2018年四川省成都市武侯区中考数学二诊试卷及答案

合集下载

2018年四川省成都市中考数学二诊试卷((有答案))

2018年四川省成都市中考数学二诊试卷((有答案))

2018年四川省成都市中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.化简的结果是A. 3B.C.D. 9【答案】A【解析】解:,故A正确,故选:A.根据算术平方根是非负数,可得答案.本题考查了二次根式的化简,算术平方根是非负数.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、,此选项计算错误;B、,此选项计算错误;C、,此选项计算正确;D、,此选项计算错误;故选:C.根据合并同类项法则、同底数幂的除法、同底数幂的乘法和幂的乘方分别计算即可判断.本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的除法、同底数幂的乘法、幂的乘方及积的乘方运算的法则.3.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是A.B.C.D.【答案】B【解析】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.把写成n为整数的形式,则n为A. 1B.C. 2D.【答案】B【解析】解:把写成n为整数的形式为,则n为.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转打一数学学习用具,谜底为A. 量角器B. 直尺C. 三角板D. 圆规【答案】D【解析】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选:D.利用圆规的特点直接得到答案即可.本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:A. 、B. 、3C. 、D. 、3【答案】C【解析】解:这组数据中出现次数最多,有4次,这组数据的众数为,最大数据为、最小数据为,极差为,故选:C.根据众数和极差的定义分别进行解答即可.本题主要考查极差与众数,解题的关键是掌握极差最大值最小值、一组数据中出现次数最多的数据叫做众数.7.将抛物线向左平移2个单位长度,再向下平移3个单位长度,则平移后所得到的抛物线解析式是A. B.C. D.【答案】C【解析】解:将抛物线向左平移2个单位长度,再向下平移3个单位长度,平移后所得抛物线解析式为,故选:C.直接根据平移的规律即可求得答案.本题主要考查函数图象的平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.若关于x的一元二次方程有实根,则m的取值范围是A. B. C. 且 D. 且【答案】D【解析】解:关于x的一元二次方程有实根,,并且,且.故选:D.由于x的一元二次方程有实根,那么二次项系数不等于0,并且其判别式是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.9.如图:有一块含有的直角三角板的两个顶点放在直尺的对边上,如果,那么的度数是A. B. C. D.【答案】B【解析】解:,,,,,,故选:B.直接利用平行线的性质进而结合等腰直角三角形的性质得出答案.此题主要考查了平行线的性质以及等腰直角三角形的性质,正确应用平行线的性质是解题关键.10.如图,正五边形ABCDE内接于,若的半径为5,则的长度为A.B.C.D.【答案】B【解析】解:连接OA、OB,五边形ABCDE是正五边形,,的长度,故选:B.连接OA、OB,根据正五边形的性质求出,根据弧长公式计算即可.本题考查的是正多边形的性质、弧长的计算,掌握正多边形的中心角的计算公式、弧长的计算公式是解题的关键.二、填空题(本大题共9小题,共36.0分)11.因式分解:______.【答案】【解析】解:原式.故答案为:.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.12.如图,在“”网格中,有3个涂成黑色的小方格若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.【答案】【解析】解:如图,可选2个方格完成的图案为轴对称图案的概率.故答案为:.根据轴对称的性质设计出图案即可.本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.13.如图,▱ABCD中,点E在边AD上,以BE为折痕,将向上翻折,点A正好落在CD上的F点,若的周长为8 cm,的周长为20cm,则FC的长为______cm.【答案】6【解析】解:,;的周长为,的周长为 cm,分析可得:的周长的周长.故答案为6.根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是______.【答案】【解析】解:方法一:直线向上平移m个单位后可得:,联立两直线解析式得:,解得:,即交点坐标为,交点在第一象限,,解得:.故答案为:.方法二:如图所示:把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是.故答案为:.直线向上平移m个单位后可得:,求出直线与直线的交点,再由此点在第一象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.15.某班体育委员对本班学生一周锻炼时间单位:小时进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是______小时.【答案】11【解析】解:由统计图可知,一共有:人,该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,该班这些学生一周锻炼时间的中位数是11,故答案为:11.根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.16.若是关于字母a,b的二元一次方程的一个解,代数式的值是______.【答案】24【解析】解:把,代入,得,.故答案为:24.把,代入原方程可得的值,把代数式变形为,然后计算.本题考查了公式法分解因式,把作为一个整体是解题的关键,而也需要运用公式变形,以便计算.17.如图,同心圆的半径为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,若矩形ABCD面积最大时,矩形ABCD的周长为______.【答案】【解析】解:连接OA,OD,作,,,根据矩形的面积和三角形的面积公式发现:矩形的面积为面积的4倍,、OD的长是定值,当的正弦值最大时,三角形的面积最大,即,则,,,,则矩形ABCD的周长是:.故答案是:.连接OA,OD,作,,,将此题转化成三角形的问题来解决,根据三角函数的定义可以证明三角形的面积,根据这一公式分析面积的最大值的情况,然后熟练应用勾股定理,以及直角三角形斜边上的高等于两条直角边乘积除以斜边求得长方形的长和宽,进一步求其周长.本题考查了垂径定理和矩形的性质,考生应注意熟练运用勾股定理,来求边长和周长.18.如图,在矩形ABCD中,将绕点A按逆时针方向旋转一定角度后,BC的对应边交CD边于点连接、若,,,则结果保留根号.【答案】【解析】解:连接AC,AG,,由旋转可得,,,,,∽,,,,是等腰直角三角形,,设,则,,中,,,解得,舍去,,中,,,故答案为:.先连接AC,AG,,构造直角三角形以及相似三角形,根据∽,可得到,设,则,,中,根据勾股定理可得方程,求得AB 的长以及AC的长,即可得到所求的比值.本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.19.在平面直角坐标系,对于点和,给出如下定义:若,则称点Q为点P的“可控变点”例如:点的“可控变点”为点,点的“可控变点”为点点的“可控变点”坐标为______;若点P在函数的图象上,其“可控变点”Q的纵坐标的取值范围是,实数a的值为______.【答案】【解析】解:根据定义,点的“可控变点”坐标为;依题意,图象上的点P的“可控变点”必在函数的图象上,如图.当时,,此时,抛物线的开口向下,故当时,随x的增大而减小,即:,当时,,,,当时,,抛物线的开口向上,故当时,随x的增大而减小,即:,又,的值是:.故答案为,.直接根据“可控变点”的定义直接得出答案;时,求出x的值,再根据“可控变点”的定义即可解决问题.本题主要考查了二次函数图象上点的坐标特征,解答本题的关键是熟练掌握新定义“可控变点”,解答此题还需要掌握二次函数的性质,此题有一定的难度,属于创新题目,中考常考题型.三、计算题(本大题共1小题,共6.0分)20.先化简,再求值:,其中【答案】解:原式,当时,原式.【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.四、解答题(本大题共8小题,共78.0分)21.计算:;解不等式,并把解集在数轴上表示出来.【答案】解:原式;,解不等式得:,解不等式得:,不等式组的解集为,在数轴上表示为.【解析】先求出每一部分的值,再代入求出即可;先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、零指数幂、负整数指数幂、特殊角的三角函数值等知识点,能求出每一部分的值是解的关键,能正确根据不等式的解集得出不等式组的解集是解的关键.22.为了测量白塔的高度AB,在D处用高为米的测角仪 CD,测得塔顶A的仰角为,再向白塔方向前进12米,又测得白塔的顶端A的仰角为,求白塔的高度参考数据,,,,结果保留整数【答案】解:设,在中,,在中,,由题意得,,解得:,故AB米.答:这个电视塔的高度AB为23米.【解析】设,在中表示出CE,在中表示出FE,再由米,可得出关于x的方程,解出即可得出答案.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般.23.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.参加考试的人数是______,扇形统计图中D部分所对应的圆心角的度数是______,请把条形统计图补充完整;若考核为D等级的人中仅有2位女性,公司领导计划从考核为D等级的人员中选2人交流考核意见,请用树状图或表格法,求所选人员恰为一男一女的概率;为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率精确到,【答案】50【解析】解:参加考试的总人数为人,扇形统计图中D部分所对应的圆心角的度数是,C等级人数为,补全图形如下:故答案为:50、;画树状图为:共有20种等可能的结果数,其中恰好抽到一名男生和一名女生的结果数为12,所以恰好抽到一名男生和一名女生的概率;设增长率是x,根据题意,得:,解得:负值舍去,所以,答:每年的增长率为.由A等级人数及其百分比可得总人数,用乘以D等级人数所占比例可得其圆心角度数,再用总人数减去其他学生人数求得C等级人数即可补全图形;画树状图展示所有20种等可能的结果数,再找出恰好抽到一名男生和一名女生的结果数,然后利用概率公式求解.设增长率是x,根据“两年内考核A等级的人数达到30人”列出关于x的方程,解之即可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和一元二次方程.24.如图,已知,是直线AB和某反比例函数的图象的两个交点.求直线AB和反比例函数的解析式;观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;反比例函数的图象上是否存在点C,使得的面积等于的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】解:设反比例函数解析式为,把代入,可得,反比例函数解析式为;把代入,可得,即,,设直线AB的解析式为,把,代入,可得,解得,直线AB的解析式为;由题可得,当x满足:或时,直线AB在双曲线的下方;存在点C.如图所示,延长AO交双曲线于点,点A与点关于原点对称,,的面积等于的面积,此时,点的坐标为;如图,过点作BO的平行线,交双曲线于点,则的面积等于的面积,的面积等于的面积,由可得OB的解析式为,可设直线的解析式为,把代入,可得,解得,直线的解析式为,解方程组,可得;如图,过A作OB的平行线,交双曲线于点,则的面积等于的面积,设直线的解析式为“,把代入,可得“,解得b“,直线的解析式为,解方程组,可得;综上所述,点C的坐标为,,【解析】运用待定系数法,根据,,即可得到直线AB和反比例函数的解析式;根据直线AB在双曲线的下方,即可得到x的取值范围;分三种情况进行讨论:延长AO交双曲线于点,过点作BO的平行线,交双曲线于点,过A作OB的平行线,交双曲线于点,根据使得的面积等于的面积,即可得到点C的坐标为,,本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.25.如图,是的外接圆,,,过点B的直线l是的切线,点D是直线l上一点,过点D作交CB延长线于点E,连接AD,交于点F,连接BF、CD交于点G.求证: ∽ ;当时,求的值;若CD平分,,连接CF,求线段CF的长.【答案】证明:如图1中,,,是切线,,,,,,∽ ;解:如图2中,∽ ;四边形ACED是矩形,:DE::2:4,,∽ ,.解:如图3中,,,,易证 ≌ , ∽ ,::AC,,设,则,,,,,可得,,,设CF交AB于H.则.【解析】只要证明,即可;首先证明BE:DE::2:4,由 ∽ ,可得;想办法证明AB垂直平分CF即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.26.为进一步缓解城市交通压力,湖州推出公共自行车公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数称为存量情况,表格中时的y的值表示8:00点时的存量,时的y值表示9:00点时的存量以此类推,他发现存量辆与为整数满足如图所示的一个二次函数关系.______,解释m的实际意义:______;求整点时刻的自行车存量y与x之间满足的二次函数关系式;已知10::00这个时段的还车数比借车数的2倍少4,求此时段的借车数.【答案】13 7:00时自行车的存量【解析】解:,,则m的实际意义:7:00时自行车的存量;故答案为:13,7:00时自行车的存量;由题意得:,设二次函数的关系式为:,把、和分别代入得:,解得:,;当时,,当时,,设10::00这个时段的借车数为x,则还车数为,根据题意得:,,答:10::00这个时段的借车数为3辆.根据等量关系式:借车数还车数:00的存量,列式求出m的值,并写出实际意义;先求出9点时自行车的存量,当时所对应的y值,即求出n的值;再设一般式将三点坐标代入求出解析式;先分别计算9::00和10::00的自行车的存量,即当和时所对应的y值,设10::00这个时段的借车数为x,根据上一时段的存量还车数借车数此时段的存量,列式求出x的值即可.本题是二次函数的应用,理解各量的实际意义:还车数、借车数、存量;弄清等量关系式:上一时段的存量还车数借车数此时段的存量,考查了利用待定系数法求二次函数的关系式,并根据图象理解真正意义.27.在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P如图1,若点N在边BC上,点M在边DC上,,求证:;如图2,若N为边DC的中点,M在边ED上,,求的值;如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.【答案】证明:在正六边形ABCDEF中,,,,≌ ,,,∽ ,,;延长BC,ED交于点H,延长BN交DH于点G,取BG的中点K,连接KC,在正六边形ABCDEF中,,,,,,,,,,,,,≌ ,,,,,四边形MABG是平行四边形,,,即,如图3,过N作,交AB的延长线于H,,,中,,,,,中,,连接FC,延长FC与AN交于G,设FC与BM交于K,易证 ≌ ,,,,,,,,,,,,,,,设,,由得:,,.【解析】先证明 ≌ ,得,再证明 ∽ ,列比例式可得结论;作辅助线,构建等边三角形的三角形的中位线CK,先证明是等边三角形得:,,由 ≌ ,得,,利用四边形MABG是平行四边形,得,所以,即;如图3,作辅助线,构建直角三角形和全等三角形,根据直角三角形的性质得:,,利用勾股定理求,证明 ≌ ,利用和,列比例式可得:,设,,根据得:,可得结论.本题是相似三角形的综合题,考查了正六边形的性质、全等三角形和相似三角形的性质和判定、平行四边形的性质和判定、平行线分线段成比例定理等知识,一般情况下,正多边形的题解答都比较麻烦,熟练掌握正多边形的定义及性质是关键,第三问比较复杂,辅助线的作法是关键.28.如图,直线l:与x轴、y轴分别相交于A、B两点,抛物线经过点B,交x轴正半轴于点C.求该抛物线的函数表达式;已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;将点A绕原点旋转得点,连接、,在旋转过程中,一动点M从点B出发,沿线段以每秒3个单位的速度运动到,再沿线段以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】解:将代入,得,点B的坐标为,抛物线经过点B,,得,抛物线的解析式为:;将代入,得,,点C的坐标为,点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,,点M的坐标为,将代入,得,点A的坐标,的面积为S,,四边形化简,得,当时,S取得最大值,此时,此时点M的坐标为,即S与m的函数表达式是,S的最大值是,此时动点M的坐标是;如右图所示,取点H的坐标为,连接、,,,,∽ ,,即,,,即点M在整个运动过程中用时最少是秒【解析】根据题意可以求得点B的坐标,从而可以求得抛物线的解析式;根据题意可以求得点A的坐标,然后根据题意和图形可以用含m的代数式表示出S,然后将其化为顶点式,再根据二次函数的性质即可解答本题;根据题意作出点H,然后利用三角形相似和勾股定理、两点之间线段最短即可求得t的最小值.这是一道二次函数综合题,主要考查二次函数的最值、最短路径、三角形相似,待定系数法求二次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用数形结合的思想和转化的数学思想解答.。

2018年四川省成都市中考数学二模试卷(含答案解析)

2018年四川省成都市中考数学二模试卷(含答案解析)

2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .19.(10分)如图,已知反比例函数y =的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ). (1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【分析】(1)把点A 坐标分别代入反比例函数y =,一次函数y =x +b ,求出k 、b 的值,再把点B 的坐标代入反比例函数解析式求出n 的值,即可得出答案;(2)求出直线AB 与y 轴的交点C 的坐标,分别求出△ACO 和△BOC 的面积,然后相加即可; (3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上,∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.【分析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD;(2)由(1)求得AB的长,又由BD为⊙O的直径,即可得∠A=90°,由DF是⊙O的切线,可得∠BDF =90°,在Rt△ABD中,求得tan∠ADB的值,即可求得∠ADB的度数,即可证得△DEF是等边三角形,则问题得解.【解答】解:(1)证明:∵点A是劣弧BC的中点,∴∠ABC=∠ADB.(1分)又∵∠BAD=∠EAB,∴△ABE∽△ADB.(2分)∴.∴AB2=AE•AD.(2)解:∵AE=2,ED=4,∵△ABE∽△ADB,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF 是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y =(x +10)(400﹣10x )=﹣10x 2+300x +4000=﹣10(x ﹣15)2+6250当x =15时,y 有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF = 4 ;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 1﹣cos α (用含α的表达式表示).【分析】(1)先求出BE 的长度后发现BE =BD 的,又∠B =60°,可知△BDE 是等边三角形,可得∠BDE =60°,另外∠DEF =60°,可证得△CDF 是等边三角形,从而CF =CD =BC ﹣BD ;(2)证明△EBD ∽△DCF ,这个模型可称为“一线三等角•相似模型”,根据“AA ”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D 作DM ⊥BE ,DG ⊥EF ,DN ⊥CF ,则DM =DG =DN ,从而证明△BDM ≌△CDN 可得BD =CD ;【探索】由已知不能求得C △ABC =AB +BC +AC =2AB +2OB =2(m +m cos α),则需要用m 和α是三角函数表示出C △AEF ,C △AEF =AE +EF +AF =AG +AH =2AG ;题中直接已知点O 是BC 的中点,应用(2)题的方法和结论,作OG ⊥BE ,OD ⊥EF ,OH ⊥CF ,可得EG =ED ,FH =DF ,则C △AEF =AE +EF +AF =AG +AH =2AG ,而AG =AB ﹣BO ,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.。

2018武侯区二诊【含答案】

2018武侯区二诊【含答案】

2018武侯区⼆诊【含答案】武侯区初2018届第⼆次诊断性检测九年级英语第⼆部分基础知识运⽤六、选择填空A)从各题A、B、C 三个选项中选出正确的答案。

31. Jack is always ________ honest kid. We all trust him at any time in our class.A. aB. anC. the32. ---Our English teacher, Miss Duan, volunteered to explain a new movie to the blind students on March 19th, 2018.---Fantastic! I am so proud of ________.A. sheB. herC. hers33. Just walk down Xiaohe Street and you’ll find Chengdu Museum ________ your right.A. atB. inC. on34. I wanted to see Sichuan opera, so Honghong offered ________ me to enjoy it in Cultural Park.A. takeB. to takeC. took35. ---People use spoons and forks to eat in Thailand. I wonder ________ they use knives.---They don’t use knives.A. whetherB. howC. why36. --- ________ I take photos in the museum?---No, you mustn’t. Can you see the sign ”No photos” on the wall?A. MustB. MayC. Should37. ---John is preparing for the English speech competition.---Great. He’ll lose the competition ________ he tries his best.A. unlessB. afterC. if38. David used to like playing computer games. He found nothing more ________ than that. But now he loses himself in reading.A. harmfulB. fascinatingC. meaningless39. Chengdu Haichang Ocean Park was free for the kids ________ are lonely and hard to communicate with others in April.A. whoB. whomC. which40. Haha. You ________ such a wonderful breakfast! Let’s enjoy it now. thanks, mom.A. cookB. are cookingC. have cookedB) 根据对话内容,从⽅框中选出适当的选项补全对话,并将选项的编号填在横线上。

2018年四川省成都市中考数学试卷和解析

2018年四川省成都市中考数学试卷和解析

2018年四川省成都市中考数学试卷(解答附后)一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是()A.(3,−5) B.(−3,5) C.(3,5) D.(−3,−5)5.(3分)下列计算正确的是()A.x2+x2=x4 B.(x﹣y)2=x2−y2 C.(x2 y)3=x6y D.(−x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃8.(3分)分式方程x+1x +1x−2=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在□ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2π C.3π D.6π10.(3分)关于二次函数y=2x2+4x−1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知a6=b5=c4,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+√83﹣2sin60°+|−√3|(2)化简:(1−1x+1)÷x x 2−116.(6分)若关于x 的一元二次方程x 2−(2a +1)x+a 2=0有两个不相等的实数根,求a 的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度 学生数(名) 百分比非常满意12 10% 满意54 m 比较满意n 40% 不满意 6 5% 根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(−2,0),与反比例函数y=k(x>0)的图象交于B(a,4).x(1)求一次函数和反比例函数的表达式;(x>0)的图象于点(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kxN,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.(4分)已知a>0,S1=1a,S2=−S1−1,S3=1S2,S4=−S3−1,S5=1S4,…(即当n为大于1的奇数时,S n=1S n−1;当n为大于1的偶数时,S n=−S n−1−1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.25.(4分)设双曲线y=k(k>0)与直线y=x交于A,B两点(点A在第三象限),将双x曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=k(k>0)的眸径为6时,k的值为.x二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ACB=90°,AB=√7,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A′,B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c 与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析A卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【考点】数轴、数的大小比较。

2018成都中考数学二模拟试卷含参考答案

2018成都中考数学二模拟试卷含参考答案

(第13题图)9题图)**==(一、选择题1则αsin .A 432 .A 92=+x 34 .A .C 5有( .A 6则∠ 80.A 7(16米,那么路=BC 如图,将n 个边长都为则n 个这样的正方形重叠部分的面积和为(第15题每小题6分,第(2)计算:22 -16.球的仰角分别为四、(每小题817.如图,直线的交点,PB x⊥(1)求点P,另有一个停止DB//交CB的延1 24 3(第18题图)20.如图,⊙O (1)判断DCE ∆(2)设⊙O一、填空题:(21.已知13y x =-22.如图,B A ,,过BC 上一点P =BF 3223+24题图)n m ,以k Q (k k ,44≤≤-的值(4分).27.(10分)运动(不与点对称点,HQ⊥的面积为y.(何值时,HDE∆28.(12的线段AB的长为说明理由.**==(**==(**==()==****==()==****==()==****==()==****==()==****==()==****==(**==()==****==(**==(**==(**==(**==(**==(**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删如有侵犯,请联系我们立即删除)==****==(。

2018年四川省成都市中考数学试卷(含答案与解析)

2018年四川省成都市中考数学试卷(含答案与解析)

---------------- 密★启用前 四川省成都市 2018 年高中阶段教育学校统一招生考试数学_-------------------- 第Ⅰ卷(选择题 共 30 分)__ __ _号 卷生 __ 考 __ __ 上 __答 __ --------------------⨯104B . 4 ⨯105C . 4 ⨯106D . 0.4 ⨯107 3.如图所示的正六棱柱的主视图是 ____ _ -------------------- 8.分式方程 x + 1 --------------------面直角坐标系中,点 P(-3, -5) 关于原点对称的点的坐标是 A .a _ __ __ __ __ 一项是符合题目要求的)__ ( )__ _ _ _ _ _ _ 2.2018 年 5 月 21 日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继 _ _ _ _ 星,卫星进入近地点高度为 200 公里、远地点高度为 40 万公里的预定轨道.将数据 40 _ _ 名 __ 万用科学记数法表示为 ( ) 姓 __ _ __ __ _题校 学 业 毕-------------绝在--------------------(本试卷满分 150 分,考试时间 120 分钟)此 A 卷(共 100 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有--------------------1.实数 a ,b ,c ,d 在数轴上对应的点的位置如图所示,这四个数中最大的是-------------------- B .b C .c D .d( )A B C D无4.在平( )A . (3,-5)B . (-3,5)C . (3,5)D . (-3,-5)5.下列计算正确的是( )A . x 2 + x 2 = x 4B . ( x - y)2 = x 2 - y 2C . ( x 2 y)3 = x 6 yD . (- x 2 ) x 3 = x 56.如图,已知 ∠ABC = ∠DCB ,添加以下条件 ,不能判定 △ABC ≌△DCB 的是 ( )A . ∠A = ∠DB . ∠ACB = ∠DBCC . AC = DBD . AB = DC7.如图是成都市某周内日最高气温的折线统计图 ,关于这 7 天的日最高气温的说法正确的是 ( )A .极差是 8 ℃B .众数是 28 ℃C .中位数是 24 ℃D .平均数是 26 ℃1x + x - 2 = 1 的解是( )A . x = 1B . x = -1C . x = 3D . x = -39.如图,□在 ABCD 中, ∠B = 60 , ⊙C 的半径为 3,则图中阴影部分的面积是( )A . πB . 2πC . 3πD . 6π10.关于二次函数 y = 2 x 2 + 4 x - 1 ,下列说法正确的是 ( )A .图象与 y 轴的交点坐标为 (0,1)B .图象的对称轴在 y 轴的右侧C .当 x <0 时, y 的值随 x 值的增大而减小D . y 的最小值为 -3效数学试卷 第 1 页(共 44 页)数学试卷 第 2 页(共 44 页)8 , 则该盒子中装有黄色兵乓球的个数6 = 5 = ,且 a + b - 2c = 6 ,则 a 的值为2 AC 的长为半径作弧 ,两弧相交于点 M 和x + 1) ÷ 第Ⅱ卷(非选择题 共 70 分)二、填空题(本大题共 4 小题,每小题 4 分,共 16 分.请把答案填在题中的横线上)11.等腰三角形的一个底角为 50 ,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共 16 个,从中随机摸出一个乒乓球 , 若摸到黄色乒乓球的概率为 3是 .13.已知 a bc4.17.(本小题满分 8 分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意14.如图,在矩形 ABCD 中,按以下步骤作图:①分别以点 A 和 C为圆心 ,以大于 1N ;②作直线 MN 交 CD 于点 E .若 DE = 2 , CE = 3 ,则矩形的对角线 AC 的长为.三、解答题(本大题共 6 小题,共 54 分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分 12 分,每题 6 分)(1)计算: 2-2 + 3 8 - 2sin60 + | - 3 | ;度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度 人数 所占百分比非常满意 12 10%满意 54 m比较满意 n 40%不满意 6 5%根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中 m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约 3 600 人,若将“非常满意”和“满意”作为(2)化简: (1- 1 xx 2 - 1 .游客对景区服务工作的肯定 ,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(本小题满分 8 分)由我国完全自主设计、自主建造的首艘国产航母于 2018 年 5 月成功完成第一次海上16.(本小题满分 6 分)若关于 x 的一元二次方程 x 2 - (2a + 1)x + a 2 = 0 有两个不相等的实数根 ,求 a 的取值范围.数学试卷 第 3 页(共 44 页)试验任务 .如图,航母由西向东航行 ,到达 A 处时,测得小岛 C 位于它的北偏东 70 方向,且与航母相距 80 海里,再航行一段时间后到达 B 处,测得小岛 C 位于它的北偏东37 方向.如果航母继续航行至小岛 C 的正南方向的 D 处,求还需航行的距离 BD 的长.数学试卷 第 4 页(共 44 页)tan37 ≈ 0.75 )__ 此__ 如图,在平面直角坐标系 xOy 中,一次函数 y = x + b 的图象经过点 A(-2,0) ,与反比例 _x ( x >0) 的图象交于 B(a,4) . __ 生 __ 卷 考 __ (2)设 M 是直线 AB 上一点,过 M 作 MN ∥x 轴,交反比例函数 y = kx ( x >0) 的图象于 ___ _ _ ____ 答__ __23.已知 a >0 , S = 1 a , S = -S - 1 , S =S , S = -S - 1 , S = S ; 当 n 为 大 于 1 的 偶 数 时 , S = -S=.(用含 a 的代数式表示)3 , M , N 分别在边CN 的值19.(本 _ 20 x (k >0) 与直线 y = x 交于 A , B 两点(点 A13 ,求 DG 的长.(2)-----------------------------(参考数据:sin70 ≈ 0.94 , cos70 ≈ 0.34 , tan70 ≈ 2.75 , sin37 ≈ 0.6 , cos37 ≈ 0.80 ,在--------------------__ __ --------------------小题满分 10 分)____ 函数 y = k号 (1)求一次函数和反比例函数的表达式; -------------------- ___ _ _ 点 N .若以 A ,O ,M ,N 为顶点的四边形是平行四边形,求点 M 的坐标. _ _ _上__ -------------------- _ _ _ _ _ _ 名 _ 姓 _ _ --------------------_ __ __ __ __ 校 题学 --------------------.(本小题满分 10 分)B 卷(共 50 分)一、填空题(本大题共 5 小题,每小题 4 分,共 20 分.请把答案填在题中的横线上)21.已知 x + y = 0.2 , x + 3 y = 1,则代数式 x 2 + 4 x y + 4 y 2 的值为 . 22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝 .如图所示的弦图中 ,四个直角三角形都是全等的 ,它们的两直角边之比均为 2:3 .现随机向该图形内掷一枚小针 ,则针尖落在阴影区域的概率为 .1 1,…(即当 n 为大于 1 1 2 13 4 3 5 S 2 41 的奇数时 , S = - 1 ), 按 此 规 律 ,n n n -1 n -1S24. 如图 , 在菱形 ABCD 中 , tanA = 4AD , BC 上,将四边形 AMNB 沿 MN 翻折,使 AB 的对应 线 段 EF 经 过顶 点 D . 当 EF ⊥ AD 时 , BN为 .业毕如图,在 △Rt ABC 中, ∠C = 90 , AD 平分 ∠BAC 交 BC 于点 D , O 为 AB 上一点,经过点 A , D 的 ⊙O 分别交 AB , AC 于点 E , F ,连接 OF 交 AD 于点 G .25.该双曲线 y = k在第三象限 ),将双曲线在第一象限的一支沿射线 BA 的无(1)求证: BC 是 ⊙O 的切线; 方向平移,使其经过点 A ,将双曲线在第三象限的一支沿 --------------------设 AB = x , AF = y ,试用含 x , y 的代数式表示线段 AD 的长;(3)若 BE = 8 , sinB = 5射线 AB 的方向平移 ,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”, PQ 为双曲线效数学试卷 第 5 页(共 44 页)数学试卷 第 6 页(共 44 页)x(k>0)的眸径为6时,k的值为2为对称轴的抛物线y=ax2+bx+c与4,且△BCG与△BCD面积相等,求点G的坐标;的“眸径”.当双曲线y=k.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)为了美化环境,建设宜居成都,成都市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?图1图2备用图28.(本小题满分12分)如图,在平面直角坐标系xOy中,以直线x=5直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AFFB=3(3)若在x轴上有且只有一点P,使∠APB=90,求k的值.27.(本小题满分10分)在△Rt ABC中,∠ACB=90,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针得到△A'B'C(点A,B的对应点分别为A',B'),射线CA',CB'分别交直线m于点P,Q.(1)如图1,当P与A'重合时,求∠ACA'的度数;(2)如图2,设A'B'与BC的交点为M,当M为A'B'的中点时,求线段PQ的长;(3)在旋转过程时,当点P,Q分别在CA',CB'的延长线上时,试探究四边形P A'B'Q的面积是否存在最小值.若存在,求出四边形P A'B'Q的最小面积;若不存在,请说明理由.备用图数学试卷第7页(共44页)数学试卷第8页(共44页)四川省成都市2018年高中阶段教育学校统一招生考试数学答案解析A卷第Ⅰ卷一、选择题1.【答案】D【解析】解:根据数轴可知a<b<0<c<d,∴这四个数中最大的数是d,故答案为:D.【考点】数轴上数的表示,比较数的大小2.【答案】B【解析】解:40万=4⨯105故答案为:B.【考点】科学记数法表示数3.【答案】A【解析】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意,故答案为:A.【考点】几何体的主视图4.【答案】C【解析】解:点P(-3,-5)关于原点对称的点的坐标为(3,5),故答案为:C.【考点】原点对称,点的坐标变化5.【答案】D【解析】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2x y+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、(-x2)x3=x5,因此D符合题意;故答案为:D.【考点】整式的运算6.【答案】C【解析】解:A、∵∠A=∠D,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB,因此A不符合题意;B、∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB,因此B不符合题意;(D 、∵ AB = DC , ∠ABC = ∠DCB , BC = CB ,∴ △ABC ≌△DCB ,因此 D 不符合题意;故答案为:C .【考点】全等三角形的判定7.【答案】B【解析】A 、极差 = 30 ℃ - 20 ℃ = 10 ℃,因此 A 不符合题意;B 、∵20、28、28、24、26、30、22 这 7 个数中,28 出现两次,是出现次数最多的数,∴众数是 28,因此 B 符合题意;C 、排序:20、22、24、26、28、28、30,最中间的数是 24、26,∴中位数为: (24 + 26) ÷ 2 = 25 ,因此 C 不符合题意;D 、平均数为:(20 + 22 + 24 + 26 + 28 + 28 + 30) ÷ 7 ≠ 26 ,因此 D 不符合题意;故答案为:B .【考点】统计图的应用,平均数及其计算,中位数,极差、标准差,众数8.【答案】A【解析】解:方程两边同时乘以 x( x - 2) 得: x +1)(x - 2) + x = x( x - 2) , x 2 - x - 2 + x = x 2 - 2x ,解之:x = 1 .经检验: x = 1 是原方程的根.故答案为:A .【考点】解分式方程9.【答案】C【解析】解:∵平行四边形 ABCD ,∴ AB ∥DC ,∴ ∠B + ∠C = 180 ,∴ ∠C = 180︒ - 60︒ = 120︒ ,∴阴影部分的面积 = π ⨯ 32 ⨯120 ÷ 360 = 3π ,故答案为:C .【考点】平行四边形的性质,扇形的面积10.【答案】D【解析】解:A 、当 x = 0 时, y = -1 ,图像与 y 轴的交点坐标为 (0, -1) ,因此 A 不符合题意;B 、对称轴为直线 x = -1 ,对称轴在 y 轴的左侧,因此 B 不符合题意;C 、当 x < - 1 时 y 的值随 x 值的增大而减小,当-1<x <0 时 ,y 随 x 的增大而增大 , 因此 C 不符合题意; D 、 a = 2>0 , 当 x = -1 时 ,y 的最小值= 2 - 4 - 1 = -3 ,因此 D 符合题意;故答案为:D .【考点】二次函数的图象与性质第Ⅱ卷二、填空题11.【答案】 8015.【答案】(1)解:原式=1∴它的顶角的度数为:180-50⨯2=80,故答案为:80.【考点】三角形的内角和定理,等腰三角形的性质12.【答案】6【解析】解:设该盒子中装有黄色兵乓球的个数为x个,根据题意得:【考点】概率的概念,解方程13.【答案】12x3=,解之:x=6,故答案为:6. 168【解析】解:设a b c===k,则a=6k,b=5k,c=4k,∵a+b-2c=6, 654∴6k+5k-8k=6,解之:k=2,∴a=6⨯2=12,故答案为:12.【考点】比例的基本性质14.【答案】30【解析】连接AE,根据题意可知MN垂直平分AC,∴AE=CE=3,在△Rt ADE中,AD2=AE2-DE2,AD2=9-4=5,∵AC2=AD2+DC2,AC2=5+25=30,∴AC=30.【考点】尺规作图,线段的垂直平分线的性质,矩形的性质,勾股定理三、解答题3+2-2⨯+342=1+2-3+3 4=9 4【解析】(1)解:原式12 2(2)解:原式x 1 1 (x 1)(x 1) x 1 xx (x 1)(x 1) x 1 xx 13 2 2342142 3 39 4(2)解:原式x 1 1 (x 1)(x 1) x 1 xx (x 1)(x 1) x 1 xx 1【考点】实数的综合运算,分式的化简 16.【答案】解:由题知:(2a 1) 4a 2 4a 2 4a 1 4a 2 4a 1 .∵原方程有两个不相等的实数根,∴ 4a 1>0 ,∴ a >14.【解析】解:由题知:(2a 1) 4a 24a 2 4a 1 4a 2 4a 1 .∵原方程有两个不相等的实数根,∴ 4a 1>0 ,∴ a >1 4.【考点】一元二次方程的判别式17.【答案】解:(1)12045%(2)比较满意;120 40%=48 (人);补全条形统计图如下:在△Rt ACD中,cos∠ACD=CD(3)3600⨯12+54=1980(人). 120答:该景区服务工作平均每天得到1980人的肯定.【解析】解:(1)120,45%;(2)比较满意;120⨯40%=48(人)图略;(3)3600⨯12+54=1980(人). 120答:该景区服务工作平均每天得到1980人的肯定.【考点】统计知识的运用18.【答案】3 2【解析】解:由题知:∠ACD=70,∠BCD=37,AC=80.CD,∴0.34=,∴CD=27.2(海里).AC80在△Rt BCD中,tan∠BCD=BD BD,∴0.75=,∴BD=20.4(海里). CD27.2答:还需要航行的距离BD的长为20.4海里.【考点】解直角三角形的应用19.【答案】解:(1)∵一次函数的图象经过点A(-2,0),∴-2+b=0得b=2.∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=∴4=a+2得a=2,kx(x>0)的图象交于B(a,4).即反比例函数的解析式为:y= (2)∵点A(-2,0),OA=2,8x(x>0);设点M(m-2,m),点N(8m,m).当MN∥AO且MN=AO时,四边形AOMN是平行四边形, |8-(m-2)|=2,m解得,m=22或m=23+2,∴点M的坐标为(22-2,22)或(23,23+2).【解析】解:(1)∵一次函数的图象经过点A(-2,0),∴-2+b=0得b=2.∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=∴4=a+2得a=2,kx(x>0)的图象交于B(a,4).∴4=k2,得k=8,即反比例函数的解析式为:y=8x(x>0);(2)∵点A(-2,0),OA=2,设点M(m-2,m),点N(8,m). m当MN∥AO且MN=AO时,四边形AOMN是平行四边形, |8-(m-2)|=2,m解得,m=22或m=23+2,∴点M的坐标为(22-2,22)或(23,23+2).【考点】一次函数和反比例函数的图象与性质AD =20.【答案】(1)如图,连接 OD ,∵AD 为 ∠BAC 的角平分线,∴ ∠BAD = ∠CAD .∵ OA = OD ,∴ ∠ODA = ∠OAD ,∴ ∠ODA = ∠CAD .∴ OD ∥AC .又∵ ∠C = 90 ,∴ ∠ODC = 90 ,∴ OD ⊥ BC ,∴BC 是 O 的切线;(2)连接 DF , ,由(1)可知,BC 为切线,∴ ∠FDC = ∠DAF .∴ ∠CDA = ∠CFD .∴ ∠AFD = ∠ADB .又∵ ∠BAD = ∠DAF ,∴ △ABD ∽△ADF ,∴ AB AD AF ,∴ AD 2 = AB AF .∴ AD 2 = xy ,AD xyOB=r+813,AE=13=DG=23AD.13=231313=(3)连接EF,在△Rt BOD中,sinB=OD513,设圆的半径为r,∴r=5∴r=5.∴AE=10,AB=18.∵AE是直径,∠AFE=90,而∠C=90,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=AF513.∴AF=AE sin∠AEF=10⨯5∵AF∥OD,5013.∴AG AF1310OD=5=13,∴DG=13∴AD=AB AF=18⨯50301313,∴DG=13⨯30302313.AD =【解析】(1)如图,连接 OD,∵AD 为 ∠BAC 的角平分线,∴ ∠BAD = ∠CAD .∵ OA = OD ,∴ ∠ODA = ∠OAD ,∴ ∠ODA = ∠CAD .∴ OD ∥AC .又∵ ∠C = 90 ,∴ ∠ODC = 90 ,∴ OD ⊥ BC ,∴BC 是 O 的切线;(2)连接 DF , ,由(1)可知,BC 为切线,∴ ∠FDC = ∠DAF .∴ ∠CDA = ∠CFD .∴ ∠AFD = ∠ADB .又∵ ∠BAD = ∠DAF ,∴ △ABD ∽△ADF ,∴ AB AD AF ,∴ AD 2 = AB AF .∴ AD 2 = xy ,AD xy在△Rt BOD中,sinB=OD∴sin∠AEF=AF∴AGAB AF=18⨯50DG=1330(3)连接EF,5=,OB13设圆的半径为r,∴r5=,r+813∴r=5.∴AE=10,AB=18.∵AE是直径,∠AFE=90,而∠C=90,∴EF∥BC,∴∠AEF=∠B,5=.AE13∴AF=AE sin∠AEF=10⨯∵AF∥OD,AF1310===,DG OD513550=.1313∴DG=1323AD.∴AD=30=13,1313∴30⨯13=13231323.【考点】圆的基本性质,切线的判定,相似三角形的判定和性质,锐角三角函数的运用,勾股定理B卷S a aS ∵ S = -S - 1 ,∴ S = (- aa + 1 a + 1a a a +121.【答案】0.36【解析】∵ x + y = 0.2..... ① , x + 3 y = 1......② 由 ① + ② 得: 2x + 4 y = 1.2 ,即 x + 2 y = 0.6 ,∵ x 2 + 4xy + y 2 = ( x + 2 y)2 = 0.62 = 0.36 .【考点】求代数式的值22.【答案】 1213【解析】∵四个直角三角形都是全等的,它们的两直角边之比均为 2:3 ,设两直角边的长分别为 2x 、3x ,∴大正方形的面积为 (2 x )2 + (3x)2 = 13x 2 ,小正方形的边长为 3x - 2 x = x ,则小正方形的面积为 x 2,∴阴影部分的面积为:13x 2 - x 2 = 12x 2 ,∴针尖落在阴影区域的概率为: 12x 2 12 12= ,故答案为: .13x 2 13 13【考点】正方形的面积关系,求概率23.【答案】 - a + 1a【解析】解:∵ S = 1 1 a 1 1 a + 1 , S = -S - 1 , S = ,∴ S = - - 1 = - ,2 1 5 2 4 ∵, S = 13 2,∴ S = 1 ÷ (- 3 a + 1 a ) =- a a + 1,4 3 4) - 1 = - 1,∴ S = -a - 1 、 S = a 、 S = 5 6 7∴ 2 018 ÷ 4 = 54⋯2 ,1 a + 1、 S =- …8∴ S a + 1,故答案为: - .a a【考点】探索规律24.【答案】 27【解析】解:∵菱形 AMNB 沿 MN 翻折,使 AB 的对应线段 EF 经过顶点 D ,∴ ∠A = ∠E = ∠C , ∠1 = ∠B , EM = AM , AB = EF = DC = AD ,∵ EF ⊥ EF ,∴tan∠E=ta n∠A=45x,5x)2,5x,∴FH=DH-DF=365x:DM=3DE,设DM=4x,DE=3x,则EM=AM=5x=EF,∴DC=AD=A M+DM=9x,DF=EF-DE=9x-3x=6x,延长EF交BC于点H,∴AD∥BC,EF⊥EF,∴∠EDM=∠DHC=90,∵∠E=∠C,∴△DEM∽△HCD,∴EM:DC=DE:CH,即5x:9x=3x:CH,解之:CH=27在△Rt DHC中,DH2=DC2-CH2,DH2=81x2-(27解之:DH=3665x-6x=5x,∵∠1+∠HFN=180∠B+∠C=180,∠1=∠B,∴∠HFN=∠C,∠DHC=∠FHN=90,∴△FHN∽△CHD,∴FN:DC=FH:CH,即FN:9x=6解之:FN=2x=BN,∴CN=BC-BN=9x-2x=7x,BN2275x,26.【答案】(1) ⎨ ; 80 x + 1500( x >300)故答案为: 2 7 .【考点】轴对称性质,全等三角形的判定和性质,锐角三角函数的定义25.【答案】 32【解析】解:∵双曲线是关于原点成中心对称,点 P 、Q 关于原点对称和直线 AB 对称,∴四边形 P AQB 是菱形,∵ PQ = 6 ,∴ PO = 3 ,根据题意可得出 △APB 是等边三角形.∴在 △Rt POB 中, OB = tan30 ⨯ PO =设点 B 的坐标为 ( x , x) ,∴ 2 x 2 = 3 ,x 2 = 3 = k , 23 3⨯ 3 = 3 ,故答案为: 3 2.【考点】图形的平移,双曲线的图象与性质二、解答题⎧130 x (0≤x ≤300) ⎩(2)设甲种花卉种植为 a m 2 ,则乙种花卉种植 (1200 - a) m 2 .∴⎨ a ≤2(1200 - a)∴⎨ a ≤2(1200 - a)⎧a ≥200, ⎩,∴ 200≤a ≤800 .当 200≤a <300 时, W = 130a + 100(1200 - a) = 30a + 120 000 . 1当 a = 200 时, Wmin = 126 000 元.当 300≤a ≤800 时, W = 80a + 15 000 + 100(200 - a) = 135 000 - 20a .2当 a = 800 时, W min = 119 000 元. ∵ 119 000<126 000 ,∴当 a = 800 时,总费用最低,最低为 119 000 元.此时乙种花卉种植面积为1200 - 800 = 400 m 2 .答:应分配甲种花卉种植面积为 800 m 2 ,乙种花卉种植面积为 400 m 2 ,才能使种植总费用最少,最少总费用为 119 000 元.⎧130 x (0≤x ≤300) 【解析】(1) ⎨ ; ⎩80 x + 1500( x >300)(2)设甲种花卉种植为 a m 2 ,则乙种花卉种植 (1200 - a) m 2 .⎧a ≥200, ⎩, ∴ 200≤a ≤800 .当 200≤a <300 时, W = 130a + 100(1200 - a) = 30a + 120 000 . 1当 a = 200 时, Wmin = 126 000 元.当 300≤a ≤800 时, W = 80a + 15 000 + 100(200 - a) = 135 000 - 20a .2当 a = 800 时, W min = 119 000 元. ∵ 119 000<126 000 ,∴当 a = 800 时,总费用最低,最低为 119 000 元.此时乙种花卉种植面积为1200 - 800 = 400 m 2 .答:应分配甲种花卉种植面积为 800 m 2 ,乙种花卉种植面积为 400 m 2 ,才能使种植总费用最少,最少总费用为 119 000 元.【考点】一次函数的应用27.【答案】解:(1)由旋转的性质得: AC = A 'C = 2 .∵ ∠ACB = 90 , m ∥AC ,∴ ∠A 'BC = 90 ,∴ cos ∠A 'CB =(2)∵ M 为 A 'B ' 的中点,∴ ∠A 'CM = MA 'C .由旋转的性质得: ∠MA 'C = ∠A ,∴ ∠A = ∠A 'CM . BC 3 = A 'C 2 ,∴ ∠A 'CB = 30 ,∴ ∠ACA ' = 60 .△S PCQ - △S A 'CB ' = △S PCQ - 3 ,∴ S1△S PCQ - △S A 'CB ' = △S PCQ - 3 ,∴ S1∵ tan ∠Q = tan ∠PCA =3 2 2 2 7 ,∴ BQ = BC ⨯ = 3 ⨯ = 2 ,∴ PQ = PB + BQ = . 3 3 2 (3)∵ S P A 'B 'Q = P A 'B 'Q 最小, S △PCQ 即最小,∴ S3 PQ ⨯ BC = PQ . 2 2 法一:(几何法)取 PQ 中点 G ,则 ∠PCQ = 90 .∴ CG = 1PQ . 2当 CG 最小时, PQ 最小,∴ CG ⊥ PQ ,即 CG 与 CB 重合时, CG 最小.∴ CG min = 3 , PQ min = 2 3 ,∴ (S ) △PCQ min = 3 , SP A 'B 'Q = 3 - 3 .法二:(代数法)设 PB = x , BQ = y . 由射影定理得: xy = 3 ,∴当 PQ 最小,即 x + y 最小, ∴ ( x + y)2 = x 2 + y 2 + 2xy = x 2 + y 2 + 6≥2xy + 6 = 12 . 当 x = y = 3 时,“ = ”成立,∴ PQ = 3 + 3 = 2 3 . 【解析】解:(1)由旋转的性质得: AC = A 'C = 2 .∵ ∠ACB = 90 , m ∥AC ,∴ ∠A 'BC = 90 ,∴ cos ∠A 'CB =(2)∵ M 为 A 'B ' 的中点,∴ ∠A 'CM = MA 'C .由旋转的性质得: ∠MA 'C = ∠A ,∴ ∠A = ∠A 'CM .3 3 3 ∴ tan ∠PCB = tan ∠A =,∴ PB = BC = . 2 2 2BC 3 =A 'C 2,∴ ∠A 'CB = 30 ,∴ ∠ACA ' = 60 .∵ tan ∠Q = tan ∠PCA = 3 2 2 2 7 ,∴ BQ = BC ⨯ = 3 ⨯ = 2 ,∴ PQ = PB + BQ = . 3 3 2 (3)∵ SP A 'B 'Q = P A 'B 'Q最小, S △PCQ 即最小, ∴ S 3 PQ ⨯ BC = PQ . 2 2法一:(几何法)取 PQ 中点 G ,则 ∠PCQ = 90 .∴ CG = 1PQ . 2当 CG 最小时, PQ 最小,∴ CG ⊥ PQ ,即 CG 与 CB 重合时, CG 最小.∴ CG min = 3 , PQ min = 2 3 ,∴ (S ) △PCQ min = 3 , SP A 'B 'Q = 3 - 3 .法二:(代数法)设 PB = x , BQ = y .由射影定理得:xy=3,∴当PQ最小,即x+y最小,⎪ 2a = , 则 AF ,∴ NQ = 2 , B( ⎧k + m = 1, ⎪⎪ 2 ∴ ⎨ 9 1 ,解得 ⎨ , D(0, ) . 2 2 2 ⎩ ⎩ 2 2 2 ∵ x > ,∴ x = 3 ,∴ G(3,-1) .当 x = y = 3 时,“ = ”成立,∴ PQ = 3 + 3 = 2 3 .【考点】旋转的性质,勾股定理,锐角三角函数,直角三角形的性质,相似三角形的判定与性质,求图形的面积 ⎧ b 5 - 2 ⎪ 28.【答案】解:(1)由题可得: ⎨c = 5, 解得 a = 1 , b = -5 , c = 5 . ⎪a + b + c = 1. ⎪ ⎩∴二次函数解析式为: y = x 2 - 5x + 5 ;(2)作 AM ⊥ x 轴, BN ⊥ x 轴,垂足分别为 M , N ,MQ 3= = . FB QN 4 ∵ MQ = 39 , 11) , 2 2 4⎪ ⎧ 1 k = , ⎪ 2 k + m = 4 , ⎪m = 1 , ⎪ 21 1 1 ,∴ y = x + t 同理, yBC = - 1 x + 5 . 2 ∵ S △BCD = S△BCG,∴① DG ∥BC ( G 在 BC 下方), y DG =- 1 x + 1 2 , ∴ - 1 x + 21 3 = x2 - 5x + 5 ,即 2x 2 - 9x + 9 = 0 ,∴ x = , x =3 . 1 25 2 ② G 在 BC 上方时,直线 G G 与 DG 关于 BC 对称.2 31 ∴ y G G 1 21 =- x +2 19 2 1 19 ,∴ - x + = x 2 - 5x + 5 ,∴ 2x 2 - 9x - 9 = 0 . 2 2 ∵ x > 5,∴ x = 9 + 3 17 9 + 3 17 67 - 3 17 ,∴ G( , ) .∵ △AMP ∽△PNB ,∴ AM ∵ k >0 ,∴ k = -6 + 4 6 ⎪ 2a = , 则 AF ,∴ NQ = 2 , B( ⎧k + m = 1, ⎪⎪ 2 ∴ ⎨ 9 1 ,解得 ⎨ ⎪m = 1 , ⎪⎩ 2 ,∴ y = 1 x + 1 , D(0, ) . 2 2 2综上所述,点 G 坐标为 G (3, -1) ; G ( 1 2 9 + 3 17 67 - 3 17 , ) . 4 4(3)由题意可得: k + m = 1 .∴ m = 1 - k ,∴ y = kx + 1 - k ,∴ kx + 1 - k = x 2 - 5x + 5 ,即 x 2 - (k + 5)x + k + 4 = 0 .1 ∴ x = 1 , x = k + 4 ,∴ B(k + 4, k2 + 3k + 1) . 1 2设 AB 的中点为 O ' ,∵ P 点有且只有一个,∴以 AB 为直径的圆与 x 轴只有一个交点,且 P 为切点. ∴ OP ⊥ x 轴,∴ P 为 MN 的中点,∴ P( k + 5 2,0) .PN = PM BN ,∴ AM BN = PN PM ,∴ 1⨯ (k 2+ 3k + 1) = (k + 4 - k + 5 k + 5 )( - 1) ,即 3k 2 + 6k - 5 = 0 , ∆ = 96>0 . 2 2 2 6 = -1 + 6 3. ⎧ b 5 - 2 ⎪ 【解析】解:(1)由题可得: ⎨c = 5, 解得 a = 1 , b = -5 , c = 5 . ⎪a + b + c = 1. ⎪ ⎩∴二次函数解析式为: y = x 2 - 5x + 5 ;(2)作 AM ⊥ x 轴, BN ⊥ x 轴,垂足分别为 M , N ,MQ 3 = = . FB QN 4∵ MQ = 39 , 11) , 2 2 4⎪ k + m = , 4 ⎧ 1 k = , t122∵x>,∴x=3,∴G(3,-1).∵△AMP∽△PNB,∴AM∵k>0,∴k=-6+46同理,yBC =-1x+5.2∵S△BCD =S△BCG,∴①DG∥BC(G在BC下方),yDG=-1x+212,∴-1x+213=x2-5x+5,即2x2-9x+9=0,∴x=,x=3.1252②G在BC上方时,直线G G与DG关于BC对称.231∴yG G121=-x+2192119,∴-x+=x2-5x+5,∴2x2-9x-9=0.22∵x>5,∴x=29+3179+31767-317,∴G(,).448综上所述,点G坐标为G(3,-1);G(129+31767-317,).44(3)由题意可得:k+m=1.∴m=1-k,∴y=kx+1-k,∴kx+1-k=x2-5x+5,即x2-(k+5)x+k+4=0.1∴x=1,x=k+4,∴B(k+4,k2+3k+1).12设AB的中点为O',∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点.∴OP⊥x轴,∴P为MN的中点,∴P(k+52,0).PN=PM BN,∴AM BN=PN PM,∴1⨯(k2+3k+1)=(k+4-k+5k+5)(-1),即3k2+6k-5=0,∆=96>0. 2226=-1+63【考点】二次函数的图象及其性质.。

2018成都武侯区二诊数学题

2018成都武侯区二诊数学题
ⅱ)若四边形 ABGC 的面积为 6 3 , PF 1,求 CE 的长.
C
C
G
D P
D
F
PM
A
E 图1
B
A
E
B
图2
6
中考数学
by Advisor Wang
28. (本小题满分 12 分)
在平面直角坐标系中,抛物线 y 1 x2 6x 4 的顶点 A 在直线 y kx 2 上. 2
A. 1 2
B. 1
C. 2
D. 2
2
2. 如图所示的几何体是由 6 个完全相同的小立方块搭成,则这个几何体的左视图是
A.
B.
C.
D.
3. 从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约 780 亿元,预计 2019 年 12 月建成 通车,届时成都到贵阳只要 3 小时,这段铁路被称为“世界第一条山区高速铁路”. 将数据 780 亿用科学计 数法表示为
(1)计算: (1)1 ( 2018)0 2sin 60 3 2 ; 3
2(x 3) 2
(2)求不等式组

4x 3
2

x

1
的整数解.
2
中考数学
16. (本小题满分 6 分) 先化简,再求值: ( 3 1 ) a 2 ,其中 a 3 1 . a 1 a 1 a 1
90m
花草 60m
花草
花草 花草
5
中考数学
by Advisor Wang
27. (本小题满分 10 分)
如图,已知△ABC 是等边三角形,点 D,E 分别在边 AC,AB 上,且 CD AE ,BD 与 CE 相交于点 P. (1)求证:△ACE≌△CBD; (2)如图 2,将△CPD 沿直线 CP 翻折得到对应的△CPM,过 C 作 CG∥AB,交射线 PM 于点 G,PG 与 BC 相交于点 F,连接 BG. ⅰ)试判断四边形 ABGC 的形状,并说明理由;

成都市武侯区2018-2019学年九年级下期第二次诊断考试数学试卷word版

成都市武侯区2018-2019学年九年级下期第二次诊断考试数学试卷word版

成都市武侯区2018-2019学年九年级下期二诊数学试卷A 卷(100分)一、选择题(每小题3分,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示( )A .向东走8米B .向西走8米C .向南走8米D .向北走8米2.下列四个地铁标识图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.《成都市城市总体规划(2016-2035年)》指出:要把成都打造成“国家中心城市、美丽宜居公园城市、国际门户枢纽城市、世界文化名城”,常住人口规模控制在2300万人.将数据2300万用科学记数法表示为( )A .23×102B .2.3×103C .2.3×106D .2.3×1074.如图所示的几何体的左视图是( )A .B .C .D .5.下列计算正确的是( )A .a 6 ÷a 2 =a 3B .x 2 +x 2 =x 4C .(x-y )2 =x 2 -y 2D .(-m 3 )·m 2 =-m 56.在平面直角坐标系中,点A (2,25)关于x 轴对称的点的坐标是( )A .(25,2)B .(-2,-52)C .(52-,2)D .(2,52-) 7.分式方程14143=-+--xx x 的根是( ) A .x=4B .x=-4C .x=3D .x=1 8.如图,斜坡AC 的坡度是i=1:3(坡角的正切叫坡度),AB=2m ,一汽车从坡底C 处行驶到坡顶A 处,则它行驶过的坡面距离AC 的长为( )A .6mB .10mC .102mD .12m9.2019年4月,在武侯区“初中数学分享学习课堂之生讲生学”比赛中,7位评委给某位选手的评分不完全相同,现去掉一个最高分,去掉一个最低分,则以下关于该选手的评分的四个统计量中,一定不会发生变化的是( )A .极差B .平均数C .中位数D .众数10.如图,AB 为⊙O 的直径,延长AB 至点C ,使AC=3BC ,过C 作⊙O 的切线CD ,切点为D ,若⊙O 的半径为2,则线段CD 的长为( )A .2B .23C .32D .4 二、填空题(每小题4分,共16分)11.函数3-=x y 中,自变量x 的取值范围是12.一个多边形的内角和是它的外角和的4倍,这个多边形是 边形13.一个等腰三角形的底边长是8,腰长a 满足021102=+-a a ,则此等腰三角形的腰长是 .14.如图,抛物线c bx ax y ++=2的对称轴是直线25-=x ,与y 轴的交点是(0,3),与x 轴相交于A ,B 两点,有以下结论:①c <0;②042=-ac b ;③a+b+c >0:④当x >-2时,y 的值随x值的增大而增大.其中正确结论的个数有 个.三、解答题(共54分)15.(1)计算:|31|60sin 221813-︒+-⎪⎭⎫ ⎝⎛-+--(2)解不等式组⎪⎩⎪⎨⎧->+≥--431654)2(3x x x x ,并把解集在下面的数轴上表示出来.16.化简:⎪⎭⎫ ⎝⎛++-÷+++2322122m m m m m17.随着我国网络信息技术的不断发展,在课堂中恰当使用技术辅助教学是时代提出的新要求,武候区为了解初中数学老师对“网络画板”信息技术的掌握情况,对部分初中数学老师进行了调查,并根据调查结果绘制成如下不完整的统计图表.请根据图表信息,解答下列问题:(1)求表中a 的值;(2)求图中表示“比较熟练”的扇形部分的圆心角的度数;(3)武候区共有初中数学教师350人,若将“非常熟练”和“比较熟练”作为“良好”标准,试估计武候区初中数学教师对“网络画板”信息技术掌握情况为“良好”的教师有多少人?18.为了把成都建设成为一个美丽宜居的公园城市,近年来先后打造了白鹭湾湿地公园、天府公园等一系列生态公园.如图,某游客在点O 处测得白鹭湾湿地公园A 位于他的南偏东30°方向,测得天府公园B 位于他的南偏东16°方向,且白鹭湾湿地公园A 位于天府公园B 的正北方向.若OB=26千米,求游客从O 点出发,沿OA 方向去白鹭湾湿地公园A 的距离OA 的长.(参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)19.如图,在平面直角坐标系中,反比例函数x k y =(x >0)的图象与正比例函数y=2x 的图象相交于点A (5,a ).(1)求反比例函数的表达式;(2)以线段OA 为边向右作菱形OABC ,顶点C 在x 轴上,边BC 与反比例函数xk y =(x >0)的图象交于点D ,求D 点的坐标.20.四边形ABCD 内接于⊙O ,BD 为直径,连接AC ,过D 作DE ⊥AC 于点.(1)如图1,求证:∠ADB=∠CDE ;(2)如图2,延长DE 交BC 于点F ,连接OC ,且OC ∥ADi )试判断△ABC 的形状,并说明理由;ii )若tan ∠ADB = 34,DE=6,求BF 的长.B 卷(50分)一、填空题(每小题4分,共20分)21.已知513-=x ,513+,则代数式222y xy x +-的值是 .22.两人一组,每人在纸上随机写一个不大于4的正整数,则两人所写的正整数恰好相同的概率是23.定义[x]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[513-]=-3,[-7]=-7.若规定:对于实数m ,f(m)=[32m -]-[5m ].例如:f (7)=[372-]-[57]=-2-1=-3,则f (-6)= . 24.如图,已知直线AB 交x 轴于点A ,分别与函数x a y =(x >0,a >0)和xb y =(x >0,b >a >0)的图象相交于点B ,C ,过点B 作BD ∥x 轴交函数xb y =的图象于点D ,过点C 作CE ∥x 轴交函数x a y =是的图象于点E ,连接AD ,BE ,若21=AB BC ,BCAB=12,S △ABD =2,则S △BCE = .第24题图 第25题图25.如图,在矩形ABCD 中,AB=2,BC=23,将矩形ABCD 绕点C 顺时针旋转,得到矩形A 1 B 1 CD 1 ,点E 是A 1B 1的中点,过B 作BF ⊥B 1C 于点F ,连接DE ,DF ,则线段DE 长度的最大值是 ,线段DF 长度的最小值是 .二、解答题(共30分)26.成都市某商场购进甲、乙两种商品,甲商品的购进总价y (元)与购进数量x (件)之间的函数关系如图1l 所示,乙商品的购进总价y (元)与购进数量x (件)之间的函数关系如图2l 所示.(1)请分别求出直线1l ,2l 的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的32,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?27.在矩形ABCD 中,边AB 绕点A 逆时针旋转α度(0<α≤90)得到线段AE ,连接BE ,过点E 作EF ⊥BE 交BC 于点F .(1)如图1,当α=90时,请直接写出线段BF 与AB 之间满足的等量关系;(2)如图2,当0<α<90时,连接DE ,DF .i )求证:tan 2 =ABBF 2 ii )若BC = 3AB ,当△EFD 为直角三角形时,求BF BC 的值.28.抛物线4)2(2+++=x m x y 的顶点C 在x 轴正半轴上,直线y=x+2与抛物线交于A ,B 两点(点A 在点B 的左侧).(1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若S △PAB =2S △ABC ,求点P 的坐标;(3)将直线AB 上下平移,平移后的直线y=x+t 与抛物线交于A',B'两点(A'在B'的左侧),当以点A',B'和(2)中第二象限的点P 为顶点的三角形是直角三角形时,求t 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年四川省成都市武侯区中考数学二诊试卷A卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<26.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AM⊥b,垂足为M,若∠1=48°,则∠2的度数为()A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.πC.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0B.b2﹣4ac<0C.a+b+c=0D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC =∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM的高是0.8m,点M到护栏的距离MD的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A(n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;(2)若直线AB上有一点M,连接MC,且满足S△AMC=2S△AOC,求点M的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm 的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x 轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2D.﹣2【解答】解:由题意得:a+=0,解得:a=﹣,故选:B.2.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.【解答】解:A选项的图形是该几何体的主视图,不符合题意;B选项的图形是该几何体的左视图,符合题意;C选项的图形是该几何体的俯视图,不符合题意;D选项图形不是该几何体的三视图,不符合题意;故选:B.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109B.7.8×108C.7.8×1010D.7.8×1011【解答】解:将数据780亿用科学记数法表示为7.8×1010,故选:C.4.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a9【解答】解:A、(﹣2a2)3=﹣8a6,故原题计算错误;B、a3+a3=2a3,故原题计算正确;C、a6÷a3=a4,故原题计算错误;D、a3•a3=a6,故原题计算错误;故选:B.5.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2【解答】解:一次函数y=2x+k﹣1的图象经过第一、二、三象限,那么k﹣1>0,解得k>1.故选:A.6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AM⊥b,垂足为M,若∠1=48°,则∠2的度数为()A.58°B.52°C.48°D.42°【解答】解:∵a∥b,∴∠B=∠1=48°,∵AM⊥b,∴∠AMB=90°,∴∠B+∠2=90°,∴∠2=90°﹣48°=42°,故选:D.7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分【解答】解:在这一组数据中130分是出现次数最多的,故众数是130分;而将这组数据从小到大的顺序排列126 分、127 分、128 分、129 分、130 分、130 分、131 分.处于中间位置的数是129 分,那么由中位数的定义可知,这组数据的中位数是129分.故选:D.8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵△=(﹣3)2﹣4×2×5=﹣31<0∴方程没有实数根.故选:C.9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.πC.2πD.3π【解答】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=,故选:A.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0B.b2﹣4ac<0C.a+b+c=0D.y随x的增大而增大【解答】解:抛物线开口向上,∴a>0,A错误;抛物线与x轴有两个交点,∴b2﹣4ac>0,B错误;当x=1时,y>0,∴a+b+c=0,C正确;当x>﹣1时,y随x的增大而增大,D错误;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是7.【解答】解:∵72=49,∴49的算术平方根是7.故答案为:7.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=﹣8.【解答】解:当2a+b=2,2a﹣b=﹣4时,原式=(2a+b)(2a﹣b)=﹣8故答案为:﹣813.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC =∠AED,则AC=9.【解答】解:∵AB=12且D为AB的中点,∴AD=6,∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,则=,即=,解得:AC=9,故答案为:9.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=3.【解答】解:∵四边形ABCD是矩形,E是CD的中点,∴AB=CD=6,DE=3,由折叠可得,AE=AB=6,又∵∠D=90°,∴Rt△ADE中,AD===3,故答案为:3.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.【解答】解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.(6分)先化简,再求值:,其中.【解答】解:====,当a=+1时,原式=.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM的高是0.8m,点M到护栏的距离MD的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【解答】解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED的长4.8m.18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.【解答】解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A(n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;(2)若直线AB上有一点M,连接MC,且满足S△AMC=2S△AOC,求点M的坐标.【解答】解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC=2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.【解答】(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为﹣10.【解答】解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.(4分)对于实数m,n定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=15.【解答】解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.【解答】解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为(7,).【解答】解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a(a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm 的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是2≤x≤3,且最大圆的面积是25πdm2.【解答】解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?【解答】解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.【解答】(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x 轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.【解答】解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x﹣m)2﹣2m﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C=S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。

相关文档
最新文档