考点03 平抛运动与圆周运动-2020年高考物理二轮核心考点总动员(原卷版)
(通用版)2020高考物理三轮冲刺高考热点排查练热点4平抛与圆周运动(含解析)

热点4 平抛与圆周运动1.(2019·四川遂宁市三诊)如图1所示,图(a)是甲汽车在水平路面上转弯行驶,图(b)是乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是( )图1A.两车都受到路面竖直向上的支持力作用B.两车都一定受平行路面指向弯道内侧的摩擦力C.甲车可能不受平行路面指向弯道内侧的摩擦力D.乙车可能受平行路面指向弯道外侧的摩擦力答案 D解析题图(a)中路面对汽车的支持力竖直向上;题图(b)中路面对汽车的支持力垂直路面向上,选项A错误;题图(a)中汽车受到路面指向弯道内侧的摩擦力作为向心力;题图(b)中若路面的支持力与汽车重力的合力提供向心力,取路面倾角为θ,mg tanθ=m v2R,即v=gR tanθ,则此时路面对乙车没有摩擦力作用;若v<gR tanθ,则乙车受平行路面指向弯道外侧的摩擦力,选项B、C错误,D正确.2.(2019·江苏南通市一模)如图2所示,斜面上从A点水平抛出的小球落在B点,球到达B 点时速度大小为v,方向与斜面夹角为α.现将小球从图中斜面上C点抛出,恰能水平击中A 点,球在C点抛出时的速度大小为v1,方向与斜面夹角为β.则( )图2A.β=α,v1<v B.β=α,v1=vC.β>α,v1>v D.β<α,v1<v答案 A解析由逆向思维可知,从A点以速度v1水平抛出的小球刚好落在C点,物体从斜面上某点做平抛运动落在斜面上,任一时刻速度方向与水平方向夹角的正切值是位移方向与水平方向夹角正切值的2倍,斜面倾角不变,所以β=α,设小球落在斜面上时速度与水平方向的夹角为θ,则tan θ=12gt 2v 0t =gt 2v 0,解得:v 0=gt2tan θ,又v y =gt ,则小球落在斜面上的速度大小为v =v 02+v y 2=1+4tan 2θ2tan θgt ,由于落在C 点的小球运动时间短,所以有v 1<v ,故A 正确.3.(多选)(2019·四川宜宾市第二次诊断)如图3所示,一竖直圆弧形槽固定于水平地面上,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中槽壁上的最低点D 点;若A 点小球抛出的同时,在C 点以初速度v 2沿BA方向平抛另一相同质量的小球并也能击中D 点,已知∠COD =60°,且不计空气阻力,则( )图3A .两小球同时落到D 点B .两小球初速度大小之比为6∶3C .两小球落到D 点时的速度方向与OD 线夹角相等 D .两小球落到D 点时重力的瞬时功率之比为2∶1 答案 BD4.(2019·山东临沂市质检)如图4所示,A 、B 两个小球在同一竖直线上,离地高度分别为2h 和h ,将两球水平抛出后,不计空气阻力,两球落地时的水平位移大小之比为1∶2,重力加速度为g ,则下列说法正确的是( )图4A .A 、B 两球的初速度大小之比为1∶4 B .A 、B 两球的初速度大小之比为2∶2C .若两球同时落地,则两球抛出的时间差为(2-1)2hgD .若两球同时抛出,则落地的时间差为2hg答案 C解析 小球做平抛运动,竖直方向有:H =12gt 2,则运动时间:t =2Hg,所以A 球的运动时间:t A =2×2hg=4hg ,B 球的运动时间:t B =2hg,所以t A ∶t B =2∶1.由x =v 0t 得v 0=x t,结合两球落地时的水平位移之比x A ∶x B =1∶2,可知A 、B 两球的初速度之比为1∶22,故A 、B 错误;若两球同时落地,则两球抛出的时间差:Δt =t A -t B =(2-1)2hg,故C正确;若两球同时抛出,则落地时间差:Δt =t A -t B =(2-1)2hg,故D 错误.5.(多选)(2019·江苏丹阳市期末)在丹阳天地石刻园举行的杂技表演中,一男一女两位演员利用挂于同一悬点的两根轻绳在同一水平面内做匀速圆周运动(如图5),男演员的体重大于女演员.不计空气阻力,则( )图5A .女演员运动的周期大B .男、女演员运动的周期相同C .男演员对轻绳的拉力大D .男、女演员对轻绳的拉力可能相等 答案 BD解析 对其中一个演员受力分析,如图,受重力、轻绳的拉力,由于演员做匀速圆周运动,故合力提供向心力,mg tan θ=m 4π2T 2r ,解得:T =2πrg tan θ=2πh tan θg tan θ=2πhg,与角度无关,又h 相同,故周期相同,故A 错误,B 正确;竖直方向受力平衡,得:F T cos θ=mg ,即:F T =mgcos θ,由于m 男>m 女,θ女>θ男,故男、女演员对轻绳的拉力可能相等,故C 错误,D 正确.6.(2019·山东青岛市5月二模)如图6,两小球P 、Q 从同一高度分别以v 1和v 2的初速度水平抛出,都落在了倾角θ=37°的斜面上的A 点,其中小球P 垂直打到斜面上,不计空气阻力,则v 1、v 2大小之比为()图6A .9∶8B.8∶9C.3∶2D.2∶3 答案 A解析 两球抛出后都做平抛运动,两球从同一高度抛出落到同一点,它们在竖直方向的位移相等,小球在竖直方向做自由落体运动,则它们的运动时间t 相等; 对球Q :tan37°=y x =12gt 2v 2t =gt2v 2解得:v 2=23gt ;球P 垂直打在斜面上,则有:v 1=v y tan θ=gt tan37°=34gt则:v 1v 2=34gt 23gt =98,故A 正确,B 、C 、D 错误.7.(多选)(2019·重庆市调研康德卷)如图7甲为某游乐园飓风飞椅游玩项目,图乙为飓风飞椅结构简图.其装置由伞形转盘A 、中间圆柱B 、底座C 和软绳悬挂飞椅D (可视为质点)组成,在距转盘下表面轴心O 距离为d 的圆周上,用软绳分布均匀地悬挂16座飞椅(图乙中只画两座),设A 、B 、C 总质量为M ,单个飞椅与人的质量之和均为m ,悬挂飞椅D 的绳长均为L ,当水平转盘以角速度ω稳定旋转时,各软绳与竖直方向成θ角.重力加速度为g ,则下列判断正确的是()图7A.转盘旋转角速度为g tanθd+L sinθB.底座C对水平地面压力随转速增加而减小C.底座C对水平地面压力与转速无关,恒为Mg+16mgD.软绳与竖直方向夹角θ大小与软绳长、转速和乘客质量均有关答案AC解析对单个飞椅与人整体受力分析,由牛顿第二定律可得:mg tanθ=mω2(d+L sinθ),解得:ω=g tanθd+L sinθ,故A正确;绳的拉力在竖直方向的分力始终与飞椅及人的重力mg平衡,故整个装置竖直方向对地面的压力恒为Mg+16mg,故B错误,C正确;由A选项求得的表达式可得出软绳与竖直方向夹角θ大小与软绳长、转速有关,但与乘客质量无关,故D 错误.8.(2019·四川广安、眉山、内江、遂宁第三次模拟)如图8所示,竖直平面内有一半径为R =0.35m的内壁光滑的固定圆形轨道,轨道底端与光滑水平地面相切,一小球(可视为质点)以v0=3.5m/s的初速度进入轨道,取g=10 m/s2,则( )图8A.小球不会脱离圆轨道运动B.小球上升的最大高度为0.6125mC.小球脱离轨道时的速度大小为72m/sD.小球脱离轨道的位置与圆心连线和水平方向间的夹角为60°答案 C。
高考物理二轮总复习精品课件 第2部分 专题整合高频突破 第3讲 力与物体的曲线运动

小球弹力方向向下,故小球对杆的弹力方向向上,C正确。若v2=2b,
2
则F+mg=m ,解得F=a=mg,故D正确。
-23-
新题演练
1 2 3 4 5
怎样得高分
1.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不
变,方向平行于岸边;小船相对于静水分别做匀加速、匀减速、匀
x=v0t①
1
h=2gt2②
设圆弧轨道半径为 R,由机械能守恒定律得
1
mgR= 0 2 ③
2
联立①②③式,并代入题给条件得
R=0.25 m。④
-29-
新题演练
1 2 3 4 5
-30-
怎样得高分
(2)环由b处静止下滑过程中机械能守恒,设环下滑至c点的速度大小
为v,有
1
mgh=2mv2⑤
环在c点速度的水平分量为
解得 v2=
小滑块在 O 点做平抛运动,则
1 2
R=2gt ,x=v0t
解得 2R≤x≤2R。
-18-
命题热点一
命题热点二
命题热点三
(3)如图所示,设小滑块出发点为P1,离开点为P2,由题意要求O1P1、
O2P2与竖直方向的夹角相等,设为θ,若离开滑道时的速度为v,
2
则小滑块在 P2 处脱离滑道的条件是 mgcos θ=m
命题热点三
解析:在南北方向上,帆板静止,所以在此方向上帆船相对于帆板
向北以速度v运动;在东西方向上,帆船静止,帆板向西以速度v运动,
所以在此方向上帆船相对于帆板向东以速度v运动;以帆板为参考
考点02 牛顿运动定律-2020年高考物理二轮核心考点总动员(解析版)

2020届高考二轮复习之核心考点系列之物理考点总动员【二轮精品】考点02 牛顿运动定律【命题意图】本题属于连接体模型,涉及的知识点有相对运动和牛顿运动定律的应用,需要考生运用整体法和隔离法解决这类问题,意在考查考生的综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的匀变速直线运动问题.高考对本专题考查的内容主要有:①匀变速直线运动的规律及运动图象问题;②行车安全问题;③物体在传送带(或平板车)上的运动问题;④带电粒子(或带电体)在电场、磁场中的匀变速直线运动问题;⑤电磁感应中的动力学分析.考查的主要方法和规律有:动力学方法、图象法、临界问题的处理方法、运动学的基本规律等.【考试方向】对于连接体模型,命题多集中在两个或两个以上相关联的物体之间的相互作用和系统所受的外力情况,一般根据连接类型(直接连接型、绳子连接型、弹簧连接型),且考查时多涉及物体运动的临界和极值问题。
【应考策略】抓住“两个分析”和“一个桥梁”.“两个分析”是指“受力分析”和“运动情景或运动过程分析”.“一个桥梁”是指“加速度是联系运动和受力的桥梁”.综合应用牛顿运动定律和运动学公式解决问题。
1.高考考查特点(1)高考题注重基本概念的理解及基本公式及推论的灵活应用,计算题要注意追及相遇类为背景的实际问题.(2)熟练掌握运动学的基本规律及推论,实际问题中做好过程分析及运动中的规律选取是解题的关键.2.解题常见误区及提醒学/科..网(1)基本概念公式及基本推论记忆不准确,应用不灵活.(2)实际问题中过程不清晰、时间关系、速度关系、位移关系把握不准.(3)解决追及相遇问题时,要抓住题目中的关键词语(如“刚好”、“最多”、“至少”等)【得分要点】处理连接体问题的基本方法是隔离法和整体法:分析整体受力,不需要求物体间相互作用力时,多采用整体法;要求求出系统内部物体之间的作用力时,需采用隔离法。
涉及临界或极值问题时,要分析此状态下的受力特点和运动特点,找到临界或极值产生的条件。
考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】

2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
高考物理最有可能考的必考点“挖井”系列训练平抛运动和圆周运动

平抛运动和圆周运动1983 年高考作文《挖井》给我们 2013 年高考备考的启迪,明显知道这个点要考,我们恰恰缺乏毅力,而让考生在考场中为试题而痛惜。
本系列训练就是为帮助考生训练解题毅力而编写整理的,希望给大家一些启迪。
资料根源于网络,不适合地方,敬请告之,QQ:691260812。
答案后附带《成功贵在恒》。
备考攻略①以平抛运动、圆周运动为背景考察学生对基本运动形式的认识及理解、推理和剖析能力;②综合万有引力、天体的运动的有关知识点,表现于题中各选项中,以简单剖析,计算为主.1.如下图,一物体自倾角为θ 的固定斜面上某一地点P 处斜向上抛出,抵达斜面顶端Q 处时速度恰巧变为水平方向,已知P、Q间的距离为L,重力加快度为g,则对于抛出时物体的初速度v0的大小及其与斜面间的夹角α,以下关系中正确的有A . tantanB. sin 2Qtan2v 02 1 sinαPcosLgLC .v 0D . v 0 cosθcos22g sin2sin1.B2.学校喷水池的水如图由喷水口向两旁水平喷出,若忽视空气阻力及水之间的互相作用,则喷水口A .水在空中做匀变速运动B .喷水速度必定,喷水口越高,水喷得越近C .喷水口高度必定,喷水速度越大,水喷得越远D .喷水口高度必定,喷水速度越大,水在空中运动时间越长2. AC3. 运动员驾驶摩托车做跳跃特技表演是一种刺激性很强的运动项目.如下图,AB 是水平路面,长度为 L = 6 m ,BC 是半径为 R = 40 m 的圆弧, AB 、BC 相切于 B 点,CDE 是一段曲面. 运动员驾驶摩托车的功率一直为P = 9 kW ,从 A 点由静止出发,经过 t 1= 4.3 s 到 B 点,此时压力传感器显示摩托车对地压力大小为 F =3.6 ×10 3 N .摩托车经过坡面抵达离地面h = 5 m的 E 点水平飞出,落地址与E 点的水平距离 x = 16 m ,已知人的质量为 m = 60 kg ,摩托车的质量为 M = 120 kg ,重力加快度 g 取 10 m/s 2,运动员和摩托车整体全过程可视为质点,不计空气阻力.求:(1) 摩托车过 B 点时速度 v B ;(2) 摩托车过 E 点时速度 v E ;(3) 设人和摩托车在 AB 段所受的阻力恒定,求该阻力f ;4.在水平路面上做匀速直线运动的小车上有一个固定的竖直杆,其上的三个水平支架上有三个完整同样的小球 A、 B、 C,它们离地的髙度分别为3h、 2h 和 h,当小车碰到阻碍物P 时,马上停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如下图.不计空气阻力 , 则以下说法正确的选项是()A.三个小球落地的时间差与车速有关B.三个小球落地址的间隔距离L1=L2C.三个小球落地址的间隔距离L <L2D.三个小球落地址的间隔距离L >L1124.C5. 如下图, b 点位于斜面底端M点的正上方,并与斜面顶端 A 点等高且高度为h 在 A、 B 两点分别以速度 va 和 vb 沿水平方向抛出两个小球a、b( 可视为质点) . 若 a 球落到 M点的同时 ,b 球恰巧落到斜面的中点N, 不计空气阻力,重力加快度为g, 则A.va=vbB.va= 2vbC.a、 b 两球同时抛出2hD. a 球比 b 球提早抛出的时间为(2-1)gB6.如下图,在距地面高为 H= 45m处,有一小球 A 以初速度 v0= 10m/s 水平抛出,与此同时,在 A 的正下方有一物块 B 也以同样的初速度v0 同方向滑出, B 与地面间的动摩擦因数为μ= 0.5 , A、 B 均可看做质点,空气阻力不计,重力加快度g 取 10m/s2,求:(1) A 球从抛出到落地的时间和这段时间内的水平位移;(2)物块 B 向前滑行时的加快度;(3) A 球落地时, A、 B 之间的距离。
物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)

尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。
双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。
下面分三类情况进行分析。
[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。
若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。
【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。
(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。
(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。
[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。
一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。
(新高考)2021届高考物理二轮复习 热点4 平抛与圆周运动 作业

热点4平抛与圆周运动一、选择题(1~9题为单项选择题,10~12题为多项选择题)1.[2020·河北邢台市调研]如图所示为公路自行车赛中运动员在水平路面上急转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看做一个整体,下列论述正确的是()A.运动员转弯所需向心力由地面对车轮的支持力与重力的合力提供B.运动员转弯所需向心力由地面对车轮的摩擦力提供C.发生侧滑是因为运动员受到的合力方向背离圆心D.发生侧滑是因为运动员受到的合力大于所需的向心力2.在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()A.速度方向和加速度方向都在不断变化B.速度方向与加速度方向之间的夹角一直减小C.在相等的时间间隔内,动量的改变量不相同D.在相等的时间间隔内,动能的改变量相等3.[2020·全国卷Ⅰ,16]如图,一同学表演荡秋千.已知秋千的两根绳长均为10 m,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计.当该同学荡到秋千支架的正下方时,速度大小为8 m/s,此时每根绳子平均承受的拉力约为()A.200 N B.400 NC.600 N D.800 N4.[2020·江苏苏州市期初调研]一小孩站在岸边向湖面抛石子.a、b两粒石子先后从同一位置抛出后,各自运动的轨迹曲线如图所示,两条曲线的最高点位于同一水平线上,忽略空气阻力的影响.关于a、b两粒石子的运动情况,下列说法正确的是() A.在空中运动的加速度a a>a bB.在空中运动的时间t a<t bC .抛出时的初速度v a >v bD .入水时的末速度v ′a <v ′b5.[2020·全国卷Ⅱ,16]如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )A .20B .18C .9.0D .3.0 6.一位网球运动员以拍击球,使网球沿水平方向飞出,第一只球落在自己一方场地的B 点,弹跳起来后,刚好擦网而过,落在对方场地的A 点处,如图所示,第二只球直接擦网而过,也落在A 点处,设球与地面的碰撞过程没有能量损失,且运动过程不计空气阻力,则两只球飞过球网C 处时水平速度之比为( )A .1:1B .1:3C .3:1D .1:9 7.如图所示,一重力不计的带电粒子以初速度v 0射入水平放置、距离为d 的两平行金属板间,射入方向沿两极板的中心线.当极板间所加电压为U 1时,粒子落在A 板上的P 点.如果将带电粒子的初速度变为2v 0,同时将A 板向上移动d2后,使粒子由原入射点射入后仍落在P 点,则极板间所加电压U 2为( )A .U 2=3U 1B .U 2=6U 1C .U 2=8U 1D .U 2=12U 1 8.AB 板间存在竖直方向的匀强电场,现沿垂直电场线方向射入三种比荷相同的带电微粒(不计重力),a 、b 和c 的运动轨迹如图所示,其中b 和c 是从同一点射入的.不计空气阻力,则可知粒子运动的全过程( )A .运动加速度:a a >a b >a cB .飞行时间:t b =t c >t aC .水平速度:v a >v b =v cD .电势能的减小量:ΔE c =ΔE b >ΔE a9.[2020·浙江稽阳联谊学校3月模拟]如图所示,乒乓球的发球器安装在足够大的水平桌面上,可绕竖直转轴OO ′转动,发球器O ′A 部分水平且与桌面之间的距离为h ,O ′A 部分的长度也为h .重力加速度为g .打开开关后,发球器可将乒乓球从A 点以初速度v 0水平发射出去,2gh ≤v 0≤22gh .设发射出去的所有乒乓球都能落到桌面上,乒乓球可视为质点,空气阻力不计.若使该发球器绕转轴OO ′在90°的范围内来回缓慢地水平转动,持续发射足够长时间后,乒乓球第一次与桌面碰撞区域的面积S 是( )A .2πh 2B .3πh 2C .4πh 2D .8πh 2 10.[2020·湖北八校第二次联考]如图,小球甲从A 点水平抛出,同时将小球乙从B 点自由释放,两小球先后经过C 点时速度大小相等,小球甲的速度方向夹角为30°,已知B 、C 高度差为h ,两小球质量相等,重力加速度为g ,不计空气阻力,由以上条件可知( )A .小球甲做平抛运动的初速度大小为2 gh3B .甲、乙两小球到达C 点所用时间之比为3:2C .A ,B 两点高度差为h4D .两小球在C 点时重力的瞬时功率大小相等 11.如图所示,某人从同一位置O 以不同的水平速度投出三枚飞镖A 、B 、C ,最后都插在竖直墙壁上,它们与墙面的夹角分别为60°、45°、30°.图中飞镖的指向可认为是击中墙面时的速度方向,不计空气阻力.下列说法正确的是( )A .三枚飞镖做平抛运动的初速度一定满足v A 0>vB 0>vC 0 B .三枚飞镖击中墙面时的速度一定满足v A <v B <v C C .插在墙上的三枚飞镖的反向延长线一定交于同一点D .三枚飞镖击中墙面时的速度一定满足v A =v C >v B 12.如图所示,两个质量均为m 的小球A 、B 套在半径为R 的圆环上,圆环可绕其竖直方向的直径旋转,两小球随圆环一起转动且相对圆环静止.已知OA 与竖直方向的夹角θ=53°,OA 与OB 垂直,小球B 与圆环间恰好没有摩擦力,重力加速度为g ,sin 53°=0.8,cos 53°=0.6.下列说法正确的是( )A .圆环旋转的角速度大小为 5g4RB .圆环旋转的角速度大小为 5g3RC .小球A 与圆环间摩擦力的大小为75mgD .小球A 与圆环间摩擦力的大小为15mg二、非选择题 13.单板滑雪U 形池比赛是冬奥会比赛项目,其场地可以简化为如图甲所示的模型: U 形滑道由两个半径相同的四分之一圆柱面轨道和一个中央的平面直轨道连接而成,轨道倾角为17.2°.某次练习过程中,运动员以v M =10 m/s 的速度从轨道边缘上的M 点沿轨道的竖直切面ABCD 滑出轨道,速度方向与轨道边缘线AD 的夹角α=72.8°,腾空后沿轨道边缘的N 点进入轨道.图乙为腾空过程左视图.该运动员可视为质点,不计空气阻力,取重力加速度的大小g =10 m/s 2, sin 72.8°=0.96,cos 72.8°=0.30.求:(1)运动员腾空过程中离开AD 的距离的最大值d ;(2)M、N之间的距离L.14.[2020·江西南昌三模]冬奥会上自由式滑雪是一项极具观赏性的运动.其场地由助滑坡AB(高度差为10 m)、过渡区BDE(两段半径不同的圆弧平滑连接而成,其中DE半径为3 m、对应的圆心角为60°)和跳台EF(高度可调,取h=4 m)等组成,如图所示.质量60 kg的运动员由A点静止出发,沿轨道运动到F处飞出.运动员飞出的速度须在54 km/h到68 km/h 之间才能在空中完成规定动作.设运动员借助滑雪杆仅在AB段做功,不计摩擦和空气阻力,g取10 m/s2.则(1)为能完成空中动作,则该运动员在AB过程中至少做多少功?(2)为能完成空中动作,在过渡区最低点D处,求该运动员受到的最小支持力;(3)若将该运动员在AB段和EF段视为匀变速运动,且两段运动时间之比为t AB:t EF=3:1,已知AB=2EF,则运动员在这两段运动的加速度之比为多少?热点4 平抛与圆周运动1.答案:B 2.答案:B解析:由于小球只受重力作用,做平抛运动,故加速度不变,速度大小和方向时刻在变化,选项A 错误;设某时刻速度与竖直方向的夹角为θ,则tan θ=v 0v y =v 0gt ,随着时间t 变大,tan θ变小,θ变小,故选项B 正确;根据动量定理得Δp =mg Δt ,即在相等的时间间隔内,动量改变量相同,故选项C 错误;根据动能定理知,在某段时间内,动能的改变量等于重力做的功,即W G =mgh ,对于平抛运动,在相等时间间隔内,竖直位移不相等,所以动能的改变量不相等,故选项D 错误.3.答案:B解析:该同学荡秋千可视为做圆周运动,设每根绳子的拉力大小为F ,以该同学和秋千踏板整体为研究对象,在最低点根据牛顿第二定律得2F -mg =m v 2R ,代入数据解得F =410N ,故每根绳子平均承受的拉力约为400 N ,故B 项正确,A 、C 、D 项错误.4.答案:D解析:两石子在空中运动的加速度均为g ,选项A 错误;因两石子从同一位置抛出,它们的最高点又在同一水平线上,则竖直方向的运动相同,则在空中的运动时间相同,选项B错误;a 的水平射程小,则根据v 0=x t 可知,a 的初速度小,选项C 错误;根据v ′=v 20+(gt )2可知,a 入水的末速度小,选项D 正确.5.答案:B解析:由平抛运动规律有x =v 0t ,y =12gt 2,得v 0=xg 2y ;动能E k =12m v 20=mgx 24y ∝x 2y,故E 2E 1=⎝⎛⎭⎫x 2x 12·y 1y 2=⎝⎛⎭⎫3h h 2·h 0.5h =18,故B 正确. 6.答案:B解析:由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的.由于球与地面的碰撞没有能量损失,设第一只球自击出到落到A 点时间为t 1,第二只球自击出到落到A 点时间为t 2,则t 1=3t 2.由于两球在水平方向均为匀速运动,水平位移大小相等,设它们从O 点出发时的初速度分别为v 1、v 2,由x =v 0t 得:v 2=3v 1,有v 1v 2=13,所以两只球飞过球网C 处时水平速度之比为1︰3,选项B 正确.7.答案:D解析:板间距离为d ,射入速度为v 0,板间电压为U 1时,在电场中有:d 2=12at 2,a =qU 1md,t =x v 0,解得U 1=md 2v 20qx 2;A 板上移d 2,射入速度为2v 0,板间电压为U 2时,在电场中有:d =12a ′t ′2,a ′=2qU 23md ,t ′=x 2v 0,解得U 2=12md 2v 20qx2,即U 2=12U 1,选项D 正确. 8.答案:B解析:根据牛顿第二定律得,微粒的加速度为a =qE m ,据题qm相同,E 相同,所以a a =a b =a c ,选项A 错误;三个带电微粒在竖直方向都做初速度为零的匀加速直线运动,由y =12at 2得t = 2ya,由图有y b =y c >y a ,则t b =t c >t a ,选项B 正确;三个带电微粒水平方向都做匀速直线运动,由x =v 0t 得v 0=xt ,由图知x a >x b >x c ,又t b =t c >t a ,则v a >v b >v c ,选项C 错误;电场力做功为W =qEy ,由于三个微粒的电荷量关系不能确定,所以不能确定电场力做功的大小,也就不能确定电势能减少量的大小,选项D 错误.9.答案:C解析:设乒乓球做平抛运动的时间为t ,则t =2hg.当速度最大时,水平位移具有最大值x max =v max t =22gh ×2hg=4h ,当速度最小时,水平位移具有最小值x min =v min t =2gh×2h g =2h ,其中v max 、v min 为发射速度的最大值和最小值,又因为发球器O ′A 部分长度也为h ,故乒乓球的落点距竖直转轴距离的范围为3h ≤x ≤5h ,乒乓球第一次与桌面碰撞区域是一个圆心角为90°的宽度为2h 的环形带状区域,其面积为S =14×π[(5h )2-(3h )2]=4πh 2,故选项A 、B 、D 错误,C 正确.10.答案:BC解析:小球乙到C 点的速度为v =2gh ,则小球甲在C 点的速度大小也为2gh ,又因为小球甲在C 点速度与竖直方向成30°角,可知水平分速度为2gh2,故A 错误;小球乙运动到C 点时所用的时间满足h =12gt 2,得t =2hg,而小球甲到达C 点时竖直方向的速度为6gh 2,所以运动时间为t ′=6gh 2g,所以甲、乙两小球到达C 点所用时间之比为3︰2,故B 正确;A ,B 两点高度差Δh =12gt 2-12gt ′2=h4,故C 正确;由于两球在C 点时竖直方向上的速度不相等,所以两小球在C 点时重力的瞬时功率也不相等,故D 错误.11.答案:ACD解析:飞镖做平抛运动,水平方向上有x =v 0t ,速度与竖直方向的夹角的正切值为tan α=v 0v y =v 0gt ,联立解得v 0=gx tan α,故v A 0>v B 0>v C 0,A 正确;飞镖做平抛运动,速度的反向延长线通过水平方向上的位移的中点,而飞镖的指向表示瞬时速度的方向,故插在墙上的三枚飞镖的反向延长线一定交于同一点,C 正确;根据几何关系知,v =v 0sin α=gxsin αcos α=2gx sin 2α,则v A =v C =2gx sin 60°=43gx ,v B =2gx ,故v A =v C >v B ,B 错误,D 正确. 12.答案:AD 解析:小球B 与圆环间恰好没有摩擦力,则有小球B 所受到的支持力和重力的合力提供其所需的向心力,由牛顿第二定律得mg tan37°=mω2R sin37°,解得圆环旋转的角速度大小ω= 5g4R,选项A 正确,B 错误;对小球A 进行受力分析,如图所示,由牛顿第二定律得,在水平方向上F N sin θ-F f cos θ=mω2R sin θ,竖直方向上F N cos θ+F f sin θ-mg =0,解得F f =mg5,选项C 错误,D 正确. 13.答案:(1)4.8 m (2)12 m解析:(1)在M 点,设运动员在ABCD 面内垂直AD 方向的分速度为v 1,由运动的合成与分解规律得v 1=v M sin 72.8°①设运动员在ABCD 面内垂直AD 方向的分加速度为a 1,由牛顿第二定律得 mg cos 17.2°=ma 1②由运动学公式得d =v 212a 1③联立①②③式,代入数据得d =4.8 m ④(2)在M 点,设运动员在ABCD 面内平行AD 方向的分速度为v 2,由运动的合成与分解规律得v 2=v M cos 72.8°⑤设运动员在ABCD 面内平行AD 方向的分加速度为a 2,由牛顿第二定律得 mg sin 17.2°=ma 2⑥设腾空时间为t ,由运动学公式得t =2v 1a 1⑦L =v 2t +12a 2t 2⑧联立①②⑤⑥⑦⑧式,代入数据得L =12 m ⑨ 14.答案:(1)3 150 J (2)7 300 N (3)2︰3解析:(1)由动能定理得mgh AF +W 人=12m v 2FW 人=12m v 2F -mgh AF =3 150 J(2)从D 点到F 点,根据动能定理有-mg [h +R (1-cos 60°)]=12m v 2F -12m v 2D 其中v F 取为最小值 v F =54 km/h =15 m/s在D 点:F N -mg =m v 2DR解得运动员在D 点承受的最小支持力:F N =mg +m v 2F +2g [h +R (1-cos 60°)]R=7 300 N(3)两段运动的平均速度之比v 1︰v 2=AB t 1︰EFt 2=2︰3设滑到B 点速度为v 1,则滑到E 点速度也为v 1, 又设滑到F 点速度为v 2.则由v AB =v 12,vEF =v 1+v 22,得:v 1=2v 2 由a 1=v 1t 1,a 2=v 1-v 2t 2得:a 1︰a 2=2︰3.。
高考物理考前三个月:专题3-抛体运动与圆周运动(含答案)

1.(·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g 6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.2.(·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图2A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 答案 ACD解析 赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R ,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.3.(·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c ⑥联立①②④⑤⑥可得v 水平=2103m/s.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O 点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向答案 B解析人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob方向即可对甲实施救助.2.如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D .tan α与时间t 成正比 答案 BD解析 由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.3.如图6所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d答案 CD解析 环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则 对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰. (2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等. (4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.( √ ) (2)变速运动一定是曲线运动.( × )(3)做曲线运动的物体所受的合外力一定是变力.( × )考题二 平抛(类平抛)运动的规律4.如图7所示,A 、B 两点在同一条竖直线上,A 点离地面的高度为2.5h .B 点离地面的高度为2h .将两个小球分别从A 、B 两点水平抛出,它们在P 点相遇,P 点离地面的高度为h .已知重力加速度为g ,则( )图7A .两个小球一定同时抛出B .两个小球抛出的时间间隔为(3-2)h gC .小球A 、B 抛出的初速度之比v A v B =32 D .小球A 、B 抛出的初速度之比v Av B =23 答案 BD解析 平抛运动在竖直方向上做自由落体运动,由h =12gt 2,得t =2hg,由于A 到P 的竖直高度较大,所以从A 点抛出的小球运动时间较长,应先抛出.故A 错误;由t =2h g,得两个小球抛出的时间间隔为Δt =t A -t B =2×1.5hg-2hg=(3-2)hg .故B 正确;由x =v 0t 得v 0=xg 2h ,x 相等,则小球A 、B 抛出的初速度之比v A v B= h B h A= h 1.5h=23,故C 错误,D 正确.5.在水平地面上的O 点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A 点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是( )图8A .甲先到达最大高度处B .乙先到达最大高度处C .乙先到达A 点D .甲先到达水平地面 答案 C解析 斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图像可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.6.如图9,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为10 m 处的O 点,以5 m/s 的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g =10 m/s 2)( )图9A .2B .0.5C .1 D. 2答案 A解析 如图所示,由三角形的边角关系可知, AQ =PQ所以在竖直方向上有, OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s. v y =gt =10 m/s 所以tan θ=v yv 0=21.平抛运动规律以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向,竖直向下的方向为y 轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.图10(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.8.如图12所示,质量为m 的竖直光滑圆环A 的半径为r ,竖直固定在质量为m 的木板B 上,木板B 的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m 的小球C .现给小球一水平向右的瞬时速度v 0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v 0必须满足( )图12A.3gr ≤v 0≤5grB.gr ≤v 0≤3grC.7gr ≤v 0≤3grD.5gr ≤v 0≤7gr答案 D解析 在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有: 2mgr +12mv 21=12mv 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg 从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12mv 22=12mv 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .9.如图13所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω; (3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W . 答案 见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有 mg sin θ=ma 解得a =g sin θ 小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为N ,水平方向上有N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有N cos θ-k Δl 2sin θ-mg =0 解得ω=mg sin θ+k Δl 2ml 0+Δl 2cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0, 此时有mg tan θ=mω20L 0cos θ 解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2]根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12mv 201.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型). 3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四 抛体运动与圆周运动的综合10.如图14所示,小球沿水平面以初速度v 0通过O 点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则( )图14A .球进入竖直半圆弧轨道后做匀速圆周运动B .若小球能通过半圆弧最高点P ,则球在P 点受力平衡C .若小球的初速度v 0=3gR ,则小球一定能通过P 点D .若小球恰能通过半圆弧最高点P ,则小球落地点到O 点的水平距离为2R 答案 CD解析 不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =mv 2PR得v P =gR , mg ·2R +12mv 2P =12mv 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确. 11.如图15所示,参加某电视台娱乐节目的选手从较高的平台以v 0=8 m/s 的速度从A 点水平跃出后,沿B 点切线方向进入光滑圆弧轨道,沿轨道滑到C 点后离开轨道.已知A 、B 之间的竖直高度H =1.8 m ,圆弧轨道半径R =10 m ,选手质量m =50 kg ,不计空气阻力,g =10 m/s 2,求:图15(1)选手从A 点运动到B 点的时间及到达B 点的速度; (2)选手到达C 点时对轨道的压力.答案 (1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s 选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12mv 2C -12mv 2B 在C 点:N C -mg =m v 2C RN C =1 200 N由牛顿第三定律得,选手对轨道的压力 N C ′=N C =1 200 N ,方向竖直向下曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破: 1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口. 2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化答案AD解析物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D正确.2.如图16所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图16A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC .小船沿轨迹AB 运动位移最大、时间最长.速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动位移最大、速度最小.则小船的最小速度v min =a va 2+b 2答案 D解析 小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a va 2+b 2,所以C 错误,而D 正确.3.如图17所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,定滑轮到杆的距离OC =h .开始时A 位于P 点,PO 与水平方向的夹角为30°.现将A 、B 同时由静止释放,则下列分析正确的是( )图17A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小 C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B ghm A答案 AD解析 物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.4.如图18所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )图18A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍 答案 B解析 根据tan θ=12gt 2v 0t =gt 2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.5.如图19所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中( )图19A .A 做匀变速直线运动,B 做变加速曲线运动 B .相同时间内B 的速度变化一定比A 的速度变化大C .两球的动能都随离地竖直高度均匀变化D .A 、B 两球一定会相碰 答案 C解析 A 球做的是自由落体运动,是匀变速直线运动,B球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.6.如图20所示,一个质量为0.4 kg 的小物块从高h =0.05 m 的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O 点水平飞出,击中平台右下侧挡板上的P 点.现以O 为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y =x 2-6(单位:m),不计一切摩擦和空气阻力,g =10 m/s 2,则下列说法正确的是( )图20A .小物块从水平台上O 点飞出的速度大小为1 m/sB .小物块从O 点运动到P 点的时间为1 sC .小物块刚到P 点时速度方向与水平方向夹角的正切值等于5D .小物块刚到P 点时速度的大小为10 m/s 答案 AB解析 从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m/s ,D 错误.7.如图21所示,一根质量不计的轻杆绕水平固定转轴O 顺时针匀速转动,另一端固定有一个质量为m 的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能( )图21A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向答案 C解析因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F3的方向,故选C.8.如图22所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图22A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB答案BC解析因为A、B两物体的角速度大小相等,根据F n=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对A、B整体分析,f B=2mrω2,对A 分析,有:f A=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,,有沿半径向外滑动的趋势,故C正确;对A、B整体分析,μB×2mg=2mrω2B,解得ωB=μB gr,因为B先滑动,可知B先达到临界角速度,可对A分析,μA mg=mrω2A,解得ωA=μA gr知B的临界角速度较小,即μB<μA,故D错误.9.如图23所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图23(1)若小球通过圆形轨道最高点A 时给轨道的压力大小恰为小球的重力大小,求小球在B 点的初速度多大?(2)若小球从B 点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B 点的初速度大小的范围.答案 (1)2 3 m/s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s 解析 (1)小球在最高点A 处,根据牛顿第三定律可知轨道对小球的压力 N =N ′=mg ①根据牛顿第二定律N +mg =mv 2A R②从B 到A 过程,由动能定理可得-mg ·(2R )=12mv 2A -12mv 20③ 代入数据可解得v 0=2 3 m/s ④(2)情况一:若小球恰好停在C 处,对全程进行研究,则有: -μmgL =0-12mv 21⑤得v 1=4 m/s ⑥ 若小球恰好过最高点A mg =mv A ′2R⑦从B 到A 过程-mg ·(2R )=12mv A ′2-12mv 22⑧得v 2=10 m/s ⑨所以当10 m/s≤v B ≤4 m/s 时,小球停在BC 间.⑩情况二:若小球恰能越过壕沟,则有-μmgL =12mv 2C -12mv 23⑪ h =12gt 2⑪ s =v C t ⑬得v 3=6 m/s ⑭所以当v B ≥6 m/s 时,小球越过壕沟.⑮情况三:若小球刚好能运动到与圆心等高位置,则有 -mgR =0-12mv 24⑯得v 4=2 m/s ⑰所以当v B ≤2 m/s 时,小球又沿圆轨道返回.⑱综上,小球在B 点的初速度大小的范围是v B ≤2 m/s 或10 m/s≤v B ≤4 m/s 或v B ≥6 m/s 10.如图24所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图24(1)小球从P 点抛出时的速度大小v 0;(2)小球从C 点运动到D 点过程中摩擦力做的功W ; (3)小球从D 点返回经过轨道最低点B 的压力大小. 答案 (1)4 m/s (2)-8 J (3)56 N 解析 (1)在A 点有: v 2y =2gh ① v yv 0=tan θ② 由①②式解得:v 0=4 m/s ③(2)整个运动过程中,重力做功为零,根据动能定理得知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能: W =-12mv 20=-8 J。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高考二轮复习之核心考点系列之物理考点总动员【二轮精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
【得分要点】1.对于平抛运动,考生需要知道以下几点:(1)解决平抛运动问题一般方法解答平抛运动问题时,一般的方法是将平抛运动沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度,也不用分解加速度,即先求分速度、分位移,再求合速度、合位移;特别提醒:分解平抛运动的末速度往往成为解题的关键。
(2)常见平抛运动类型:求运动时间往往是突破口①在水平地面水平平抛:②在半圆内的平抛运动:③斜面上的平抛问题:顺着斜面平抛;对着斜面平抛。
④对着竖直墙壁平抛(3)类平抛运动的求解方法①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。
②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解。
2.对于圆周运动,考生需要知道以下几点:(1)描述匀速圆周运动的各物理量间的关系:rn fr r Tr v ππωπ222====,a=r v 2=2ωr .(2)向心力是根据力的作用效果命名的,而不是一种特定的力(如重力),因此在分析物体的受力时,切记不可将向心力也作为物体的受力考虑在内。
(3)在分析传动装置的线速度、角速度、向心加速度与半径之间的关系时,关键是抓住不变量,确定另一变量与半径的正比或反比关系进行判断。
如同轴转动的物体上各点的角速度ω、转速n 和周期T 相等,根据公式ωr v =,可知线速度v 与半径r 成正比;皮带传动中,在皮带不打滑的情况下,通过皮带连接的轮子边缘的各点的线速度大小相等(不打滑的摩擦传动两轮边缘上各点的线速度也大小相等),根据公式rv =ω,可知角速度ω与半径r 成反比。
(4)做匀速圆周运动的物体,在合外力突然消失或者不足以提供物体做圆周运动所需的向心力的情况下,质点是做半径越来越大的运动或沿切线方向飞去的运动,它不是沿半径方向飞去,做离心运动的质点不存在的所谓的“离心力”作用,因为没有任何物体提供这种力.【2019年高考选题】【2019·江苏卷】如图所示,A 、B 两小球从相同高度同时水平抛出,经过时间t 在空中相遇,若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为(A )t (B )22t (C )2t (D )4t【知识精讲】1.物体做曲线运动的条件当物体所受合外力的方向跟它的速度方向不共线时,物体做曲线运动.合运动与分运动具有等时性、独立性和等效性.2.平抛运动(1)规律:v x=v0,v y=gt,x=v0t,y=12gt2.(2)推论:做平抛(或类平抛)运动的物体①任意时刻速度的反向延长线一定通过此时水平位移的中点;②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tanθ=2tanφ.3.竖直平面内圆周运动的两种临界问题(1)绳固定,物体能通过最高点的条件是v≥gR.(2)杆固定,物体能通过最高点的条件是v>0.4.竖直平面内圆周运动的最高点和最低点的速度关系通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.5.对于平抛或类平抛运动与圆周运动组合的问题,应用合成与分解的思想分析这两种运动转折点的速度是解题的关键.【高频考点】高频考点一:运动的合成与分解【解题方略】1.高考考查特点以物体的某种运动形式为背景,考查对分运动、合运动的理解及合成与分解方法的应用.2.解决运动的合成与分解的一般思路(1)明确合运动或分运动的运动性质.(2)确定合运动是在哪两个方向上的合成或分解.(3)找出各个方向上已知的物理量(速度、位移、加速度等).(4)运用力与速度的关系或矢量的运算法则进行分析求解.3.解题的常见误区及提醒(1)不能正确理解合运动、分运动间具有等时性、独立性的特点.(2)具体问题中分不清合运动、分运动,要牢记观察到的物体实际运动为合运动.【例题1】如图所示,甲、乙两船在同一河岸边A、B两处,两船船头方向与河岸均成θ角,且恰好对准对岸边C点。
若两船同时开始渡河,经过一段时间t,同时到达对岸,乙船恰好到达正对岸的D点。
若河宽d、河水流速均恒定,两船在静水中的划行速率恒定,且不影响各自的航行。
下列说法中正确的是()A.两船在静水中的划行速率不同B.甲船渡河的路程有可能比乙船渡河的路程小C.两船同时到达D点D.河水流速为tan d t高频考点二:平抛(类平抛)运动的规律【解题方略】1.高考考查特点(1)平抛物体的运动规律是高考命题的热点.特别要关注以运动项目为背景的实际问题.(2)运动的合成与分解是解决平抛(类平抛)问题的基本方法.2.求解平抛运动的基本思路和方法——运动的分解将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动——“化曲为直”,是处理平抛运动的基本思路和方法.3.求解平抛(类平抛)运动的注意点(1)突出落点问题时,一般建立坐标系,由两个方向遵循的规律列出位移方程,由此确定其落点.(2)突出末速度的大小和方向问题时,一般要建立水平分速度和竖直分速度之间的关系,由此确定其末速度.(3)如图3所示,分解某一过程的位移和某一位置瞬时速度,则可以获得两个直角三角形,一般该类运动问题都可以在这两个直角三角形中解决.4.解题的常见误区及提醒(1)类平抛问题中不能正确应用分解的思想方法.(2)平抛(类平抛)规律应用时,易混淆速度方向和位移方向.(3)实际问题中对平抛运动情景临界点的分析不正确.5.处理平抛(类平抛)运动的四条注意事项(1)处理平抛运动(或类平抛运动)时,一般将运动沿初速度方向和垂直于初速度方向进行分解,先按分运动规律列式,再用运动的合成求合运动.(2)对于在斜面上平抛又落到斜面上的问题,其竖直位移与水平位移之比等于斜面倾角的正切值.(3)若平抛的物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值.(4)做平抛运动的物体,其位移方向与速度方向一定不同.【例题2】如图,可视为质点的小球位于半圆柱体左端点A的正上方某处,以初速度v0水平抛出,其运动轨迹恰好能与半圆柱体相切于B点.过B点的半圆柱体半径与水平方向的夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g)()A. B. C. D.高频考点三:圆周运动【解题方略】1.高考考查特点(1)本考点命题热点集中在物体的受力分析、圆周运动的基本概念及动力学知识、应用静摩擦力分析临界问题上.(2)理解圆周运动的相关物理量,向心力的来源分析、计算及应用牛顿运动定律研究圆周运动的方法是关键.2.解决圆周运动问题要注意以下几点:(1)要进行受力分析,明确向心力的来源,确定圆心以及半径.(2)列出正确的动力学方程F=m v2r=mrω2=mωv=mr4π2T2.3.竖直平面内圆周运动的最高点和最低点的速度通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.4.水平面内圆周运动临界问题(1)水平面内做圆周运动的物体其向心力可能由弹力、摩擦力等力提供,常涉及绳的张紧与松弛、接触面分离等临界状态.(2)常见临界条件:绳的临界:张力F T=0;接触面滑动的临界:F=f;接触面分离的临界:F N=0. 5.竖直平面内圆周运动的分析方法(1)对于竖直平面内的圆周运动要注意区分“轻绳模型”和“轻杆模型”,明确两种模型过最高点时的临界条件.(2)解决竖直平面内的圆周运动的基本思路是“两点一过程”.“两点”即最高点和最低点,在最高点和最低点对物体进行受力分析,确定向心力,根据牛顿第二定律列方程;“一过程”即从最高点到最低点,往往由动能定理将这两点联系起来.6.解题的常见误区及提醒(1)描述圆周运动的物理量的理解要准确.(2)熟悉各种传动装置及判断变量不变量.(3)向心力来源的分析易出现漏力现象.(4)临界问题的处理要正确把握临界条件.【例题3】2016年11月1日广东珠海开幕的第十一届中国国际航空航天博览会上,空军“八一”飞行表演队的6架歼-10战斗机为现场数千名观众带来了一场震撼表演。
某次飞行表演中,飞行员驾驶飞机在竖直面内做半径为R的圆周运动,在最高点时飞行员头朝下,已知飞行员质量为m、重力加速度为g;(1)若飞行员在最高点座椅对他的弹力和飞机在地面上起飞前一样,求最高点的速度?(2)若这位飞行员以(1)中的速度从最高点加速飞到最低点,且他在最低点能承受的最大竖直加速度为5g,求飞机在最低点的最大速度及这个过程中飞机对飞行员做的功?高频考点四:抛体运动与圆周运动的综合【解题方略】解决抛体与圆周运动的综合问题应注意:(1)平抛运动与圆周运动的关联速度.(2)圆周运动中向心力与运动学公式的关联.(3)动能定理的灵活运用.抛体运动与圆周运动的综合问题因牵扯到两种运动的分与合,近几年成为命题者的新宠。