八年级数学上期末试卷4
2022-2023学年重庆八中八年级上学期期末数学试卷及参考答案

2022-2023学年重庆八中初二数学第一学期期末试卷一、选择题。
(共10小题,每小题4分,满分40分) 1.下列北京冬奥会运动标识图案是轴对称图形的是( )A .B .C .D .2.函数3y x =+中,自变量x 的取值范围是( ) A .3x >−B .3x −C .3x ≠−D .3x −3.下列运算正确的是( ) A .246a a a ⋅=B .325(2)2a a =C .632x x x −÷=−D .222x x x −=4.下列等式中,从左到右的变形是因式分解的是( ) A .321836a bc a b ac =⋅ B .211(2)22ab a a b a −=−C .241(4)1x x x x −+=−+D .22(1)21x x x +=++5.已知点P 在第四象限,且到x 轴的距离是2,到y 轴的距离是7,则点P 的坐标为( )A .(7,2)−B .(2,7)−C .(7,2)D .(2,7)6.甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:甲 乙丙 丁 平均数x (单位:环)9.7 m 9.3 9.6 方差2s0.25n0.280.27根据表中数据,可以判断乙是四人中成绩最好且发挥最稳定的,则m 、n 的值可以是( ) A .9.9m =,0.3n = B .9.9m =,0.2n = C .9m =,0.3n =D .9m =,0.2n =7.将直线26y x =−+向左移1个单位,所得到的直线解析式为( ) A .27y x =−+B .25y x =−+C .28y x =−+D .24y x =−+8.如图,在ABC ∆中,13AB CB ==,BD AC ⊥于点D 且12BD =,AE BC ⊥于点E ,连接DE ,则DE 的长为()A .52B .72C .5D .69.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有60张正方形纸板和140张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,设做x 个竖式无盖纸盒,y 个横式无盖纸盒,则可列方程组( )A .46023140x y x y +=⎧⎨+=⎩B .26043140x y x y +=⎧⎨+=⎩C .36024140x y x y +=⎧⎨+=⎩D .36042140x y x y +=⎧⎨+=⎩10.如图,直线3y x =+分别与x 轴、y 轴交于点A ,C ,直线y mx m =−分别与x 轴、y 轴交于点B 、D ,则下列说法正确的有( )A .直线AC 与x 轴夹角为45︒B .直线BD 经过点(1,0)C .当0m <时,直线BD 经过两个点1257(,),(,)22P y Q y ,则12y y <D .直线AC 与直线BD 相交于点(,2)M a ,则不等式3x mx m +−的解集为1x −二、填空题。
八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。
八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a3.下列各式中,是最简二次根式的是()A. B.C.D.4.化简(﹣)÷的结果是()A.y B.C.D.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤108.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=.12.计算=.13.若分式的值为0,则a的值为.14.若9x2﹣mxy+25y2是完全平方式,则m=.15.实数a、b在数轴上的位置如图所示,化简=.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是(只填序号).三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.22.解方程:+=.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据积的乘方等于乘方的积,单项式的除法系数除系数,同底数的幂相除;差的平方等于平方和减积的二倍;合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的除法系数除系数,同底数的幂相除,故B错误;C、差的平方等于平方和减积的二倍,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了整式的除法,熟记法则并根据法则计算是解题关键.3.下列各式中,是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.化简(﹣)÷的结果是()A.y B.C.D.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定【考点】分母有理化.【分析】把a=的分母有理化即可.【解答】解:∵a===2﹣,∴a=b.故选B.【点评】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤10【考点】角平分线的性质;垂线段最短.【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为10,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于10,∴点P到OB的距离为10,∵点Q是OB边上的任意一点,∴PQ≥10.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.【考点】分式的值.【分析】根据题意将原式变形得出a﹣5+=0,进而利用完全平方公式得出(a+)2=25,进而得出答案.【解答】解:∵a2﹣5a+2=0,∴a﹣5+=0,故a+=5,∴(a+)2=25,∴a2++4=25,∴=a2+=21.故选:A.【点评】此题主要考查了分式的值以及完全平方公式的应用,正确应用完全平方公式是解题关键.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD【考点】剪纸问题.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=﹣1.5.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式(﹣×1.5)2015×1.5=﹣1.5.故答案为:﹣1.5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.计算=.【考点】二次根式的混合运算.【专题】计算题.【分析】根据乘方的意义得到原式=[(﹣1)(+1)]•(+1),然后前面两项利用平方差公式进行计算.【解答】解:原式=[(﹣1)(+1)]•(+1)=(2﹣1)(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.13.若分式的值为0,则a的值为4.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:a2﹣16=0且a+4≠0,解得x=4.故答案为:4.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.14.若9x2﹣mxy+25y2是完全平方式,则m=±30.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵9x2﹣mxy+25y2=(3x)2﹣mxy+(5y)2,∴﹣mxy=±2•3x•5y,解得m=±30.故答案为:±30.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.实数a、b在数轴上的位置如图所示,化简=﹣2b.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】由数轴可知a<0,b>0,a﹣b<0,根据二次根式的性质=|a|,化简计算.【解答】解:∵a<0,b>0,a﹣b<0,∴,=|a|﹣|b|﹣|a﹣b|,=﹣a﹣b+a﹣b=﹣2b.故本题答案为:﹣2b.【点评】本题考查了二次根式的性质与化简.关键是根据数轴判断被开方数中底数的符号.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为3cm.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到NB=NA,根据三角形的周长公式计算即可.【解答】解:∵线段AB的垂直平分线交AC于点N,∴NB=NA,△BCN的周长=BC+CN+BN=7cm,∴BC+AC=7cm,又AC=4cm,∴BC=3cm,故答案为:3.【点评】此题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是(﹣1,3).【考点】全等三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】过B作BE⊥x轴于E,过D作DF⊥y轴于F,于是得到∠BEA=∠DFA=90°,根据正方形的性质得到AD=AB,∠DAB=90°,求得∠DAF=∠BAE,推出△ABE≌△ADF,根据全等三角形的性质得到BE=DF,AE=AF,即可得到结论.【解答】解:过B作BE⊥x轴于E,过D作DF⊥y轴于F,∴∠BEA=∠DFA=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAF=∠BAE,在△ABE与△AFD中,,∴△ABE≌△ADF,∴BE=DF,AE=AF,∵B的坐标是(3,1),∴AE=3,BE=1,∴AF=3,DF=1,∴点D的坐标是(﹣1,3).故答案为:(﹣1,3).【点评】本题考查了全等三角形的判定和性质,坐标与图形的性质,正方形的性质,正确的作出辅助线构造全等三角形是解题的关键.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是②③④(只填序号).【考点】全等三角形的判定与性质.【分析】①由三角形内最多只有一个直角得出该结论不成立;②通过证明△ABE≌△DBC得出AE=DC,根据直角三角形斜边上中线的特点,可得出结论成立;③通过证明△ABM≌△DBN得出∠DBN=∠ABM,通过等量替换得出结论成立;④由②中的三角形全等可知其面积也相等,故其面积的一半也相等,结论成立.【解答】解:①∵∠ABD=∠DBC,且点B在线段AC上,∴∠ABD=∠DBC=180°÷2=90°,在△BDC中,∠DBC=90°∴∠BDN=∠BDC<90°(三角形中最多只有一个直角存在),∴∠ABD≠∠BDN,即①不成立.②在直角△ABE与直角△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,又M,N分别是AE,CD的中点,∴BM=AE,BN=DC,∴BM=BN,即②成立.③在△ABM和△DBN中,,∴△ABM≌△DBN,∴∠DBN=∠ABM,∴∠MBN=∠MBD+∠DBN=∠MBD+∠ABM=∠ABD=90°,∴MB⊥NB,即③成立.④∵M,N分别是AE,CD的中点,∴S△ABM=S△ABE,S△BCN=S△DBC,由②得知,△ABE≌△DBC,∴S△ABM=S△BCN,即④成立.故答案为:②③④.【点评】本题考查的全等三角形的判定和性质,解题的关键是通过证明三角形全等找到相应的等量关系,从而验证给出结论成立不成立.三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=8+1﹣11=﹣2;(2)原式=•﹣=﹣=,∴当x=﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.【考点】分式的化简求值;提公因式法与公式法的综合运用.【分析】(1)先提取公因式,再根据平方差公式进行分解即可;(2)先求出a+b,a﹣b及ab的值,再代入代数式进行计算即可.【解答】解:(1)原式=x(16x2﹣1)=x(4x+1)(4x﹣1);(2)∵a=2+,b=2﹣,∴a+b=4,ab=﹣1,a﹣b=2,∴原式====8.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.【考点】等腰三角形的性质.【分析】先根据AB=AD,∠BAD=24°求出∠B的度数,再由AD=DC得出∠C=∠DAC,根据三角形内角和定理得出∠DAC的度数,进而可得出结论.【解答】解:∵AB=AD,∠BAD=24°,∴∠B==78°.∵AD=DC,∴∠C=∠DAC.∵∠B+∠BAD+∠DAC+∠C=180°,即78°+2∠DAC+24°=180°,解得∠DAC=39°,∴∠BAC=∠BAD+∠DAC=24°+39°=63°.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.22.解方程:+=.【考点】解分式方程.【专题】计算题.【分析】把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;(2)分别作出点A、B、C关于直线l对称的点,然后顺次连接,并写出△A1B1C1三个顶点的坐标.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:A1(﹣4,4),B1(﹣6,3),C1(﹣3,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】探究型.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE,CF平分DE(三线合一).【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?【考点】分式方程的应用.【分析】(1)第一批衬衫的进价为x元,则第二批的进价(x+4)元,利用总价÷单价=数量分别求得两次购进衬衫的数量即可;(2)根据题意可得等量关系:第一批所进的件数×2=第二批所进的件数,根据等量关系列出方程,解方程即可.【解答】解:(1)第一次购进这种衬衫件,第二次购进这种衬衫件;(2)依题意有:×2=,解得:x=40,经检验x=40是原分式方程的解.x+4=44,第一次,第二次的进价分别是40元和44元,第一次购进200件,第二次购进400件,所以两次共盈利200×18+400×14=9200元.答:在这次服装生意中共盈利9200元.【点评】此题主要考查了分式方程的应用,关键是理解题意,找出题目中的等量关系:第一批所进的件数×2=第二批所进的件数,列出方程,解决问题.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.【考点】一次函数综合题.【分析】(1)根据a2﹣2ab+b2=0,可得a=b,又由∠AOB=90°,所以可得出△AOB的形状;(2)OD=OE,OD⊥OE,通过证明△OAD≌△OBE可以得证;(3)由∠DEB+∠BEO=45°,∠ACB=∠COE+∠BEO=45°,得出∠DEB=∠COE,根据三角形外角的性质得出∠ABC=∠BDE+∠DEB=90°,从而得出∠BDE+∠COE=90°,所以∠BDE与∠COE互余.【解答】解:(1)∵a2﹣2ab+b2=0.∴(a﹣b)2=0,∴a=b,又∵∠AOB=90°,∴△AOB为等腰直角三角形;(2)OD=OE,O D⊥OE,理由如下:如图②,∵△AOB为等腰直角三角形,∴AB=BC,∵BO⊥AC,∴∠DAO=∠EBO=45°,BO=AO,在△OAD和△OBE中,,△OAD≌△OBE(SAS),∴OD=OE,∠AOD=∠BOE,∵∠AOD+∠DOB=90°,∴∠DOB+∠BOE=90°,∴OD⊥OE;(3)∠BDE与∠COE互余,理由如下:如图③,∵OD=OE,OD⊥OE,∴△DOE是等腰直角三角形,∴∠DEO=45°,∴∠DEB+∠BEO=45°,∵∠ACB=∠COE+∠BEO=45°,∴∠DEB=∠COE,∵∠ABC=∠BDE+∠DEB=90°,∴∠BDE+∠COE=90°∴∠BDE与∠COE互余.【点评】本题是一次函数的综合题,考查了等腰三角形的判定和性质,三角形全等的判定和性质以及三角形外角的性质,熟练掌握性质定理是解题的关键.。
八年级(上)期末数学试卷(解析版) - 副本 (4)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6 4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.45.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.58.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.810.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=.12.多项式3x2﹣6x的公因式为.13.若a2﹣b2=,a﹣b=,则a+b的值为.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做件.16.已知关于x的分式方程的解是非负数,则m的取值范围是.17.若m为正实数,且m2﹣m﹣1=0,则m2+=.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=.三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.20.先化简,再求值:÷(x+1+),其中x=2018.21.解方程:(1)﹣=1(2)=﹣1.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.2017-2018学年湖北省黄石市大冶市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选B.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数【考点】62:分式有意义的条件.【分析】直接利用分式有意义则分母不为零,进而得出答案.【解答】解:要使分式有意义,则x﹣1≠0,解得:x≠1.故选:C.3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6【考点】49:单项式乘单项式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据单项式的乘法,同底数幂的除法,积的乘方,可得答案.【解答】解:A、3a×2b=6ab,故A不符合题意;B、﹣a2×a=﹣a3,故B不符合题意;C、(﹣x)9÷(﹣x)3=(﹣x)3,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.4【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,即可求解.【解答】解:根据三角形的三边关系定理可得:7﹣4<AC<7+4,即3<AC<11,故选:A.5.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5【考点】KA:全等三角形的性质.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC﹣AE=3,故选:B.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.8【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质.【分析】先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【解答】解:连接CF,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴EB=EC,当B、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,∴EF+BE的最小值为6,故选B10.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/小时,B的速度是1.5x千米/小时,根据甲、乙行使相等距离而时间不同可列分式方程求解.【解答】解:设甲的速度是x千米/小时,B的速度是1.5x千米/小时,﹣1+=,x=40,经检验x=40是分式方程的解.答:甲的速度40千米/小时.二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=1.【考点】6E:零指数幂.【分析】根据非零的零次幂等于,可得答案.【解答】解:(π﹣2)0=1,故答案为:1.12.多项式3x2﹣6x的公因式为3x.【考点】52:公因式.【分析】根据因式分解,可得答案.【解答】解:3x2﹣6x=3x(x﹣2),公因式是3x,故答案为:3x.13.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】4F:平方差公式.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=8cm.【考点】K2:三角形的角平分线、中线和高.【分析】设AB=xcm,BD=ycm,由三角形中线的定义得到BC=2BD=2ycm,再根据△ABC的周长为27cm,△ABD周长为19cm列出关于x、y方程组,解方程组即可.【解答】解:设AB=xcm,BD=ycm,∵AD是BC边的中线,∴BC=2BD=2ycm.由题意得,解得,所以AB=8cm.故答案为8cm.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做24件.【考点】B7:分式方程的应用.【分析】设每天应多做x件.根据实际所用的时间比原计划所用的时间提前5天列方程求解.【解答】解:设每天应多做x件,则依题意得:﹣=5,解得:x=24.经检验x=24是方程的根,答:每天应多做24件,故答案为24.16.已知关于x的分式方程的解是非负数,则m的取值范围是m ≥2且m≠3.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.17.若m为正实数,且m2﹣m﹣1=0,则m2+=3.【考点】4C:完全平方公式.【分析】在m2﹣m﹣1=0同时除以m,得到,然后利用完全平方公式展开整理即可得解.【解答】解:在m2﹣m﹣1=0同时除以m,得:m﹣1﹣=0∴,=3,故答案为:3.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=1:4.【考点】KA:全等三角形的性质.【分析】根据三角形的内角和定理分别求出,∠A、∠ABC、∠ACB,再根据全等三角形对应角相等求出∠B′,∠A′CB′,全等三角形对应边相等可得BC=B′C,再求出∠BC A′,∠BC B′,然后相比即可.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△A′B′C≌△ABC,∴∠B′=∠B=50°,∠A′CB′=∠C=100°,BC=B′C,∴∠BC B′=180°﹣2×50°=80°,∠BC A′=100°﹣80°=20°,∴∠BC A′:∠BC B′=1:4.故答案为:1:4三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=4(a2﹣9)=4(a+3)(a﹣3);(2)原式=x2﹣4xy+4y2+8xy=x2+4xy+4y2=(x+2y)2.20.先化简,再求值:÷(x+1+),其中x=2018.【考点】6D:分式的化简求值.【分析】根据分式的混合运算顺序和法则化简原式,再将x的值代入即可得.【解答】解:原式=÷(+)=•=,当x=2018时,原式=.21.解方程:(1)﹣=1(2)=﹣1.【考点】B3:解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣2x+2=x2﹣x,移项合并得:﹣x=﹣2,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.【考点】KD:全等三角形的判定与性质.【分析】先证明BC=EF,然后依据AAS证明△ABC≌△DEF,最后依据全等三角形的性质进行证明即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF.∴AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.【考点】P7:作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)利用(1)中图形得出各点坐标.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)A′(1,2)、B′(4,1)、C′(2,﹣2).24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)根据线段垂直平分线和等边三角形的性质可得AD=DC,∠ABD=30°,再由正弦定理可以证明DA+DC=DB;(2)延长DA到E,使得∠EBD=60,由已知可知△EBD是一个等边三角形,再证明△EBD≌△CBD,得出EA=DC,从而证明BD=ED=EA+AD=DC+AD;(3)可直接得DA,DC,DB的数量关系.【解答】证明:(1)点D只能在AC的下边,容易得到BD是AC的中垂线,因此AD=DC,∠ABD=30°,在三角形内由正弦定理可以得到=,可以很快得到BD=2AD=AD+AC;(2)延长DA到E,使得ED=BD,又因为∠ADB=60°因此△EBD是一个等边三角形,所以BE=ED=BD,∠EBD=60°,又因为△ABC是等边三角形,所以AB=BC,∠ABC=60°,所以∠EBA=∠DBC,在△EBA与△DBC中,因为,所以△ABE≌△CBD(SAS),因此EA=DC,所以BD=ED=EA+AD=DC+AD;(3)DC<DA+DB.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.【考点】KY:三角形综合题.【分析】(1)①根据非负数的性质列出算式,求出a、b的值;②根据等腰直角三角形的性质求出AC、BC,根据三角形的面积公式计算即可;(2)作FG⊥y轴,FH⊥x轴垂足分别为G、H,证明四边形FHOG是正方形,得到OG=FH,∠GFH=90°,证明△AFG≌△BFH,根据全等三角形的性质计算即可.【解答】解:(1)①∵a2+b2﹣8a﹣4b+20=0,∴(a﹣4)2+(b﹣2)2=0,∴a=4,b=2;②∵A(0,4),B(2,0),∴AB==2,∵△ABC是等腰直角三角形,∴AC=BC=,∴四边形AOBC的面积S=×OA×OB+×AC×BC=4+5=9;(2)结论:FA=FB,FA⊥FB,理由如下:如图2,作FG⊥y轴,FH⊥x轴垂足分别为G、H,∵A(0,a)向右平移a个单位到D,∴点D坐标为(a,a),点E坐标为(a+b,0),∴∠DOE=45°,∵EF⊥OD,∴∠OFE=90°,∠FOE=∠FEO=45°,∴FO=EF,∴FH=OH=HE=(a+b),∴点F坐标为(,),∴FG=FH,四边形FHOG是正方形,∴OG=FH=,∠GFH=90°,∴AG=AO﹣OG=a﹣=,BH=OH﹣OB=﹣b=,∴AG=BH,在△AFG和△BFH中,,∴△AFG≌△BFH,∴FA=FB,∠AFG=∠BFH,∴∠AFB=∠AFG+∠BFG=∠BFH+∠BFG=90°,∴FA=FB,FA⊥FB.。
人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.以下列数值为长度的各组线段中,不能围成三角形的是()A .2,3,4B .3,5,6C .2,2,5D .4,4,63.下列计算正确的是()A .22a a a ⋅=B .330a a ÷=C .()3253ab a b =D .221a a -=4.下列分式是最简分式的()A .223ac a bB .23aba a -C .22ab a b ++D .222a aba b --5.若224x mx ++是完全平方式,则m 的值是()A .16±B .4±C .2±D .1±6.已知图中的两个三角形全等,则∠1的度数为()A .43B .55C .82D .677.等腰三角形的周长为10cm ,其中一边长为4cm ,则该等腰三角形的底边长为()A .5cmB .4cmC .3cm 或4cmD .2cm 或4cm 8.一个多边形的内角和比四边形内角和多360 ,则这个多边形是()A .五边形B .六边形C .七边形D .八边形9.若2x y +=,15xy =,则()()22x y --的值是()A .11B .14C .15D .1810.如图,已知△ABC 中,D 、E 分别为BC 、AC 上的点,且满足AB AD CD CE ===,若∠36BAD = ,则∠ADE 的度数为()A .36°B .35°C .26°D .72°二、填空题11.因式分解:224a b -=_____.12.点()2,3P -关于x 轴对称的点的坐标为_________.13.数据0.0000001米,用科学记数法表示为_______米.14.甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,设工作总量为1,则乙的工作效率为__________.15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,AB=5,CD=2,则△ABD 的面积是________.16.如图,已知AD ∥BC ,∠BAD=90°,∠C=60°,CB=CD ,若AD=1,则BC=____.三、解答题17.计算:(1)()()3421x x +-(2)2(2)(2)()m n m n m n +---18.解分式方程:(1)15122x x x +=++(2)2351311x x x x +=---19.先化简,再求值:()22212•21121a a a a a a a -+-÷++--,其中12a =.20.如图,点A 、E 、B 、D 在同一直线上,AC 、DF 相交于点G ,FE AD ⊥,垂足为E ,CB AD ⊥垂足为B ,且FE CB =,AE BD =.求证:△ABC ≌△DEF .21.如图,在平面直角坐标系中,已知A (3,3),B (1,1),C (4,-1).(1)画出△ABC 关于y 轴的轴对称图形△A 1B 1C 1,并写出A 1、B 1、C 1坐标;(2)在(1)的条件下,连接AA 1、AB 1,直接写出△AA 1B 1的面积.22.如图,D 、E 分别是AB 、AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AC=AB .23.某学校为美化校园,安排甲、乙两工程队对面积为990m 2的区域进行绿化.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,若先由乙队完成面积的13,再由甲、乙共同完成,时间共用11天.问甲、乙两工程队每天能完成绿化的面积分别是多少平方米?24.如图,正方形ABCD 的边长为4,动点P 从点A 开始沿A→D→C 的方向,以每秒2个单位的长度运动,动点Q 从点B 出发,沿B→C→D 以每秒1个单位的长度运动.当点P 到达C 点后,P 、Q 两点同时停止运动.设运动时间为t ,△BPQ 的面积为S .(1)填空:当动点P 到达D 点时,t=;(2)请用含t 的式子表示面积S .25.轴对称变换是几何证明中重要的图形变换之一,即寻找对称轴,将对称轴的一侧图形进行翻折,来构造满足条件的几何辅助线.例:在△ABC 中,过点A 作AD ⊥BC 于点D ,若AC+CD=BD ,则∠B 与∠C 满足什么关系?分析:将△ADC 沿直线AD 翻折,得到△ADE ,通过相关定理即可得到结论.(1)请猜想∠B 与∠C 的关系,并说明理由;(2)如图3,A 、D 为线段BC 同侧两点,∠BAC=∠BDC=60°,∠ACB+12∠ACD=90°,求证:AB=AC+CD .26.如图,在平面直角坐标系中,点(0)A m ,、点(,0)B n 分别在y 轴、x 轴的正半轴上,若m 、n 满足()()2240m n n -+-=.(1)填空:m =,n =;(2)如图,点P 是第一象限内一点,连接AP 、OP ,使∠APO=45°.过点B 作BC ⊥OP 于点D ,交y 轴于点C ,证明:DP=DB .(3)若在线段OA 上有一点M (0t ,),连接BM ,将BM 绕点B 逆时针旋转90°得到BN ,连接AN 交x 轴于点E ,请直接写出点E 的坐标(用含有t 的代数式表示).参考答案1.A2.C3.D4.C5.C6.C7.D8.B9.C10.A11.()()22a b a b +-【详解】解:原式=(a+2b)(a-2b).故答案为:(a+2b )(a-2b )12.()2,3--【详解】解:点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.13.7110-⨯【详解】解:70.0000001110-=⨯故答案为:7110-⨯14.1t-1【详解】解:∵乙的工作时间为(t-1),工作总量为1,∴乙的工作效率为11t -.故答案为:11t -.15.5【详解】解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE=∠DAC ,∠DEA=∠DCA=90°,DA=DA ,∴△DAE ≌△DAC (AAS ),∴DE=DC=2,∴△ABD 的面积=12×AB×DE=12×5×2=5,故答案为:5;16.2【分析】连接BD ,证明△BCD 是等边三角形,可得BD =BC ,∠DBC =60°,求出∠ABD =30°,然后根据含30°角的直角三角形的性质求出BD 即可.【详解】解:连接BD ,∵∠C=60°,CB=CD ,∴△BCD 是等边三角形,∴BD =BC ,∠DBC =60°,∵AD ∥BC ,∠BAD=90°,∴∠ABC =90°,∴∠ABD =30°,∵∠BAD=90°,AD=1,∴BD =2AD =2,∴BC =BD =2,故答案为:2.17.(1)2654x x +-(2)22322m mn n +-【分析】(1)根据多项式乘多项式进行计算即可;(2)运用平方差与完全平方公式进行计算即可.(1)解:()()3421x x +-=26834x x x +--=2654x x +-(2)2(2)(2)()m n m n m n +---=()222242m n m mn n ---+=222242m n m mn n --+-=22322m mn n +-18.(1)-3x =(2)12x =-【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:15122x x x +=++,方程两边同时乘以21x +()得:25x =+,解得-3x =,把-3x =代入2123140x +=-+=-≠()(),所以-3x =是原方程的解;(2)解:2351311x x x x +=---,方程两边同时乘以(1)(1)x x -+得:()()()3151311x x x x x -+=+-+-,化简得:84x -=,解得12x =-,把12x =-代入()()1131111224x x ⎛⎫⎛⎫-+=---+=- ⎪⎪⎝⎭⎝⎭≠0,所以原方程的解为12x =-.19.()211a a -+,23-【分析】根据分式的乘除法可以化简题目中的式子,再把a 值代入化简式子中求解即可.【详解】解:()22212•21121a a a a a a a -+-÷++--=()()222121••121a a a a a a --+--+=()211a a -+,把12a =代入原式得原式=121122133122⎛⎫⨯- ⎪-⎝⎭==-+.20.见解析【详解】证明:∵EF ⊥AD ,CB ⊥AD ,∴∠ABC=∠DEF=90°,又∵AE=BD ,∴AE+EB=BD+EB ,∴AB=DE ,在△ABC 与△DEF 中FE CB ABC DEF AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).21.(1)图见解析,A 1(-3,3),B 1(-1,1),C 1(-4,-1)(2)△AA 1B 1的面积为6【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积公式进而得出答案.(1)解:如图所示:△A 1B 1C 1,即为所求;A 1(-3,3),B 1(-1,1),C 1(-4,-1);(2)解:△AA 1B 1的面积为:12×6×2=6.22.证明见解析【分析】连接BC ,由CD 垂直于AB ,且D 为AB 中点,即CD 所在直线为AB 的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC ,又E 为AC 中点,且BE 垂直于AC ,即BE 所在的直线为AC 的垂直平分线,同理可得BC=AB ,等量代换即可得证.【详解】证明:如图,连接BC∵CD ⊥AB 于D ,D 是AB 的中点,即CD 垂直平分AB ,∴AC=BC (中垂线的性质),∵E 为AC 中点,BE ⊥AC ,∴BC=AB (中垂线的性质),∴AC=AB .23.甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米【分析】设乙工程队每天能完成绿化的面积为x 平方米,根据“由甲、乙共同完成,时间共用11天”列分式方程求解即可.【详解】解:设乙工程队每天能完成绿化的面积为x 平方米,则甲工程队每天能完成绿化的面积为2x 平方米,由题意得:1299099033112x x x⨯⨯+=+,整理得:33022011x x +=,即55011x =,方程两边同时乘以x ,得,11550x =,解得50x =,验根:当50x =时分母不为0,所以50x =是原方程的解,答:甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米.24.(1)2(2)22(02)4(24)t x S t t x <≤⎧=⎨-+<≤⎩【分析】(1)用AD 的长除以动点P 的速度可求出t ;(2)分0<t≤2时和2<t≤4时两种情况,分别利用三角形的面积公式列式计算即可.(1)解:∵正方形ABCD 的边长为4,动点P 的速度为每秒2个单位的长度,∴t =4÷2=2,故答案为:2;(2)当0<t≤2时,点P 在线段AD 上,如图:∵BQ =t ,∴114222S BQ CD t t =⋅=⨯=;当2<t≤4时,点P 在线段CD 上,如图:∵BQ =t ,CP =8-2t ,∴()21182422S BQ CP t t t t =⋅=⨯-=-+;综上所述:()()2202424t t S t t t ⎧<≤⎪=⎨-+<≤⎪⎩.25.(1)∠C=2∠B ,证明见解析(2)见解析【分析】(1)在DB 上截取一点E ,使DE=DC ,利用SAS 证明△ADE ≌△ADC ,推出AE=AC ,∠AED=∠C ,再证明BE=AE ,利用三角形的外角性质即可得到∠C=2∠B ;(2)延长AC 至E ,使AE=AB ,设∠ACD=2α,得到∠BCE=90°+α,∠BCD=90°-α+2α=90°+α,再推出△ABE 是等边三角形,利用AAS 证明△BCD ≌△BCE ,据此即可证明AB=AC+CD .(1)解:结论:∠C=2∠B ,证明:在DB 上截取一点E ,使DE=DC ,连接AE ,∵AD⊥BC,∴∠ADC=∠ADE=90°,在△ADE与△ADC中,AD AD ADE ADCDE DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADC(SAS),∴AE=AC,∠AED=∠C,∴BD=BE+ED,又∵BD=AC+CD,∴AC=BE,∴BE=AE,∴∠B=∠BAE,∴∠AED=2∠B,∴∠C=2∠B;(2)证明:延长AC至E,使AE=AB,连接BE,设∠ACD=2α,∵∠ACB+12∠ACD=90°,则∠ACB=90°-α,∴∠BCE=90°+α,∴∠BCD=90°-α+2α=90°+α,∵∠BAC=60°,BA=BE ,∴△ABE 是等边三角形,∴∠E=60°,AB=AE ,在△BCD 与△BCE 中,D E BCD BCE BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△BCE(AAS),∴CD=CE ,∵AE=AC+CE=AC+CD ,∴AB=AC+CD .26.(1)4,4m n ==(2)见解析(3)E (2-12t ,0)【分析】(1)根据()()2240m n n -+-=得到040m n n -=⎧⎨-=⎩即可求解;(2)过点A 向OP 作垂线交于点E ,证明△AOE ≌△BOD ,进而可得到结论;(3)过点N 作NC ⊥x 轴交于点C ,可证△BOM ≌△BCN ,之后再证明△AOE ≌△ECN ,即可得到结论;(1)解:()()2240m n n -+-= ,040m n n -=⎧∴⎨-=⎩,4m n ∴==,故答案为:4,4m n ==;(2)证明:过点A 向OP 作垂线交于点E ,则∠AEP=90°,∵∠AOP+∠POB=90°,∠AOP+∠OAE=90°,∴∠POB=∠OAE ,又OA=OB ,∠AEO=∠BDO=90°,∴△AOE ≌△BOD ()AAS ,∴DB=OE ,AE=OD ,又∵∠APO=45°,∠AEP=90°,∴AE=EP,∴EP=OD ,∵OE=OD+DE ,DP=DE+EP ,∴OE=DP ,∴DP=DB ,(3)解:如图,过点N 作NC ⊥x 轴交于点C ,由题可知BM BN =,90MBN MOB ∠=∠=︒,90MBO OBN ∠+∠=︒ ,90OBN CNB ∠+∠=︒,MBO CNB ∴∠=∠,∴△BOM ≌△BCN ()AAS ,OM BC t ∴==,OB NC =,OA OB = ,OA NC ∴=,90AOC NCE ∠=∠=︒ ,OEA CEN ∠=∠,∴△AOE ≌△ECN ()AAS ,12OE EC OC ∴==,4OC OB CB t =-=- ,∴OC=4-t ,∴OE=12OC=2-12t ,∴E (2-12t ,0).。
八年级上学期期末数学试卷 (含解析)

八年级(上)期末数学试卷一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a94.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.105.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±206.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°二、填空题(共8小题).9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).11.(3分)若分式的值为0,则x=.12.(3分)分解因式:xy4﹣6xy3+9xy2=.13.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.参考答案一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9解:a2•a3=a5,故选:A.4.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.10解:由题意得,a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.5.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±20解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选:D.6.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.解:原式=÷=•=,故选:A.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.二、填空题(每小题3分,共24分)9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为1×10﹣6.解:0.00 000 1=1×10﹣6,故答案为:1×10﹣6.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).11.(3分)若分式的值为0,则x=﹣1.解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.12.(3分)分解因式:xy4﹣6xy3+9xy2=xy2(y﹣3)2.解:原式=xy2(y2﹣6y+9)=xy2(y﹣3)2,故答案为:xy2(y﹣3)213.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为4.解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PA=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=8.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.18.(6分)解不等式组:,并写出它的所有整数解.解:解不等式>﹣1,得:x>﹣2,解不等式2x+1≥5(x﹣1),得:x≤2,所以不等式组的解集为﹣2<x≤2,则不等式组的整数解为﹣1、0、1、2.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.解:原式=•﹣=﹣=,∵x2+2x﹣8=0,∴x2+2x=8,∴原式==.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.解:(1)∵∠ACB=90°,BE⊥CE,∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵AC=BC,∴△ACD≌△CBE;(2)∵△ACD≌△CBE,∴AD=CE,CD=BE,∵AD=12,DE=7,∴BE=CD=CE﹣DE=12﹣7=5.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.解:(1)如图所示:(2)如图所示:(3)B1(2,1),S△A1B1C1=3×4﹣×4×2﹣×1×2﹣×3×2,=12﹣4﹣1﹣3,=4.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(a+b)2=(a﹣b)2+4ab;∵a+b=7,ab=5,∴(a﹣b)2=(a+b)2﹣4ab=49﹣20=29;答:(a﹣b)2的值为29.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。
河北省张家口市桥西区2023-2024学年八年级上学期期末考试数学试卷(含答案)

2023—2024学年度第一学期期末考试八年级数学试卷考生注意:1. 本试卷共4页,总分100分,考试时间90分钟;2. 请务必在答题纸上作答,写在试卷上的答案无效.考试结束,只收答题纸.3. 答卷前,请在答题纸上将姓名、班级、考场、座位号、准考证号填写清楚.4. 客观题答题,必须使用2B铅笔填涂,修改时用橡皮擦干净.5. 主观题答案须用黑色字迹钢笔、签字笔书写.6. 必须在答题纸上题号所对应的答题区域内作答,超出答题区域的书写,无效.7. 保持卷面清洁、完整.禁止对答题纸恶意折损,涂画,否则不能过扫描机器.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 正比例函数的图象是一条()A. 线段B. 射线C. 曲线D. 直线2. 如图,x、y、z分别表示以直角三角形三边为边长的正方形面积,则下列结论正确的是()A. B. C. D.3. 在平整的路面上,某型号汽车紧急刹车后仍将滑行s(m),一般地有经验公式,其中v表示刹车前汽车的速度(单位:km/h).在这个公式中因变量是()A. 300B. sC. vD. s与v4. 在平面直角坐标系中,位于第二象限的点为在()A. B. C. D.5. 如图,直角三角形中未知边的长度为()A. B. C. 5 D. 76. 在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是()A. B. C. D.7. 一次函数的图象与y轴的交点坐标为()A. B. C. D.8. 已知方程组的解为,则一次函数与图象的交点坐标为()A. B. C. D.9. 课堂上,王老师给出如图所示甲、乙两个图形,要利用面积验证勾股定理,其中判断正确的是()A. 甲行、乙不行B. 甲不行、乙行C. 甲、乙都不行D. 甲、乙都行10. 如图,直线过点,,则不等式的解集是()A. B. C. D.11. 如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为,黑棋(乙)的坐标为,则白棋(甲)的坐标落在()A. B. C. D.12. 海拔高度h(千米)与此高度处气温t()之间有下面的关系:海拔高度h/千米012345…气温t/201482-4-10…下列说法错误的是()A. 其中h是自变量,t是因变量B. 海拔越高,气温越低C. 气温t与海拔高度h的关系式为D. 当海拔高度为8千米时,其气温是13. 如图,一个门框的尺寸如图所示,下列长方形木板不能从门框内通过的是()A. 长3m,宽2.2m的长方形木板B. 长3m,面积为的长方形木板C. 长4m,宽2.1m的长方形木板D. 长3m,周长为11m的长方形木板14. 如图,坐标平面上直线L的方程式为,直线M的方程式为,P点的坐标为.根据图中P点位置判断,下列关系正确的是()A. ,B. ,C. ,D. ,15. 对于某个一次函数,根据两位同学的对话得出的结论,错误的是()A. B. C. D.16. 学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是()A. 甲对,乙错B. 甲错,乙对C. 两人都错D. 两人都对二、填空题(本大题共3个小题,共10分,17小题2分;18-19小题各4分,每空2分)17. 在一次函数中,y随x的增大而增大,则k的值可以是______.(写出一个满足条件的值)18. 一个零件的形状如图所示,按规定这个零件中与都应为直角,工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件______符合要求吗?(填“是”或“否”)(2)这个四边形的面积为______.19. 如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2023次,点P依次落在点,,,,…,的位置,则:(1)的横坐标______;(2)的横坐标______.三、解答题(本大题共7个小题,共52分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分7分)已知正比例函数经过点.(1)求k的值;(2)判断点是否在这个函数图象上.21.(本小题满分7分)在平面直角坐标系xOy中,的位置如图所示.(1)分别写出各个顶点的坐标;(2)若P为y轴上的一点,,直接写出P点坐标.22.(本小题满分7分)如图,已知函数和的图象交于点P,点P的纵坐标为2.(1)求a的值;(2)横坐标、纵坐标为整数的点称为整点,直接写出函数和的图象与x轴围成的几何图形中(含边界)整点的个数.23.(本小题满分7分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的.请你计算这个池塘水的深度和这根芦苇的长度各是多少?24.(本小题满分7分)如图,已知的正方形网格(每个小正方形的边长均为1),A、B、C、D四点都在小方格的格点上.(1)作点B关于AC的对称点,连接,;(2)判断的形状,并说明理由;(3)直接写出的值.25.(本小题满分8分)表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线.x-10y-21(1)求直线的解析式;(2)求,交点坐标并在图上画出直线(不要求列表计算);(3)一次函数的图象为,且,,不能围成三角形,直接写出k的值.26.(本小题满分9分)根据以下素材,探索完成任务:如何制定订餐方案?素材1某班级组织春日研学活动,需提前为同学们订购午餐,现有A、B两种套餐可供选择,套餐信息及团购优惠方案如下所示:套餐类别套餐单价团体订购优惠方案A:米饭套餐30元B:面食套餐25元方案一:A套餐满20份及以上打9折;方案二:B套餐满12份及以上打8折;方案三:总费用满850元立减110元.温馨提示:方案三不可与方案一、方案二叠加使用.素材2该班级共31位同学,每人都从A、B两种套餐中选择一种,一人一份订餐,拒绝浪费.经统计,有20人已经确定A或B套餐,其余11人两种套餐皆可.若已经确定套餐的20人先下单,三种团购优惠条件均不满足,费用合计为565元.问题解决任务1计算选择人数已经确定套餐的20人中,分别有多少人选择A套餐和B套餐?任务2分析变量关系设两种套餐皆可的同学中有m人选择A套餐,该班订餐总费用为w元,当全班选择A套餐人数不少于20人时,请求出w与m之间的函数关系式.任务3确定最优方案A、B套餐各订多少份,该班订餐总费用最低?(直接写出最优方案及最低费用)2023—2024学年度第一学期八年级期末考试数学参考答案一、选择题(1~6小题,每小题3分;7~16小题,每小题2分,共38分.)题号12345678答案D A B C B B A D 题号910111213141516答案D B A C D A C C二、填空题(17小题2分;18-19小题各有2个空,每空2分.共10分.)17. 1(答案不唯一)18.(1)是;(2)36 19.(1)5;(2)2022三、解答题(本大题7个小题,共52分)20. 解:(1)∵点在正比例函数的图象上,∴,解得:;……3分(2)在……4分理由:由(1)得:,当时,,,∴点在这个函数的图象上.……7分21. 解:(1),,;……3分(2),.……7分22. 解:(1)将代入,得出,……2分∴……4分将代入,得,解得.……6分(2)9.……7分23. 解:设池塘水的深度是x尺,则这根芦苇的长度是尺,……1分由题意得:,(尺),……2分在中,由勾股定理得:,……3分即,……4分解得:,……5分∴,……6分答:池塘水的深度是12尺,这根芦苇的长度是13尺.……7分24. 解:(1)如图所示;……3分(2)等腰直角三角形……4分理由:∵,,,∴,,∴是等腰直角三角形;……6分(3).……7分25. 解:(1)∵直线:中,当时,;当时,,∴,解得,∴直线的解析式为;……3分(2)依题意可得直线的解析式为,如图,……4分∴,解得,∴两直线的交点为;……5分(3)m的值为1或3或4.……8分26. 解:任务1设这20人中选择A套餐的有x人,则选则B套餐的有人,且,,由题意可得:,,.答:选择A套餐的有13人,选择B套餐的有7人.……4分任务2两种套餐皆可的11人中有m人选择A套餐,则有人选择B套餐,则全班共有人选择A套餐,有人选择B套餐,∵全班选择A套餐人数不少于20人,故选择B套餐人数不超过11人,因此满足方案一优惠条件,不满足方案二优惠条件.∴……6分任务3当订购A套餐15份、B套餐16份时,总费用最低740元.……3分。
人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.数据0.00000011用科学记数法表示正确的是()A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯3.已知一个n 边形的内角和等于1800°,则n =()A .6B .8C .10D .124.下列运算中正确的是()A .235x y xy+=B .()3263x y x y =C .824x x x ÷=D .32622x x x ⋅=5.若216x ax -+是完全平方式,则a 的值等于()A .2B .4或4-C .2或2-D .8或8-6.若分式41x x +-的值为零,则x 的值是()A .4x =B .4x =-C .1x =D .1x =-7.下列四个图中,正确画出△ABC 中BC 边上的高是()A .B .C .D .8.已知三角形的两边长分别为4和9,则下列数据中,能作为第三边长的是()A .2B .3C .4D .99.如图,∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是()A .AC =ADB .AC =BC C .∠ABC =∠ABD D .∠BAC =∠BAD10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题11.若点(),1A a 与点()3,B b -关于x 轴对称,则ab =__________.12.计算:22c a a bc⋅=_______.13.分解因式:2m m +=___________.14.使得分式263x x -+有意义的条件是________.15.计算:1022021-+=______16.如图,AB ,CD 相交于点E ,若ABC ADE △≌△,且点B 与点D 对应,点C 与点E 对应,28BAC ∠=︒,则B Ð的度数是_____°.17.如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_______________.18.如图,ABC DEF ≅ ,B 、E 、C 、F 在同一直线上,7BC =,4EC =,则CF 的长为___________.三、解答题19.化简:()()()331x x x x +---.20.解方程:132x x =-21.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.22.如图,点B ,F ,C ,E 在一直线上,B E ∠=∠,BF EC =,AB DE =.求证://AC DF .23.如图,在Rt ABC 中,90B ∠=︒.(1)作AC 的垂直平分线ED ,交BC 于点E ,交AC 于点D (尺规作图,不写作法,保留作图痕迹);(2)当3AB =,5BC =时,求ABE △的周长.24.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD DCE △△≌;(2)若2BD =,5CD =,求AE 的长.25.已知:在△ABC 中,AD 是BC 边上的高.(1)尺规作图:作∠BAC 的平分线AE ,交BC 于点E ;(2)在(1)的条件下:若∠ABC =105°,∠C =45°,求∠EAD 的度数.26.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?27.如图,点D 在射线BC 上运动,ABC 与ADE 都是以点A 为直角顶点的等腰直角三角形.(1)在图1中证明:①ABD ACE △△≌;②EC BC ⊥;(2)如图2,当点D 在BC 的延长线上时,若6BC =,()6BD x x =>,CDE △的面积为y ,试求出y 与x 之间的关系式.参考答案1.B【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A.是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.B【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000011=71.110-⨯,故选B .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【分析】根据多边形的内角和公式,计算可得结论.【详解】解:∵(n ﹣2)×180=1800,∴n =12.故选:D .【点睛】本题考查了多边形的内角和,掌握多边形的内角和公式是解决本题的关键.4.B【分析】根据合并同类项、积的乘方、同底数幂的除法、单项式与单项式的乘法法则逐项分析即可.【详解】A.2x 与3y 不是同类项,不能合并,故不正确;B.()3263x y x y =,正确;C.826x x x ÷=,故不正确;D.32522x x x ⋅=,故不正确;故选B .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5.D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a 的值.【详解】解:∵x 2-ax+16=x 2-ax+42,∴-ax=±2•x•4,解得a=8或-8.故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.B【分析】根据分式的值为0的条件,即可求解.【详解】解:根据题意得:40x +=且10x -≠,解得:4x =-.故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握分式的值为0的条件——分子等于0,且分母不等于0是解题的关键.7.C【分析】根据三角形的高的定义,即可判断,从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.【详解】A 选项不是三角形的高,不符合题意;B 选项是AC 边上的高,不符合题意;C 选项是BC 边上的高,符合题意;D 选项不是三角形的高,不符合题意;故选C .【点睛】本题考查了三角形的高的定义,理解定义是解题的关键.8.D【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <13.故选:D .【点睛】本题考查了三角形的三边关系定理.掌握构成三角形的条件:两边之和>第三边,两边之差<第三边是解决问题的关键.9.A【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL 证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD 或AC=AD.【详解】解:需要添加条件为:BC=BD 或AC=AD,理由为:若添加的条件为:BC=BD在Rt △ABC 与Rt △ABD 中,BC BD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL);若添加的条件为:AC=AD在Rt △ABC 与Rt △ABD 中,AC AD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL).故选:A.【点睛】本题考查了利用HL 公理判定直角三角形全等,熟练运用HL 公理是解题的关键10.D【详解】解:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ).∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ),若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ).当A→B 时,t=4﹣0.5=3.5;当B→A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A→B 时,∴t=4﹣2=2;当B→A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .11.3【分析】关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,先求出a 、b 的值,然后得到答案.【详解】解:∵点(),1A a 与点()3,B b -关于x 轴对称,∴3a =-,1b =-,∴3(1)3ab =-⨯-=;故答案为:3.【点睛】本题考查了关于x 轴对称点的坐标,解题的关键是掌握点的坐标的变化规律.12.acb【分析】分式的乘法法则:把分子的积作为积的分子,把分母的积作为积的分母,再约分即可.【详解】解:22,c a ac a bc b⋅=故答案为:ac b【点睛】本题考查的是分式的乘法运算,掌握“分式的乘法运算的运算法则”是解题的关键.13.(1)m m +【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.14.x≠﹣3【分析】根据分式有意义的条件可得:x+3≠0,再解即可.【详解】解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.【点睛】本题考查了分式有意义的条件,熟知分母不为零是解题的关键.15.32##1.5【分析】根据负整指数幂和0次幂的运算法则计算即可.【详解】解:原式=112+=32故答案为:32【点睛】本题主要考查负整指数幂和0次幂的运算,掌握相关运算方法是解题的关键.16.48【分析】由题意知28AC AE B D DAE BAC =∠=∠∠=∠=︒,,,AEC ACE ∠=∠,由三角形的内角和定理得AEC ∠的值,三角形的外角的性质得D ∠,进而得到B Ð的值.【详解】解:∵ABC ADE△≌△∴28AC AE B D DAE BAC =∠=∠∠=∠=︒,,∴AEC ACE∠=∠∵++180AEC ACE BAC ∠∠∠=︒∴180762BAC AEC ︒-∠∠==︒∵AEC D DAE∠=∠+∠∴48D ∠=︒∴48B ∠=︒故答案为:48︒.【点睛】本题考查了三角形全等的性质,等边对等角,三角形的内角和定理,三角形外角的性质等知识.解题的关键在于对知识的灵活运用.17.8【分析】连接AD ,AM ,由EF 是线段AB 的垂直平分线,得到AM=BM ,则△BDM 的周长=BD+BM+DM=AM+DM+BD ,要想△BDM 的周长最小,即要使AM+DM 的值最小,故当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接AD ,AM ,∵EF 是线段AB 的垂直平分线,∴AM=BM ,∴△BDM 的周长=BD+BM+DM=AM+DM+BD ,∴要想△BDM 的周长最小,即要使AM+DM 的值最小,∴当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,∵AB=AC ,D 为BC 的中点,∴AD ⊥BC ,122BD BC ==,∴1122ABC S AD BC =⋅=△,∴AD=6,∴△BDM 的周长最小值=AD+BD=8,故答案为:8.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A 、M 、D 三点共线时,AM+DM 最小,即为AD .18.3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE ,然后进行求解即可;【详解】∵△ABC ≌△DEF ,∴BC=EF ,∵BC=7,EC=4,∴CF=7-4=3,故答案为:3.【点睛】本题考查了全等三角形的性质以及应用,正确理解全等三角形的性质是解题的关键.19.9x -【分析】由平方差公式、整式乘法、整式的加减运算进行化简,即可得到答案.【详解】解:()()()2233199x x x x x x x x +---=--+=-.【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则,正确的进行化简.20.1x =-【分析】方程两边同乘以()2x x -,将分式方程化为整式方程,再解一元一次方程,最后要检验.【详解】解:方程两边同乘()2x x -,得23x x -=,移项及合并同类项,得22x =-,系数化为1,得1x =-,经检验,1x =-是原分式方程的解,∴原分式方程的解是1x =-.【点睛】本题考查解分式方程,是重要考点,掌握相关知识是解题关键.21.12x x --,2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++=1211x x x x --÷++=1112x x x x -+⋅+-=12x x --,∵x≠±1且x≠2,∴x=3,则原式=3132--=2.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.22.见详解【分析】由题意易得BC EF =,然后可根据“SAS”证明三角形全等,进而根据全等三角形的性质可求证.【详解】证明:∵BF EC =,CF CF =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌,∴ACB DFE ∠=∠,∴//AC DF .23.(1)见解析(2)8【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA=EC ,然后利用等线段代换得到△ABE 的周长=AB+BC .(1)解:如图,ED为所作;(2)解:∵DE 垂直平分AC ,∴EA=EC ,∴△ABE 的周长=AB+BE+AE=AB+BE+EC=AB+BC=3+5=8.【点睛】本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.(1)见解析(2)3【分析】(1)根据AAS 可证明ABD DCE ≌△△.(2)根据ABD DCE ≌△△,得出AB =DC =5,CE =BD =3,求出AC =5,则AE 可求出.(1)证明:∵AB AC =,∴B C ∠=∠.又∵12∠=∠,AD DE =,∴ABD DCE ≌△△(AAS ).(2)解:∵ABD DCE ≌△△,∴5AB DC ==,2CE BD ==.∵AC AB =,∴5AC =.∴523AE AB EC =-=-=.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)作图见解析;(2)30.︒【分析】(1)以A 为圆心,任意长为半径画弧,得与,AB AC 的两个交点,再分别以这两个交点为圆心,大于这两个交点间的距离的一半为半径画弧,得两弧的交点,以A 为端点,过两弧的交点作射线AE 交BC 于E ,即可得到答案;(2)根据三角形的内角和定理求解BAC ∠,再利用角平分线的定义求解BAE ∠,再利用三角形的高的含义与外角的性质求解BAD ∠,最后利用角的和差关系可得答案.【详解】解:(1)如图,射线AE 即为所求,(2)10545ABC C ∠=︒∠=︒ ,,1801054530BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,1152EAB BAC ∴∠=∠=︒,105ABC AD ∠=︒ ,为高,1059015BAD ABC ADC ∴∠=∠-∠=︒-︒=︒,151530.EAD EAB BAD ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是三角形的高的含义,角平分线的定义与作图,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.26.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据销售单价x 销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据题意得:222096052x x-=,解得:x 30=,经检验,x 30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.27.(1)①证明见解析;②证明见解析(2)213(6)2y x x x =->【分析】(1)①由等腰直角三角形的性质得:90BAC ∠=︒,90DAE ∠=︒,AB AC =,AD AE =,和同角的余角相等可证BAD CAE ∠=∠,继而利用边角边可证得ABD ACE △△≌②根据全等三角形的性质和等腰三角形的性质可证(2)证明ABD ∆≌ACE ,根据全等三角形的性质得到BD EC =,45ACE B ∠=∠=︒,根据三角形的面积公式,求出y 与x 之间的关系式.(1)证明:①ABC ∆ 与ADE ∆都是以点A 为直角顶点的等腰直角三角形90BAC ∴∠=︒,90DAE ∠=︒,AB AC =,AD AE =90BAD DAC CAE DAC ∴∠+∠=∠+∠=︒BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆②ABD ∆ ≌ACE ∆,45ACE B ∴∠=∠=︒.45ACB =︒∠ ,90ECD ∴∠=︒,EC BC ∴⊥;(2)解:90BAD DAC CAE DAC ∠-∠=∠-∠=︒ BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆BD EC ∴=,45ACE B ∠=∠=︒45ACB =︒∠ 90ECD ∴∠=︒EC BC∴⊥12ECD S CD EC∆∴=⋅211(6)3(6)22y x x x x x ∴=-⋅=->.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末试卷四
主备人:初二数学组 审核人初二数学组
一、细心填一填(本题共11小题;每小题3分,共33分.) 1.-a 2·a = 2.当若分式
1
+-x x
有意义,则x 的取值范围是 3.计算: .若x x a 2,b 3==,则()3x
ab = . 4.若 03)2(2=-++b a ,则b
a =
5. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____________个.
6.=⋅-)4
3()8(2
b a ab
.
7.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的
条件是______. 8.若2
16x ax -+是一个完全平方式,则a =
9.一个正方体的体积变为原来的27倍,则它的棱长变为原来的 倍。
10. 如图,已知OC 平分∠AOB ,P 为OC 上一点,PM ⊥OA 于M ,PN ⊥OB 于N ,PN=3 .则PM=_______。
11.对于数a ,b ,c ,d ,规定一种运算
a b c d =ad-bc ,如1
02
(2)
-=1×(-2)-0×2=-2,那
么当
(1)(2)(3)(1)
x x x x ++--=27时,则x= .
二、精心选一选(本题共9小题;每小题3分,共27分)
12.下列图形中,不是轴对称图形的是( )。
13.
下列分式化简正确的是(
)
A .
b a b a b a +=++2 B .1-=+--b a b a C .1-=---b a b a D .b a b
a b a -=--2
2 C N
M
O
P B
A
B C D
A
B C
D
A
D
O C B
14若分式的值为零,则的值是( ) A .0
B .1
C .
D .
15. 下列分式化简正确的是( )
A .
b a b a b a +=++2 B .1-=+--b a b a C .1-=---b a b a D .b a b
a b a -=--2
2
16.下列运算正确的是 ( )
A.x 2+x 2=2x 4
B.a 2·a 3= a 5
C.(-2x 2)4=16x 6
D.(x+3y)(x-3y)=x 2-3y 2
17.如图,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A'B'的长等于内槽宽AB , 那么判定△OAB ≌△OA ′B ′的理由是( )
A 边角边
B 角边角
C 边边边
D 角角边 18.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因
客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )
A 、x +48720─548720=
B 、x +=+48720
548720
C 、 572048720=-x
D 、-48720x
+48720
=5 19.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分 为△EBD ,那么,下列说法错误的是( ) A .△EBD 是等腰三角形,EB =ED B .折叠后∠ABE 和∠CBD 一定相等 C .折叠后得到的图形是轴对称图形 D .△EBA 和△EDC 一定是全等三角形
20.如图△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )
A .10cm
B .12cm
C .15cm
D .17cm
三.作图题
21. (8分) 如图,写出△ABC 的各顶点坐标,并画出△ABC 关于Y 轴的对称图形,并直接写出△ABC 关于X 轴对称的三角形的各点坐标。
A
B
D
四、用心做一做(共52分)解答时请写出必要的演算过程或推理步骤。
22.分解因式。
(每小题5分,共10分)。
(1)33ab b a - (2) 222
2x xy y z -+-
23. (8分)先化简,再求值:x x y x y y x 2]8)2()[(2÷-+-+,其中x =-2 .
24.( 8分)先化简,再求值:222
11()x y x y x y x y +÷
-+-,其中1,1x y ==
25. (8分)解分式方程: 223-x
+x
-11
=1.
26.(8分)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB,DF
⊥AC,垂足分别是E,F ,BE=CF.求证:AD 是△ABC 的角平分线。
27.(本题10分)为了提高产品的附加值,某公司计划将研发生产的1200件新
产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?。