大全圆周运动模型

合集下载

9圆周运动七大常考模型(解析版)

9圆周运动七大常考模型(解析版)

圆周运动七大常考模型一水平面内圆盘模型的临界问题1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=mv2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【答案】ABD【解析】当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,Kmg+Kmg=mω2L+mω2·2L,解得:ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=m·2L·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B项正确;当ω>Kg2L时,B已达到最大静摩擦力,则ω在Kg2L<ω<2Kg3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<2Kg3L范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以F f-F T=mLω2,当ω增大时,静摩擦力也增大,D项正确.【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【答案】ABC【解析】由题意可知两轮盘边缘的线速度v大小相等,由v=ωr,r甲∶r乙=3∶1,可得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A、B的角速度之比为1∶3,故A正确;滑块相对盘开始滑动前,根据加速度公式:a =Rω2,又R A∶R B=2∶1,ωA:ωB=1∶3,所以A、B的向心加速度之比为a A∶a B=2∶9,故B正确;滑块的最大静摩擦力分别为F f A=μm A g,F f B=μm B g,则最大静摩擦力之比为F f A∶F f B=m A∶m B;转动中所受的静摩擦力之比为F f A′∶F f B′=m A a A∶m B a B=m A∶4.5m B,由上可得滑块B先达到最大静摩擦力而先开始滑动,故C正确,D错误.【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μgr D.此时烧断绳子,A仍相对盘静止,B将做离心运动【答案】AC【解析】两物体A和B随着圆盘转动时,合外力提供向心力,则F=mω2r,B的半径比A的半径大,所以B所需向心力大,细绳拉力相等,所以当圆盘转速加快到两物体刚好还未发生滑动时,B的静摩擦力方向指向圆心,A的最大静摩擦力方向指向圆外,有相对圆盘沿半径指向圆内的运动趋势,根据牛顿第二定律得:F T-μmg=mω2r,F T+μmg=mω2·2r,解得:F T=3μmg,ω=2μgr,故A、C正确,B错误.烧断细绳瞬间A物体所需的向心力为2μmg,此时烧断细绳,A的最大静摩擦力不足以提供向心力,则A做离心运动,故D错误.二竖直面内圆周运动的临界极值问题1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”.2.竖直平面内圆周运动的两种模型特点及求解方法最高点无支撑最高点有支撑球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L的细绳一端拴一质量为m小球,另一端固定在O 点,绳的最大承受能力为11mg,在O点正下方O′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O′为轴完成竖直面完整的圆周运动,则钉的位置到O点的距离为()A.最小为25L B.最小为35L C.最大为45L D.最大为910L【答案】BC【解析】当小球恰好到达圆周运动的最高点时小球的转动半径为r,重力提供向心力,则有mg=mv2r,根据机械能守恒定律可知,mg(L-2r)=12mv2,联立解得:r=25L,故钉的位置到O点的距离为L-25L=35L;当小球转动时,恰好达到绳子的最大拉力时,即F=11mg,此时一定处在最低点,设半径为R,则有:11mg-mg=mv20R,根据机械能守恒定律可知,mgL=12mv20,联立解得:R=15L,故此时离最高点距离为45L,则可知,距离最小为35L,距离最大为45L,故B、C正确,A、D错误.【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg【答案】A【解析】小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L ·sin 60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R ,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R ,可解得:F =3mg .由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为a mC .当v 2=c 时,轻质绳最高点拉力大小为acb +a D .若v 2=b ,小球运动到最低点时绳的拉力为6a【答案】 ABD【解析】 在最高点,F T +mg =m v 2L ,解得:F T =m v 2L -mg ,可知纵截距的绝对值为a =mg ,g =am ,图线的斜率k =a b =m L ,解得绳子的长度L =mb a ,故A 、B 正确;当v 2=c 时,轻质绳的拉力大小为:F T =m cL -mg=ac b -a ,故C 错误;当v 2=b 时拉力为零,到最低点时根据动能定理得:2mgL =12mv 22-12mv 2,根据牛顿第二定律:F T ′-mg =m v 22L,联立以上可得拉力为:F T ′=6mg =6a ,故D 正确.【变式2】如图所示,半径为R 的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P 时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P 点的水平距离为( )A.2RB.3RC.5RD.6R【答案】D【解析】小球从P 点飞出后,做平抛运动,设做平抛运动的时间为t ,则2R =12gt 2,解得t =2Rg,在最高点P 时,有mg +12mg =m v 2R ,解得v =3gR2,因此小球落地点到P 点的水平距离为x =vt =6R ,选项D 正确.球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径 为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】A【解析】轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R ,随v 增大,F 增大,故C 、D 均错误.【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】 A【解析】 当小球到达最高点弹力为零时,有mg =m v 2R ,解得v =gR ,即当速度v =gR 时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R ,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R ,轻杆的作用力随着速度增大而增大,所以C 、D 错误.【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【答案】AC.【解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR ,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.三 斜面上圆周运动的临界问题在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2,则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 【答案】C【解析】 当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2rω=g (μcos 30°-sin 30°)r=10×(32×32-12)2.5rad/s =1.0 rad/s ,故选项C 正确.【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L 的细线一端固定, 另一端连接质量为m 的小球,小球在斜面上做圆周运动,A 、B 分别是圆弧的最高点和最低点,若小球在A 、 B 点做圆周运动的最小速度分别为v A 、v B ,重力加速度为g ,则 ( )A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL【答案】C【解析】在A 点,对小球,临界情况是绳子的拉力为零,小球靠重力沿斜面方向的分力提供向心力,根据牛顿第二定律得:mg sin θ=m v 2AL,解得A 点的最小速度为:v A =12gL ,对AB 段过程研究,根据机械能守恒得:12mv 2A +mg ·2L sin 30°=12mv 2B ,解得B 点的最小速度为:v B =5gL 2=1210gL ,故C 正确,A 、B 、D错误.四 圆周运动的动力学问题 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

圆周运动的几个模型

圆周运动的几个模型

圆周运动的几个模型一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。

(2)当转盘的角速度时,细绳的拉力。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。

(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。

(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为,离轴心,B 的质量为,离轴心,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?角速度为多大?()图2.02(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。

再增大,AB间绳子开始受到拉力。

由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。

如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。

设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3.如图2.03所示,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。

六种圆周运动模型课件

六种圆周运动模型课件
定理
向心加速度公式 $a_{n} = frac{v^{2}}{r}$,其中 $a_{n}$ 是向心加速度,$v$ 是 物体的线速度,$r$ 是圆周运动的半径。
实例分析
实例1 实例2
04
水平面内的圆周运动
定义与特点
定义
特点
公式与定理
公式
定理
实例分析
01
火车转弯
02 自行车轮转动
03 离心机
05
实例分析
实例1
实例2 实例3
THANKS
感谢观看
VS
详细描述
地球自转是典型的匀速圆周运动实例,地 球围绕自己的轴线做周期性转动,形成了 昼夜交替的现象。钟表指针的转动也是匀 速圆周运动的实例,秒针、分针和时针均 以恒定的角速度转动。旋转木马也是匀速 圆周运动的实例,木马围绕中心轴做匀速 转动,乘客在木马上感受到的力是向心力。
02
变速圆周运动
定义与特点
线速度定义为质点到圆心的距离与通过该质点的圆弧长度的比值,记作v。角速度定义为单位时间内转过的角度, 记作ω。周期T是完成一次圆周运动所需的时间,频率f是一秒内完成的圆周运动次数,转速n是一秒内转过的圈 数。这些公式和定理是描述匀速圆周运动的基本工具。
实例分析
总结词
匀速圆周运动的实例包括地球自转、钟 表指针的转动、旋转木马等。
公式与定理
01
向心加速度公式
02
离心加速度公式
03向心力公式04 Nhomakorabea离心力公式
实例分析
匀速圆周运动 变速圆周运动
03
竖直面内的圆周运动
定义与特点
定义
特点
物体受到重力和绳子的拉力作用,拉 力方向始终沿着圆周的切线方向,重 力方向始终竖直向下。

六种圆周运动模型 ppt课件

六种圆周运动模型 ppt课件

F合
mg
tan
F心
F心
mv2 r
mw2r
解得:
v gr
tan
w g
tan r
规律:稳定状态下,小球所处的位置越高,半径r越
大,角速度越小,线速度越大,而小球受到的支持
力和向心力并不随位置六的种圆变周运化动而模型变化。
4
三、火车转弯模型:
六种圆周运动模型
5
四、汽车过桥模型:
F向
ma
ห้องสมุดไป่ตู้
mv2 R
F向
ma
mv2 R
FN
G mv2 R
六种圆周运动模型
6
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
gR
:绳子或外轨道对物体的弹力:
v2 F m G
R
方向竖直向下
v = g R :绳子或外轨道对物体的弹力:F=0
v< gR:物体不能过最高点!!!
v = g R 是物体所六种受圆周弹运力动模方型 向变化的临界速度。 7
六种圆周运动模型分析
六种圆周运动模型
1
一、圆盘模型:
F合f F心mr2vm2w r
当f最大值时: f mg 线速度有最大值:v gr
g
角速度有最大值:w r
六种圆周运动模型
2
二、圆锥摆模型: 由拉力F和重力G的合力提供向心力
六种圆周运动模型
3
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力

最全的圆周运动模型

最全的圆周运动模型

圆周运动模型一、匀速圆周运动模型 1.随盘匀速转动模型1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。

轻绳长度为L 。

现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求:(1)物体运动一周所用的时间T ;(2)绳子对物体的拉力。

3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。

圆盘上的小球A 作匀速圆周运动。

问(1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止?(2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止?4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。

当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( )A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。

高考物理模型之圆周运动模型

高考物理模型之圆周运动模型

其次章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。

(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的其次定律得:F mg m r T 222+=μω,解得F mgT 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上起先出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子起先受到拉力。

由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力与摩擦力共同来供应,A 增大的向心力靠增加拉力来供应,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力渐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

专题05 圆周运动的两种模型和临界问题【知识梳理】高一物理下学期期中专项复习(新教材人教版)

专题05  圆周运动的两种模型和临界问题【知识梳理】高一物理下学期期中专项复习(新教材人教版)

专题05考点1:竖直平面内圆周运动的两种模型1.模型建立(1)轻绳模型小球沿竖直光滑轨道内侧做圆周运动,小球在细绳作用下在竖直平面内做圆周运动,都是轻绳模型,如图所示。

(2)轻杆模型小球在竖直放置的光滑细管内做圆周运动,小球被一轻杆拉着在竖直平面内做圆周运动,都是轻杆模型,如图所示。

2.模型分析比较项目轻绳模型轻杆模型常见类型过最高点的临界条件小球恰能做圆周运动时,由mg=mv2临r得v临=gr小球恰能做圆周运动时,v临=0讨论分析(1)过最高点时,v≥gr,F+mg=mv2r,绳、轨道对球产生弹力F(2)若计算得到v<gr,不能过最高点,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,方向沿半径背离圆心(2)当0<v<gr时,mg-F N=mv2r,F N背离圆心,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心并随v的增大而增大考点2:圆周运动的临界问题1.关于匀速圆周运动的临界问题,无非是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的拉力、接触面的弹力和摩擦力等相关。

在这类问题中,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识,列方程求解。

常见情况有以下几种:(1)与绳的弹力有关的圆周运动临界问题。

(2)因静摩擦力存在最值而产生的圆周运动临界问题。

(3)受弹簧等约束的匀速圆周运动临界问题。

(4)与斜面有关的圆周运动临界问题。

2.三类常见的临界条件(1)接触与脱离的临界条件:弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T=0。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

圆周运动的几个模型

圆周运动的几个模型

圆周运动的几个模型一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。

(2)当转盘的角速度时,细绳的拉力。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。

(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。

(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为,离轴心,B 的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?角速度为多大?()图2.02 (1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。

再增大,AB间绳子开始受到拉力。

由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。

如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。

设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3.如图2.03所示,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。

六种圆周运动模型

六种圆周运动模型

m v2 FN G R
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
v2 gR :绳子或外轨道对物体的弹力: F m R G
方向竖直向下
v = gR :绳子或外轨道对物体的弹力:F=0
:物体不能过最高点!!! v< gR
v = gR 是物体所受弹力方向变化的临界速度。
m v2 F心 m w2 r r
解得:
v
w
gr tan
g tan r
规律:稳定状态下,小球所处的位置越高,半径r越 大,角速度越小,线速度越大,而小球受到的支持 力和向心力并不随位置的变化而变化。
三、火车转弯模型:
四、汽车过桥模型:
m v2 F向 m a R
m v2 F向 m a R
六、轻杆模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v> gR :绳子或轨道对物体的弹力:
v2 F m G R
方向竖直向下
v = gR :轻杆或管道对物体的弹力:F=0
:轻杆或管道对物体的弹力: v< gR
v2 FN G m R
方向竖直向上
v = gR
是物体所受弹力方向变化的临界速度。
六种圆周运动模型分析
一、圆盘模型:
m v2 F合 f F心 m w2 r r
当f最大值时:
f m g
线速度有最大值:v
grHale Waihona Puke 角速度有最大值:w
g
r
二、圆锥摆模型:
由拉力F和重力G的合力提供向心力
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力

高中物理圆周运动模型

高中物理圆周运动模型

圆周运动模型解题思路①明确研究对象进⾏受⼒分析画出受⼒示意图②分析向⼼为来源③列⽅程in aim Fmuim筘mwo④解⽅程⽔平圆周模型-圆盘模型gwiv问缓慢增机求滑块相对滑动的⼼弱⼥䳸f充当向⼼⼒finnair wi閒fif当ffmaing时W达到最⼤ynmgmwr w⼈越⼩r越⼤越容易滑动与m⽆关0⽐ 时滑块未滑动癌-1⾼⼆muir⼼愿时相对滑动所需知后ing例已知A13C质量分别为mnmn meAǒc们半径分别为r r2⼦从相同0恰好相对圆盘静⽌求A13受到的fEt国国对ciyimcgmuizr⽐㯚Ii MA Wir fimBW ir2半径为r A13之间从⼀13与圆盘之间㥘遯13谁先滑动0W A从啊MAW irtB Mziniig m gHmng mBg ui i临界值Wi㦡Wpi㦡随着必IMA 喖w_w A先滑州州3WFWB⼀起滑州以3WPWB13先AB⼀起3已知物块质量为in r判断绳中是否有拉⼒cowmgmw ir w㾚0was fjnuir TOrǖw_w Fīymgmwr4已知Mmg W RA RB闻绳内何时产⽣⼒何时滑动同侧0W MMg mw in WB原A BOW WB静提供向⼼⼒绳⽆拉⼒国国Wiwa Wa绳产⽣拉⼒B Mmg t Em winA静⼀Em winW_w A⻢上滑动BMgtEmwirBAmg F mw in⺕15已知A13质量分别为m M动摩擦因 13相对圆盘静⽌半径为r求⼉的取值范围cow对A F mgir邮对13⽐较⼩时t sf T f MWrmg MMg Mwm ir uift A国当⼤0时Ta EM wirW愿was揹离圆⼼w_w f指向圆⼼⽐较⼤时if If MuirmgtyMg Mwmiwl sfp wm in WE Wmaxi6AW愿Biwi愿异侧ow加㜾B先临界①0WEW A13均为 绳内⽆拉⼒照照此⼼以B pig不够绳内有拉⼒撤T 对B T国对AT tpng m hn Ttf静MA uniwi iti TT if静减⼩1先向内减为0再向外增⼤1豳T之后AT f静⼆mini㓥静Mng时A临界T png m in17已知mr MN弹簧劲度系数为k物块恰不滑动求愿⻓1 cow W瘵Wcw义⼼压缩im ymg kil rkmairwno tk拉伸Nmgtkl nl mwr⼆圆锥摆模型扃mgtanoagtanoLim Wriiiw等⻓圆锥摆L 定_F mgtanQmwl si no LniW ⺦品等⻓圆锥摆转动速度过快甩得越⾼等⾼圆锥摆h 定_tan ⽉卡W 原等⾼圆锥摆w 下㜀等IĀh⽐过⼤h 减⼩⼩球会⻜起来go____W 从0增⼤a ⼀定有⼒b 不⼀定有⼒T asintmg的定值T acos 0⼗万muir万增⼤三漏⽃模型i1三器咔a㵿mgǚtan卡让丽对于同⼀漏⽃⼼不蕊___1向⼼加速度都相同2都相同为后相同了若⼼则内Not你从碗底到碗⼝逐渐减⼩让不半球形碗R固定不变近⼼离⼼屩ME灜⼀指向圆⼼的合⼒法向⼒则证姆屩⼆灜圆周运动阼咔F㟐㳡⽊屩灜离⼼运动V不够屩1赢近⼼运动洗⾐机脱⽔筒四过弯模型汽⻋⽔平转弯0最⼤值是多少if_意囌5囑喈jumgm 等Vmihugrit rt 越容易侧滑⽕⻋转弯_䑉mg与1元的合⼒1鬺哶可tan1⾼⼆mgtanmiFiliT ano若Plant 则mgtan 孙于所需的⼒mg外轨施加向内的压⼒若以Tt 则mgtan 挝⼤内轨施加向外的⽀持⼒I竖直圆周模型⼀绳模型佯轨m最⾼点Ttmgm毕选重v r当我0时要恰好通过最⾼点mgm下0原oi若想完成完整的圆周运动则到最⾼点速度⾄少为原最低点T mg__m憴重单轨模型最⾼点Fnitmg喋i若想完成完整的圆周运动则到最⾼点速度⾄少为原侃0最低点Firing暩最⾼点F0图像绳对⼩球作⽤⼒FnEm E mgmgmO b V2⼆杆模型双轨m A最⾼点速度从0开始逐渐增⼤R籲mg与流的合⼒屫啥当⻓较⼩时mg1元㗳以越⼤1元越⼩当11元0时mgm等红厅⼦当以较⼤时mg1元哶以越⼤Fi越⼤最低点杆只能提供拉⼒FN mg my双轨模型最⾼点当⻓较⼩时内轨提供向上的1元当阮0时轨道恰⽆作⽤⼒让原当以较⼤时外轨提供向下的信最低点外轨提供向上的1元最⾼点F0图像杆对⼩球作⽤⼒i V2的时V3b时F mE mg F mE mgmg咔0b702三过⽊雕型mg F mil 最⾼点失重若V 直增⼤则所需向⼼⼒增⼤FN Img 安全⾏驶速度以后若让原做平抛运动若以后汽⻋抵达桥顶前斜抛⻜出i Firing 啱超重汽⻋过凹形桥时轮胎所受压⼒⼤于重⼒lmg 若以FA 有爆胎⻛险四斜⾯圆周模型光滑斜⾯最⾼点受⼒分析mgs in 0-T 唥当mgsint 咔即019sinai 时恰能通过最⾼点。

六种圆周运动模型

六种圆周运动模型
六种圆周运动模型
XX,a click to unlimited possibilities
汇报人:XX
目录
01 匀 速 圆 周 运 动
02 变 速 圆 周 运 动
03 斜 抛 圆 周 运 动
04 竖 直 上 抛 圆 周 运 动
05 自 由 落 体 圆 周 运 动
06 平 抛 圆 周 运 动
Part One
轨迹是圆或圆的一部分
是一种特殊的曲线运动
公式
角速度公式:ω=θ/t,其中θ为转过的角度,t为时间 线速度公式:v=s/t,其中s为弧长,t为时间 向心加速度公式:a=v²/r,其中v为线速度,r为半径 周期公式:T=2πr/v,其中T为周期,r为半径,v为线速度
Part Two
变速圆周运动
定义
运动轨迹为抛物线
水平方向做匀速直 线运动
竖直方向做自由落 体运动
公式
平抛圆周运动的线速度公式: v=ωr
平抛圆周运动的角速度公式: ω=√(g/r)
平抛圆周运动的向心加速度 公式:a=ω^2r
平抛圆周运动的周期公式: T=2π√(r/g)
THANKS
汇报人:XX
添加标题
添加标题
添加标题
添加标题
运动方向:竖直上抛圆周运动方向 不断变化
运动周期:竖直上抛圆周运动周期 为定值
公式
竖直上抛圆周运动的速度公式:v = ωr
竖直上抛圆周运动的角速度公式:ω = v/r
竖直上抛圆周运动的周期公式:T = 2πr/v
竖直上抛圆周运动的向心加速度公式:a = v²/r
变速圆周运动是指物体在圆周运动过程中速度大小或方向发生变化的运动。
变速圆周运动中,物体受到的向心力和离心力也会发生变化,与匀速圆周运动不同。

圆周运动模型归类例析

圆周运动模型归类例析

圆周运动模型归类例析一、常见匀速圆周运动模型序号模型名称模型图受力分析图力学方程1水平圆盘上的圆周运动2NfF mgF m Rω==2倾斜圆盘上的圆周运动2cossinNfF mgmg F m Rθθω=±=最高点:摩擦力方向可能沿斜面向上也可能沿斜面向下3火车转变模型(汽车转变,小球在锥形桶内运动)内外轨恰好不受作用力时:2cossinNNF mgF m Rααω==4 圆锥摆模型2cossinTTF mgF m Rθθω==5绳球模型(小球在轨导内运动)最高点:2Tmg F m Rω+=最低点:2TF mg m Rω-=6杆球模型(小球在细管中运动)最高点:2Tmg F m Rω±=在最高点杆的力可能向下,也可能向上或没有作用力最低点:2TF mg m Rω-=7 摩天轮模型最高点:2Nmg F m Rω-=最低点:2NF mg m Rω-=与圆心等高处:NF mg=,2F m Rω=例题1:(多选题)如图所示,两个质量均为m 的小木块A 、B (可视为质点)放在水平圆盘上,A 与转轴OO' 的距离为l ,B 与转轴OO' 的距离为2l 。

木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,已知重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速转动,ω 表示圆盘转动的角速度,下列说法正确的是( )A.木块B 一定比木块A 先开始滑动B.木块A 、木块B 所受的摩擦力始终相等C.是木块B 开始滑动的临界角速度D.当A 所受摩擦力的大小为23kmg 分析与解:因圆盘从静止开始绕转轴缓慢加速转动,在某一时刻可认为稳定状态,木块随圆盘转动时,其受到的静摩擦力的方向指向转轴,两木块转动过程中角速度相等,当木块B 刚刚开始滑动时,由牛顿第二定律可得222kmg m l ω=,可得2ω=A 开始滑动时,由牛顿第二定律得21kmg m l ω=,可得1ω=,12ωω>,因为两木块的最大静摩擦力相等,木块B 先达最大静摩擦力,故木块B 一定比木块A 先开始滑动,选项A 正确,选项B 错误;当木块B 刚刚开始滑动时的角速度为2ω=选项C正解;当木块A 开始滑动时,由牛顿第二定律得21kmg m l ω=,可得1ω=>块A 未发生滑动,其所需的向心力由静摩擦力来提供,即223f m l kmg ω==,选项D 正确. 答案:ACD例题2:如图所示,一倾斜的匀质圆盘垂直于盘面的固定对称轴以恒定的角速度转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动模型一、匀速圆周运动模型 1.随盘匀速转动模型1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。

轻绳长度为L 。

现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求:(1)物体运动一周所用的时间T ;(2)绳子对物体的拉力。

3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。

圆盘上的小球A 作匀速圆周运动。

问(1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止?(2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止?4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。

当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( )A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。

2.转弯模型1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度?Oωω m3、铁路在弯道处的内外轨道高低是不同的,已知内外轨道水平面倾角为θ(图),弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度小于,则( ) A .内轨对内侧车轮轮缘有挤压; B .外轨对外侧车轮轮缘有挤压;C .这时铁轨对火车的支持力等于mg/cos θ;D .这时铁轨对火车的支持力大于mg/cos θ.4.汽车通过一个半径为133m ,路面水平的弯道,汽车与地面之间的摩擦因数为0.3,求汽车转弯时的安全速度。

5.在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A.gRhL B. gRhd C. gRLh D. gRdh6.公路急转弯处通常是交通事故多发地带。

如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c 时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处,( )A .路面外侧高内侧低B .车速只要低于v c ,车辆便会向内侧滑动C .车速虽然高于v c ,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v c 的值变小7、下图是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去8.如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则 ( )A.球A 的角速度一定大于球B 的角速度 B.球A 的线速度一定大于球B 的线速度C.球A 的运动周期一定小于球B 的运动周期D.球A 对筒壁的压力一定大于球B 对筒壁的压力9.有一种杂技表演叫“飞车走壁”。

由杂技演员驾驶摩托车沿圆台形表演台的侧壁,做匀速圆周运动。

右图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h 。

下列说法中正确的是: A .h 越高,摩托车对侧壁的压力将越大 B .h 越高,摩托车做圆周运动的向心力将越大 C .h 越高,摩托车做圆周运动的周期将越小 D .h 越高,摩托车做圆周运动的线速度将越大10、如图所示,一个竖直放置的圆锥筒可绕其中心OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半。

内壁上有一质量为m 的小物块。

求 (1)当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;(2)当物块在A 点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。

11.如图所示,在半径为R 的半圆形碗的光滑表面上,一质量为m 的小球以角速度ω在水平面内作匀速圆周运动,该平面离碗底的距离h 为多少?3.圆锥摆模型1.如图所示,长为L 的细绳一端固定,另一端系一质量为m 的小球。

给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ。

下列说法中正确的是A .小球受重力、绳的拉力和向心力作用B .小球只受重力和绳的拉力作用C .θ 越大,小球运动的速度越大D .θ 越大,小球运动的周期越大2、如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的:A .运动周期相同B .运动线速度相同C .运动角速度相同D .向心加速度相同3.有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.4.如图所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.若女运动员做圆锥摆运动时和竖直方向的夹角为B,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求这时男运动员对女运动员的拉力大小及两人转动的角速度。

5、如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面。

(1)此时绳的张力是多少?(2)若要小球离开锥面,则小球的角速度至少为多少?4.双星模型1.甲、乙两名溜冰运动员,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示.已知M 甲=80 kg,M 乙=40 kg,两人相距0.9 m,弹簧秤的示数为96 N,下列判断正确的是 ( )A.两人的线速相同,约为40 m/sB.两人的角速相同,约为2 rad/sC.两人的运动半径相同,都中0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m2、一根长为L 的轻质硬杆,两端各固定一质量为m 的小球。

现以杆的中点为轴心,使两小球在竖直平面内匀速转动,其周期 。

在图4-73所示竖直位置时,杆对两球的作用力。

LmθT =2π√L/g二、常见的变速圆周运动模型 1、线球模型1、绳系着装有水的小桶(可当做质点),在竖直平面内做圆周运动,水的质量m=0.5kg,绳长L=60cm,已知重力加速度g=10m/s 2。

求:(1)水桶运动到最高点时水不流出的最小速率多大?(2) 如果运动到最高点时的速率V=3m/s 2,水对桶底的压力多大?(3) 如果运动到最低点时的速率V=3m/s 2,水对桶底的压力多大?2.如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则下列说法中正确的是 ( )A .小球在圆周最高点时所受的向心力一定为重力B .小球在最高点时绳子的拉力不可能为零C .若小球刚好能在竖直平面内做圆周运动,则在最高点的速率为gLD .小球过最低点时绳子的拉力一定大于小球重力 3、定性分析单摆在摆动的过程中拉力的大小变化情况4.如图8所示,一质量为0.6kg 的小球,用0.4m 长的细线拴住在竖直面内作圆周运动,求: (1)当小球在圆上最高点速度为4m/s 时,细线的拉力是多大?(2)当小球在圆上最低点速度为24m/s 时,细线的拉力是多大?(g=10m/s 2)5.小球质量为m ,在竖直放置的光滑圆环轨道的底端,具有水平初速度v 时,小球恰能通过圆环顶端,如图所示,现将小球在底端速度加大到2v ,则小球运动到圆环顶端时,对圆环压力的大小为多少呢?2、杆球模型1.如图所示,长为R 的轻质杆(质量不计),一端系一质量为m 的小球(球大小不计),绕杆的另一端O 在竖直平面内做匀速圆周运动,若小球最低点时,杆对球的拉力大小为1.5mg ,求:①小球最低点时的线速度大小? ②小球以多大的线速度运动,通过最高处时杆对球不施力?2、如图所示:细杆的一端与一小球相连,并可绕过另一端O 点的水平轴自由转动,现给小球一初速度使它做圆周运动,图中的a 、b 分别表示小球运动轨迹的最低点和最高点,则杆对球的作用力可能是 A 、a 处为拉力,b 处为拉力 B 、a 处为推力,b 处为推力mvB、a处为拉力,b处为推力 D、a处为推力,b处为拉力3、如图所示,长度为0.5m的轻质细杆OA,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,小球通过最高点时的速度为2 m/s,取g=10m/s2,则此时小球受到杆的作用力是()A.6.0N的支持力B.6.0N的拉力C.24N的拉力D.54N的拉力4、如图所示一辆质量为500kg的汽车静止在一座半径为40m的圆弧形拱桥顶部.(取g=10m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?5、有一运输西瓜的汽车,以5m/s的速率通过一个半径为R=10m的凹形桥,车经凹形桥最低点时,车中间一个质量为6kg的大西瓜受到周围西瓜对它的作用力大小为(g取10m/s2)6.如图2所示,汽车在—段丘陵地匀速行驶时。

相关文档
最新文档