∠DBC =30°根据△BCD 是含有30°角的直角三角形易求BD 然后根据等角对等边可得AD =BD 从而解析:6cm 【解析】 【分析】根据∠C =90°,∠A =30°,易求∠ABC =60°,而BD 是角平分线,易得∠ABD =∠DBC =30°,根据△BCD 是含有30°角的直角三角形,易求BD ,然后根据等角对等边可得AD =BD ,从而可求AC .【详解】解:∵∠C =90°,∠A =30°,∴∠ABC =60°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =30°,在Rt △BCD 中,BD =2CD =4cm ,又∵∠A =∠ABD =30°,∴AD =BD =4cm ,∴AC =6cm .故答案为6cm .【点睛】本题考查了角平分线定义、等角对等边、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD ,难度适中.20.【解析】【分析】根据0指数幂和负指数幂定义求解【详解】=1+2=3故答案为3【点睛】考核知识点:0指数幂和负指数幂解析:【解析】【分析】根据0指数幂和负指数幂定义求解.【详解】101(3)2π-⎛⎫-+ ⎪⎝⎭=1+2=3 故答案为3【点睛】 考核知识点:0指数幂和负指数幂.三、解答题21.【解析】【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】2421a a a -⎛⎫÷- ⎪⎝⎭ 242a a a a a -⎛⎫=÷- ⎪⎝⎭(2)(2)2a a a a a +-=⋅- 2a =+,当5a =时,原式527=+=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.22.第一次购买的图书,每本进价为5元.【解析】【分析】设第一次购买的图书的单价为x 元/本,则第二次购买图书的单价为1.2x 元/本,根据数量=总价÷单价结合第二次比第一次多购进10本,即可得出关于x 的分式方程,解之经检验后即可得出结论;【详解】设第一次购买的图书的进价为x 元/本,则第二次购买图书的进价为1.2x 元/本, 根据题意得:150********.2x x-= 解得:x =5,经检验,x =5是原分式方程的解,且符合题意.答:第一次购买的图书,每本进价为5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程.23.是,见解析.【解析】【分析】根据线段的垂直平分线的定义,分别证明A 、M 在线段BC 的垂直平分线上即可解决问题.【详解】是,证明:∵AB=AC ,∴点A 在线段BC 的垂直平分线上,∵MB=MC ,∴点M 在线段BC 的垂直平分线上,∴直线AM 是线段BC 的垂直平分线.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的判定方法,属于中考常考题型.24.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能. 25.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.。
初中数学八年级上册压轴题专项练习(解析版)
八年级上册数学压轴题专题练习(解析版)一、压轴题1.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P在线段 AB上以1cm/s的速度由点 A向点 B运动,同时,点 Q在线段 BD上由点 B向点 D运动.它们运动的时间为t(s).(1)若点 Q的运动速度与点 P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段 PC和线段 PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2.在Rt ABC中,∠ACB=90︒,∠A=30︒,BD是ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM下方作∠BMG=60︒,MG交DE延长线于点G.求证:AD=DG+MD;(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作∠BNG=60︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线l1,l2,l3上,∠BAC=90︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向l1作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB=AC,∠BAC=120︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线l1,l2,l3上,且l1与l2之间的距离为1,l2与l3之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.4.在ABC中,AB=AC,D是直线AB上一点,E在直线BC上,且DE=DC.(1)如图1,当D在AB上,E在CB延长线上时,求证:∠EDB=∠ACD;(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF//AC,求证:BE=AD;(3)在(2)的条件下,∠ABC的平分线BF交CD于点F,连AF,过A点作AH⊥CD于点H,当∠EDC=30︒,CF=6时,求DH的长度.5.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM,FM为折痕,折叠后的C点落在B 1M或B1M的延长线上,那么EMF的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线上,那么EMF的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM,FM为折痕,折叠后的C点落在B1M或B1M的延长线上左侧,且EMF80,求C1MB1的度数;②把一张长方形的纸片按如图④所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线右侧,且EMF60,求C1MA1的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB,FB为折痕,设ABC,EBF,A1BC1,求,,之间的数量关系.8.已知ABC和ADE都是等腰三角形,AB AC,AD AE,DAE BAC.(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB__________EC.(填>、<或=)(2)发现证明:如图②,将图①中的ADE绕点A旋转,当点D在ABC外部,点E 在ABC内部时,求证:DB EC.(深入研究)(3)如图③,ABC和ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为__________;线段CE,BD之间的数量关系为__________.(4)如图④,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,点C、D、E在同一直线上,AM为ADE中DE边上的高,则∠CDB的度数为__________;线段AM,BD,CD之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,将ADE绕点A逆时针旋转,连结BE、CD.当AB=5,AD=2时,在旋转过程中,△ABE与ADC的面积和的最大值为__________.9.直角三角形ABC中,∠ACB=90︒,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M,N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当△CMN为等腰直角三角形时,求t的值.10.已知:ABC中,过B点作BE⊥AD,∠ACB=90︒,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出DB的值.BC11.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).12.已知ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P在ABC内时,①若 y=70,s=10,t=20,则 x=;②探究 s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点 P在ABC外时,直接写出 s、t、x、y之间所有可能的数量关系,并画出相应的图形.13.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.探索发现:11111111 =1-;=-;=-……1⨯222⨯3233⨯434根据你发现的规律,回答下列问题:(1)11=,=;n⨯(n+1)4⨯5111⋅+++1⨯22⨯33⨯4+1n⨯(n+1)(2)利用你发现的规律计算:(3)利用规律解方程:111112x-1 ++++=x(x+1)(x+1)(x+2)(x+2)(x+3)(x+3)(x+4)(x+4)(x+5)x(x+5) 15.数学活动课上,老师出了这样一个题目:“已知:MF⊥NF于F,点A、C分别在NF和MF上,作线段AB和CD(如图1),使∠FAB-∠MCD=90︒.求证:AB//CD”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A作AG//FM,交CD于G.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明.(2)若点E在直线CD下方,且知∠BED=30︒,直接写出∠ABE和∠CDE之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在∆ABC中,∠C=90︒,若点D为AB的中点,则CD=请结合上述结论解决如下问题:1AB.2已知,点P是射线BA上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB的中点(1)如图2,当点P与点Q重合时,AE与BF的位置关系____________;QE与QF的数量关系是__________(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).18.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.19.(1)如图1,ABC和DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.(2)如图2,在BCD中,若∠BCD<120︒,分别以BC,CD和BD为边在BCD外部作等边ABC,等边△CDE,等边BDF,连接AD、BE、CF恰交于点P.①求证:AD=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.20.阅读并填空:如图,ABC是等腰三角形,AB=AC,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD=BE,为什么?解:过点E作EF AC交BC于F所以∠ACB=∠EFB(两直线平行,同位角相等)∠D=∠OEF(________)在OCD与△OFE中⎧∠COD=∠FOE(________)⎪⎨OD=OE⎪∠D=∠OEF⎩所以△OCD≌△OFE,(________)所以CD=FE(________)因为AB=AC(已知)所以∠ACB=∠B(________)所以∠EFB=∠B(等量代换)所以BE=FE(________)所以CD=BE【参考答案】***试卷处理标记,请不要删除一、压轴题⎧t=2⎧t=1⎪1.(1)全等,垂直,理由详见解析;(2)存在,⎨或⎨3x=1x=⎩⎪2⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC和线段 PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP和△BPQ中,AP=BQ{∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC与线段PQ垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,⎧3=4-t ⎨t =xt⎩解得⎨⎧t =1;x =1⎩②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,⎧3=xt ⎨t =4-t⎩⎧t =2⎪解得:⎨3x =⎪⎩2⎧t =2⎧t =1⎪综上所述,存在⎨或⎨3使得△ACP 与△BPQ 全等.x =1x =⎩⎪⎩2【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)证明见解析;(2)证明见解析;(3)结论:AD =DG -ND ,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出∠ABC =60︒,再根据角平分线的性质可得CD =ED ,然后根据三角形的判定定理与性质可得BC =BE ,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF =MD ,连接MF ,先根据直角三角形的性质、等边三角形的判定得出∆MDF 是等边三角形,再根据等边三角形的性质、角的和差得出∠F =∠MDB ,MF =MD ,∠FMG =∠DMB ,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证∆HDN 是等边三角形,再根据等边三角形的性质、角的和差得出∠H =∠NDG ,NH =ND ,∠HNB =∠DNG ,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)∠ACB =90︒,∠A =30︒∴∠ABC =90︒-∠A =60︒BD 是∠ABC 的角平分线,DE ⊥AB∴CD =ED⎧CD=ED在∆BCD和∆BED中,⎨BD=BD⎩∴∆BCD≅∆BED(HL)∴BC=BE∴∆EBC是等边三角形;(2)如图,延长ED使得DF=MD,连接MF∠ACB=90︒,∠A=30︒,BD是∠ABC的角平分线,DE⊥AB∴∠ADE=∠BDE=60︒,AD=BD∴∠MDF=∠ADE=60︒,∠MDB=180︒-∠ADE-∠BDE=60︒∴∆MDF是等边三角形∴MF=DM,∠F=∠DMF=60︒∠BMG=60︒∴∠DMF+∠DMG=∠BMG+∠DMG,即∠FMG=∠DMB⎧∠F=∠MDB=60︒⎪在∆FMG和∆DMB中,⎨MF=MD⎪∠FMG=∠DMB⎩∴∆FMG≅∆DMB(ASA)∴GF=BD,即DF+DG=BD∴AD=DF+DG=MD+DG即AD=DG+MD;(3)结论:AD=DG-ND,证明过程如下:如图,延长BD使得DH=ND,连接NH由(2)可知,∠ADE=60︒,∠HDN=180︒-∠ADE-∠BDE=60︒,AD=BD ∴∆HDN是等边三角形∴NH=ND,∠H=∠HND=60︒∠BNG=60︒∴∠HND+∠BND=∠BNG+∠BND,即∠HNB=∠DNG⎧∠H=∠NDG=60︒⎪在∆HNB和∆DNG中,⎨NH=ND⎪∠HNB=∠DNG⎩∴∆HNB≅∆DNG(ASA)∴HB =DG ,即DH +BD =DG∴ND +AD =DG即AD =DG -ND .【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.3.(1)5;(2)【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,221221;(3)33⎧∠AMB =∠CNA ⎪⎨∠MAB =∠NCA ,⎪AB =AC ⎩∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22+12=5;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,⎧∠AMB=∠CNA⎪⎨∠ABM=∠NAC,⎪AB=AC⎩∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=11 BM,NQ=NC,22∵PB=1,CQ=2,设PM=a,NQ=b,∴a2+12=4a2,b2+22=4b2,解得:a=323,b=,332⎛23⎫43=∴CN=AM=22+ ,⎪3⎪3⎝⎭∴AB=AP2+BP2=(AM+PM)2+BP2=221;3(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,⎧∠BNC=∠CMA⎪⎨∠NBC=∠MAC,⎪BC=AC⎩∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,BP2+NP2=BN2,即22+NP2=4NP2,解得:NP=23,3∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,AQ2+QM2=AM2,即32+QM2=4QM2,解得:QM=3,∴AM=23=CN,∴PC=CN-NP=AM-NP=在△BPC中,BP2+CP2=BC2,43,3⎛43⎫221即BC=BP2+CP2=22+ ,=⎪3⎪3⎝⎭2∴AB=BC=221.3【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,1CF=3.2⎧∠EDF=∠DCA⎪⎨∠DFE=∠CAD,⎪DE=CD⎩∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,⎧AB=BC⎪⎨∠ABF=∠CBF,⎪BF=BF⎩△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=11AF=CF=3,22∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=∵BD=CE,∴CF=OF=1 CE,21BD,2∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;a +γ=2β,a -γ=2β.【解析】【分析】(1)①如图①知∠EMC 1=11∠BMC 1,∠C 1MF =∠C 1MC 得22∠EMF =1(∠BMC 1+∠C 1MC )可求出解.2111∠ABC 1,∠C 1BF =∠C 1BC 得∠EBF =(∠ABC 1+∠C 1BC )可222②由图②知∠EBA 1=求出解.(2)①由图③折叠知∠CMF =∠FMC 1,∠BME =∠EMB 1,可推出(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,即可求出解.②由图④中折叠知∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,可推出290︒-60︒+∠A 1MC 1=90︒,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a -β=β-γ、a -β=β+γ,即可求得()a +γ=2β、a -γ=2β.【详解】解:(1)①如图①中,11∠EMC 1=∠BMC 1,∠C 1MF =∠C 1MC ,22∴∠EMF =∠EMC 1+∠C 1MF =故答案为90︒.②如图②中,11(∠BMC 1+∠C 1MC )=⨯180︒=90︒,2211∠EBA 1=∠ABC 1,∠C 1BF =∠C 1BC ,22∴∠EBF =∠EBC 1+∠C 1BF =故答案为45︒.(2)①如图③中由折叠可知,11(∠ABC 1+∠C 1BC )=⨯90︒=45︒,22∠CMF =∠FMC 1,∠BME =∠EMB 1,∠C 1MF +∠EMB 1-∠EMF =∠C 1MB 1,∴∠CMF +∠BME -∠EMF =∠C 1MB 1,∴(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,∴180︒-80︒=∠C 1MB 1=20︒;②如图④中根据折叠可知,∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,︒2∠CMF +2∠ABE +∠AMC =90,11︒∴2(∠CMF +∠ABE )+∠AMC 11=90,(∴2(90∴290︒-∠EMF +∠A 1MC 1=90︒,︒)-60︒+∠A 1MC 1=90︒,)︒∴∠AMC =30;11(3)如图⑤-1中,由折叠可知,a -β=β-γ,∴a +γ=2β;如图⑤-2中,由折叠可知,a -β=β+γ,∴a -γ=2β.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC =,结合AB=AC ,得到DB=EC ;AB AC(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB EC=,AB AC∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中⎧AD =AE⎪⎨∠DAB =∠EAC,⎪AB =AC⎩∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)全等,理由见解析;(2)t=3.5秒或5秒1×AC×AD=5+2=7,2【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,⎧∠ADC =∠CEB⎪⎨∠DAC =∠ECB,⎪CA =CB⎩∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.10.(1)见详解,(2)BD =2CF ,证明见详解,(3)【解析】【分析】(1)欲证明BF =AD ,只要证明∆BCF ≅∆ACD 即可;(2)结论:BD =2CF .如图2中,作EH ⊥AC 于H .只要证明∆ACD ≅∆EHA ,推出CD =AH ,EH =AC =BC ,由∆EHF ≅∆BCF ,推出CH 2.3=CF 即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE⊥AD于E,∴∠AEF=∠BCF=90︒,∠AFE=∠CFB,∴∠DAC=∠CBF,BC=AC,∴∆BCF≅∆ACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHF=∠BCF=90︒,∠EFH=∠BFC,EH=BC,∴∆EHF≅∆BCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHM=∠BCM=90︒,∠EMH=∠BMC,EH=BC,∴∆EHM≅∆BCM,∴MH=MC,∴BD=CH=2CM.AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB2a2==.BC3a3【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.12.(1)①100;②x=y+s+t;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和1111n -,-;(2);(3)见解析.45n n +1n +114⨯51n ⨯(n +1)(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】111111=-=-,解:(1);n (n +1)n n +14⨯545故答案为1111-,-45n n +111111+-+-+22334+111n -=1-= ;n n +1n +1n +1(2)原式=1-1111-+-+(3)已知等式整理得:x x +1x +1x +2112x -1-=所以,原方程即:,x x +5x (x +5)方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】+112x -1-=x +4x +5x (x +5)本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15.(1)见解析;(2)∠ABE -∠CDE =30︒【解析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:∠AGC=∠MCD,∠F+∠GAF=90︒,再证明∠MCD=∠BAG,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A作AG//FM,交CD于G,∴∠AGC=∠MCD,∠F+∠GAF=90︒,FN⊥FM,∴∠F=90︒,∴∠GAF=90︒,∠FAB-∠MCD=90︒,∴∠FAB-∠GAF=∠MCD=∠BAG,∴AB//CD;(2)解:∠ABE-∠CDE=30︒,理由如下:如图3,AB//CD,∴∠BPD=∠ABE,∠BPD=∠CDE+∠BED,∠BED=30︒,∴∠BPD-∠CDE=30︒,∴∠ABE-∠CDE=30︒.。
华东师大版八年级数学上册期中压轴题复习练习题
华东师大版八年级上期数学期中考试压轴题训练1、已知x,y为实数,且y=﹣+4,则+=.2、已知非零实数a,b满足|2a﹣4|+|b+2|++4=2a,则a+b等于()A.﹣1B.0C.1D.23、已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形4、公式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2].(1)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为()A.0B.1C.2D.3(2)已知实数x,y,z,a满足x+a2=m,y+a2=m+1,z+a2=m+2,且xyz=108.求代数式的值.5、已知x,y,z是正整数,x>y,且x2﹣xy﹣xz+yz=23,则x﹣z等于()A.﹣1B.1或23C.1D.﹣1或﹣236、已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.7、若x﹣2y+z=0,则代数式x2+2xz+z2﹣4y2﹣3的值为.8、问题:若(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设(8﹣x)=a,(x﹣6)=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2,∴(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10;请仿照上例解决下面的问题:问题发现:(1)若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值.(2)若x满足(2022﹣x)2+(x﹣2023)2=2021,求(2022﹣x)(x﹣2023)的值.(3)如图,在四边形ABCD中,对角线AC⊥BD于点O,且BD﹣AC=2,BD2+AC2=100,则四边形ABCD的面积为.(4)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是5,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).(5)如图,长方形ABCD的周长是12cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为20cm2,求长方形ABCD的面积.9、如图①是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②.请你直接写出下列三个式子:(a+b)2、(a﹣b)2、ab之间的等量关系式为;(2)若m、n均为实数,且m+n=﹣2,mn=﹣3,运用(1)所得到的公式求m﹣n的值;(3)如图③,S1、S2分别表示边长为x、y的正方形的面积,且A、B、C三点在一条直线上,若S1+S2=20,AB=x+y=6,求图中阴影部分的面积.10、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=度.11、如图,过边长为8的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连接PQ交AC边于D,则DE的长为.12、已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.13、如图,在等边△ABC中,点D为线段BC上一点(不含端点),AP平分∠BAD交BC于点E,PC与AD的延长线交于点F,连接EF,且∠PEF=∠AED,以下结论:①EB=EF;②△ABE≌△CPE;③△AFC是等腰三角形;④连结PB,∠BPF=120°;⑤AP=PF+PC.其中正确的有.(请写序号)14、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)①求证:△BOC≌△ADC;②当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当∠1为多少度时,△AOD是等腰三角形?15、如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定16、我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题如图,在△ABC中,D为△ABC外一点.(1)若AC平分∠BAD,CE⊥AB于点E,∠B+∠ADC=180°,求证:BC=CD;(2)若∠ACB=90°,AC=BC,F是AC上一点,AD⊥BF交BF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF17、(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC 上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.18、如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.19、如图,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y 轴于点F,求点F的坐标用含m的式子表示).。
(新)八年级上册数学各种类型典型压轴题练习试题全汇编
(新)八年级上册数学典型压轴题练习试题汇编一、压轴(1) 选填题 (一)多结论证明1.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE ,下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE ,其中正确的有( )A .1个B .2个C .3个D .4个FBAC2.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC 交AC 于D ,AE ⊥BD 于E ,CF ∥AE 交BD 的延长线于F ;给出四个结论:①∠ACF =12∠ABC ;②CF =12BD ;③BE =2AE +DF ;④CF =AE +DE ,其屮正确的结论有( )A .1个B .2个C .1个D .2个AC3.如图,在Rt △ABC 中,AB =CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE ,EF ,下列四个结论:①AB =2BD ;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 一定不会落在AC 上;④BD =BF ,其中正确的是( )A .①②③④B .②③④C .①③④D .②④DBC4.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下列说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH ,其中正确的是( )A .①②③④B .①②③C .②④D .①③5.如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB =135°;②BF =BA ;③PH =PD ;④连接CP ,CP 平分∠ACB ,其中正确的是( )A .①②③B .①②④C .①③④D .①②③④DC6.如图,△ABC 中,∠ABC =45°,AD ⊥BC 于D 点,BE ⊥AC 于E 点,AD 与BE 交于点F ,连接CF ,DE ,下列结论:①AC =BF ;②∠BED =45°;③BE =AE +2DC ;④若∠ABF =30°,则BF CFAB=1, 其中正确结论的序号是()A .①②③B .①②③④C .①③④D .①③④DABC(二)几何计算7.如图,在△ABC 中,∠BAC =∠BCA =44°,M 为△ABC 内一点,且∠MCA =30°,∠MAC =16°,则∠BMC 的度数为( )A .120°;B .126°C .144°D .150°BCA8.如图,设△ABC 和△CDE 都是等边三角形,若∠AEB =70°,则∠EBD 的度数是( )A .115°B .20°C .125°D .130°DC9.如图,△ABC 中,点D 是BC 上一点,已知∠DAC =30°,∠DAB =75°,CE 平分∠ACB 交AB 于点E 、连DE ,则∠DEC =( )A .10°B .15°C .20°D .25°BACD10.在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDBB .∠BEDC .12∠AFB C .2∠ABFBADC11.如图,已知△ABC 的面积为8cm 2,BP 为∠ABC 的角平分线,AP 垂直BP 于点P ,则△PBC 的面积为( )A .3.5B .3.9C .4D .4.2DACB12.已知:四边形ABCD 中,对角线BD 平分∠ABC ,∠ACB =72°,∠ABC =50°,并且∠BAD +∠CAD =180°,那么∠BDC 的度数为________.DAB(三)多解与画图13.在△ABC 中,AC =BC ,∠ACB =90°,CE 是过C 点的一条直线,AD ⊥CE 于D ,BE ⊥CE 于E ,DE =4cm ,AD =2cm ,则BE =( )A . 2cmB . 2cmC .6cm 或2cmD .6cm14.△ABC 中,AD 是高,∠BAD =60°,∠CAD =20°,AE 平分∠BAC ,则∠EAD 的度数为____________. 15.如图,在平面直角坐标系中,点A (12,6),∠ABO =90°,一动点从点 B 出发以2厘米/秒的速度沿射线BO 运动,点D 在y 轴上,D 点随着C 点运动而运动,且始终保持OA =C D .当点C 经过_____秒时,△OAB 与△OCD 全等.16.已知△ABC 中,AB =AC ,BD ⊥AC 于D ,AC =2BD ,则∠BAC =______.17.如图,在△ABC 中,AB =BC ,∠ABC =100°,边BA 绕点B 顺时针旋转m °(0<m <180)得到线段BD ,连接AD ,D C .若△ADC 为等腰三角形,则m 所有可能的取值是________.DAC18.如图,等腰Rt △ABC 中,∠ACB =90°将线段AB 绕点A 逆时针旋转,旋转后B 点的对应点为D ,连接C D .若AB ∥CD ,则∠CAD 的度数是_______.CA B19.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 童合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =________时,△DEF 为等腰直角三角形.20.在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,满足条件的点C 的个数是( )A .6B .7C .8D .9(四)最值问题21.如图,在△ABC 中,∠C =90°,AC =BC =6,D 为AB 的中点,点E ,F 分别在AC ,BC 边上运动(点E不与点A 、C 重合)且保持∠EDF =90°,连接EF ,在此运动过程中,S △CEF 的最大值为______.FA CBE22.如图,在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,在AB 、BC 上分别一点E 、F ,使△DEF 的周长最小,此时,∠EDF =( )A .αB .90°-αC .2D .180°-2αDBF23.如图,P 为∠AOB 内一定点,M ,N 分别是射线OA ,OB 上一点,当△PMN 周长最小时,∠MPN =110°,则∠AOB =( )A .35°B .40°C .45°D .50°O24.如图,在等腰△ABC 中,AB =AC =5,∠ACB =75°,AD ⊥BC 于D ,点M ,N 分别是线段AB ,线段AD 上的动点,则MN +BN 的最小值是( )A .3BC .4.5D .6AD25.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( )A .ED 的最小值是2B .ED 的最小值是1C .ED 有最大值D .ED 没有最大值也没有最小值D26.如图,AD 为等边△ABC 的高,E ,F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =( )A .112.5°B .105°C .90°D .82.5°DABC27.如图,等腰△ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最小值为_______.B28.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°.若点M ,N 分别是线段AB ,AC 上两个动点,BC =4,则MC +MN 的最小值为_____.BCAN二、压轴(2)几何合题29.在△ABC 中,AB =AC ,CD 为AB 边上的高 (1)如图1,求证;∠BAC =2∠BCD ;(2)如图2.∠ACD 的平分线CE 交AB 于E ,过E 作EF ⊥BC 于F ,EF 与CD 交点G .若ED =m ,BD =n ,含有m 、n 的代式表示△EGC 的面积.图2图1FBBCA CA30.射线AE 为△ABC 的外角平分线,点P 为射线AE 上不与A 点重合的一个动点. (1)如图1,若BP 平分∠ABC ,且∠ACB =30°,则∠APB =______;(直接写出结果) (2)如图1,求证:不论P 在何处,总有AB +AC <PB +PC ;(3)如图2,若点P 在AE 上,作PM ⊥BA 交BA 的延长线于M 点,且∠BPC =∠BAC ,求AC ABAM-的值.图1图2BBE31.如图,Rt △ACB 中,∠ACB =90°,AB =BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF =AE(1)如图1,过F 点作FD ⊥AC 交AC 于D 点,求证:EC +CD =DF ;(2)如图2,连接BF 交AC 于G 点,若AGCG=3求证:E 点为BC 的中点; (3)E 点在射线CB 上,连接BF 与直线AC 交于G 点,若43BC BE =,则AGCG=________.图1图2BFBF32.如图,在等腰△ABC 中,AC =BC ,D ,E 分别为AB ,BC 上一点,∠CDE =∠A. (1)如图1,若BC =BD ,求证:CD =DE ;(2)如图2,过点C 作CH ⊥DE ,垂足为点H ,若CD =BD ,EH =1,求DE -BE 的值.图1图2AABCBC33.已知△ABC 中,AC =B C .(1)如图1,分别过A ,B 作AM ⊥BC ,BN ⊥AC ,垂足分别为M ,N ,AM 与BN 相交于点P ,求证:AP =BP . (2)如图2,分别在AC 的右侧、BC 的左侧作等边△ACE 和等边△BCD ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G 求证:点G 是AB 的中点;(3)在(2)的条件中,当∠ACE 的大小发生变化时,设直线CD 与直线AE 相交于点H .直接写出: 当∠ACB =_______度时,使得AH =C D .图2图1DEABC C34.如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向外作等边△ABE ,直线CE 与直线AD 交于点F .(1)若AF =10,DF =3,试求EF 的长;(2)若以AB 为边向内作等边△ABE ,其它条件均不改变,用尺规作图补全图2(保留作图痕迹),并直接写出EF ,AF ,DF 三者的数量关系____________.图1图2EBC ACA35.已知:在△ABC 中,∠B =60°,D ,F 分别为AB ,BC 上的点,且AF ,CD 交于点F . (1)如图1,若AE ,CD 为△ABC 的角平分线; ①求证:∠AFC =120°;②若AD =6,CE =4,求AC 的长;(2)如图2,若∠FAC =∠FCA =30°,求证:AD =CE .图2图1AACBCB36.如图,等腰△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点. (1)如图1,若AD =AC ,且BE ⊥CD 于点E . ①求∠BCD 的度数;②求CDBE的值; (2)如图2,若F 为CD 上一点,且在线段BC 的垂直平分线上,∠BCD =15°,求证:AF =B C.图2图1BCCAA35.已知:在△ABC 中,∠B =60°,D ,E 分别为AB ,BC 上的点,且AE ,CD 交于点F . (1)如图1,若AE ,CD 为ABC 的角平分线; ①求证:∠AFC =120°;②若AD =6,CE =4,求AC 的长; (2)如图2,若∠FAC =∠FCA =30°,求证:AD =CE .FDECABFDB EC A36.如图,等腰△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点. (1)如图1,若AD =AC ,且BE ⊥CD 于点E .①求∠BCD 的度数;②求BECD的值;(2)如图2,若F 为CD 上一点,且在线段BC 上垂直平分线上,∠BCD =15°,求证:AF =BC .A C DE BBFD AC37.(1)如图1,△ABC 中,∠BAC =90°,AB =BC ,直线m 经过点A ,BD ⊥m ,CE ⊥m ,垂足分别为D ,E ,求证:DE =BD +CE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且满足∠BDA =∠AEC =∠BAC ,求证:DE =BD +CE ;(3)如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE .若∠BDA =∠AEC =∠BAC ,求证:△DEF 为等边三角形.D AE mCBD A mE CBB FCmEA D38.等腰Rt △ABC 中,CA =CB ,∠ACB =90°,点O 是AB 的中点. (1)如图1,求证:CO =BO ;(2)如图2,点M 在边AC 上,点N 在BC 的延长线上,MN -AM =CN ,求∠MON 的度数; (3)如图3,AD ∥BC ,OD ∥AC ,AD 与OD 交于点D ,Q 是OB 的中点,连接CQ ,DQ ,试判断线段CQ 与DQ 的关系,并给出证明.B O A CNMCA O B39.在△ABC 中,BD 为∠ABC 的平分线. (1)如图1,∠C =2∠DBC ,∠A =60°,求证:△ABC 为等边三角形; (2)如图2,若∠A =2∠C ,BC =8,AB =4.8,求AD 的长度;(3)如图3,若∠ABC =2∠ACB ,∠ACB 的平分线OC 与BD 相交于点O ,且OC =AB ,求∠A 的度数.DCB ACDB AB CODA40.在△ABC 中,∠ACB =90°.(1)如图1,点B 与点D 关于直线AC 对称,连接AD ,点E ,F 分别是线段CD ,AB 上的点(点E 不与点D ,C 重合),且∠AEF =∠ABC ,∠ABC =2∠CAE ,求证:BF =DE ; (2)如图2,若AC =BC ,BD ⊥AD ,连接DC ,求证:∠ADC =45°;(3)如图3,若AC =BC ,点D 在AB 的延长线上,以DC 为斜边作等腰直角△DCE ,过直角顶点E 作EF ⊥AC 于点F ,求证:点F 是AC 的中点.DECBF AACDBDBECF A41.在等腰△ABC 中,∠BAC =90°,AB =AC ,点P 为AC 上一点,M 为BC 上一点. (1)若AM ⊥BP 于点E .①如图1,BP 为△ABC 的角平分线,求证:PA =PM ; ②如图2,BP 为△ABC 的中线,求证:BP =AM +MP ;(2)如图3,若点N 在AB 上,AN =CP ,AM ⊥PN ,求AMPN的值.MEPCB A EPMABCNPMABC42.如图,Rt △ABC 中,∠ACB =90°,AC =BC .F 为BC 延长线上一点,连接AF ,BD ⊥AF 于点D ,BD 与AC 交于点E 点. (1)求证:CE =CF ;(2)如图2,若M 为AB 的中点,N 为AE 的中点,P 为BF 的中点,连接MN ,PN ,求∠MNP 的度数;(3)如图3,以AB 为边作Rt △AHB ,∠AHB =90°,过点C 作CG ⊥BH 于G ,若AH =2,CG =5,请直接写出BH 的长为 .ED FCBAPENMA BCFDABC三、压轴(3)代几综合题43.如图1,在平面直角坐标系中,A (a ,0),B (b ,0),050101022=++-+b a b a ,点C 在y 轴正半轴上.(1)求证:OA =OB ;(2)已知:BD ⊥AC 于D ,DE 平分∠BDC ,交y 轴于点E ,求点E 的坐标;(3)如图2,当∠OAC =60°,且OC =35,点M 为x 轴负半轴上一动点,以CM 为边,在CM 的右侧作等边△CMN ,连接ON ,当ON 最短时,求ON 的长度.44.如图1,直线AB 分别交x 轴,y 轴于A ,B 两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过D 作DE ∥OC 交y 轴于点E .已知AO =m ,BO =n ,且m ,n 满足0236122=-++-m n n n .(1)求A ,B 两点的坐标;(2)若点D 为AB 的中点,求OE 的长;(3)如图2,若点P (x ,-2x +6)为直线AB 在x 轴下方的一点,点E 是y 轴正半轴上的一动点,以E 为直角顶点作等腰直角△PEF ,使点F 在第一象限,且F 点的横,纵坐标始终相等,求点P 的坐标.45.如图,直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足0)5(2=-++a b a .(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 的延长线于点D ,试求出点D 的坐标;(3)如图2,M ,N 分别为OA ,OB 边上的点,OM =ON ,OP ⊥AN 交AB 于点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG ,OP 与PG 之间的数量关系,并证明你的结论.46.如图,在平面直角坐标系中,A (8,0),点B 在第一象限,△OAB 为等边三角形,OC ⊥AB ,垂足为C .(1)直接写出点C 的横坐标;(2)作点C 关于y 轴的对称点D ,连DA 交OB 于点E ,求OE 的长;(3)P 为y 轴上一动点,连接PA ,以PA 为边在PA 所在直线的下方作等边△PAH ,当OH 最短时,求点H 的横坐标.47.平面直角坐标系中,点A (a ,0),点B (0,b ),已知a ,b 满足++-+b a b a 882232=0. (1)求点A ,点B 的坐标;(2)如图1,点E 为线段OB 上一点,连接AE ,过A 作AF ⊥AE ,且AF =AE ,连接BF 交x 轴于于点D ,若点D (-1,0),求点E 的坐标;(3)在(2)条件下,如图2,过E 作EH ⊥OB 交AB 于点H ,点M 是射线EH 上一点(点M 不在线段EH 上),连接MO ,作∠MON =45°,ON 交线段BA 的延长线于点N ,连接MN ,探究线段MN 与OM 的关系.48.在平面直角坐标系中,点A (0,a ),B (b ,0)分别在y 轴与x 轴正半轴上,满足0)16(2=-+-ab b a(1)a = ,b = ,∠OAB 的度数是 ;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,AE 为△ACD 的中线,3=∆ACD S ,求点D 的坐标;(3)如图2,已知P (2,0),连接PA ,在AB 上有一点F ,满足∠APB =∠OPF ,连接OF ,请给出三条线段PA ,PF ,FO 之间的数量关系,并证明你的结论.三、压轴(3)代几综合题43.如图1,在平面直角坐标系中,A (a ,0)、B (b ,0),a 2+b 2-10a +10b +50=0,点C 在y 轴正半轴上.(1)求证:OA =OB ;(2)已知:BD ⊥AC 于D ,DE 平分∠BDC ,交y 轴于点E ,求点E 的坐标;(3)如图2,当∠OAC =60º,且OC =53,点M 为x 轴负半轴上一动点,以CM 为边,在CM 的右侧作等边△CMN ,连接ON ,当ON 最短时,求ON 长度.图1 图244.如图1,直线AB 分别交x 轴,y 轴于A ,B 两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过D 作DE ∥OC 交y 轴于点E ,已知AO =m ,BO =n ,且m ,n 满足0236122=-++-m n n n ;(1)求A ,B 两点的坐标;(2)若点D 为AB 的中点,求OE 的长?(3)如图2,若点P (x ,-2x +6)为直线AB 在x 轴下方的一点,点E 是y 轴正半轴上的一动点,以E 为直角顶点作等腰直角△PEF ,使点F 在第一象限,且F 点的横,纵坐标始终相等,求点P 的坐标?图1 图245.如图,直线AB 交x 轴点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足()052=-++a b a .(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 的延长线于点D ,试求点D 的坐标;(3)如图2,M ,N 分别为OA ,OB 边上的点,OM =ON ,OP ⊥AN 交AB 与点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG ,OP 与PG 之间的数量关系,并证明你的结论.图1 图246. 如图,在平面直角坐标系中,A (8,0),点B 在第一象限,△OAB 为等边三角形,OC ⊥AB ,垂足为点C .(1)直接写出点C 的横坐标 ;(2)作点C 关于y 轴的对称点D ,连DA 交OB 于点E ,求OE 的长;(3)P 为y 轴上的一动点,连接PA ,以PA 为边在PA 所在直线的下方作等边△PAH .当OH 最短时,求点H 的坐标.47.平面直角坐标系中,点A (a ,0),点B (0,b ),已知a 、b 满足0328822=++-+b a b a ; (1)求点A 、点B 的坐标;(2)如图1,点E 为线段OB 上一点,连接AE ,过A 作AF ⊥AE ,且AF =AE ,连接BF 交x 轴于点D ,若点D (1-,0),求点E 的坐标;(3)在(2)的条件下,如图2,过E 作EH ⊥OB 交AB 于H ,点M 是射线EH 上一点(点M 不在线段EH 上),连接MO ,作∠MON =45°,ON 交线段BA 的延长线于点N ,连接MN ,探究线段MN 与OM 的关系.图1图248.在平面直角坐标系中,点A (0,a ),点B (b ,0)分别在y 轴和x 轴正半轴上,满足()0162=-+-ab b a .(1)a = ,b = ,∠OAB 的度数是 ;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,AE 为△ACD 的中线,S △ACD =3,求点D 的坐标;(3)如图2,已知P (2,0),连接PA ,在AB 上有一点F ,满足∠APB =∠OPF ,连接OF ,情给出三条线段PA ,PF ,FO 之间的数量关系,并证明你的结论.图1图249.如图,已知A (a ,0)、B (0,b ),且a ,b 满足:0328822=++++b a b a .D 为第一象限内一点,连接BD ,连接AD 交y 轴于C 点,且AC =CD (1)求A 、B 点坐标;(2)如图1,若20=ABD S △,求D 点坐标;(3)如图2,过B 作BE ⊥y 轴,且BE =2OC ,连接AE ,问线段AE 和BD 有何数量和位置关系,请证明你的结论.图1图250.如图,已知A (-a ,0)、B (a ,0),点P 为第二象限内一动点,但始终保持PA = a ,∠PAB 的平分线AE 与线段PB 的垂直平分线CD 交于点D ,作DF ⊥AB 于点F . (1)若P 点坐标为(-2,2),求点C 的坐标 (2)求点D 的横坐标(用a 表示)(3)当点P 运动到某一位置时,恰好点C 落在y 轴上,直接写出CDCE=图1图251.已知,点A (0,a )、B (b ,0)、C (c ,0),其中a =|x +2|+|1-x |,且x 满足点(x +1,2x -1)关于x 轴对称的点在第一象限,b 、c 满足|3b +9|+(c +4)2=0.(1)如图1,在△AOC 内有一点D ,连AD 并延长交OC 于点P ,点E 在AC 上,且∠AED =∠AOD ,∠PDE =∠PDO ,若CE =2,求①△AOC 的周长;②OPCP 的值(2)如图2,点M 在线段AB 上(不与A ,B 重合)移动,过点A 作NA ⊥AB 于A ,且∠MON =45°,探究线段AN 、BM 、MN 之间的数量关系并证明你的结论。
初中八年级上学期数学期中压轴题
初中八年级上学期数学期中压轴题1.如图,△ABC中,AB=AC,分别在AB,BC的延长线上截取点G,H,使BG=BH,延长AC交GH于点K,且AK=KG,则∠BAC的大小等于()1题3题4题5题6题2.已知a,b,c是△ABC的三条边长,化简|a+b﹣c|+|b﹣a﹣c|的结果为()A.2a+2b B.2a+2b﹣2c C.2b﹣2c D.2a3.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A.S1+S3=S2+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1=S34.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=1BF;④AE=BG.2其中正确的是() A.①② B.①③ C.①②③ D.①②③④5.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.46.如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN 分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是(填写正确答案的序号)7.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.7题8题9题10题8.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标为.9.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为_____.10.如图,已知等边三角形ABC的高为7cm,P为△ABC内一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F.则PD+PE+PF=.11.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标_________.12.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为_____.12题13题14题13.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止,当t=_____时,△PBQ是直角三角形.14.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是____________.(填序号) 15.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.16.在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数(2)若CD=2cm,求DF的长17.已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;(2)如图②,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.18.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.19.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD 于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线上时,试探究线段BD,AB和AF的数量关系,并证明你的结论.20.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA,OD,CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.。
人教版八年级数学上册期中考试压轴题专题复习题(含答案)
人教版八年级数学上册期中考试压轴题专题复习题1、在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点,观察并猜想线段EA1与FC有怎样的数量关系?并证明你的结论.2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.求证:(1)△ABE≌△ACD;(2)DC⊥BE.3、如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.4、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.5、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.6、如图,△ABC为等腰直角三角形,点D是边BC上一动点,以AD为直角边作等腰直角△ADE,分别过A、E点向BC边作垂线,垂足分别为F、G.连接BE.(1)证明:BG=FD;(2)求∠ABE的度数.7、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.8、如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.9、如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC 与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.10、CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.11、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧..作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90º,则∠BCE= º.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α、β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α、β之间有怎样的数量关系?请画出图形,并直接写出你的结论.12、在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC 于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.13、如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.14、问题背景:如图1:在四边形ABC 中,AB=AD,∠BAD=120∘,∠B=∠ADC=90∘.E,F 分别是BC,CD 上的点。
【压轴题】八年级数学上期中试卷(含答案)【可修改文字】
可编辑修改精选全文完整版【压轴题】八年级数学上期中试卷(含答案)一、选择题1.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为( )A .100B .80C .50或80D .20或80 2.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数( )A .24°B .25°C .30°D .35° 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°4.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°5.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处6.化简2111x x x+--的结果是( ) A .x+1 B .11x + C .x ﹣1 D .1x x - 7.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°8.下列图形中,周长不是32 m 的图形是( )A .B .C .D .9.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .2510.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b11.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯ B .113.410-⨯ C .103.410-⨯ D .93.410-⨯12.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.15.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.16.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 17.若关于x 的分式方程1101ax x +-=-的解为正数,则a 的取值范围_______. 18.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 19.已知8a b +=,224a b =,则222a b ab +-=_____________. 20.若关于x 的分式方程111x xm +--=2有增根,则m =_____. 三、解答题21.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)22.一个多边形的外角和等于内角和的27 ,求这个多边形的边数. 23.先化简,再求值:1-222442a ab b a b a ab a b+++÷-- ,其中a 、b 满足()22b+1=0a -+ .24.已知a b c ,,是ABC △的三边的长,且满足()222220a b c b a c ++-+=,试判断此三角形的形状.25.如图,在四边形ABCD 中,AB=BC ,BF 平分∠ABC ,AF ∥DC ,连接AC ,CF. 求证:(1)AF=CF ;(2)CA 平分∠DCF.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80,顶角为180808020--=;()2等腰三角形的顶角为80.因此这个等腰三角形的顶角的度数为20或80.故选D.【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.2.D解析:D【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选:D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.D解析:D【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论.【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC,∠2=180°−60°−∠ACB=120°−∠ACB,∠3=180°−60°−∠BAC=120°−∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°−180°=180°,故选D.【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.5.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.6.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】解:原式=2211(1)(1)1 1111x x x xxx x x x-+--===+ ----故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.7.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.8.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.9.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.11.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】12.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.二、填空题13.120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD ,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.15.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=216.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k的值【详解】方程两边都乘(x+1)(x﹣1)得2(x+1)+kx=3(x﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.【详解】方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17.a<1且a≠−1【解析】【分析】先解分式方程根据分式方程的解为正数得出关于a的不等式求出a的取值范围然后再根据有增根的情况进一步求解即可【详解】解:分式方程去分母得:解得:∵关于x的方程的解为正数∴解析:a<1且a≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a的不等式,求出a的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a>-, 解得:a <1,当x−1=0时,x =1是增根, ∴211a≠-,即a≠−1, ∴a <1且a≠−1, 故答案为:a <1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.18.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm 底边是9cm 时:不满足三角形的三边关系因此舍去②当底边是4cm 腰长是9cm 时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.19.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a bab+-=2()22a bab+-=642﹣2×2=28;②当a+b=8,ab=﹣2时,222a bab+-=2()22a bab+-=642﹣2×(﹣2)=36;故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.20.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m﹣1=2x﹣2由分式方程有增根得到x﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m的值.【详解】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.22.9【解析】【分析】设边数为n ,根据外角与内角和关系列出方程求解即可.【详解】解:设这个多边形的边数为n ,则27(n -2)·180= 360 解之得 n=9答:这个多边形的边数是9.23.2b a-.【解析】 试题分析:首先化简分式,然后根据a 、b 满足的关系式,求出a 、b 的值,再把求出的a 、b 的值代入化简后的算式,求出算式的值是多少即可.试题解析:解:原式=2(2)1()2a b a b a a b a b +--⋅-+=21a b a +-=2a a b a --=2b a-∵a 、b 满足2(0a +=,∴a =0,b +1=0,∴a ,b =﹣1,当a b =﹣1时,原式=. 点睛:此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.24.△ABC 为等边三角形【解析】试题分析:将原式展开后可得2222220a b ab b c bc +-++-= ,再结合完全平方式的特点分组得到2222(2)(2)0.a b ab c b bc +-++-=接下来根据完全平方公式可得22()()0,a b c b -+-=结合非负数的性质即可使问题得解试题解析:将22222()0a b c b a c ++-+= 变形,可得2222(2)(2)0.a b ab c b bc +-++-=由完全平方公式可得22()()0,a b c b -+-=由非负数的性质,得0,0,a b c b -=-=即,a b c b ==所以.a b c ==25.(1)见解析;(2)见解析.【解析】【分析】(1)根据BF 平分∠ABC ⇒∠ABF=∠CBF ,再加上AB=BC ,BF=BF 就可以推出△ABF ≌△CBF ,依据全等三角形对应边相等的性质可以推出AF=CF ;(2)根据(1)中所得出的结论可以推出∠FCA=∠FAC ;依据平行线的性质可以得出内错角∠FAC 、∠DCA 相等,等量代换后,就可推出CA 平分∠DCF .【详解】证明:如图.(1)∵BF 平分ABC ∠,∴ABF CBF ∠=∠.在△ABF 与△CBF 中,,{,,AB CB ABF CBF BF BF =∠=∠=∴ △ABF ≌△CBF .∴AF CF =.(2)∵AF CF =,∴FCA FAC ∠=∠.∵AF ∥DC ,∴FAC DCA ∠=∠.∴FCA DCA ∠=∠,即CA 平分DCF ∠.【点睛】出AF=CF,继而推出∠FCA=∠FAC,结合两直线平行内错角相等的性质,很容易就可以得出(2)中的结论.。
【压轴题】八年级数学上期中试题(带答案)
【压轴题】八年级数学上期中试题(带答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为() A.4B.5C.6D.7 2.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=13.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④6.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.147.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°8.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±209.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6B.5C.8D.710.下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角11.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b12.若分式25xx-+的值为0,则x的值是()A.2B.0C.-2D.-5二、填空题13.从n边形的一个顶点出发有四条对角线,则这个n边形的内角和为______度.14.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)15.关于x的方程211x ax+=-的解是正数,则a的取值范围是_________.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.17.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.18.已知22139273m ⨯⨯=,求m =__________.19.若实数,满足,则______. 20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.解方程:(1) 11222x x x ++=-- (2)2124111x x x +=+-- 22.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.23.如图,BO 平分∠CBA ,CO 平分∠ACB ,且MN ∥BC ,若AB=12,△AMN 的周长为29,求AC 的长.24.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.25.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.5.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.6.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.7.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.B解析:B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.10.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.11.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.12.A解析:A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x 的值. 详解: 根据题意得 :x-2=0,且x+5≠0,解得 x=2.故答案为A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.二、填空题13.【解析】【分析】一个多边形的一个顶点出发一共可作4条对角线则这个多边形的边数7边形的内角和可以表示成代入公式就可以求出内角和【详解】由题意得:所以这个n 边形的内角和为度故填:【点睛】本题主要考查多边 解析:900【解析】【分析】一个多边形的一个顶点出发,一共可作4条对角线,则这个多边形的边数7,n 边形的内角和可以表示成2180n -︒()g ,代入公式就可以求出内角和.【详解】由题意得:()432180900+-⨯︒=︒所以这个n 边形的内角和为900度故填:900.【点睛】本题主要考查多边形内角、多边形的对角线,熟练掌握计算公式是关键.14.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.15.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x 的方程=1的解是正数则x >0并且x-1≠0即-a-1>0且-a-1≠1解得a <-1且a≠-2详解:去分母得2x+a=x-1解析:a>-1【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x 的方程21x a x +-=1的解是正数,则x >0并且x-1≠0,即-a-1>0且-a-1≠1,解得a <-1且a≠-2.详解:去分母得2x+a=x-1,解得x=-a-1, ∵关于x 的方程21x a x +-=1的解是正数, ∴x >0且x≠1,∴-a-1>0且-a-1≠1,解得a <-1且a≠-2,∴a 的取值范围是a <-1且a≠-2.故答案为a <-1且a≠-2. 点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.16.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.17.70【解析】【分析】先利用HL 证明△ABE ≌△CBF 可证∠BCF=∠BAE=25°即可求出∠ACF=45°+25°=70°【详解】∵∠ABC=90°AB=AC ∴∠CBF=180°-∠ABC=90°∠解析:70【解析】【分析】先利用HL 证明△ABE ≌△CBF ,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC ,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.18.8【解析】【分析】根据幂的乘方可得再根据同底数幂的乘法法则解答即可【详解】∵即∴解得故答案为:8【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法熟练掌握幂的运算法则是解答本题的关键解析:8【解析】【分析】根据幂的乘方可得293m m =,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m 创=,∴22321m ++=,解得8m =,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.19.5【解析】【分析】根据非负数的性质列式求出mn 的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m -1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m ,n 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:, ∴∴; 故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值. 20.【解析】【分析】根据0指数幂和负指数幂定义求解【详解】=1+2=3故答案为3【点睛】考核知识点:0指数幂和负指数幂解析:【解析】【分析】根据0指数幂和负指数幂定义求解.【详解】101(3)2π-⎛⎫-+ ⎪⎝⎭=1+2=3 故答案为3【点睛】 考核知识点:0指数幂和负指数幂.三、解答题21.(1)43x =;(2)无解; 【解析】【分析】(1)方程两边乘以(x-2),得x+1+2(x-2)=1;(2)方程两边乘以(x+1)(x-1),得x-1+2(x+1)=4,注意验根.【详解】解:(1)方程两边乘以(x-2),得x+1+2(x-2)=1解得x=4 3检验:当x=43时,x-2≠0所以,原方程的根是x=4 3(2)方程两边乘以(x+1)(x-1),得x-1+2(x+1)=4解得x=1检验:当x=1时,(x+1)(x-1)=0所以,原方程无解.【点睛】解分式方程,去分母是关键.22.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2 x+1)-(4x2-9) =4x2-8 x+4-4x2+9=-8 x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.23.【解析】【分析】首先根据角平分线以及平行线的性质得出BM=OM,CN=ON,然后根据三角形的周长得出AB+AC=29,最后根据AB的长度求出AC的长度.【详解】解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.24.每套《水浒传》连环画的价格为120元【解析】【分析】设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元,根据等量关系“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列方程进行求解即可得.【详解】设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为()60x +元,由题意, 得480036002?60x x =+, 解得120x =,经检验,120x =是原方程的解,且符合题意,答:每套《水浒传》连环画的价格为120元.【点睛】本题考查了分式方程的应用,找到题中的等量关系是解题的关键,注意解完方程后要进行检验.25.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元. 由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元) 由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.。
北师大版八年级数学上册期中压轴题复习练习题(含答案) (1)
北师大版八年级数学上册期中压轴题复习练习题1、如图,长方形AB C D中A D∥BC,边AB=4,BC=8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.(1)试判断△BEF的形状,并说明理由;(2)求△BEF的面积.2、如图1,在平面直角坐标系中,P(3,3),点A、B分别在x轴正半轴和y轴负半轴上,且PA=PB.(1)求证:PA⊥PB;(2)若点A(9,0),则点B的坐标为;(3)当点B在y轴负半轴上运动时,求OA﹣O B的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+O B的值.3、在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线O C:y=x交于C.(1)如图1若直线AB的解析式:y=﹣2x+12①求点C的坐标;②求△OA C的面积;(2)如图2,作∠A O C的平分线O N,若AB⊥O N,垂足为E,且OA=4,P、Q分别为线段OA、OE上的动点,连接A Q与P Q,是探索AQ+P Q是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.4、如图,在平面直角坐标系中,已知点A(﹣1,0),点B(3,0).在第三象限内有一点M(﹣2,m).(I)请用含m的式子表示△AB M的面积;(I I)当m=时,在y轴上有一点P,使△B M P的面积与△ABM的面积相等,请求出点P的坐标.5、如图,正方形AB C D的顶点A、B分别在x轴和y轴上,D C的延长线交y轴于E,CB的延长线交x的负半轴于F.(1)求证:△ABF≌△BCE;(2)连接EF,若EF=5,OF=1,OB=2,求正方形AB C D的边长;(3)在(2)的条件下,动点P从点A出发沿x轴正方向向右移动,当AP为多少时,△PAD为等腰三角形?6、如图,△ACB和△EC D都是等腰直角三角形,∠ACB=∠EC D=90°,D为AB边上一点.(1)求证:△ACE≌△BC D;(2)若CB=3,A D=2,求D E的长.7、如图1,Rt△AB C中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求C E;(2)如图3,在点D的运动过程中,连接C D,若△AC D为等腰三角形,求A D.8、如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.9、有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;米/分;(3)若线段F G∥x轴,则此段时间,甲机器人的速度为(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.10、如图,A,B是分别在x轴上的原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△A O C=10.(1)求点A的坐标及m的值;(2)若S△B OP=S△D O P,求直B D的解析式;(3)在(2)的条件下,直线AP上是否存在一点Q,使△QA O的面积等于△B O D面积?若存在,求出点Q的坐标;若不存在,请说明理由.11、如图1,正方形OAB C,其中O是坐标原点,点A(3,1).(1)直接写出点B、C的坐标;(2)对于两条直线l:y=k x+b和l:y=k x+b,若有k•k=﹣1,则可得l⊥l.比111122221212如:l:y=x+1和l:y=﹣x+3,因为,所以l⊥l.112212连接AC、OB,已知AC交y轴于点M,证明:AC、O B所在的直线互相垂直;(3)如图2,已知点D在第四象限,A D∥y轴,且A D=3,P是直线OB上一点,连接PA、P D、A D,求△PAD的周长最小值.12、如图1,长方形OAB C的边O A、O C分别在x轴、y轴上,B点坐标是(8,4),将△A O C沿对角线AC翻折得△A D C,A D与BC相交于点E.(1)求证:△CD E≌△ABE(2)求E点坐标;(3)如图2,动点P从点A出发,沿着折线A→B→C→O运动(到点O停止),是否存在点P,使得△PO A的面积等于△A CE的面积,若存在,直接写出点P坐标,若不存在,说明理由.13、如图,已知直线c和直线b相交于点(2,2),直线c过点(0,3).平行于y轴的动直线a的解析式为x=t,且动直线a分别交直线b、c于点D、E(E在D的上方).(1)求直线b和直线c的解析式;(2)若P是y轴上一个动点,且满足△P DE是等腰直角三角形,求点P的坐标.14、(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?15、如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)222(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a+b=c;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△A O B的位置).点C为线段OA上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△C M D为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.16、如图1,在平面直角坐标系中,直线l:y=﹣x+5与x轴,y轴分别交于A,B两点.直1线l:y=﹣4x+b与l交于点D(﹣3,8)且与x轴,y轴分别交于C,E.21(1)求出点A坐标,直线l解析式;2(2)如图2,点P为线段A D上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段P D以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间时点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得S△CE G=S△CEB,求点G坐标.参考答案1、如图,长方形AB C D中A D∥BC,边AB=4,BC=8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.(1)试判断△BEF的形状,并说明理由;(2)求△BEF的面积.【解答】解:(1)△BEF是等腰三角形.∵E D∥F C,∴∠DEF=∠BFE,根据翻折不变性得到∠DEF=∠BEF,故∠BEF=∠BFE.∴BE=BF.△BEF是等腰三角形;(2)∵矩形ABC D沿EF折叠点B与点D重合,∴BE=DE,B G=C D,∠EB G=∠A D C=90°,∠G=∠C=90°,∵AB=C D,∴AB=B G,设BE=DE=x,则AE=AB﹣DE=8﹣x,22在Rt△ABE中,AB+AE=BE,222即4+(8﹣x)=x,2解得x=5,∴BE=5,∵∠ABE+∠EBF=∠ABC=90°,∠GBF+∠EBF=∠EB G=90°,∴∠ABE=∠GBF,在△ABE和△M B F中,,∴△ABE≌△GBF(ASA),∴BF=BE=5,∴△EBF的面积=×5×4=10.2、如图1,在平面直角坐标系中,P(3,3),点A、B分别在x轴正半轴和y轴负半轴上,且PA=PB.(1)求证:PA⊥PB;(2)若点A(9,0),则点B的坐标为(0,﹣3);(3)当点B在y轴负半轴上运动时,求OA﹣O B的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+O B的值.【解答】(1)证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(3,3),∴PE=PF=3,在Rt△APE和Rt△BPF中,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴PA⊥PB;(2)解:由(1)证得,Rt△APE≌Rt△BPF,∴PF=PE,∴四边形OEPF是正方形,∴OE=OF=3,∵A(9,0),∴OA=9,∴AE=OA﹣OE=9﹣3=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣3=3,∴点B的坐标为(0,﹣3),故答案为:(0,﹣3);(3)解:∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣3,BF=OB+O F=O B+3,∴OA﹣3=OB+3,∴OA﹣OB=6;(4)解:如图2,过点P作PE⊥x轴于E,作PF⊥y轴于F,同(1)可得,Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣3,BF=OF﹣OB=3﹣OB,∴OA﹣3=3﹣OB,∴OA+O B=6.3、在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线O C:y=x交于C.(1)如图1若直线AB的解析式:y=﹣2x+12①求点C的坐标;②求△OA C的面积;(2)如图2,作∠A O C的平分线O N,若AB⊥O N,垂足为E,且OA=4,P、Q分别为线段OA、OE上的动点,连接A Q与P Q,是探索AQ+P Q是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.【解答】解:(1)①联立AB、O C的函数表达式得:,,点C(4,4);②直线AB的解析式:y=﹣2x+12令y=0,则x=6,即OA=6,S=×OA×y=×6×4=12;△CO A C(2)O N是∠A O C的平分线,且AB⊥O N,则点A关于O N的对称点为点C,A O=O C=4,当C、Q、P在同一直线上,且垂直于x轴时,A Q+P Q有最小值CP,22设:CP=OP=x,则2x=4=16,解得:x=2=C P.4、如图,在平面直角坐标系中,已知点A(﹣1,0),点B(3,0).在第三象限内有一点M(﹣2,m).(I)请用含m的式子表示△AB M的面积;(I I)当m=时,在y轴上有一点P,使△B M P的面积与△ABM的面积相等,请求出点P的坐标.【解答】解:(I)如图1所示,过M作M E⊥x轴于E,∵A(﹣1,0),B(3,0),∴OA=1,OB=3,∴AB=4,∵在第三象限内有一点M(﹣2,m),∴M E=|m|=﹣m,∴S△AB M=AB×M E=×4×(﹣m)=﹣2m;(I I)设B M交y轴于点C,如图2所示:设P(0,n),当m=﹣时,M(﹣2,﹣),S△AB M=﹣2m=3,∵在y轴上有一点P,使得△B M P的面积=△ABM的面积相等=6,∵△B M P的面积=△M P C的面积+△BP C的面积=PC×2+PC×3=3,解得:PC=,设直线B M的解析式为y=kx+d,把点M(﹣2,﹣),B(3,0)代入得:,解得:,∴直线B M的解析式为y=当x=0时,y=﹣∴C(0,﹣),O C=x﹣,,,当点P在点C的下方时,P(0,﹣﹣当点P在点C的上方时,P(0,﹣),即P(0,﹣),即P(0,);)或(0,).);综上所述,符合条件的点P坐标是(0,﹣5、如图,正方形AB C D的顶点A、B分别在x轴和y轴上,D C的延长线交y轴于E,CB的延长线交x的负半轴于F.(1)求证:△ABF≌△BCE;(2)连接EF,若EF=5,OF=1,OB=2,求正方形AB C D的边长;(3)在(2)的条件下,动点P从点A出发沿x轴正方向向右移动,当AP为多少时,△PAD为等腰三角形?【解答】(1)证明:如图1中,∵四边形ABC D是正方形,∴BC=BA,∠ABC=∠ABF=∠BCE=90°,∴∠EBC+∠AB O=90°,∠AB O+∠BAF=90°,∴∠EBC=∠FAB,∴△ABF≌△BCE(ASA).(2)解:如图2中,在Rt△E OF中,∵EF=5,OF=1,∴OE===7,∵OB=2,∴EB=5,∵BF==,∵△ABF≌△BCE,∴EC=BF=,在Rt△EBC中,B C==2.∴正方形ABC D的边长为2.(3)解:如图3中,作D H⊥x轴于H,则△A D H≌△BA O(AAS).可得A H=O B=2,①当DA=DP时,∵⊥,1D H AP1∴A H=H P=2,1∴AP=4.1②当A D=AP时,==AP AB22.2③当P=A P DP M A时,由△A OB∽△,可得3=,33∴=,∴AP=5,3综上所述,满足条件的AP的值为4或2或5.6、如图,△ACB和△EC D都是等腰直角三角形,∠ACB=∠EC D=90°,D为AB边上一点.(1)求证:△ACE≌△BC D;(2)若CB=3,A D=2,求D E的长.【解答】(1)证明:∵△ACB和△EC D都是等腰直角三角形,∴AC=BC,EC=D C,∵∠ACB=∠ECD=90°,∴∠ACE+∠AC D=90°,∠D CB+∠AC D=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).(2)解:∵△ACE≌△BC D,∴∠EAC=∠CBD,AE=B D,∵△ACB是等腰直角三角形,∴∠CAB=∠CBD=45°,∴∠EAC+∠CAB=90°,∵CB=3,∴AB=6∵A D=2,∴B D=4,在Rt△AE D中,∵AE=B D=4,AD=2∴DE==2.7、如图1,Rt△AB C中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求C E;(2)如图3,在点D的运动过程中,连接C D,若△AC D为等腰三角形,求A D.【解答】解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠E DA=∠ECA=90°,∵AE=AE,∴△ACE≌△AED(AAS),∴CE=DE,A C=A D=15,设CE=x,则BE=20﹣x,B D=25﹣15=10在Rt△BE D中22∴x+10=(20﹣x),2∴x=7.5,∴CE=7.5.(2)①当A D=A C时,△AC D为等腰三角形∵AC=15,∴A D=A C=15.②当C D=A D时,△AC D为等腰三角形∵C D=A D,∴∠D CA=∠CAD,∵∠CAB+∠B=90°,∠D CA+∠BC D=90°,∴∠B=∠BC D,∴B D=C D,∴C D=B D=D A=12.5,③当C D=A C时,△AC D为等腰三角形,如图1中,作C H⊥BA于点H,则•AB•C H=•AC•BC,∵AC=15,BC=20,AB=25,∴C H=12,在Rt△AC H中,A H==9,∵C D=A C,C H⊥BA,∴D H=H A=9,∴A D=18.8、如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.【解答】解:(1)∵y=﹣2x+4交X轴和y轴于点A和点B ∴当x=0时,y=4;当y=0时,x=2∴A(2,0),B(0,4)(2)设点P(a,﹣2a+4)①如图,当点P在x轴上方时,则S△APC=S△ABC﹣S△BPC∴4=∴a=,把a=代入y=﹣2x+4=﹣2×+4=∴P(,)②如图,当点P在x轴下方时则S△APC=S△BP'C﹣S△AB C∴4=∴a=把a=∴P'(,代入y=﹣2x+4=﹣2×+4=﹣,,﹣)(3)当∠ABE=°,设直线BE:y=kx b45+如图,过点A作A D⊥AB交BE于点D,过点D作D H⊥x轴∵∠ABE=45°,∴△BA D为等腰直角三角形,∴AB=A D,∠BAD=90°,∴∠BA O+∠DA H=90°,∠DA H+∠A D H=90°,∴∠BA O=∠A D H,在△A OB与△D H A中,∴△A OB≌△D H A(AAS),∵OA=2,OB=4∴O H=4,D H=2∴D(6,2)∵B(0,4)∴.9、有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70米,甲机器人前2分钟的速度为95米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段F G∥x轴,则此段时间,甲机器人的速度为60米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段F G∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8.4分钟﹣7分钟,直线G H经过点(4,35)和点(7,0),则直线G H的方程为y=﹣当y=28时,解得x=4.6,x+,答:两机器人出发1.2分或2.8分或4.6分相距28米.10、如图,A,B是分别在x轴上的原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△A O C=10.(1)求点A的坐标及m的值;(2)若S△B OP=S△D O P,求直B D的解析式;(3)在(2)的条件下,直线AP上是否存在一点Q,使△QA O的面积等于△B O D面积?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵C(0,2),∴O C=2,∵S△A O C=10,∴OA•O C=10,∴OA×2=10,∴OA=10,∴A(﹣10,0),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式为y=x+2,∵点P(2,m)在直线AC上,∴m=×2+2=;(2)方法1、设直线B D的解析式为y=k'x+b'(k'<0),∵P(2,),,∴2k'+b'=∴b'=﹣2k+,∴直线B D的解析式为y=k'x﹣2k'+令x=0,,∴y=﹣2k'+,∴D(0,﹣2k'+令y=0,),∴k'x﹣2k'+∴x=2﹣∴B'(2﹣=0,,),∴OB=2﹣)×,∵S△B OP=(2﹣∵S△B OP=S△D O P,,S△D O P=(﹣2k'+)×2,∴(2﹣)×=(﹣2k'+)×2,∴k'=(舍)或k=﹣,∴直线B D的解析式为y=﹣x+方法2、设点D(0,m),B(n,0),∵S △B OP =S △D O P ,∴点 P (2,∴n =4,m = )是线段 B D 的中点, ,∴直线 B D 的解析式为 y =﹣ x+(3)由(2)知,直线 B D 的解析式为 y =﹣ x+, ∴D (0, ∴OB =4,O D = ∴S △B O D = OB •O D = ×4×),B (4,0),,= 由(1)知,A (﹣10,0),直线 A C 的解析式为 y = x+2,设 Q (a , a+2),∴S △QA O = OA •|y |= ×10×| a+2|=|a+10|,Q ∵△QA O 的面积等于△B O D 面积,∴|a+10|= ∴a =﹣ 或 a =﹣ ∴Q (﹣ , )或(﹣,,,﹣ ). 11、如图 1,正方形 OAB C ,其中 O 是坐标原点,点 A (3,1).(1)直接写出点 B 、C 的坐标;(2)对于两条直线 l :y =k x+b 和 l :y =k x+b ,若 有 k •k =﹣1,则可得 l ⊥l .比 1 1 1 1 2 2 2 2 1 2 1 2 如:l :y = x+1 和 l :y =﹣ x+3,因为,所以 l ⊥l . 1 1 2 2 1 2 连接 AC 、OB ,已知 AC 交 y 轴于点 M ,证明:AC 、O B 所在的直线互相垂直;(3)如图 2,已知点 D 在第四象限,A D ∥y 轴,且 A D =3,P 是直线 OB 上一点,连接 PA 、P D 、A D ,求△PAD 的周长最小值.【解答】解:(1)由图象的旋转知,点C的坐标为(﹣1,3),过点B作x轴的平行线,交过点C与x轴的垂线于点M,M N⊥x轴,交x轴于点N,∵∠NC O+∠CB M=90°,∠BC M+∠M B C=90°,∴∠M B C=∠N C O,∠CN O=∠B M C=90°,C O=CB,∴△CN O≌△BM C(AAS),∴CN=B M=3,C M=O N=1,∴点B的坐标为(2,4);(2)把点A、C的坐标代入一次函数表达式:y=kx+b得:,则直线AC的表达式为:y=﹣x+,同理得直线O B的表达式为:y=2x,两直线的k乘值为﹣1,故:AC、O B所在的直线互相垂直;(3)点A关于直线OB的对称点为C,连接C D,交直线OB于点P,则△PA D的周长最小,点D的坐标为(3,﹣2)、点C坐标为(﹣1,3),△PAD的周长=AP+A D+P D=3+CD,C D==,故:△PAD周长的最小值为:3+.12、如图1,长方形OAB C的边O A、O C分别在x轴、y轴上,B点坐标是(8,4),将△A O C沿对角线AC翻折得△A D C,A D与BC相交于点E.(1)求证:△CD E≌△ABE(2)求E点坐标;(3)如图2,动点P从点A出发,沿着折线A→B→C→O运动(到点O停止),是否存在点P,使得△PO A的面积等于△A CE的面积,若存在,直接写出点P坐标,若不存在,说明理由.【解答】解:(1)证明:∵四边形OAB C为矩形,∴AB=O C,∠B=∠A O C=90°,∴C D=O C=AB,∠D=∠A O C=∠B,又∠CE D=∠ABE,∴△C D E≌△ABE(AAS),∴CE=AE;(2)∵B(8,4),即AB=4,BC=8.∴设CE=AE=n,则BE=8﹣n,222可得(8﹣n)+4=n,解得:n=5,∴E(5,4);(3)∵S△ACE=•CE•AB=×5×4=10,∴S△P OA=•OA•y=10,P∴×8×y=10,P∴y=,P∴满足条件的点P的坐标为(8,)或(0,).13、如图,已知直线c和直线b相交于点(2,2),直线c过点(0,3).平行于y轴的动直线a的解析式为x=t,且动直线a分别交直线b、c于点D、E(E在D的上方).(1)求直线b和直线c的解析式;(2)若P是y轴上一个动点,且满足△P DE是等腰直角三角形,求点P的坐标.【解答】解:(1)设直线b的解析式为:y=kx,把(2,2)代入y=kx得,k=1,∴直线b的解析式为:y=x;设直线c的解析式为:y=kx+b,把点(2,2),点(0,3)代入得,,∴,∴直线c的解析式为:y=﹣x+3;(2)∵当x=t时,y=x=t;当x=t时,y=﹣x+3=﹣t+3,∴E点坐标为(t,﹣t+3),D点坐标为(t,t).∵E在D的上方,∴DE=﹣t+3﹣t=﹣t+3,且t<2,∵△P DE为等腰直角三角形,∴PE=D E或P D=D E或PE=P D.t>0时,PE=DE时,﹣t+3=t,∴t=,﹣t+3=∴P点坐标为(0,,),①若t>0,P D=D E时,﹣t+3=t,∴t=.∴P点坐标为(0,);②若t>0,PE=P D时,即DE为斜边,∴﹣t+3=2t,∴t=,DE的中点坐标为(t,t+),∴P点坐标为(0,).若t<0,PE=DE和P D=D E时,由已知得DE=﹣t,﹣t+3=﹣t,t=6>0(不符合题意,舍去),此时直线x=t不存在.③若t<0,PE=P D时,即DE为斜边,由已知得D E=﹣2t,﹣t+3=﹣2t,∴t=﹣6,t+=0,∴P点坐标为(0,0)综上所述:当t=时,△P D E为等腰直角三角形,此时P点坐标为(0,)或(0,);当t=时,△PD E为等腰直角三角形,此时P点坐标为(0,);当t=﹣6时,△P D E为等腰直角三角形,此时P点坐标为(0,0).14、(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?【解答】解:(1)由题意得:该长方体中能放入木棒的最大长度是:(cm).(2)分三种情况可得:A G=cm>A G=cm>A G=cm,所以最短路程为cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==13(C m).15、如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a+b=c;222(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△A O B的位置).点C为线段OA上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△C M D为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.【解答】解:(1)∵S AB C D=2×ab+c2梯形S AB C D=(a+b)(a+b)梯形∴2×ab+c=(a+b)(a+b)2∴2ab+c=a+2ab+b222∴c=a+b.222(2)连接B D,如图:SSAB C D=c2+a(b﹣a),AB C D=ab+b2,四边形四边形∴c+a(b﹣a)=ab+b,22∴c=a+b.222(3)①设O C=a,则AC=4﹣a,又AB=5,根据翻折可知:B D=AB=5,C D=AC=4﹣a,O D=B D﹣O B=5﹣3=2.在Rt△C O D中,根据勾股定理,得(4﹣a)=a+4,22解得a=.∴C(0,),D(2,0).答:C、D两点的坐标为C(0,),D(2,0).②如图:当点M在x轴正半轴上时,C M=D M,设C M=D M=x,则x=(2﹣x)+(),解得x=2,22∴2﹣x=,∴M(,0);C D=M D,=4﹣=,2+=,∴M(,0);当点M在x轴负半轴上时,C M=C D,∵O M=O D=2,∴M(﹣2,0);D C=D M,=4﹣=,∴O M=﹣2=,∴M(﹣,0).答:符合条件的所有点M的坐标为:(,0)、(,0);、(﹣2,0)、(﹣,0).16、如图1,在平面直角坐标系中,直线l:y=﹣x+5与x轴,y轴分别交于A,B两点.直1线l:y=﹣4x+b与l交于点D(﹣3,8)且与x轴,y轴分别交于C,E.21(1)求出点A坐标,直线l解析式;2(2)如图2,点P为线段A D上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段P D以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间时点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得S△CE G=S△CEB,求点G坐标.【解答】解:(1)y=﹣x+5与x轴,y轴分别交于A,B两点,则点A、B的坐标分别为:(5,0)、(0,5),将点D的坐标代入y=﹣4x+b并解得:b=﹣4,故直线l:y=﹣4x﹣4;2(2)直线l:y=﹣4x﹣4,则点C(﹣1,0),2直线l:y=﹣x+5,则直线l的倾斜角为45°,11过点D作x轴的平行线l,过点C作C H⊥l交于点H,C H交直线l于点P,则点P为所1求,t=+=PC+P D=P C+P H=C H,直线l:y=8,则点P的横坐标为:﹣1,则点P(﹣1,6);(3)①点G在C E的右侧时,过点B作直线CE的平行线r,直线r于直线y=2交于点G,则点G为所求,此时,S△CE G=S△CEB,则直线r的表达式为:y=﹣4x+5,当y=2时,x==m,故点G(,2),②点G在CE的左侧时,同理可得:点G(﹣,2);故点G的坐标为:G(,2)或(﹣,2).过点D作x轴的平行线l,过点C作C H⊥l交于点H,C H交直线l于点P,则点P为所1求,t=+=PC+P D=P C+P H=C H,直线l:y=8,则点P的横坐标为:﹣1,则点P(﹣1,6);(3)①点G在C E的右侧时,过点B作直线CE的平行线r,直线r于直线y=2交于点G,则点G为所求,此时,S△CE G=S△CEB,则直线r的表达式为:y=﹣4x+5,当y=2时,x==m,故点G(,2),②点G在CE的左侧时,同理可得:点G(﹣,2);故点G的坐标为:G(,2)或(﹣,2).。
人教版八年级数学上册期中考试压轴题专题复习题(含答案)
人教版八年级数学上册期中考试压轴题专题复习题1、在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点,观察并猜想线段EA1与FC有怎样的数量关系?并证明你的结论.2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.求证:(1)△ABE≌△ACD;(2)DC⊥BE.3、如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.4、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.5、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.6、如图,△ABC为等腰直角三角形,点D是边BC上一动点,以AD为直角边作等腰直角△ADE,分别过A、E点向BC边作垂线,垂足分别为F、G.连接BE.(1)证明:BG=FD;(2)求∠ABE的度数.7、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.8、如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.9、如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC 与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.10、CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.11、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧..作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90º,则∠BCE= º.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α、β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α、β之间有怎样的数量关系?请画出图形,并直接写出你的结论.12、在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC 于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.13、如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.14、问题背景:如图1:在四边形ABC 中,AB=AD,∠BAD=120∘,∠B=∠ADC=90∘.E,F 分别是BC,CD 上的点。
【压轴题】八年级数学上期中试题附答案
【压轴题】八年级数学上期中试题附答案一、选择题1.如图,在Rt△ABC中,∠ACB=90º,∠A=60º,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm2.已知一个等腰三角形一内角的度数为80o,则这个等腰三角形顶角的度数为() A.100o B.80o C.50o或80o D.20o或80o3.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+4.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③5.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④6.如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A .高B .角平分线C .中线D .不能确定 7.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .89.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.510.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°11.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 12.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7二、填空题13.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.14.在代数式11,,52x x x +中,分式有_________________个. 15.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.16.已知8a b +=,224a b =,则222a b ab +-=_____________. 17.若关于x 的分式方程111x x m +--=2有增根,则m =_____. 18.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 19.如图,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD =2,AD =3,则图中阴影部分的面积是_______.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.在等腰△ABC 中,AB =AC =8,∠BAC =100°,AD 是∠BAC 的平分线,交BC 于D ,点E 是AB 的中点,连接DE .(1)求∠B 的度数;(2)求线段DE 的长.22.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).23.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;24.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.25.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再求出AB 即可.【详解】解:∵在Rt △ABC 中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB (直角三角形30°所对的直角边等于斜边的一半), 又∵CD 是斜边AB 上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC (直角三角形30°所对的直角边等于斜边的一半),∴AC=6,又∴AC=12 AB,∴12AB=.故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80o,顶角为180808020o o o o--=;()2等腰三角形的顶角为80o.因此这个等腰三角形的顶角的度数为20o或80o.故选D.【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.3.C解析:C【解析】设原来的行驶速度为xkm/h,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x-=+,故选C.点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.4.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.5.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.6.C解析:C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.考点:三角形的面积;三角形的角平分线、中线和高.7.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.9.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.10.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.11.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.12.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.二、填空题13.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:9【解析】∵m−n=2,mn=−1,∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9.故答案为9.点睛:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.14.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15x+是整式,1x是分式,2x是整式,即分式个数为1,故答案为:1【点睛】本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母. 15.【解析】【分析】关键描述语是:每个同学比原来少分摊了10元车费;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可【详解】解:设实际参加游览的同学一共有人由题意得:解析:60060010 5x x-= -【解析】【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x人,由题意得:600600105x x-=-,故答案为:600600105x x-=-.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键.16.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b=,∴ab=±2.①当a+b=8,ab=2时,222a bab+-=2()22a bab+-=642﹣2×2=28;②当a+b=8,ab=﹣2时,222a bab+-=2()22a bab+-=642﹣2×(﹣2)=36;故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.17.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m﹣1=2x﹣2由分式方程有增根得到x﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m的值.【详解】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a由分式方程解为负数得到1-a<0且1-a≠-1解得:a>1且解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析19.3【解析】∵轴对称的两个图形全等∴阴影部分的面积是整个三角形面积的一半即阴影部分的面积等于ΔABD 的面积而ΔABD 的面积=05×2×3=3故答案为3解析:3【解析】∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半,即阴影部分的面积等于ΔABD 的面积,而ΔABD 的面积=0.5×2×3=3, 故答案为3.20.【解析】【分析】根据0指数幂和负指数幂定义求解【详解】=1+2=3故答案为3【点睛】考核知识点:0指数幂和负指数幂解析:【解析】【分析】根据0指数幂和负指数幂定义求解.【详解】101(3)2π-⎛⎫-+ ⎪⎝⎭=1+2=3 故答案为3【点睛】 考核知识点:0指数幂和负指数幂.三、解答题21.(1)40︒;(2)4【解析】【分析】(1)根据等腰三角形的性质∠B=∠C 可推导求出;(2)根据等腰三角形的性质,确定点D 是BC 的中点,从而得出DE 是△ABC 的中位线,从而得出DE 的长.(1)∵AB=AC,∴∠B=∠C,∴∠180100402B︒-︒==︒;(2)∵AB=AC,AD平分∠BAC,∴AD是等腰△ABC底边BC上的高,即∠ADB=90°在直角三角形ABD中,点E是AB的中点,∴DE为斜边AB边上的中线,∴DE142AB==.【点睛】本题考查等腰三角形的性质,等腰三角形常用到的性质为:底边上的“三线合一”.22.见解析【解析】分析:首先作出∠ABC的角平分线进而作出线段AD的垂直平分线,即可得出其交点P的位置.详解:如图所示:P点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.23.证明见解析.【解析】试题分析:欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.试题解析:证明:∵在△ABD和△CBD中,AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,24.A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.【解析】【分析】工作效率:设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋;工作量:A 型机器人搬运700袋大米,B 型机器人搬运500袋大米;工作时间就可以表示为:A 型机器人所用时间=700x ,B 型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋, 依题意得:700x =500x-20, 解这个方程得:x=70 经检验x=70是方程的解,所以x ﹣20=50.答:A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.考点:分式方程的应用.25.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.。
2021-2022学年苏科版数学八年级上册期中复习——压轴题综合训练
压轴题综合训练1.如上图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=4,BD=6,则CD的长为( )A.25B.5C.2D.1322.如图,在△ABC中,D是BC边上的中点,连结AD,把△ACD沿AD翻折,得到△ADC’,DC’与AB交于点E,连结BC’,若BD=BC’=2,AD=3,则点D到AC’的距离( )A.23 B.337C.7D.133.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④点A在∠DOE的平分线上,其中结论正确的个数是A.1 B. 2 C.3 D.44.如图,在△ABC中,∠ACB=90°,分别以点A,B为圆心,大于12AB长为半径作弧,两弧交于点M、.N,作直线MN分别交AB,AC于点D,E,连接CD,BE,下列结论中一定正确的是( )A. AE=2CEB.△BCE≌△BDEC.∠BEC=∠BDCD.BE平分∠CBD5.如图,Rt△ABC中,∠C=90∘.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是()A. 21B. 16C. 17D. 156.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,,则BD的长为()△AEG的面积为92A.13B.11C.7D. 57.如图,在等腰三角形ABC中,AB=AC=13,BC=10,D是BC边上的中点,AD =12,M,N分别是AD和AB上的动点,则BM+MN的最小值是 .8.如图,在长方形ABCD中,AB=3,BC=4,点E是边BC上的一点,连接AE,把∠B沿AE折叠,使点B落在点B’处,当△CEB’为直角三角形时,BE的长为。
武汉各区八年级上期中压轴题
江岸区2021~2021学年度第一学期期中考试八年级数学试卷(一)三、解答题(共8题,共72分)23.(此题14分)在平面直角坐标系中,A (3,0)、B (0,3),点P 为线段AB 上一点,且21=BP AP ,连接OP (1) 求P 点坐标(2) 作直线AM ⊥x 轴,作PC ⊥OP 交AM 于点C ,求证:PC =OP(3) 在(2)的条件下,在直线AM 上一动点N ,连接ON 并在x 轴下方作OQ ⊥ON 且OQ =ON ,连接点D (3,3)与点Q 的线段交x 轴于点E ,当OE =2,那么Q 点坐标为___________(请同窗们自己画图,并直接写出结果)武汉二中广雅中学2021—2021学年度上学期期中考试(二)三、解答题(共72分)24.如图1,在平面直角坐标系中, A 点的坐标为(a ,0),B 点的坐标为(0,b ), 且a 、b 知足8-+b a +|a -2b +4|=0.(1)求证∠OAB =∠OBA ; (2)如图2,点P 为第一象限内一点,且PA =OA ,AC ∠x 轴交OP 于点C ,AD 平分∠PAC 交OP 于点D ,求∠ODB 的度数.(3)如图3,点A 关于y 轴对称点为F ,点B 关于x 轴对称点为E ,点M 在AB 的延长线上,点N 在BF 的延长线上,且∠MEN =45°,试着判定线段MN 、AM 、FN 之间的数量关系并证明你的结论.图1 图2 图3武珞路中学2021~2021学年度八年级上学期期中测试数学试卷(三)三、解答题(共8题,共52分)23.(此题10分)在平面直角坐标系中,点A坐标为(8,0),点B坐标为(0,8),点C为OA中点(1) 如图1,过点O作OD⊥BC于点E,交AB于点D,求证:∠OBC=∠AOD(2) 点M从C点起身向x轴正方向运动,同时点N从C点起身向x轴负方向运动,点M、N运动速度均为每秒1个单位长度,运动时刻为t秒.射线OE⊥BM于点E,交AB于点D,直线ND交BM于点K①如图2,当0<t<4时,请证明△KNM为等腰三角形②当t>4时,△KNM是不是仍是等腰三角形,请画出图形,并说明理由2021~2021学年度八年级第一学期期中考试(四)三、解答题(共5小题,共52分)28.(此题12分)如图1,点A、B别离在x轴负半轴和y轴正半轴上,点C(2,-2),CA、CB别离交坐标轴于D、E,CA⊥AB,且CA=AB.(1)求点B的坐标;(2)如图2,连接DE ,求证:BD -AE =DE ;(3)如图3,假设点F 为(4,0),点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.EDO C B Ayx图1EDOCB Ayx图2PG NM FOBy x图32021-2021学年度上学期武汉市部份学校期中联考(五)八 年 级 数 学 试 卷2六、(12分),如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4) (1)求B 点坐标;(2)假设C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连OD ,求∠AOD 的度数;(3)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式OFFMAM =1是不是成立?假设成立,请证明:假设不成立,说明理由.2021武汉名校八年级(上)期中试卷精选(六)三、解答题(此题共9小题,共72分)24.(此题12分)已知,如图,在平面直角坐标系中,点A、B、C别离在座标轴上,且OA=OB=OC,S△ABC=25.点P 从C点起身沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点(1) 求D点的坐标(2) 设点P运动的时刻为t秒,求当t为何值时,DP与DB垂直相等(3) 假设PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判定△APQ的形状,并说明理由(七)(江岸卷)24.(此题12分)如图,在平面直角坐标系中,△ABC 的极点A (-3,0),B (0,3),AD 丄BC 于D 交y 轴于点E (0,1) (1) 求证:AE =BC ,OE =OC(2) 将线段CB 绕点C 顺时针旋转90º后得线段CF ,连结BF ,求△BCF 的面积(3) 点P 为y 轴正半轴上一动点,点Q 在第三象限内,QP 丄PC ,且QP =PC ,连结QO ,分过点Q 作QR 丄x 轴于R ,求OPQROC 定值黄陂区2021年秋部份学校期中调研考试八年级数学试卷(八)三、解答题(共9小题,共72分)25.(此题12分)在△ABC 中,AB =AC ,D 在AC 上,AE =AC 交BD 的延长线于点E ,AF 平分∠CAE 交BE 于F (1) 如图1,连CF ,求证:∠ABE =∠ACF(2) 如图2,当∠ABC =60°时,请写出AF 、EF 、BF 的数量关系,不需证明 (3) 如图3,假设∠BAC =90°,且BD 平分∠ABC ,求证:BD =2EF武汉市梅苑中学2021-2021学年八年级(上)期中试卷(九)三、解答题(此题共9小题,共72分)25.(12分)(2021秋•武汉校级期中)已知,如图,在平面直角坐标系中,点A、B、C别离在座标轴上,且OA=OB=OC,S△ABC=25.点P从C点起身沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点.(1)求D点的坐标;(2)设点P运动的时刻为t秒,求当t为何值时,DP与DB垂直相等;(3)假设PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判定△APQ的形状,并说明理由.武珞路中学2021~2021学年度上学期八年级数学期中模拟试卷(十)三、解答题(共72分)24.(2021·黄陂区期中)如下图,在平面直角坐标系中,A 点坐标为(-2,2) (1) 如图(1),在△ABO 为等腰直角三角形,求B 点坐标(2) 如图(1),在(1)的条件下,别离以AB 和OB 为边作等边△ABC 和等边△OBD ,连结OC ,求∠COB 的度数(3) 如图(2),过点A 作AM ⊥y 轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,∠MKJ =90°,过点A 作AN ⊥x 轴交MJ 于点N ,连结EN .那么:① NE OE AN +的值不变;② NEOEAN -的值不变,其中有且只有一个结论正确,请判定出正确的结论,并加以证明和求出其。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期数学期中考试压轴题训练
一、选择题
1、如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若
P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()
A.9.6B.8C.6D.4.8
解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,
∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,
则此时PC+PQ取最小值,最小值为BQ的长,如图所示.
∵S
△ABC
=BC•AD=AC•BQ,
∴BQ==9.6.故选:A.
2、如图,在△ABC中,AC=BC,∠B=30°,D为AB的中点,P为CD上一
点,E为BC延长线上一点,P A=PE.下列结论:①∠P AB+∠PEB=30°;
②△P AE为等边三角形;③AC=CE+DP;④S
四边形AECP =S
△ABC
.其中正确结论
的个数是()
A.1B.2
C.3D.4
3、如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△P AC:S△P AB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()
A.只有①②B.只有③④
C.只有①③④D.①②③④
4、如图,在四边形ABCD中,BD平分∠ABC,CD⊥BD,AC=5,BC﹣AB=2,
则△ADC面积的最大值为()
A.2B.2.5
C.4D.5
二、填空题
5、AD是△ABC中BC边上的中线,若AB=6,AC=10,则AD的取值范围是.
6、如图,在四边形ABCD中,∠C=70°,∠B=∠D=90°,E,F分别是BC,
DC上的点,当△AEF的周长最小时,则∠EAF的度数为.
7、如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、
OB上,则△PMN周长的最小值为.
8、如图,在平面直角坐标系中,A(5,0),B(0,y),连接AB,过点A作AC
⊥AB,若AC=AB,x轴上的一点M(﹣1,0),连接CM,
当点B在y轴上移动时,CM的最小值为.
三、解答题
9、如图,△ABC中,AB=AC,点P从点B出发沿线段BA移动(点P不与A,
B重合),同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.
(1)求证:PD=QD;
(2)过点P作直线BC的垂线,垂足为E,P,Q在移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.
10、如图,△ABC中,∠ACB=90°,AC=BC,BD平分∠ABC,AE⊥BD,垂
足为E.
(1)求∠EAC的度数;
(2)若AE=2,求BD的长.
11、在平面面角坐标系中,A(﹣5,0),B(0,5).点C为x轴正半轴上一动
点,过点A作AD⊥BC交y轴于点E.
(1)如图①,若C(4,0),求点E的坐标;
(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO平分∠ADC;
(3)若点C在x轴正半轴上运动.当OC+CD=AD时,求∠OBC的度数.
12、如图,在平面直角坐标系xOy中,已知A(0,a),B(﹣b,0),且a,b
满足+|a﹣2b+2|=0.
(1)求证∠OAB=∠OBA;
(2)如图1,若BC⊥AC,求∠ACO的度数;
(3)如图2,若点D是AO的中点,DE∥OB,点F在AB的延长线上,∠EOF =45°,连接EF,试探究OE与EF的数量关系和位置关系.
13、如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a ﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:
(1)判断△OAB的形状,并说明理由;
(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;
(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC 与BD的数量关系,证明你的结论.
14、等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.
(1)如图1,求证:∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
=18.分别以(3)如图3,点C(0,3),Q、A两点均在x轴上,且S
△CQA AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN 交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.。