高考物理模型之圆周运动模型

合集下载

高考物理模型101专题讲练:第18讲 水平面内的圆周运动(圆锥摆模型)及其临界问题

高考物理模型101专题讲练:第18讲 水平面内的圆周运动(圆锥摆模型)及其临界问题

第18讲水平面内的圆周运动(圆锥摆模型)及其临界问题1.(江苏高考)如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上,不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小一.知识总结1.圆周运动相关物理量3.匀速圆周运动与变速圆周运动的区别与联系匀速圆周运动变速圆周运动运动特点线速度的大小不变,角速度、周期和频率都不变,向心加速度的大小不变线速度的大小、方向都变,角速度变,向心加速度的大小、方向都变,周期可能变也可能不变受力特点所受到的合力为向心力,大小不变,方向变,其方向时刻指向圆心所受到的合力不总指向圆心,合力产生两个效果:①沿半径方向的分力F n,即向心力,它改变速度的方向;②沿切线方向的分力F t,它改变速度的大小运动性质非匀变速曲线运动(加速度大小不变,方向变化)非匀变速曲线运动(加速度大小、方向都变化)二. 圆锥摆模型及其临界问题1.圆锥摆模型的受力特点受两个力,且两个力的合力沿水平方向,物体在水平面内做匀速圆周运动。

2.运动实例运动模型向心力的来源图示飞机水平转弯火车转弯圆锥摆物体在光滑半圆形碗 内做匀速圆周运动3.解题方法(1)对研究对象进行受力分析,确定向心力来源。

(2)确定圆心和轨道半径。

(3)应用相关力学规律列方程求解。

4.规律总结 (1)圆锥摆的周期如图摆长为L ,摆线与竖直方向夹角为θ。

受力分析,由牛顿第二定律得:mg tan θ=m 4π2T 2rr =L sin θ解得T =2πL cos θg =2πh g 。

(2)结论①摆高h =L cos θ,周期T 越小,圆锥摆转得越快,θ越大。

②摆线拉力F =mgcos θ,圆锥摆转得越快,摆线拉力F 越大。

③摆球的加速度a =g tan θ。

圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能目录1.圆周运动的三种临界情况2.常见的圆周运动及临界条件3.竖直面内圆周运动常见问题与二级结论1.圆周运动的三种临界情况(1)接触面滑动临界:F f=F max。

(2)接触面分离临界:F N=0。

(3)绳恰好绷紧:F T=0;绳恰好断裂:F T达到绳子可承受的最大拉力。

2.常见的圆周运动及临界条件(1)水平面内的圆周运动水平面内动力学方程临界情况示例水平转盘上的物体F f=mω2r恰好发生滑动圆锥摆模型mg tanθ=mrω2恰好离开接触面(2)竖直面及倾斜面内的圆周运动轻绳模型最高点:F T+mg=m v2r恰好通过最高点,绳的拉力恰好为0轻杆模型最高点:mg±F=m v2r恰好通过最高点,杆对小球的力等于小球的重力带电小球在叠加场中的圆周运动等效法关注六个位置的动力学方程,最高点、最低点、等效最高点、等效最低点,最左边和最右边位置恰好通过等效最高点,恰好做完整的圆周运动倾斜转盘上的物体最高点:mg sin θ±F f =mω2r 最低点F f -mg sin θ=mω2r恰好通过最低点3.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。

圆周的半径为R要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由mg =m v 2R可得v =gR ①对应C 点的速度有机械能守恒mg2R =12mv 2C −12mv 2A 得v C =5gR ②当小球在C 点时给小球一个水平向左的速度若小球恰能到达与O 点等高的D 位置则由机械能守恒mgR =12mv 2c 得v c =2gR ③小结:(1).当v c >5gR 时小球能通过最高点A 小球在A 点受轨道向内的支持力由牛顿第二定律F A +mg =m v 2A R④(2).当v c =5gR 时小球恰能通过最高点A 小球在A 点受轨道的支持力为0由牛顿第二定律mg =m v 2A R。

高中物理重要方法典型模型突破11-模型专题(3) -竖直平面内圆周运动 (解析版)

高中物理重要方法典型模型突破11-模型专题(3) -竖直平面内圆周运动 (解析版)

专题十一模型专题(3)竖直面上的圆周运动【典型模型解读】1.竖直面内匀速圆周运动:注意匀速圆周运动的条件2.竖直平面内非匀速圆周运动的两类典型模型分析轻绳模型轻杆模型实例如球与绳连接、沿内轨道运动的球等如球与杆连接、球在内壁光滑的圆管内运动等图示最高点无支撑最高点有支撑最高点受力特征重力、弹力,弹力方向指向圆心重力、弹力,弹力方向指向圆心或背离圆心受力示意图力学方程mg+F N=mrv2mg±F N=mrv2临界特征F N=0,v min=gr竖直向上的F N=mg,v=0过最高点条件v≥gr v≥0速度和弹力关系讨论分析①能过最高点时,v≥gr,F N+mg=mrv2,绳、轨道对球产生弹力F N②不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动①当v=0时,F N=mg,F N为支持力,沿半径背离圆心②当0<v<gr时,-F N+mg=mrv2,F N背离圆心,随v的增大而减小③当v=gr时,F N=0④当v>gr时,F N+mg=mrv2,F N指向圆心并随v的增大而增大【典例讲练突破】【例1】(2019高考江苏卷物理6)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱()A.运动周期为2πRω B.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为m ω2R【解析】由于座舱做匀速圆周运动,由公式2πTω=,解得:2πT ω=,故A 错误;由圆周运动的线速度与角速度的关系可知,v R ω=,故B 正确;由于座舱做匀速圆周运动,所以座舱受到摩天轮的作用力是变力,不可能始终为mg ,故C 错误;由匀速圆周运动的合力提供向心力可得:2F m R ω=合,故D 正确。

【答案】BD【练1】在考驾驶证的科目二阶段,有一项测试叫半坡起步,这是一条类似于凸型桥面设计的坡道。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练专题09 圆周运动七大常考模型【专题导航】目录题型一水平面内圆盘模型的临界问题 (1)热点题型二竖直面内圆周运动的临界极值问题 (3)球—绳模型或单轨道模型 (4)球—杆模型或双轨道模型 (6)热点题型三斜面上圆周运动的临界问题 (8)热点题型四圆周运动的动力学问题 (9)圆锥摆模型 (9)车辆转弯模型 (11)【题型演练】 (13)【题型归纳】题型一水平面内圆盘模型的临界问题1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=mv2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【答案】ABD【解析】当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,Kmg+Kmg=mω2L+mω2·2L,解得:ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=m·2L·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B项正确;当ω>Kg2L时,B已达到最大静摩擦力,则ω在Kg2L<ω<2Kg3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<2Kg3L范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以F f-F T=mLω2,当ω增大时,静摩擦力也增大,D项正确.【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【答案】ABC【解析】由题意可知两轮盘边缘的线速度v大小相等,由v=ωr,r甲∶r乙=3∶1,可得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A、B的角速度之比为1∶3,故A正确;滑块相对盘开始滑动前,根据加速度公式:a =Rω2,又R A∶R B=2∶1,ωA:ωB=1∶3,所以A、B的向心加速度之比为a A∶a B=2∶9,故B正确;滑块的最大静摩擦力分别为F f A=μm A g,F f B=μm B g,则最大静摩擦力之比为F f A∶F f B=m A∶m B;转动中所受的静摩擦力之比为F f A′∶F f B′=m A a A∶m B a B=m A∶4.5m B,由上可得滑块B先达到最大静摩擦力而先开始滑动,故C正确,D错误.【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μgr D.此时烧断绳子,A仍相对盘静止,B将做离心运动【答案】AC【解析】两物体A和B随着圆盘转动时,合外力提供向心力,则F=mω2r,B的半径比A的半径大,所以B所需向心力大,细绳拉力相等,所以当圆盘转速加快到两物体刚好还未发生滑动时,B的静摩擦力方向指向圆心,A的最大静摩擦力方向指向圆外,有相对圆盘沿半径指向圆内的运动趋势,根据牛顿第二定律得:F T-μmg=mω2r,F T+μmg=mω2·2r,解得:F T=3μmg,ω=2μgr,故A、C正确,B错误.烧断细绳瞬间A物体所需的向心力为2μmg,此时烧断细绳,A的最大静摩擦力不足以提供向心力,则A做离心运动,故D错误.热点题型二竖直面内圆周运动的临界极值问题1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”.2.竖直平面内圆周运动的两种模型特点及求解方法球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L的细绳一端拴一质量为m小球,另一端固定在O 点,绳的最大承受能力为11mg,在O点正下方O′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O′为轴完成竖直面完整的圆周运动,则钉的位置到O点的距离为()A.最小为25L B.最小为35L C.最大为45L D.最大为910L【答案】BC【解析】当小球恰好到达圆周运动的最高点时小球的转动半径为r,重力提供向心力,则有mg=mv2r,根据机械能守恒定律可知,mg(L-2r)=12mv2,联立解得:r=25L,故钉的位置到O点的距离为L-25L=35L;当小球转动时,恰好达到绳子的最大拉力时,即F=11mg,此时一定处在最低点,设半径为R,则有:11mg-mg =m v 20R ,根据机械能守恒定律可知,mgL =12mv 20,联立解得:R =15L ,故此时离最高点距离为45L ,则可知,距离最小为35L ,距离最大为45L ,故B 、C 正确,A 、D 错误.【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg【答案】A【解析】小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L ·sin 60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R ,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R ,可解得:F =3mg .由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为a mC .当v 2=c 时,轻质绳最高点拉力大小为acb +a D .若v 2=b ,小球运动到最低点时绳的拉力为6a【答案】 ABD【解析】 在最高点,F T +mg =m v 2L ,解得:F T =m v 2L -mg ,可知纵截距的绝对值为a =mg ,g =am,图线的斜率k =a b =m L ,解得绳子的长度L =mb a ,故A 、B 正确;当v 2=c 时,轻质绳的拉力大小为:F T =m cL -mg=ac b -a ,故C 错误;当v 2=b 时拉力为零,到最低点时根据动能定理得:2mgL =12mv 22-12mv 2,根据牛顿第二定律:F T ′-mg =m v 22L,联立以上可得拉力为:F T ′=6mg =6a ,故D 正确.【变式2】如图所示,半径为R 的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P 时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P 点的水平距离为( )A.2RB.3RC.5RD.6R【答案】D【解析】小球从P 点飞出后,做平抛运动,设做平抛运动的时间为t ,则2R =12gt 2,解得t =2Rg,在最高点P 时,有mg +12mg =m v 2R ,解得v =3gR2,因此小球落地点到P 点的水平距离为x =vt =6R ,选项D 正确.球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径 为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】A【解析】轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R ,随v 增大,F 增大,故C 、D 均错误.【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】 A【解析】 当小球到达最高点弹力为零时,有mg =m v 2R ,解得v =gR ,即当速度v =gR 时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R ,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R ,轻杆的作用力随着速度增大而增大,所以C 、D 错误.【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【答案】AC.【解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR ,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.热点题型三 斜面上圆周运动的临界问题在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2,则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 【答案】C【解析】 当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2rω=g (μcos 30°-sin 30°)r=10×(32×32-12)2.5rad/s =1.0 rad/s ,故选项C 正确.【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L 的细线一端固定, 另一端连接质量为m 的小球,小球在斜面上做圆周运动,A 、B 分别是圆弧的最高点和最低点,若小球在A 、 B 点做圆周运动的最小速度分别为v A 、v B ,重力加速度为g ,则 ( )A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL【答案】C【解析】在A 点,对小球,临界情况是绳子的拉力为零,小球靠重力沿斜面方向的分力提供向心力,根据牛顿第二定律得:mg sin θ=m v 2AL,解得A 点的最小速度为:v A =12gL ,对AB 段过程研究,根据机械能守恒得:12mv 2A +mg ·2L sin 30°=12mv 2B ,解得B 点的最小速度为:v B =5gL 2=1210gL ,故C 正确,A 、B 、D 错误.热点题型四 圆周运动的动力学问题 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

高考物理模型之圆周运动模型

高考物理模型之圆周运动模型

其次章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。

(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的其次定律得:F mg m r T 222+=μω,解得F mgT 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上起先出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子起先受到拉力。

由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力与摩擦力共同来供应,A 增大的向心力靠增加拉力来供应,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力渐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

2025年新高考物理-圆周运动(解析版)

2025年新高考物理-圆周运动(解析版)

圆周运动1.高考真题考点分布题型考点考查考题统计选择题描述圆周运动的基本物理量2024年辽宁卷计算题圆锥摆模型2024年江西卷实验题水平圆盘模型2024年海南卷2.命题规律及备考策略【命题规律】高考对圆周运动基本规律的考查较为频繁,大多联系实际生活。

圆周运动的临界问题的单独考查不是太常见,大多在综合性的计算题中出现的比较频繁,并且会结合有关的功能关系。

【备考策略】1.掌握圆周运动各个物理量之间的关系。

2.能够分析圆周运动的向心力的来源,并会处理有关锥摆模型、转弯模型、圆盘模型的动力学问题。

3.掌握水平面内圆盘模型的动力学分析及临界条件。

4.掌握竖直面内圆周运动的基本规律,并能够联系实际问题做出相应问题的分析。

【命题预测】重点关注竖直面内圆周运动规律在综合性问题中的应用。

一、匀速圆周运动及其描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。

(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。

2.描述匀速圆周运动的物理量及其关系(1)线速度:v=ΔsΔt =2πrT,描述物体圆周运动快慢的物理量。

(2)角速度:ω=ΔθΔt =2πT,描述物体绕圆心转动快慢的物理量。

(3)周期和频率:T=2πrv,T=1f,描述物体绕圆心转动快慢的物理量。

(4)向心加速度:a n=rω2=v2r =ωv=4π2T2r,描述速度方向变化快慢的物理量。

二、匀速圆周运动的向心力1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。

(2)分析物体的受力情况,所有的力沿半径方向指向圆心的合力,就是向心力。

3.向心力的公式:F n=ma n=m v2r =mω2r=m4π2T2r。

高考物理一轮复习 第四章 曲线运动 第20讲 常见的圆周运动动力学模型教学案

高考物理一轮复习 第四章 曲线运动 第20讲 常见的圆周运动动力学模型教学案

第20讲常见的圆周运动动力学模型能力命题点一水平面内的圆周运动1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

2.几种典型的运动模型运动模型向心力的来源图示飞机水平转弯火车转弯(以规定速度行驶)圆锥摆飞车走壁的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T(sin37°=0.6,cos37°=0.8, g取10 m/s2,结果可用根式表示)。

求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析 (1)小球刚好离开锥面时,小球受到重力和细线拉力,如图所示。

小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得mg tan θ=mω20l sin θ解得ω0= gl cos θ=522 rad/s 。

(2)当细线与竖直方向成60°角时,小球已离开锥面,由牛顿第二定律及向心力公式得mg tan60°=mω′2l sin60°解得ω′= g l cos60°=2 5 rad/s 。

答案 (1)522rad/s (2)2 5 rad/s 求解圆周运动问题的“一、二、三、四”1.(2019·北京期末)(多选)如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法不正确的是( )A .球A 的线速度必定大于球B 的线速度B .球A 的角速度必定等于球B 的角速度C .球A 的运动周期必定小于球B 的运动周期D .球A 对筒壁的压力必定大于球B 对筒壁的压力答案 BCD解析 以A 为例对小球进行受力分析,可得支持力和重力的合力充当向心力,设圆锥筒的锥角为θ,则F N =mg sin θ,F n =mg tan θ=m v 2r =mω2r =m 4π2T 2r ,A 、B 质量相等,A 做圆周运动的半径大于B 做圆周运动的半径,所以球A 的线速度必定大于球B 的线速度,球A 的角速度必定小于球B 的角速度,球A 的运动周期必定大于球B 的运动周期,球A 对筒壁的压力必定等于球B 对筒壁的压力,A 正确,B 、C 、D 错误。

专题12 圆周运动模型(原卷版)-2021届高考物理热点题型归纳与变式演练

专题12 圆周运动模型(原卷版)-2021届高考物理热点题型归纳与变式演练

2021届高考物理一轮复习热点题型归纳与变式演练专题12 圆周运动模型【专题导航】目录热点题型一圆周运动的运动学问题 (1)热点题型二圆周运动中的动力学问题 (3)模型一车辆转弯问题 (4)模型二圆锥摆模型 (5)热点题型三竖直面内圆周运动中的临界问题的分析方法 (6)模型一汽车过拱桥模型 (7)模型二轻绳模型 (8)模型三轻杆模型 (9)热点题型四圆周运动中的两类临界问题 (10)热点题型五实验:验证向心力的影响因素 (12)【题型归纳】热点题型一圆周运动的运动学问题【题型要点】1.运动参量当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 4.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A=v B.(3)同轴转动:如图甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr知v与r成正比.【例1】(多选)(2020·辽宁丹东质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,小齿轮边缘的A点和大齿轮边缘的B点()A.A点和B点的线速度大小之比为1∶1 B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1 D.以上三个选项只有一个是正确的【变式1】(多选)(2019·福建漳州市第二次教学质量监测)明代出版的《天工开物》一书中记载:“其湖池不流水,或以牛力转盘,或聚数人踏转.”并附有牛力齿轮翻车的图画如图5所示,翻车通过齿轮传动,将湖水翻入农田.已知A、B齿轮啮合且齿轮之间不打滑,B、C齿轮同轴,若A、B、C三齿轮半径的大小关系为r A>r B>r C,则()A.齿轮A、B的角速度相等B.齿轮A的角速度比齿轮C的角速度小C.齿轮B、C的角速度相等D.齿轮A边缘的线速度比齿轮C边缘的线速度小【变式2】如图所示,轮O1、O3固定在同一转轴上,轮O1、O2用皮带连接且不打滑.在O1、O2、O3三个轮的边缘各取一点A、B、C,已知三个轮的半径之比r1∶r2∶r3=2∶1∶1,求:(1)A、B、C三点的线速度大小之比v A∶v B∶v C;(2)A、B、C三点的角速度之比ωA∶ωB∶ωC;(3)A、B、C三点的向心加速度大小之比a A∶a B∶a C.热点题型二圆周运动中的动力学问题【题型要点】1.向心力的来源向心力是按力的作用效果命名的,不是物体又受到的一个力,它可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力.2.几种典型运动模型模型一车辆转弯问题【例1】(多选)(2020·安徽合肥市第二次质检)如图所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是()A.车受到地面的支持力方向与车所在平面平行B.转弯时车不发生侧滑的最大速度为μgRC.转弯时车与地面间的静摩擦力一定为μMg D.转弯速度越大,车所在平面与地面的夹角越小【变式1】.(2020·四川遂宁三诊)如图所示,图1是甲汽车在水平路面转弯行驶,图2是乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是()A.两车都受到路面竖直向上的支持力作用B.两车都一定受平行路面指向弯道内侧的摩擦力C.甲车可能不受平行路面指向弯道内侧的摩擦力D.乙车可能受平行路面指向弯道外侧的摩擦力【变式2】(多选)(2020·天津市南开区下学期二模)飞机飞行时除受到发动机的推力和空气阻力外,还受到重力和机翼的升力,机翼的升力垂直于机翼所在平面向上,当飞机在空中盘旋时机翼倾斜(如图9所示),以保证重力和机翼升力的合力提供向心力.设飞机以速率v在水平面内做半径为R的匀速圆周运动时机翼与水平面成θ角,飞行周期为T.则下列说法正确的是()A.若飞行速率v不变,θ增大,则半径R增大B.若飞行速率v不变,θ增大,则周期T增大C.若θ不变,飞行速率v增大,则半径R增大D.若飞行速率v增大,θ增大,则周期T可能不变模型二圆锥摆模型【例2】(多选)(2020·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P可绕过悬挂点的竖直轴无摩擦地旋转.一根轻绳穿过P,两端分别连接质量为m1和m2的小球A、B(m1≠m2).设两球同时做如图6所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则()A.两球运动的周期相等B.两球的向心加速度大小相等C.球A、B到P的距离之比等于m2∶m1 D.球A、B到P的距离之比等于m1∶m2【变式1】(多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点,设法让两个小球均在水平面上做匀速圆周运动.已知L1跟竖直方向的夹角为60°,L2跟竖直方向的夹角为30°,下列说法正确的是()A.细线L1和细线L2所受的拉力大小之比为3∶1 B.小球m1和m2的角速度大小之比为3∶1C.小球m1和m2的向心力大小之比为3∶1 D.小球m1和m2的线速度大小之比为33∶1【变式2】(2020·河南省八市重点高中联盟第三次模拟)如图所示,用一根细绳一端系一个小球,另一端固定,给小球不同的初速度,使小球在水平面内做角速度不同的圆周运动,则下列细绳拉力F、悬点到轨迹圆心高度h、向心加速度a、线速度v与角速度平方ω2的关系图象正确的是()【变式3】.(2020·黄冈中学模拟)“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,沿表演台的侧壁做匀速圆周运动.简化后的模型如图所示,若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H,侧壁倾斜角度α不变,则下列说法中正确的是()A.摩托车做圆周运动的H越高,向心力越大B.摩托车做圆周运动的H越高,线速度越大C.摩托车做圆周运动的H越高,向心力做功越多D.摩托车对侧壁的压力随高度H变大而减小热点题型三竖直面内圆周运动中的临界问题的分析方法【题型要点】常见模型【解题技巧】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同.(2)确定临界点:抓住绳模型中最高点v≥gR及杆模型中v≥0这两个临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.模型一 汽车过拱桥模型【例1】.一辆汽车匀速率通过一座圆弧形拱形桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱形桥桥顶时,对桥面的压力F N1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为F N2,则F N1与F N2之比为( ) A .3∶1B .3∶2C .1∶3D .1∶2【变式1】如图,在一固定在水平地面上A 点的半径为R 的球体顶端放一质量为m 的物块,现给物块一水平初速度v 0,则( )A .若v 0=gR ,则物块落地点距离A 点为 2RB .若球面是粗糙的,当v 0<gR 时,物块一定会沿球面下滑一段,再斜抛离开球面C .若v 0<gR ,则物块落地点离A 点为RD .若v 0≥gR ,则物块落地点离A 点至少为2R模型二 轻绳模型【例2】.(多选)(2020·黑龙江哈尔滨三中期中)如图所示,长为L 的细绳一端拴一质量为m 的小球,另一端固定在O 点,绳的最大承受能力为11mg ,在O 点正下方O ′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O ′为轴完成竖直面内完整的圆周运动,则钉的位置到O 点的距离为( )A .最小为25LB .最小为35LC .最大为45LD .最大为910L 【例2】如图甲所示,一轻杆一端固定在O 点,另一端固定一小球,在竖直平面内做半径为R 的圆周运动。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

核心素养微专题2 “平抛运动+圆周运动”模型

核心素养微专题2  “平抛运动+圆周运动”模型
2
二轮 ·物理
2.突破方法 (1)分析临界点:对于物体在临界点相关的多个物理量,需要区分哪些物 理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线 速度)往往是解决问题的突破口。 (2)分析运动过程:对于物体参与的多个运动过程,要仔细分析每个运动 过程做何种运动。若为圆周运动,应明确是水平面的匀速圆周运动,还 是竖直平面的变速圆周运动,机械能是否守恒;若为抛体运动,应明确 是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力。
………………………………………………………………………………… (1)运动阶段的划分,如典例中分成三个阶段; (2)运动阶段的衔接,尤其注意速度方向,如典例中,小球运动到B点时 的速度方向; (3)两个运动阶段在时间和空间上的联系; (4)对于平抛运动或类平抛运动与圆周运动组合的问题,应用合成与分解 的思想分析,这两种运动转折点的速度是解题的关键。
为vy=gt=4 m/s;由小球恰好与倾角为45°的斜面垂直相碰可知,小球从 B点水平射出的速度v=vytan 45°=4 m/s,故小球在斜面上的相碰点C与 B点的水平距离为x=vt=1.6 m,小球在斜面上的相碰点C与B点的竖直
平滑地冲上粗糙斜面,已知小球与粗糙斜面间的动摩擦因数μ=0.6,g
取10 m/s2,则:
4
(1)小球从O点的正上方某处A点水平抛出 的初速度v0为多少?OA的距离为多少? (2)小球在圆管中运动时对圆管的压力是多 少? (3)小球在CD斜面上运动的最大位移是多 少?
5
二轮 ·物理
二轮 ·物理
[思路点拨] 解此题的关键是做好过程分析和受力分析。 (1)小球从A到B做平抛运动,vB为平抛运动与圆周运动的关联速度。 (2)小球从B到C做匀速圆周运动,所施加外力F与重力平衡,圆管对小球 的弹力提供向心力。 (3)小球由C点沿斜面匀减速上滑到最高点。

2023年高考物理圆周运动最新模拟题精练-圆周运动+实际模型(解析版)

2023年高考物理圆周运动最新模拟题精练-圆周运动+实际模型(解析版)

高考物理《圆周运动》常用模型最新模拟题精练专题03.圆周运动+实际模型一.选择题1.(2023湖北荆州重点中学质检)把地球设想成一个半径为地球半径R=6400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/hC.7.9km/s D.7.9km/h【参考答案】C【名师解析】汽车在最高点时,若恰好对“桥面”压力为0,由mg=mv2/R,解得v=7.9km/s,C正确。

2.(2023浙江台州期中联考)晋代孙绰在《游天台山赋》中写道:“过灵溪而一灌,疏烦不想于心胸”。

灵江是台州的母亲河,也是浙江的第三大河,全长197.7公里,上游为仙居的永安溪和天台的始丰溪,中游、、、为灵江,下游为椒江。

如图所示为百度地图中飞云江某段,河水沿着河床做曲线运动。

图中A B C D 四处,受河水冲击最严重的是哪处()A.A处B.B处C.C处D.D处【参考答案】B【名师解析】河水沿着河床做曲线运动,在B处,河水在河岸的作用下转弯,需要受到河岸作用较大的向心力,根据牛顿第三定律,B处受河水冲击最严重,选项B正确。

3.(2022高考上海)运动员滑雪时运动轨迹如图所示,已知该运动员滑行的速率保持不变,角速度为ω,向心加速度为a,则A。

ω变小,a变小B。

ω变小,a变大C。

ω变大,a变小D。

ω变大,a变大【参考答案】D【命题意图】本题考查匀速圆周运动+模型思想+微元思想【名师解析】运动员滑行的速率不变,做匀速率曲线运动,每一小段的运动都可以视为匀速圆周运动,根据v=ωr可知,r减小,角速度ω增大;根据向心加速度公式a=v2/r可知,r减小,向心加速度变大,选项D 正确。

4..(2022高考北京卷)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。

某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。

匀速圆周运动的数学模型

匀速圆周运动的数学模型

匀速圆周运动的数学模型
匀速圆周运动是物理学中的一种基本运动形式,其数学模型是描述一个点绕圆心做速度大小不变的圆周运动。

该模型在数学上通常使用极坐标系来描述,其中半径r和角度θ是两个重要的参数。

在这个模型中,点在圆周上运动,其速度v的大小恒定,方向始终垂直于半径。

因此,速度v可以表示为:v = w×r,其中w是角速度,表示单位时间内转过的角度。

同时,向心加速度a n表示点向圆心运动的趋势,其大小为a n = v²/r。

另外,向心力F表示点受到的使它做圆周运动的力,其大小为F = m ×v²/r,其中m是点的质量。

而离心力则表示点离开圆心运动的趋势,其大小为F = m×w²×r。

这些公式构成了匀速圆周运动的数学模型,可以用来描述和分析圆周运动的各种性质和规律。

例如,通过向心加速度和向心力公式可以推导出角速度和半径之间的关系,也可以用来计算物体在圆周运动中的轨迹和运动规律。

总之,匀速圆周运动的数学模型是一个重要的工具,可以用来描述和分析圆周运动的各种性质和规律,在物理学、工程学等领域有着广泛的应用。

[荐]高考高中物理必考:圆周运动-知识点+例题详解

[荐]高考高中物理必考:圆周运动-知识点+例题详解

【下载后获高清完整版】高考高中物理必考:圆周运动-知识点+例题详解1.圆周运动的物理量⑴线速度:通过的弧长与所用时间的比值方向为圆周上该点的切线方向,线速度大小不变的圆周运动即为匀速圆周运动;⑵角速度:连接质点与圆心的半径转过的弧度与所用时间的比值方向用右手定则判断,四指表示运动方向,大拇指指向角速度的方向;对于圆周来讲,弧长与圆心角存在几何关系∆s=R·∆θ,所以有=·R;⑶周期T:完成一周运动所用的时间;⑷频率和转速:1s时间内完成的周数为频率,频率和转速的含义相同,显然有[例1]如图所示,一个圆台上底半径为,下底半径为,其母线AB长为L,侧放在水平地面上。

推动它之后,它自身以角速度ω旋转,整体绕O点做匀速圆周运动,若接触部分不打滑,求旋转半径OA及旋转一周所需的时间。

解析:由几何关系,可得解得OA=求出A点的线速度有设旋转一周所需的时间为T,则T==2.同心轮与皮带轮同心轮各轮的角速度ω相同,线速度与轮半径成正比;用皮带连接的两个轮的线速度相同,角速度ω与轮半径成反比。

3.向心加速度由于做圆周运动的物体其速度方向时刻沿圆周的切线,即速度方向时刻都在变化,所以一定存在加速度,而力是产生加速度的原因,因此做圆周运动的物体一定受到合外力的作用。

如图,运用相似三角形的知识,容易得到对上式进行变形,两边同除以∆t,可得当∆t 0时,上式可改写为,即为向心加速度的表达式方向指向圆心。

注:不要误认为向心加速度与成正比,与R成反比,实际上加速度只由受力决定,受力确定了,加速度也就确定了,在确定的前提下,才可以讨论与R的关系。

4.曲率圆的概念任意一段曲线都可以分成很多小段,每小段都可以看成圆弧的一部分,即把整条曲线用一系列不同半径的小圆弧代替,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点做一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫作A点的曲率半径。

通过向心加速度的表达式,告诉了我们求曲率半径的方法。

2019高考物理系列模型之过程模型专题09圆周运动模型4学案含答案

2019高考物理系列模型之过程模型专题09圆周运动模型4学案含答案

专题09 圆周运动模型(4)模型演练11.“六十甲子”是古人发明用来计时的方法,也是一种表示自然界五行之气循环流转的直观表示法。

某学校物理兴趣小组用空心透明粗糙塑料管制作了如图所示的竖直“60”造型。

两个“O”字型圆的半径均为R。

让一质量为m、直径略小于管径的小球从入口A处无初速度放入,B、C、D是轨道上的三点,E为出口,其高度低于入口A。

已知BC是“O”字型的一条竖直方向的直径,D点是左侧“O”字型上的一点,与圆心等高,A 比C高R,当地的重力加速度为g,不计一切阻力,则小球在整个运动过程中A.如果是光滑小球,在D点处,塑料管的左侧对小球的压力为4mgB.如果是光滑小球,小球一定能从E点射出C.如果是不光滑小球,且能到达C点,此处塑料管对小球的作用力小于mgD.如果是不光滑小球,小球不可能停在B点【答案】AB支持力恰好等于小球的重力,C错误;若小球运动过程中机械能损失较快,小球不能上升到C点时,则小球在B点两侧经过多次往复运动,将相对于B的机械能全部克服摩擦力做功消耗完时,将停于B点,D错误。

12.某兴趣小组设计了如图所示的玩具轨道,其中“2008”,四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切。

弹射装置将一个小物体(可视为质点)以v=5m/s的水平初速度由a点弹出,从b 点进入轨道,依次经过“8002 ”后从p 点水平抛出。

小物体与地面ab段间的动摩擦因数μ=0.3 ,不计其它机械能损失。

已知ab段长L=1 . 5m,数字“0”的半径R=0.2m,小物体质量m=0 .0lkg ,g=10m/s2。

求:( l )小物体从p 点抛出后的水平射程。

( 2 )小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。

【答案】(1)0.8m (2)0.3N ,方向竖直向下【解析】( l )设小物体运动到p 点时的速度大小为v ,对小物体由 a 运动到p 过程应用动能定理得-μmgL-2Rmg=21mv 2-21mv 02 ①小物体自p 点做平抛运动,设运动时间为:t ,水平射程为:s 则 2R=21gt 2 ②s=vt ③ 联立①②③式,代人数据解得s=0.8m ④F=0.3N ⑥ 方向竖直向下 (III)半球面模型如图5所示,小球从光滑半球面顶端E 开始运动.a 小球只在重力和球面弹力作用下运动时,不可能沿球面从顶端运动底端.b 小球从顶端由静止开始下滑,离开球面时的位置H 满足.c 小球在顶端E 时的速度V 越大,离球面时的位置H 越靠近顶端,角越小即小球能沿球下滑的距离越短.d 当小球在球面顶端的速度时,小球直接从E 点离开球面做平抛运动.例8.如图所示,从光滑的1/4圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R 1,半球的半径为R2,则R1和R2应满足的关系是()【答案】D【解析】为使小物块不沿半球面下滑,则它在球顶端的速度,由机械能守恒定律可得:,联立解得D为正确选项.模型演练13.半径为R的光滑半圆球固定在水平面上如图1所示,顶部有一个物体A,今给A一个水平初速度v0=,则A将 ( )A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新圆弧轨道做圆周运动D.立即离开半圆球做平抛运动【答案】D【解析】由于A的初速度,物体在A点时与半球面之间的压力满足,即,故物体在A点时立即离开半球面,物体离开半球面后只在重力作用下做平抛运动,D正确.14.皮带传送机传送矿石的速度v大小恒定,在轮缘A处矿石和皮带恰好分离,如图所示,则通过A点的半径OA 和竖直方向OB的夹角θ为 ( )A. B.C. D.【答案】D(iii)天体的圆周运动①天体在圆形轨道上的运行(I)向心力中心天体对运行天体的万有引力全部提供向心力(II)各物理量与轨道半径的关系a线速度:b角速度:c周期:d向心加速度:e动能:f势能:与高度有关,质量相同情况下高度越高势能越大.g总能量:与高度有关,质量相同情况下高度越高总能量越大.注:天体的运行速度是相对于中心天体中心的速度,而非相对中心天体表面的速度. (III)运动时间的计算式中是运行天体在圆形轨道上从一位置到另一位置转过的圆心角度.(IV)地球万有引力作用下的三种典型的圆周运动的对比分析重要参数(地球自转参数T=24h =24×3600s, 地球半径R=6.4×103km, g=9.8m/s2)例9.为了探测X 星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r 1圆轨道上运动,周期为T 1,总质量为m 1。

2024年高考物理热点:抛体运动和圆周运动模型(解析版)

2024年高考物理热点:抛体运动和圆周运动模型(解析版)

热点 抛体运动和圆周运动模型1.命题情境源自生产生活中的与力的作用下沿抛体运动和圆周运动相关的情境,对生活生产中力和直线有关的问题平衡问题,要能从情境中抽象出物理模型,正确画受力分析图,运动过程示意图,正确利用牛顿第二定律、运动学公式、动能定理、动量定理、动量守恒定律等解决问题。

2.命题中既有单个物体多过程问题又有多个物体多过程问题,考查重点在受力分析和运动过程分析,能选择合适的物理规律解决实际问题。

3.命题较高的考查了运算能力和综合分析问题的能力。

一、平抛运动的二级结论(1)做平抛运动的物体在任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,则tanα=yx2。

(2)做平抛运动的物体在任一时刻任一位置处,其速度与水平方向的夹角α的正切值,是位移与水平方向的夹角θ的正切值的2倍,即tanα=2tanθ。

(3)若物体在斜面上平抛又落到斜面上,则其竖直位移与水平位移之比等于斜面倾角的正切值。

(4)若平抛物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值。

(5)平抛运动问题要构建好两类模型,一类是常规平抛运动模型,注意分解方法,应用匀变速运动的规律;另一类是平抛斜面结合模型,要灵活应用斜面倾角,分解速度或位移,构建几何关系。

平抛运动中的临界问题1.平抛运动的临界问题有两种常见情形(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好达到某一方向。

2.解题技巧:在题中找出有关临界问题的关键字,如“恰好不出界”“刚好飞过壕沟”“速度方向恰好与斜面平行”“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题。

二、斜上抛运动1.斜上抛运动的飞行时间、射高、射程:(1)在最高点时:v y=0,由④式得到t=v0sinθg⑤物体落回与抛出点同一高度时,有y =0,由③式得飞行时间t 总=2v 0sin θg⑥(2)将⑤式代入③式得物体的射高:H m =v 20sin 2θ2g ⑦(3)将⑥式代入①式得物体的射程:x m =v 20sin2θg注意:当θ=45°时,射程x m 最大。

高考物理动态模型归纳总结

高考物理动态模型归纳总结

高考物理动态模型归纳总结物理学作为一门自然科学,是研究物质及其运动规律的学科。

在高考物理考试中,动态模型是一个重要的考点,它通常涉及到物体在力的作用下的运动规律以及相关的数学计算。

本文将对高考物理动态模型进行归纳总结,以帮助同学们更好地理解和掌握这一部分的知识。

一、匀速直线运动模型1. 定义:物体在单位时间内移动的距离相等,即速度恒定。

2. 公式:v = s/t,其中v表示速度,s表示位移,t表示时间。

3. 单位:速度的国际单位是米每秒(m/s)。

二、变速直线运动模型1. 定义:物体在单位时间内移动的距离不相等,即速度不恒定。

2. 公式:v = (s₂ - s₁)/(t₂ - t₁),其中v表示平均速度,s₂和s₁表示两个时刻的位移,t₂和t₁表示两个时刻的时间间隔。

3. 单位:平均速度的国际单位是米每秒(m/s)。

三、自由落体运动模型1. 定义:物体只受重力作用,在空气中忽略空气阻力的情况下,垂直向下运动的模型。

2. 公式:s = (1/2)gt²,其中s表示下落的位移,g表示重力加速度,t 表示时间。

3. 单位:位移的国际单位是米(m),时间的国际单位是秒(s)。

四、抛体运动模型1. 定义:物体在水平方向具有匀速直线运动,垂直方向具有自由落体运动的模型。

2. 公式:- 水平方向:v = u,其中v表示水平方向的速度,u表示水平方向的初速度。

- 垂直方向:s = ut + (1/2)gt²,其中s表示垂直方向的位移,u表示垂直方向的初速度,g表示重力加速度,t表示时间。

3. 单位:水平方向速度的国际单位是米每秒(m/s),垂直方向位移的国际单位是米(m),时间的国际单位是秒(s)。

五、圆周运动模型1. 定义:物体在做圆周运动的模型。

2. 公式:- 角速度:ω = Δθ/Δt,其中ω表示角速度,Δθ表示角度的改变量,Δt表示时间的改变量。

- 周期:T = (2π)/ω,其中T表示周期,π表示圆周率。

物理建模系列(七) 竖直平面内圆周运动的两种模型

物理建模系列(七) 竖直平面内圆周运动的两种模型

物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。

高考物理第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)

高考物理第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)

第19讲竖直面内圆周运动之绳”模型和“杆”模型及其临界问题1.(2022·江苏)在轨空间站中物体处于完全失重状态,对空间站的影响可忽略.空间站上操控货物的机械臂可简化为两根相连的等长轻质臂杆,每根臂杆长为L.如图1所示,机械臂一端固定在空间站上的O点,另一端抓住质量为m的货物.在机械臂的操控下,货物先绕O点做半径为2L、角速度为ω的匀速圆周运动,运动到A点停下.然后在机械臂操控下,货物从A点由静止开始做匀加速直线运动,经时间t到达B点,A、B间的距离为L。

(1)求货物做匀速圆周运动时受到的向心力大小F n。

(2)求货物运动到B点时机械臂对其做功的瞬时功率P。

(3)在机械臂作用下,货物、空间站和地球的位置如图2所示,它们在同一直线上.货物与空间站同步做匀速圆周运动.已知空间站轨道半径为r,货物与空间站中心的距离为d,忽略空间站对货物的引力,求货物所受的机械臂作用力与所受的地球引力之比F1:F2。

【解答】解:(1)货物做匀速圆周运动,向心力F n=m⋅2Lω2=2mLω2(2)设货物到达B点的速度为v,根据匀变速规律L=v2t,得v=2L t货物的加速度a=vt=2Ltt=2Lt2根据牛顿第二定律,机械臂对货物的作用力F=ma=2mL t2机械臂对货物做功的瞬时功率P=Fv=2mLt2×2L t=4mL2t3(3)设地球质量为M,空间站的质量为m0,地球对空间站的万有引力为F,根据万有引力定律F=GMm 0r 2① 地球对货物的万有引力F 2=G Mm (r−d)2②联立①②得m 0m=Fr 2F 2(r−d)2③设空间站做匀速圆周运动的角速度为ω0,根据牛顿第二定律对空间站F =m 0rω02④ 对货物F 2−F 1=m(r −d)ω02⑤联立③④⑤解得F 1F 2=r 3−(r−d)3r 3答:(1)货物做匀速圆周运动时受到的向心力大小为2m ω2L ; (2)货物运动到B 点时机械臂对其做功的瞬时功率为4mL 2t 3;(3)货物所受的机械臂作用力与所受的地球引力之比为r 3−(r−d)3r 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 圆周运动
解题模型:
一、水平方向的圆盘模型
1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接
物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:
(1)当转盘的角速度ωμ12=
g
r
时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=
g
r
时,细绳的拉力F T 2。

图2.01
解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则
μωmg m r =02,解得ωμ0=
g
r。

(1)因为ωμω102=
<g
r
,所以物体所需向心力小于物体与盘间的最大摩擦力,则物
与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=
>g
r
,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222
+=μω,解得
F mg
T 22
=
μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物
块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心
r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:
(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大
角速度为多大?(g m s =102
/)
图2.02
解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2
可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子开始受到拉力。

由F m r fm =102
2ω,得:ω011
111
055=
=
=F m r m g
m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。

设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析:
对A 有F F m r fm T 1112
1+=ω 对B 有F F m r T fm -=2212

联立解得:ω1121122
52707=
+-==F F m r m r rad s rad s fm fm /./
3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径
R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A
轮边缘上。

若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A.
R B
4
B.
R B
3
C.
R B
2
D. R B
答案:C
二、行星模型
1. 已知氢原子处于基态时,核外电子绕核运动的轨道半径m r 10
110
5.0-⨯=,则氢原子处
于量子数=n 1、2、3,核外电子绕核运动的速度之比和周期之比为:( )
A. 3:2:1::321=v v v ;3333211:2:3::=T T T
B. 333213213:2:1::;3
1
:21:
1::==T T T v v v C. 33
3213213
1:21:1::;2:3:6::==T T T v v v D. 以上答案均不对
解析:根据经典理论,氢原子核外电子绕核作匀速率圆周运动时,由库仑力提供向心力。

即r v m r ke 222=,从而得线速度为mr k e v =周期为v
r T π2=
又根据玻尔理论,对应于不同量子数的轨道半径n r 与基态时轨道半径r 1有下述关系式:
12r n r n =。

由以上几式可得v 的通式为:n
v mr k
n e v n 11==
所以电子在第1、2、3不同轨道上运动速度之比为:2:3:63
1
:21:
1::321==v v v 而周期的通式为:131
131122/22T n v r n n v r n v r
T ====πππ
所以,电子在第1、2、3不同轨道上运动周期之比为:3
333213:2:1::=T T T
由此可知,只有选项B 是正确的。

2. 卫星做圆周运动,由于大气阻力的作用,其轨道的高度将逐渐变化(由于高度变化很缓
慢,变化过程中的任一时刻,仍可认为卫星满足匀速圆周运动的规律),下述卫星运动的一些物理量的变化正确的是:( )
A. 线速度减小
B. 轨道半径增大
C. 向心加速度增大
D. 周期增大
解析:假设轨道半径不变,由于大气阻力使线速度减小,因而需要的向心力减小,而提供向心力的万有引力不变,故提供的向心力大于需要的向心力,卫星将做向心运动而使轨道半径减小,由于卫星在变轨后的轨道上运动时,满足32r T r
GM
v ∝=
和,故v 增大而T 减小,又2r
GM
m
F a =
=
引,故a 增大,则选项C 正确。

3. 经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研
究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当作孤立系统来处理。

现根据对某一双星系统的光度学测量确定;该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动。

(1)试计算该双星系统的运动周期计算T ;
(2)若实验中观测到的运动周期为观测T ,且)1(:
1:>=N N T T 计算观测。

为了理解观测T 与计算T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。

作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质。

若不考虑其他暗物质的影响,请根据这一模型和上述观测结果确定该星系间这种暗物质的密度。

答案:(1)双星均绕它们连线的中点做圆周运动,设运动的速率为v ,得:
GM
L L
v L T L GM v L GM L v M 22/22,2
2
22ππ====计算 (2)根据观测结果,星体的运动周期:计算计算观测T T N
T <=
1
这种差异是由双星系统(类似一个球)内均匀分布的暗物质引起的,均匀分布双星系统
内的暗物质对双星系统的作用,与一个质点(质点的质量等于球内暗物质的总质量'M 且位于中点O 处)的作用相同。

考虑暗物质作用后双星的速度即为观察到的速度1v ,则有:
L
M M G v L MM G L GM L v M 2)
'4(,)2/('2
12
2221+=+=
因为周长一定时,周期和速度成反比,得:
v
N v 1111⋅= 有以上各式得M N M 4
1
'-=
设所求暗物质的密度为ρ,则有3
32)1(34
1)2(34L M N M N L πρρπ-=
-=故。

相关文档
最新文档