2018年中考备战策略数学《圆》阶段练习
备战中考数学圆的综合综合题含详细答案
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠3∠3,求⊙O 的半径。
【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,∴AB=DE.∵DF∥CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF,∴tan∠AEB= tan∠ADF=3DG平分∠ADC,∴∠ADG=∠CDG.∵AD∥BC,∴∠ADG=∠CED,∠NDC=∠DCE.∵∠ABC=∠NDC,∴∠ABC=∠DCE.∵AB∥DG,∴∠ABC=∠DEC,∴∠DEC=∠ECD=∠EDC,∴ΔCDE是等边三角形,∴AB=DE=CE.∵∠GBC=∠GDC=60°,∠G=∠DCB=60°,∴ΔBGE是等边三角形,BE= GE=53.∵tan∠AEB= tan∠ADF=43,设HE=x,则AH=43x.∵∠ABE=∠DEC=60°,∴∠BAH=30°,∴BH=4x,AB=8x,∴4x+x=53,解得:x=3,∴AB=83,HB=43,AH=12,EC=DE=AB=83,∴HC=HE+EC=383+=93.在Rt△AHC中,AC=222212(93)AH HC+=+=343.作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=AC AP,∴3432129sin603ACAP===︒,∴⊙O的半径是129.3.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π5.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.6.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×3=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH ∽△OBC 可知:BC HB OC BC = ∵AB=8,∴BC 2=HB•OC=4HB , ∴HB=24BC , ∴OH=OB-HB=4-24BC ∵CB=CH ,∴OH+HC=4−24BC +BC , 当∠BOC=90°,此时BC=42 ∵∠BOC <90°, ∴0<BC <42,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.8.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围; ②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.10.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析 (2) EC=172AE=132【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AE=BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵AE=BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x =72,∴CF =FE =172,∴EC CF =2,AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
2018中考数学中考数学复习模块4圆之典型中考题讲解有详细答案.docx
《中考数学复习模块4•圆》之典型中考题讲解1、(2017-金华)如图,已知:AB是的直径,点C在(DO上,CD是(DO的切线,AD丄CD于点D.E是AB延长线上一点,CE交(DO于点F,连结OC,AC.(1)求证:AC平分ZDA0.(2)若ZDAO=105°, ZE=30°.①求ZOCE的度数.②若的半径为2运,求线段EF的长.2、(2017浙江台州).如图,已知等腰直角三角形ABC,点P是斜边BC 上一点(不与B, C重合),PE是△ ABP的外接圆(DO的直径.(1)求证:△ APE是等腰直角三角形;(2)若的直径为2,求PC2+PB2的值.3、(2017山东枣庄).如图,在△ ABC中,ZC=90°, ZBAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC, AB于点E, F.(1)试判断直线BC与。
0的位置关系,并说明理由;(2)若BD=2V3, BF=2,求阴影部分的面积(结果保留兀). 4、(2017山东聊城).如图,OO是△ ABC的外接圆,O点在BC边上,ZBAC的平分线交于点D,连接BD、CD,过点D 作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是(DO的切线;(2)求证:APBDsADCA;D (3)当AB=6, AO8时,求线段PB的长.5、(2017山东东营).如图,在△ ABC中,AB=AC,以AB为直径的(DO交BC于点D,过点D作的切线DE,交AC于点E, AC 的反向延长线交于点F.(1)求证:DE丄AG;(2)若DE+EA=8, OO的半径为10,求AF的长度.6、(2017山东潍坊).如图,AB为半圆O的直径,AC是(DO 的一条弦,D为辰的中点,作DE丄AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6J5,求阴影区域的面积.(结果保留根号和兀)7、(2017江苏无锡).如图,以原点O为圆心,3为半径的圆与x轴分别交于4, B两点(点B在点4的右边),P是半径OB上一点,过P且垂直于AB的直线与分别交于C, D两点(点C在点D的上方),直线AC, DB交于点E.若AC:CE=1: 2.(1)求点P的坐标;(2)求过点4和点E,且顶点在直线CD上的抛物线的函数表达式.8、(2017江苏盐城).如图,在平面直角坐标系中,RtA ABC的斜边AB在y 轴9、(2017湖北襄阳).如图,AB为(DO的直径,C、D为©O ±的两点,ZBAOZDAC,过点C做直线EF丄AD,交AD的延长线于点E,连接BC.(1)求证:EF是(DO的切线;(2)若DE=1, BC=2,求劣弧晓的长1.10、(2017湖北恩施).如图,AB、CD是(DO的直径,BE是(DO 的弦,且BE〃CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分ZABP;(2)求证:PC2=PB«PE;(3)若BE-BP=PC=4,求(DO 的半径.11、(2017 湖北随州).如图,在RtA ABC 中,ZC=90°, AC=BC,点O在AB上,经过点A的(DO与BC相切于点D,交AB于点E.(1)求证:AD平分ZBAC;(2)若CD=1,求图中阴影部分的面积(结果保留兀).12、(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC, 以AE为直径的与边CD相切于点D. B点在(DO上,连接0B.(1)求证:DE=OE;/一:(2)若CD〃AB,求证:四边形ABCD是菱形. / 丿/答案:1、(1)解:•.•直线与(DO相切,AOC 丄CD;又VAD丄CD,.•.AD//OC,/.ZDAC=ZOCA;又VOC=OA,.*.ZOAC=ZOCA,.*.ZDAC=ZOAC;••.AC 平分ZDA.O.(2)解:①TAD//OC, ZDAO=105°,ZEOC=ZDAO=105°;T ZE=30°,ZOCE=45°.②作OG丄CE于点G,可得FG=CG,VOC=2\P,ZOCE=45°..\CG=OG=2,.*.FG=2;*.•在RTA OGE 中,ZE=30°,:.GE=2^, .\EF=GE-FG=2V3-2.2、(1)证明:VAB=AC, ZBAC=90°,/.ZC=ZABC=45°,A ZAEP=ZABP=45°,VPE是直径,/. ZPAB=90°,A ZAPE=ZAEP=45°,.*.AP=AE,•••△PAE是等腰直角三角形.(2)作PM丄AC于M, PN丄AB于N,则四边形PMAN是矩形, .*.PM=AN,「△PCM, △ PNB都是等腰直角三角形,.•.PCpPM, PBpPN,/.PC2+PB2=2 (PM2+PN2) =2 (AN2+PN2) =2PA2=PE2=22=4.3、解:(1) BC与(DO相切. 证明:连接OD.TAD是ZBAC的平分线,.*.ZBAD=ZCAD.又TODOA,.*.ZOAD=ZODA./.ZCAD=ZODA..•.OD〃AC..•.ZODB=ZC=90°,即0D±BC. 又TBC过半径OD的外端点D, ABC与(DO相切.(2)设0F=OD=x,则OB=OF+BF=x+2, 根据勾股定理得:OB2=C)D2+BD2,即(x+2) 2=X2+12,解得:x=2,即OD=OF=2,/. OB=2+2=4,VRtA ODB 中,OD=*3B,:.ZB=30°,/.ZDOB=60°,• u_60K X4_2H••S 號AOB-,则阴影部分的面积为S A ODB -S麻DOF=*X2X2*\/^-2? -故阴影部分的面积为2^3 -写.4、(1)证明:•.•圆心0在BC±,ABC是圆O的直径,.\ZBAC=90o, 连接OD,TAD 平分ZBAC,ZBAO2ZDAC,VZDOC=2ZDAC,.•.ZDOC=ZBAC=90°,即OD丄BC,VPD/7BC,AOD 丄PD,TOD为圆O的半径,.•.PD是圆O的切线;(2)证明:•.•PD〃BC,.*.ZP=ZABC,T ZABOZADC,.*.ZP=ZADC,T ZPBD+ZABD=180°, ZACD+ZABD=180°,A ZPBD=ZACD,.•.APBD^ADCA;(3)解:••'△ABC为直角三角形,BC2=AB2+AC2=62+82=100,.\BC=10,TOD垂直平分BC,.*.DB=DC,VBC为圆O的直径,.•.ZBDC=90°,在RtA DBC 中,DB2+DC2=BC2,即2DC2=BC2=100,.\DC=DB=5V2-V APBD^ADCA,.PB_BD''~DC~W川"9_DC・BD_Sx奶_25人AC 8 4 -5、(1)证明:VOB=OD,.*.ZABC=ZODB,VAB=AC,.•.ZABOZACB,.*.ZODB=ZACB,.•.OD〃AC.「DE是(DO的切线,OD是半径,.'.DE 丄OD,A DEX AC;(2)如图,过点0 作OH丄AF于点H,则ZODE= ZDEH= ZOHE=90°, •••四边形ODEH是矩形,.*.OD=EH, OH=DE.设AH=x.VDE+AE=8, OD=10,/. AE=10 - x, 0H=DE=8 - ( 10 - x) =x - 2.在RtA AOH中,由勾股定理知:AH2+OH2=OA2,即x2+ (x-2) 2=102,解得xi=8, x2= - 6 (不合题意,舍去)..\AH=8.TOHIAF,.*.AH=FH=—AF,2・:AF=2AH=2x8 二16.6、(1)证明:连接OD,VD为说的中点,/.ZCAD=ZBAD,VOA=OD,A ZBAD=ZADO,.•.ZCAD=ZADO,VDE 丄AC,ZE=90°,ZCAD+ZEDA=90°,即ZADO+ZEDA=90°,AOD 丄EF,・・.EF为半圆O的切线;(2)解:连接OC与CD,VDA=DF,A ZBAD=ZF,A ZBAD=ZF=ZCAD,又T ZBAD+ ZCAD+ ZF=90°,A ZF=30°, ZBAC=60°,VOC=OA,AAOC为等边三角形,ZAOC=60°, ZCOB=120°,TOD丄EF, ZF=30°,.•.ZDOF=60°,在RtA ODF 中,DF=6屈OD=DF *tan3 0°=6,在RtA AED 中,D26胰,ZCAD=30°, /. DE=DA*sin30 "晶,EA=DA*cos30°=9, T ZCOD=180° - ZAOC - ZDOF=60°, /. CD/7 AB,故S △ACD-S A COD,•'•S 阴萨S A AED -S扇旳COD=*<9X3后-~^Q nX^2=~^~ ~ ^71-7、解:(1)如图,作EF丄y轴于F, DC的延长线交EF于H.设H (m, “), 则P (m, 0), PA=m+3, PB=3 - m.EH//AP,△ACPs&CH,AC = PC = AP=j_CE_CH_'^7,CH=2n, EH=2m=6,CD 丄AB,PC=PD=n,PB//HE,ADPB s'DHE,PB」)P_ n _13-m _ 12nH-6 4'm=l,P (1, 0).(2)由(1)可知,PA=4, HE=8, EF=9, 连接OP,在R仏OCP中,PC=7OC^O P=2V2-:.CH=2PC=4皈 PH=6屈:.E (9, 6冋,•••抛物线的对称轴为CD,:.(-3, 0)和(5, 0)在抛物线上,设抛物线的解析式为尸a (x+3) (%-5), 把E (9, 6迈)代入得到a欝,•••抛物线的解析式为尸誓.&+3) &-5),即尸导2-孚-耳Z8、(1)证明:连接EF,TAE 平分ZBAC,/. ZFAE=ZCAE,VFA=FE,ZFAE=ZFEA, /. ZFEA=ZEAC,.・.FE〃AC,ZFEB=ZC=90°,即BC 是OF 的切线;(2)解:连接FD,设。
中考数学复习《圆》专题训练-附带有答案
中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
2018年中考数学压轴题之圆题例题
广东中考数学专题训练(二):几何综合题(圆题) 例题训练1.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF ⊥BC 交BD 于点G ,点G 为BE 中点,连接OG .(1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE .2.如图,⊙O 为∆ABC 外接圆,AB 为⊙O 直径,AB =4.⊙O 切线CD 交BA 延长线于点D ,∠ACB 平分线交⊙O 于点E ,并以DC为边向下作∠DCF =∠CAB 交⊙O 于点F ,连接AF .(1)求证:∠DCF =∠D +∠B ;(2)若AF =32,AD =52,求线段AC 的长; (3)若CEAB ⊥CF .3.如图,⊙O为 ABC外接圆,BC为⊙O直径.作»AD=»AC,连接AD、CD和BD,AB与CD交于点E,过点B作⊙O 切线,并作点E作EF⊥DC交切线于点G.(1)求证:∠DAC=∠G+90°;(2)求证:CF=GF;(3)若EFBD=23,求证:AE=DE.4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC 于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AHDE g =23,求证:OG ⊥AB .。
浙江省2018年中考数学《圆》总复习阶段检测试卷含答案
为
.
三、解答题 (本大题有 8 小题,第 17~ 20 题每题 8 分,第 21 题 10 分,第 22、 23 题每
题 12 分,第 24 题 14 分,共 80 分 )
17.如图, AB 是 ⊙ O 的直径, C, D 两点在 ⊙ O 上,若 ∠C = 45° .
第 17 题图 (1)求 ∠ ABD 的度数; (2)若 ∠ CDB = 30°, BC = 3,求 ⊙ O 的半径.
第 11 题图
第 12 题图
第 13 题图
12.将量角器按如图所示的方式放置在三角形纸板上,使顶点 的读数分别为 100°、 150°,则 ∠ ACB 的大小为
C 在半圆上,点 A 、B 度.
13.如图,正方形 ABCD 内接于半径为 2 的 ⊙ O,则图中阴影部分的面积为 ___________.
阶段检测 7 圆
一、选择题 (本大题有 10 小题,每小题 4 分,共 40 分.请选出各小题中唯一的正确选 项,不选、多选、错选,均不得分 )
1.在公园的 O 处附近有 E 、F 、 G、 H 四棵树,位置如图所示 (图中小正方形的边长均
相等 )现计划修建一座以 O 为圆心, OA 为半径的圆形水池,要求池中不留树木,则
C.∠ CAD 绕点 A 顺时针旋转一定能与 ∠ DAB 重合 D.线段 ID 绕点 I 顺时针旋转一定能与线段 IB 重合 8.已知 ∠ BAC = 90°,半径为 r 的圆 O 与两条直角边 AB, AC 都相切,设 AB = a(a >r ),BE 与圆 O 相切于点 E. 现给出下列命题: ① 当 ∠ ABE = 60°时,BE= 3r ;② 当∠ ABE =90°时, BE = r;则下列判断正确的是 ( )
2018年中考冲刺---圆的综合题-学习文档
教学内容知识精要一、圆1、圆的有关概念与性质圆的概念:圆是到定点的距离等于定长的点的集合。
圆的内部:圆的内部可以看作是到圆心的距离小于半径的点的集合。
圆的外部:圆的外部可以看作是到圆心的距离大于半径的点的集合。
直径与弧:连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
优弧劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的图形叫弓形。
同心圆与等圆等弧:圆心相同,半径不相等的两个圆叫同心圆,能够重合的两个圆叫等圆,同圆或等圆的半径相等,在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆过三点的圆的作法:利用中垂线找圆心定理:不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
2018中考数学总复习圆训练题(江西含答案和解释)
第六单元限时检测卷(时间:120分钟分值:120分)一、选择题(本大题共6小题,每小题3分,共18分)1.⊙O的半径r=5 cm,圆心到直线l的距离OM=4 cm,则⊙O与直线l的位置关系为()A.相离B.相交C.相切D.无法判断2.如图1,在平面直角坐标系中,⊙P的半径为2,圆心P的坐标为(-3,0),将⊙P沿x 轴的正方向平移,使得⊙P与y轴相切,则平移的距离为()图1A.1 B.3C.5 D.1或53.已知,AB是⊙O的弦,且OA=AB,则∠AOB的度数为()A.30°B.45°C.60°D.90°4.如图2,AB是⊙O的直径,过⊙O上的点C作⊙O的切线,交AB的延长线于点D,若∠A=25°,则∠D的度数是()图2A.25°B.40°C.50°D.65°5.如图3,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD的度数为()图3A.30°B.50°C.60°D.70°6.如图4,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC 互补,则弦BC 的长为( )图4A .3 3B .4 3C .5 3D .6 3二、填空题(本大题共6小题,每小题3分,共18分)7.已知扇形的面积为3π,圆心角为120°,则它的半径为__________.8.如图5,C ,D 是以线段AB 为直径的⊙O 上的两点,若CA =CD ,且∠ACD =40°,则∠CAB 的度数为__________.图59.如图6,CD 为⊙O 的弦,直径AB 为4,AB ⊥CD 于E ,∠A =30°,则BC ︵ 的长为__________.(结果保留π)图610.如图7,四边形ABCD 内接于⊙O ,F 是CD ︵ 上一点,且DF ︵ =BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为__________.图711.将直角△ABC 绕顶点B 旋转至如图8位置,其中∠C =90°,AB =4,BC =2,点C ,B ,A ′在同一直线上,则阴影部分的面积是__________.图812.如图9,直线AB,CD相交于点O,∠AOC=30°,⊙P的半径为1 cm,且OP=4 cm,如果⊙P以1 cm/s的速度沿由A向B的方向移动,那么__________秒后⊙P与直线CD相切.图9三、(本大题共5小题,每小题6分,共30分)13.赵州桥是我国建筑史上的一大创举,它距今约1 400年,历经无数次洪水冲击和8次地震却安然无恙.如图10,若桥跨度AB约为40米,主拱高CD约10米,求桥弧AB所在圆的半径.图1014.如图11,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.若AC=EC,求证:AD=BE.图1115.如图12,AB是⊙O的直径,且AB=4,AC是弦,∠CAB=40°,求劣弧BC和弦AC的长.(参考数据:sin 40°≈0.643,cos 40°≈0.766,tan 40°≈0.839,弧长计算结果保留π,弦长精确到0.01)图1216.如图13,△ABC 是⊙O 的内接三角形,点D ,E 在⊙O 上,连接AE ,DE ,CD ,BE ,CE ,∠EAC +∠BAE =180°,AB ︵ =CD ︵.图13(1)判断BE 与CE 之间的数量关系,并说明理由; (2)求证:△ABE ≌△DCE .17.(2017贵阳)如图14,C ,D 是半圆O 上的三等分点,直径AB =4,连接AD ,AC ,DE ⊥AB ,垂足为E ,DE 交AC 于点F .图14(1)求∠AFE 的度数;(2)求阴影部分的面积.(结果保留π和根号) 四、(本大题共3小题,每小题8分,共24分)18.如图15,在平面直角坐标系中,△ABC 内接于⊙P ,AB 是⊙P 的直径,A (-1,0),C (3,2 2),BC 的延长线交y 轴于点D ,点F 是y 轴上的一动点,连接FC 并延长交x 轴于点E .图15(1)求⊙P的半径;(2)当∠A=∠DCF时,求证:CE是⊙P的切线.19.(2017南充)如图16,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.图16(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.20.如图17,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB 于点D,交CA的延长线于点E,过点E作AB的平行线交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)当∠CAB=60°时,判断四边形ADFE是什么特殊四边形?说明理由.图17五、(本大题共2小题,每小题9分,共18分)21.如图18,OA,OB是⊙O的半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.(1)求证:CD=CE;(2)如图19,若将图18中的半径OB所在直线向上平移,交OA于F,交⊙O于B′,其他条件不变,求证:∠C=2∠A;图18 图1922.如图20,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将CD ︵沿着CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP =OA ,连接PC .(1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为ADB ︵ 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E ,交BC ︵于点F (F 与B ,C 不重合).GE ·GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.图20六、(本大题共12分)23.如图21所示,点A 为半圆O 的直径MN 所在直线上的一点,射线AB 垂直于MN ,垂足为A ,半圆绕M 点顺时针转动,转过的角度记作α.设半圆O 的半径为R ,AM 的长度为m ,回答下列问题:探究:(1)若R =2,m =1,如图21,当旋转30°时,圆心O ′到射线AB 的距离是________;如图22,当α=________°时,半圆O 与射线AB 相切;(2)如图23,在(1)的条件下,为了使得半圆O 转动30°即能与射线AB 相切,在保持线段AM 长度不变的条件下,调整半径R 的大小,请你求出满足要求的R ,并说明理由.发现:(3)如图24,在0°<α<90°时,为了对任意旋转角都保证半圆O 与射线AB 能够相切,小明探究了cos α与R ,m 两个量的关系,请你帮助他直接写出这个关系:cos α=________.(用含有R ,m 的代数式表示)拓展:(4)如图25,若R =m ,当半圆弧线与射线AB 有两个交点时,α的取值范围是__________,并求出在这个变化过程中阴影部分(半圆与射线AB 所形成的弓形)面积的最大值.(用m 表示)图21 图22 图23 图24 图25第六单元限时检测卷1.B 2.D 3.C 4.B 5.C 6.B 7.3 8.20° 9.23π 10.50°11.163π-2 3 12.2或6 13.解:根据垂径定理,得AD =12AB =20米.设圆的半径是R ,根据勾股定理, 得R 2=202+(R -10)2, 解得R =25(米).答:桥弧AB 所在圆的半径为25米. 14.证明:∵AC =EC ,∴∠E =∠CAE .∵AC 平分∠BAD ,∴∠DAC =∠CAB .∴∠DAC =∠E . ∵四边形ABCD 内接于⊙O , ∴∠ADC +∠ABC =180°.又∠CBE +∠ABC =180°,∴∠ADC =∠CBE . 在△ADC 和△EBC 中,⎩⎪⎨⎪⎧∠ADC =∠EBC ,∠DAC =∠E ,AC =EC ,∴△ADC ≌△EBC . ∴AD =BE . 15.解:连接OC ,BC ,如图1,图1∵∠CAB =40°,∴∠COB =80°.∴劣弧BC 的长=80·π·2180=8π9.∵AB 为直径,∴∠ACB =90°. 在Rt △ACB 中,cos 40°=AC AB =AC4,∴AC =4cos 40°=4×0.766≈3.06. 16.(1)解:BE =CE .理由如下:∵∠EAC +∠BAE =180°,∠BCE +∠BAE =180°, ∴∠BCE =∠EAC . ∴BE ︵=CE ︵.∴BE =CE .(2)证明:∵AB ︵=CD ︵,∴AB =CD . ∵BE ︵=CE ︵,∴AE ︵=ED ︵.∴AE =ED . 由(1)得BE =CE ,在△ABE 和△DCE 中,∵⎩⎪⎨⎪⎧AE =DE ,AB =DC ,BE =CE ,∴△ABE ≌△DCE (SSS).17.解:(1)如图2,连接OD ,OC ,图2∵C ,D 是半圆O 上的三等分点, ∴AD ︵=CD ︵=BC ︵.∴∠AOD =∠DOC =∠COB =60°. ∴∠CAB =30°.∵DE ⊥AB ,∴∠AEF =90°. ∴∠AFE =90°-30°=60°. (2)由(1)知,∠AOD =60°, ∵OA =OD ,AB =4,∴△AOD 是等边三角形,OA =2. ∵DE ⊥AO ,∴DE = 3.∴S 阴影=S 扇形AOD -S △AOD =60·π×22360-12×2×3=23π- 3.18.(1)解:如图3,作CG ⊥x 轴于G ,则AC 2=AG 2+CG 2=(3+1)2+(2 2)2=24, ∵AB 是⊙P 的直径, ∴∠ACB =90°. ∴cos ∠CAB =AG AC =AC AB .∴AB =AC 2AG =244=6.∴⊙P 的半径为3.(2)证明:如图3,连接PC ,图3∵∠ACB =90°, ∴∠CAB +∠CBA =90°. ∵PC =PB , ∴∠PCB =∠PBC . ∵∠A =∠DCF =∠ECB , ∴∠ECB +∠PCB =90°. ∵C 在⊙P 上, ∴CE 是⊙P 的切线.19.(1)证明:如图4,连接OD ,CD ,图4∵AC 为⊙O 的直径, ∴△BCD 是直角三角形.∵E 为BC 的中点,∴BE =CE =DE . ∴∠CDE =∠DCE .∵OD =OC ,∴∠ODC =∠OCD . ∵∠ACB =90°,∴∠OCD +∠DCE =90°. ∴∠ODC +∠CDE =90°,即OD ⊥DE .∴DE 是⊙O 的切线. (2)解:设⊙O 的半径为r , ∵∠ODF =90°,∴OD 2+DF 2=OF 2,即r 2+42=(r +2)2. 解得r =3. ∴⊙O 的直径为6. 20.(1)证明:∵EF ∥AB , ∴∠E =∠CAB ,∠EF A =∠F AB . ∵∠E =∠EF A ,∴∠F AB =∠CAB . 在△ABC 和△ABF 中,⎩⎪⎨⎪⎧AC =AF ,∠CAB =∠F AB ,AB =AB ,∴△ABC ≌△ABF .(2)解:当∠CAB =60°时,四边形ADFE 为菱形. 理由:∵∠CAB =60°, 由(1)得∠F AB =∠CAB , ∴∠F AB =∠CAB =∠F AE =60°. 又AD =AE =AF ,∴△AEF ,△AFD 为等边三角形. ∴EF =AD =AE =DF . ∴四边形ADFE 是菱形.21.证明:(1)连接OD ,如图5所示,图5∵OA ⊥OB ,∴∠AOE =90°. ∴∠A +∠AEO =90°, ∵CD 是⊙O 的切线,∴∠ODC =90°,即∠CDE +∠ODE =90°. 又OA =OD ,∴∠A =∠ODE .∴∠AEO =∠CDE .∵∠CED =∠AEO ,∴∠CDE =∠CED .∴CD =CE . (2)连接OD ,作CM ⊥AD 于M ,如图6所示,图6同(1)可证得CD =CE .则∠ECM =∠DCM =12∠DCE ,DE =2DM ,∠CME =90°. ∴∠ECM +∠CEM =90°.∵∠A +∠AEF =90°,∠AEF =∠CEM ,∴∠A =∠ECM .∴∠A =12∠DCE ,即∠DCE =2∠A . 22.(1)解:如图7,连接OC ,图7∵CD ︵沿CD 翻折后,点A 与圆心O 重合,∴OM =12OA =12×2=1,CD ⊥OA . ∵OC =2,∴CD =2CM =2OC 2-OA 2=222-12=2 3.(2)证明:∵P A =OA =2,AM =OM =1,CM =12CD =3,∠CMP =∠OMC =90°,∴PM =3.∴PC =MC 2+PM 2=(3)2+32=2 3.∵OC =2,PO =2+2=4,∴PC 2+OC 2=(2 3)2+22=16=PO 2.∴∠PCO =90°.∴PC 是⊙O 的切线.(3)解:GE ·GF 是定值.如图8,连接GO 并延长,交⊙O 于点H ,连接HF ,图8∵点G 为ADB ︵的中点,∴∠GOE =90°.∵∠HFG =90°,∴∠GOE =∠GFH .又∠OGE =∠FGH ,∴△OGE ∽△FGH .∴OG GF =GE GH. ∴GE ·GF =OG ·GH =2×4=8.23.解:(1)3+1;60°.(2)设切点为P ,如图9,连接O ′P ,作MQ ⊥O ′P ,则四边形APQM 是矩形.图9∴O ′P =O ′Q +QP =R .由题知,∠α=30°,∴O ′Q =cos 30°·R ,AM =QP =1.∴R =32R +1.∴R =4+2 3. (3)R -m R. (4)当半圆与射线AB 相切时,之后开始出现两个交点,此时α=90°;当N ′落在AB 上时,为半圆与AB 有两个交点的最后时刻,此时∵MN ′=2AM ,∴∠AMN ′=60°.∴α=120°.∴当半圆弧线与射线AB 有两个交点时,α的取值范围是90°<α≤120°.当N ′落在AB 上时,阴影部分面积最大,∴S =120·π·m 2360-12·3m ·12m =πm 23-34m 2.。
2018届湘教版数学中考专项训练(六)圆(含答案)
专项训练六 圆一、选择题1.如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是( ) A.22° B.26° C.32° D.68°第1题图 第2题图 第3题图 第4题图 2.如图,已知⊙O 的半径OA =6,∠AOB =90°,则∠AOB 所对的劣弧AB 的长为( ) A.2π B.3π C.4π D.6π3.如图,AB 是⊙O 的直径,CD 切⊙O 于点C ,若∠BCD =25°,则∠B 等于( ) A.25° B.65° C.75° D.90°4.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是( )A.8≤AB ≤10B.8<AB ≤10C.4≤AB ≤5D.4<AB ≤55.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC 交⊙O 于点D ,连接AD ,若∠ABC =45°,则下列结论正确的是( )A.AD =12BCB.AD =12AC C.AC >AB D.AD >DC第5题图 第6题图 第7题图 第8题图6.(2016·邵东县一模)如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB =20°,则∠AOD 等于( ) A.120° B.140° C.150° D.160°7.(2016·枣庄中考)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A.2πB.π C .π3 D.23 8.如图,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( ) A.68° B.88° C.90° D.112° 二、填空题 9.(2016·怀化中考)已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于 .10.如图所示,在⊙O 中,直径CD 垂直弦AB 于点E ,连接BO ,已知⊙O 的半径为2,AB =23,则∠OBA = °.第10题图第12题图第13题图11.从圆外一点向半径为5的圆作切线,已知切线长为12,从这点到圆的最短距离为.12.如图,过⊙O外一点P作圆的切线P A,PB,F是劣弧AB上任一点,过F作⊙O的切线分别交P A,PB于D,E,如果P A=8,∠P=40°,则△PED的周长为,∠DOE=.13.如图所示,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦所在直线的距离为2的点有个.14.如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C=°.第14题图第15题图第16题图15.如图,将一个半径为2的圆等分成四段弧,再将这四段弧围成星形,则该图形的面积与原来圆的面积之比是.16.★如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.三、解答题17.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.18.如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC 相切于点D,E.(1)当AC=2时,求⊙O的半径;(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.19.(2016·长沙中考)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求∠CDE 的度数;(2)求证:DF 是⊙O 的切线;(3)若AC =25DE ,求tan ∠ABD 的值.参考答案与解析1.A 2.B 3.B 4.A 5.A 6.B7.D 解析:∵∠CDB =30°,∴∠COB =60°.又∵弦CD ⊥AB ,CD =23,∴OC =12CD sin60°=332=2,∴S阴影=S 扇形COB =60×π×22360=2π3.故选D.8.B 解析:以点A 为圆心,AB 为半径画圆,则点C ,D 都在圆上.∵∠CBD =2∠BDC ,∴CD ︵=2BC ︵,∴∠CAD =2∠BAC =88°.故选B.9.103πcm 10.30 11.8 12.16 70° 13.3 14.55 解析:如图,连接OB .∵OA =OB ,∴∠A =∠ABO .又∵OD 是⊙O 的半径,弦AB ⊥OD 于E ,∠O =70°,∴AD ︵=BD ︵,∠AOB =140°,∴∠C =12∠AOD =35°,∠A =∠ABO =20°,∴∠A +∠C =55°.15.4-ππ 解析:由题意得圆的面积=π×22=4π,星形的面积=4×4-4π=16-4π,该图形的面积与原来圆的面积之比为(16-4π)∶4π=4-ππ.16.14πr 解析:∵OC =r ,点C 在AB ︵上,CD ⊥OA ,∴DC =OC 2-OD 2=r 2-OD 2,∴S △OCD =12OD ·r 2-OD 2,∴(S △OCD )2=14OD 2·(r 2-OD 2)=-14OD 4+14r 2OD 2=-14(OD 2-r 22)2+r 416,∴当OD 2=r 22,即OD =22r 时,△OCD 的面积最大,∴∠OCD =45°,∴∠COA =45°,∴AC ︵的长为45πr 180=14πr .17.解:(1)连接OB .∵OD ⊥AB ,∴AC =BC ,AD ︵=BD ︵,∴∠AOD =∠BOD .又∵∠DEB =12∠DOB ,∴∠DEB=12∠AOD =12×52°=26°; (2)在Rt △ACO 中,∵OC =3,OA =5,∴AC =OA 2-OC 2=4.又∵AC =BC =12AB ,∴AB =2AC =2×4=8.18.解:(1)连接OE ,OD .∵AC +BC =8,AC =2,∴BC =6.∵∠C =90°,∴tan B =AC BC =13.∵以O 为圆心的⊙O分别与AC ,BC 相切于点D ,E ,∴∠ODC =∠OEC =90°.又∵∠C =90°,∴四边形OECD 是矩形.∵OE =OD ,∴四边形OECD 是正方形,∴∠ADO =∠C =90°,CD =OD ,OD ∥BC ,∴∠B =∠AOD ,∴tan B =tan ∠AOD ,∴AD OD =2-OD OD =13,解得OD =32,∴⊙O 的半径为32;(2)∵AC =x ,∴BC =8-x .在Rt △ABC 中,tan B =AC BC =x 8-x .又由(1)知tan B =tan ∠AOD =AD OD =x -y y ,∴x 8-x =x -y y ,解得y =-18x 2+x . 19.(1)解:∵AC 为⊙O 直径,∴∠ADC =90°,∴∠CD E =90°;(2)证明:连接OD .∵∠CDE =90°,F 为CE 中点,∴DF =12CE =CF ,∴∠FDC =∠FCD .又∵OD =OC ,∴∠ODC=∠OCD ,∴∠ODC +∠FDC =∠OCD +∠FCD ,∴∠ODF =∠OCF .∵EC ⊥AC ,∴∠OCF =90°,∴∠ODF =90°,即DF 为⊙O 的切线;(3)解:在△ACD 与△ACE 中,∠ADC =∠ACE =90°,∠EAC =∠CAD ,∴△ACD ∽△AEC ,∴AC AE =ADAC ,∴AC 2=AD ·AE .又∵AC =25DE ,∴20DE 2=(AE -DE )·AE ,∴(AE -5DE )(AE +4DE )=0,∴AE =5DE ,∴AD =4DE .在Rt △ACD 中,CD =AC 2-AD 2=(25DE )2-(4DE )2=2DE .又∵在⊙O 中,∠AB D =∠ACD ,∴tan ∠ABD =tan ∠ACD =AD CD =4DE 2DE=2.。
2018年中考数学总复习圆试题
2018年中考数学总复习圆试题D∠ABC=60°,∠ACB=40°,则∠BOC=(A)A.130°B.135°C.120°D.150°二、填空题(每小题5分,共20分)11.如图,☉O的两条弦AB,CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则☉O的半径是.(第11题图)(第12题图)12.如图,AB是☉O的直径,OA=1,AC是☉O的弦,过点C的切线交AB的延长线于点 D.若BD=-1,则∠ACD=112.5°.13.如下图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.14.如图,从☉O外的两点C和D分别引圆的两线DA,DC,CB,切点分别为点A、点E和点B,AB是☉O的直径,连接OC,连接OD交CB延长线于F,给出如下结论:①AD+BC=CD;②OD2=DE·CD;③OD=OC;④CD=CF.其中正确的是①②④.(把所有正确结论序号都填在横线上)三、解答题(共70分)15.(6分)如图,PA,PB是☉O的两条切线,A,B分别是切点,点C是上任意一点,连接OA,OB,CA,CB,∠P=70°,求∠ACB的度数.解∵PA,PB是☉O的切线,OA,OB是半径,∴∠PAO=∠PBO=90°.又∵∠PAO+∠PBO+∠AOB+∠P=360°,∠P=70°,∴∠AOB=110°.∵∠AOB是圆心角,∠ACB是圆周角,∴∠ACB=55°.16.(6分)已知在以点O为圆心的两个同心圆中,大圆的弦AB 交小圆于点C,D(如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.(1)证明过点O作OE⊥AB于点E,则CE=DE,AE=BE.∴AE-CE=BE-DE,即AC=BD.(2)解由(1)可知,OE⊥AB且OE⊥CD,∴CE===2.AE===8.∴AC=AE-CE=8-2.〚导学号92034207〛17.(6分)已知A,B,C,D是☉O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求☉O的半径.图1图2(1)证明∵∠ADC=∠BCD=90°,∴AC,BD是☉O的直径,且交点为圆心O.∵AD=CD,AO=CO,∴AC⊥BD.(2)解如图,画直径CK,连接DK,BC,则∠KDC=90°,∴∠K+∠KCD=90°.∵AC⊥BD,∴∠ACB+∠EBC=90°.∵∠EBC=∠K,∴∠ACB=∠KCD,∴=,∴DK=AB=2.∵DC=4,∴KC==2,∴☉O的半径为.〚导学号92034208〛18.(6分)如图,O是△ABC的内心,BO的延长线和△ABC 的外接圆相交于点D,连接DC,DA,OA,OC,四边形OADC 为平行四边形.(1)求证:△BOC≌△CDA:(2)若AB=2,求阴影部分的面积.(1)证明∵O为△ABC的内心,∴∠2=∠3,∠5=∠6.∵∠1=∠2,∴∠1=∠3,由AD∥CO,AD=CO,∴∠4=∠5,∴∠4=∠6,∴△BOC≌△CDA.(2)解由(1)得BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB,∴AB=AC,△AB C为等边三角形,∴O为△ABC的内外心,∴OA=OB=OC.设E为BD与AC的交点,BE垂直平分AC.在Rt△O CE 中,CE=AB=1,∠OCE=30°,∴OA=OB=OC=,∵∠AOB=120°,∴S阴=S扇形AOB-S△AOB=-×2×=.19.(8分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A,B的坐标分别是A(4,3),B(4,1),把△ABC绕点C逆时针旋转90°后得到△A 1B1C.(1)画出△A1B1C,直接写出点A1,B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.解(1)所求作△A1B1C如图所示:由A(4,3),B(4,1)可建立如图所示坐标系,则点A1的坐标为(-1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°,∴在旋转过程中,△ABC所扫过的面积为+S△ABC=+×3×2=+3.20.(10分)已知在△ABC中,∠ABC=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E.(1)求证:AC·AD=AB·AE;(2)如果BD是☉O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.(1)证明连接DE.∵AE是直径,∴∠ADE=90°,∴∠ADE=∠ABC.在Rt△ADE和Rt△ABC中,∠A是公共角,故△ADE∽△ABC,则=,即AC·AD=AB·AE.(2)解连接OD.∵BD是圆O的切线,∴OD⊥BD.在Rt△OBD中,OE=BE=OD,∴OB=2OD,∴∠OBD=30°.同理∠BAC=30°.在Rt△ABC中,AC=2BC=2×2=4.〚导学号92034209〛21.(8分)如图,AB为☉O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作☉O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,求四边形ACDE的面积.(1)证明∵ED与☉O相切于D,∴OD⊥DE.∵F为弦AC 中点,∴OD⊥AC,∴AC∥DE.(2)解作DM⊥OA于M,连接CD,CO,AD.∵AC∥DE,AE=AO,∴OF=DF.∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=CO=a,∴AO ∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积为a2.22.(10分)已知:如图,☉O是△ABC的外接圆,=,点D 在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.(1)证明在☉O 中,∵=,∴AB=AC,∴∠B=∠ACB.∵AE∥BC,∴∠EA C=∠ACB,∴∠B=∠EAC.在△ABD和△CAE 中,∵AB=CA,∠B=∠EAC,BD=AE,∴△ABD≌△CAE(SAS),∴AD=CE.(2)解连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH.∵AD=AG,∴DH=HG,∴BH-DH= CH-GH,即BD=CG.∵BD=AE,∴CG=AE.∵CG∥AE,∴四边形AGCE是平行四边形.23.(10分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B.(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.图1图2(1)证明如图中,连接OC.∵OA=OC,∴∠1=∠2.∵CD是☉O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°.∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.∴∠ACD=∠B.(2)解①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan 45°=1.②在Rt△ABC中,∵AC=3,BC=4,∴AB==5.∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===.∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=.设EC=CF=x,∴=,∴x=.∴CE=.。
2018年中考数学考前冲刺系列 专题05 圆
专题05 圆一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法正确的是A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.直径是同一个圆中最长的弦D.过三点能确定一个圆2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=A.3 cm B.4 cmC.5 cm D.6 cm3.如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC 的度数为A.46° B.47°C.48° D.49°4.如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB于D,则四边形OEAD为A.正方形B.菱形C.矩形D.平行四边形5.如图,⊙O的半径为4,点P是⊙O外的一点,PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时,PA的长度为A.10 B.212C.11 D.4346.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是A B C.D.27.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD 于点F,则图中阴影部分的面积是A.4–2πB.8–π2C.8–2πD.8–4π8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是 EB的中点,则下列结论不成立的是A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 二、填空题(本大题共4个小题,每小题6分,共24分)9.一个扇形的面积是12πcm²,圆心角是60°,则此扇形的半径是________cm.10.如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧 AC的长度为__________.11.如图,⊙O的半径是4,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG﹦1,则EF为__________.12.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径的半圆上的一个动点,连接BP.(1)半圆 CD=________;(2)BP的最大值是________.三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.(1)求证:AC平分∠DAB;(2)求证:△PCE是等腰三角形.15.已知△ABC内接于⊙O,AC是⊙O的直径,D是 AB的中点.过点D作CB的垂线,分别交CB、CA延长线于点F、E.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若CF=6,∠ACB=60°,求阴影部分的面积.参考答案一、选择题1.【答案】C2.【答案】B3.【答案】C4.【答案】A5.【答案】B6.【答案】B7.【答案】C8.【答案】D二、填空题9.【答案】12.【答案】(1)2π;(2)三、解答题13.【解析】(1)如图,连接OC,∵PD切⊙O于点C,∴OC⊥PD.(2分)又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(5分)(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.(7分)∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.(9分)∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠CAO+∠ACE=∠PCB+∠BCE,∴∠PEC=∠PCE,∴PC=PE,即△PCE是等腰三角形.(12分)15.【解析】如图,连接OD.∵AC为圆O的直径,∴∠CBA=90°.(2分)(2)在Rt△CEF中,∠ACB=60°,∴∠E=30°,又∵CF=6,∴CE=2CF=12,根据勾股定理得:EF (6分) 在Rt △ODE 中,∠E =30°,∴OD =12OE ,又OA =OD ,∴OA =AE =OC =13CE =4,OE =8, 又∵∠ODE =∠F =90°,∠E =∠E , ∴△ODE ∽△CFE ,∴OD DEFC EF = 解得DE (9分) 又∵Rt △ODE 中,∠E =30°,∴∠DOE =60°,则12ODE OADS S S =-=△阴影扇形(12分)。
2018全国各地中考数学试题《圆》试题汇编(解答题)
2018全国各地中考数学试题《圆》试题汇编(解答题)2018全国各地中考数学试题《圆》解答题汇编1. 如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.2.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O 于点D.已知⊙O的半径为6,∠C=40°.求∠B的度数.求AD的长.3.如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是BF的中点.求证:AD⊥CD;若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE-EC-CB爬回至点B,求蚂蚁爬过的路程.第 1 页共 27 页4. 如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.求证:OP ⊥CD;连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.5. 如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O 于点F,AC平分∠BAD,连接BF.求证:AD⊥ED;若CD=4,AF=2,求⊙O的半径.6. 如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE 丄AB,交AB的延第 2 页共 27 页长线于点E.求证:CB平分∠ACE;若BE=3,CE=4,求⊙O的半径.7.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB 于点F.求证:BC是⊙O的切线;若⊙O的半径是2cm,E 是AD的中点,求阴影部分的面积8.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,如图①,若D为AB的中点,求∠ABC和∠ABD的大小;如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,第 3 页共 27 页求∠OCD的大小.9. 如图,D是△ABC外接圆上的动点,且B,D位于AC 的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG ⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.求证:BG∥CD;设△ABC外接圆的圆心为O,若AB=3DH,∠OHD=80°,求∠BDE的大小.10. 如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=27,AC=22,求AD的长.第 4 页共 27 页11.如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.12.如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.求证:DA=DE;若AB=6,CD=43,求图中阴影部分的面积.13.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.求证:DF是⊙O的切线;已知BD=25 第 5 页共27 页25. 如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.求证:PC是⊙O的切线;若∠ABC=60°,AB=10,求线段CF的长.26. 如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.试判断直线DE与⊙O的位置关系,并说明理;若⊙O的半径为2,∠B=50°,AC=,求图中阴影部分的面积.第 11 页共 27 页27.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=45,求MC的长.27. 如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.判断CM与⊙O的位置关系,并说明理;若∠ECF=2∠A,CM=6,CF=4,求MF的长.第 12 页共 27 页28.如图,在△ABC中,AB=AC,以AB为直径的圆交AC 于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.求证:四边形ABFC是菱形;若AD=7,BE=2,求半圆和菱形ABFC的面积.29.如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=23,∠BCD=120°,A为BE的中点,延长BA到点P,使BA=AP,连接PE.求线段BD的长;求证:直线PE是⊙O的切线.第 13 页共 27 页30.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.求证:EF是⊙O的切线;若AC=4,CE=2,求 BD的长度.31.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.求扇形OBC的面积;求证:CD是⊙O的切线.32.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.求证:DF是⊙O的切线;若等边△ABC的边长为8,求第 14 页共 27 页DE、DF、EF围成的阴影部分面积.33.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.求证:AE=ED;若AB=10,∠CBD=36°,求AC的长.34.如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.求证:AC是⊙O 的切线;若BD=3,BE=1.求阴影部分的面积.第 15 页共 27 页35.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.求证:EA是⊙O的切线;求证:BD=CF.36. 如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.若∠ADE=25°,求∠C的度数;若AB=AC,CE=2,求⊙O半径的长.37. 如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,连接OD,过点B作BE∥OD交⊙O于点E,连接DE并延长交BN于点C.求证:DE是⊙O的切线;第 16 页共 27 页若AD=l,BC=4,求直径AB的长.38. 如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.求证:PB=BC;试判断四边形BOCD的形状,并说明理.39. 某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.40. 如图,AB是⊙O的直径,弦CD⊥AB于点E,过点C 的切线交AB的延长线于点F,连接DF.求证:DF是⊙O的切线;连接BC,若∠BCF=30°,BF=2,求CD的长.第 17 页共 27 页41. 已知,如图AB是⊙O的直径,点P在BA的延长线上,弦BC平分∠PBD,且BD⊥PD于点D.求证:PD是⊙O 的切线.若AB=8cm,BD=6cm,求CD的长.42. 如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.求证:CF是⊙O的切线;若∠F=30°,EB=8,求图中阴影部分的面积.43.如图,已知△ABC内接于⊙O,AB是直径,OD∥AC, AD=OC.求证:四边形OCAD是平行四边形;第 18 页共 27 页探究:①当∠B= °时,四边形OCAD是菱形;②当∠B满足什么条件时,AD与⊙O相切?请说明理.43. 如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.44.如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.求证:AB=CD;如果⊙O的半径为5,DE=1,求AE的长.第 19 页共 27 页45.如图,⊙O的直径AB=12,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD. AB,BD,AD围成的阴影部分的面积是;求线段DE的长.46.如图,在△ABC中,AB=AC,O为边AC上一点,以OC 为半径的圆分别交边BC,AC于点D,E,过点D作DF⊥AB于点F.求证:直线DF是⊙O的切线;若∠A=45°,OC=2,求劣弧DE的长.第 20 页共 27 页2018全国各地中考数学试题《圆》解答题汇编1. 如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.2.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O 于点D.已知⊙O的半径为6,∠C=40°.求∠B的度数.求AD的长.3.如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是BF的中点.求证:AD⊥CD;若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE-EC-CB爬回至点B,求蚂蚁爬过的路程.第 1 页共 27 页4. 如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.求证:OP ⊥CD;连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.5. 如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O 于点F,AC平分∠BAD,连接BF.求证:AD⊥ED;若CD=4,AF=2,求⊙O的半径.6. 如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE 丄AB,交AB的延第 2 页共 27 页长线于点E.求证:CB平分∠ACE;若BE=3,CE=4,求⊙O的半径.7.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB 于点F.求证:BC是⊙O的切线;若⊙O的半径是2cm,E是AD的中点,求阴影部分的面积8.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,如图①,若D为AB的中点,求∠ABC和∠ABD的大小;如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,第 3 页共 27 页求∠OCD的大小.9. 如图,D是△ABC外接圆上的动点,且B,D位于AC 的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG ⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.求证:BG∥CD;设△ABC外接圆的圆心为O,若AB=3DH,∠OHD=80°,求∠BDE的大小.10. 如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=27,AC=22,求AD的长.第 4 页共 27 页11.如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.12.如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.求证:DA=DE;若AB=6,CD=43,求图中阴影部分的面积.13.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.求证:DF是⊙O的切线;已知BD=25 第 5 页共27 页。
2018全国各地中考数学试题《圆》试题汇编(解答题)
2018全国各地中考数学试题《圆》试题汇编(解答题)2018全国各地中考数学试题《圆》解答题汇编1.(2018?黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.2.(2018?长春)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求AD的长.(结果保留π)3.(2018?德州)如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是BF的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,⊙O的半径为3,⼀只蚂蚁从点B出发,沿着BE-EC-CB爬回⾄点B,求蚂蚁爬过的路程(π≈3.14,3≈1.73,结果保留⼀位⼩数).4.(2018?北京)如图,AB是⊙O的直径,过⊙O外⼀点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.5.(2018?昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.6.(2018?兰陵县⼆模)如图,已知三⾓形ABC的边AB是⊙O的切线,切点为B.AC经过圆⼼O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.7.(2018?⾚峰)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径是2cm,E是AD的中点,求阴影部分的⾯积(结果保留π和根号)8.(2018?天津)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为AB的中点,求∠ABC和∠ABD的⼤⼩;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的⼤⼩.9.(2018?福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂⾜为E,DE的延长线交此圆于点F.BG⊥AD,垂⾜为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;⼩.10.(2018?潍坊)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;11.(2018?邵阳)如图所⽰,AB是⊙O的直径,点C为⊙O上⼀点,过点B作BD⊥CD,垂⾜为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.12.(2018?襄阳)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上⼀点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;13.(2018?孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB 的延长线于点G.(1)求证:DF是⊙O的切线;,CF=2,求AE和BG的长.14.(2018?抚顺)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上⼀点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.15.(2018?泰州)如图,AB为⊙O的直径,C为⊙O上⼀点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的⾯积.15.(2018?攀枝花)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的⾯积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.16.(2018?扬州)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆⼼,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的⾯积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最⼩值时,直接写出BP的长.17.(2018?云南)如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB 的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的⾯积.18.(2018?聊城)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.19.(2018?长沙)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE ∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三⾓形.(3)求△ABC的外接圆圆⼼P与内切圆圆⼼Q之间的距离.20.(2018?河南)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC 交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:21.(2018?咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC 交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=5,求DE的长.22.(2018?齐齐哈尔)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的⾯积.23.(2018?郴州)已知BC是⊙O的直径,点D是BC延长线上⼀点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂⾜为M,⊙O的半径为4,求AE的长.24.(2018?陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.25.(2018?宿迁)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.26.(2018?淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的⾯积.27.(2018?随州)如图,AB是⊙O的直径,点C为⊙O上⼀点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=45,求MC的长.27.(2018?湖北)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上⼀点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.28.(2018?宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE⾄点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的⾯积.29.(2018?黄⽯)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2 3,∠BCD=120°,A为BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.30.(2018?衡阳)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB 的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求BD的长度.(结果保留π)31.(2018?怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF 的延长线于点D,垂⾜为点D.(1)求扇形OBC的⾯积(结果保留π);(2)求证:CD是⊙O的切线.32.(2018?达州)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由DE、DF、EF围成的阴影部分⾯积.33.(2018?湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.34.(2018?临沂)如图,△ABC为等腰三⾓形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=3,BE=1.求阴影部分的⾯积.35.(2018?常德)如图,已知⊙O是等边三⾓形ABC的外接圆,点D在圆上,在CD的延长线上有⼀点F,使DF=DA,AE∥BC 交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.36.(2018?沈阳)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A 作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.37.(2018?官渡区⼆模)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上⼀点,连接OD,过点B作BE∥OD 交⊙O于点E,连接DE并延长交BN于点C.(1)求证:DE是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.38.(2018?⾦⽔区校级模拟)如图所⽰,PB是⊙O的切线,B为切点,圆⼼O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.39.(2018?历城区⼀模)某居民⼩区的⼀处圆柱形的输⽔管道破裂,维修⼈员为更换管道,需要确定管道圆形截⾯的半径.如图,若这个输⽔管道有⽔部分的⽔⾯宽AB=16cm,⽔最深的地⽅的⾼度为4cm,求这个圆形截⾯的半径.40.(2018?昌平区⼆模)如图,AB是⊙O的直径,弦CD⊥AB于点E,过点C 的切线交AB的延长线于点F,连接DF.(1)求证:DF是⊙O的切线;(2)连接BC,若∠BCF=30°,BF=2,求CD的长.41.(2018?天⽔模拟)已知,如图AB是⊙O的直径,点P在BA的延长线上,弦BC平分∠PBD,且BD⊥PD于点D.(1)求证:PD是⊙O的切线.(2)若AB=8cm,BD=6cm,求CD的长.42.(2018?葫芦岛⼀模)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC 是平⾏四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=8,求图中阴影部分的⾯积.(结果保留根号和π)43.(2018?内乡县⼀模)如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平⾏四边形;(2)探究:②当∠B满⾜什么条件时,AD与⊙O相切?请说明理由.43.(2018?资中县⼀模)如图,AB是⊙O的⼀条弦,OD⊥AB,垂⾜为点C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.44.(2018?合肥模拟)如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.。
中考复习备战策略 数学《圆》阶段练习
宇轩图书
11.(2013·常德)连接一个几何图形上任意两点间 的线段中,最长的线段称为这个几何图形的直径,根 据此定义,下图(扇形、菱形、直角梯形、红十字图标) 中“直径” 最小的是( C )
宇轩图书
解析:如图①,连接 BC,则 BC 为这个几何 图形的直径,
图①
宇轩图书
过点 O 作 OM⊥BC 于点 M,∵OB=OC,∴∠BOM
A. 45° B. 53° C. 56° D. 71°
宇轩图书
解析:∵∠ABC=71°,∠CAB=53°,∴∠C=180° -71°-53°=56°.∵∠ADB 和∠C 都是 AB 所对的圆 周角,∴∠ADB=∠C=56°.故选 C.
宇轩图书
5.(2013·海南)如图,在⊙O 中,弦 BC=1,点 A 是圆上一点,且∠BAC=30°,则⊙O 的半径是( A )
A.3
B.4
C.6
D.9
宇轩图书
解析:连接 PC,则 PC⊥AB,过点 O 作 OE⊥AB 于 点 E , 则 四 边 形 OECP 是 矩 形 , ∴OE = PC , 又∵S 阴影=S⊙O-S⊙P=π·OA2-π·PC2=π(OA2-OE2) =π·AE2=9π,∴AE=3,∴AB=2AE=6.故选 C.
1
3
2
3
A. 2
B.连接 OC,∵CE 为⊙O 的切线, ∴△OCE 为直角三角形.∵∠CDB=30°,∴∠COB =60°,∴∠E=30°,∴sin E=sin 30°=12.故选 A.
宇轩图书
7.(2013·宁夏)如图,以等腰直角△ABC 两锐角顶 点 A,B 为圆心作等圆,⊙A 与⊙B 恰好外切,若 AC=2,那么图中两个扇形(即阴影部分)的面积之和为
【中考数学】2018最新版本中考数学专项训练-圆(含解析)(历年真题-可打印)
中考数学专项训练-圆附参考答案
1.(2015•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O 于点D,连接OD交BC于点E,∠B=30°,FO=2.
(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)
2.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OA=CD=2,求阴影部分的面积;
(2)求证:DE=DM.
3.(2015•青海)如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.
(1)求证:AM=AC;
(2)若AC=3,求MC的长.
4.(2015•庆阳)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB 于点E,交CA的延长线于点F.
(1)求证:FE⊥AB;
(2)当EF=6,=时,求DE的长.
5.(2015•呼伦贝尔)如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.。
河南地区2018年中考数学总复习:专题检测(6)圆(Word版,含答案)
章节检测卷6圆(建议时间:90分钟总分:100分)一、选择题(本大题共7个小题,每小题4分,共28分)1.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于(D) A.180°-2αB.2αC.90°+αD.90°-α第1题图第2题图2.如图,AB是⊙O的直径,P A切⊙O于点A,PO交⊙O于点C.连接BC,若∠P=40°,则∠B等于(B)A.20°B.25°C.30°D.40°3.如图,四边形ABCD内接于⊙O,AB经过圆心,∠B=3∠BAC,则∠ADC等于(B)A.100°B.112.5°C.120°D.135°第3题图第5题图4.已知圆锥的底面面积为9π cm2,母线长为6 cm,则圆锥的侧面积是(A) A.18π cm2B.27π cm2C.18 cm2D.27 cm2 5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为(A)A.2 B.-1 C.2D.46.已知一个扇形的圆心角为60°,它所对的弧长为2π cm,则这个扇形的半径为(A)A.6 cm B.12cm C.2 3 cm D. 6 cm 7.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤DB=2OF;⑥△CEF≌△BED,其中一定成立的是(D)A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题(本大题共6个小题,每小题4分,共24分)8.如图,AB是⊙O的直径,AC与⊙O相切,CO交⊙O于点D.若∠CAD=30°,则∠BOD=120°.第8题图第9题图9.如图,AB为⊙O的直径,C,D为⊙O上的点,︵AD=︵CD.若∠CAB=40°,则∠CAD=25°.10.在半径为20的⊙O中,弦AB=32,点P在弦AB上,且OP=15,则AP=7或25.11.如图,小明自制一块乒乓球拍,正面是半径为8 cm的⊙O,︵AB=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(48π+32)cm2.第11题图第12题图12.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在︵AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π-4. 13.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长线于点F,若图中两个阴影部分的面积相等,则AF的长为π(结果保留根号).三、解答题(本大题共4个小题,共48分)14.(12分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF,BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.证明:(1)∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC.∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE;(2)连接CD,如解图所示.∵E是△ABC的内心,∴∠DAB=∠DAC,∴BD=CD.∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.15.(12分)如图,AB为⊙O的直径,C,D为⊙O上两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE =1,BC =2,求劣弧BC ︵)的长l . (1)证明:连接OC ,如解图所示. ∵OA =OC ,∴∠OAC =∠OCA .又∵∠OAC =∠DAC ,∴∠DAC =∠OCA , ∴AD ∥OC .∵EF ⊥AD ,∴EF ⊥OC , ∴EF 是⊙O 的切线;(2)解:连接OD ,DC ,如解图所示.∵∠DAC =12∠DOC , ∠OAC =12∠BOC ,∴∠DOC =∠BOC ,∴CD =CB . ∵ED =1,DC =BC =2, ∴sin ∠ECD =DE DC =12,∴∠ECD =30°,∴∠OCD =60°. ∵OC =OD ,∴△DOC 是等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=2π3.16.(12分)如图,C ,D 是半圆O 上的三等分点,直径AB =4,连接AD ,AC ,DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).解:(1)连接OD,OC,如解图所示.∵C,D是半圆O上的三等分点,∴︵AD=︵CD=︵BC,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°.∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°-30°=60°;(2)由(1)知,∠AOD=60°.∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2. ∵DE⊥AO,∴DE= 3.∴S阴影=S扇形AOD-S△AOD=60π×22360-12×2×3=2π3- 3.17.(12分)如图,AB是⊙O的直径,且AB=6,C是⊙O上一点,D是︵BC的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连接AD.(1)求证:AF⊥EF;(2)填空:①当BE=__________时,点C是AF的中点;②当BE=__________时,四边形OBDC是菱形.(1)证明:连接OD,如解图所示.∵EF为⊙O的切线,∴OD⊥EF.∵点D是︵BC的中点,∴∠CAD=∠OAD. 又∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AF,∴AF⊥EF;(2)解:①6;②3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宇轩图书
【解析】△ ABC 绕直线 AB 旋转一周,所得几何体的 底面圆 1 的周长 l1= 2π·BC= 2π, 侧面积 S1= × 2π·AC, △ ABC 绕直线 BC 2 旋转一周 ,所得几何体的底面圆的周长 l2= 2π·AB= 4π,侧面积 S2 1 = × 4π·AC, 故 l1∶ l2= 1∶ 2, S1∶ S2= 1∶ 2.故选 A. 2 【答案】 A
宇轩图书
11.(2017· 杭州 )如图,在 Rt△ ABC 中,∠ ABC= 90° ,AB= 2, BC= 1.把 △ ABC 分别绕直线 AB 和 BC 旋转一周,所得几何体的 底面圆的周长分别记作 l1, l2,侧面积分别记作 S1, S2,则( )
A. l1∶ l2= 1∶ 2, S1∶ S2= 1∶ 2 B. l1∶ l2= 1∶ 4, S1∶ S2= 1∶ 2 C. l1∶ l2= 1∶ 2, S1∶ S2= 1∶ 4 D. l1∶ l2= 1∶ 4, S1∶ S2= 1∶ 4
2 2
宇轩图书
二、填空题 (每小题 4 分,共 16 分) 13.如图, AB 切⊙ O 于点 B, OA= 2 3,∠ BAO= 60° ,弦 ︵ BC∥ OA,则BC的长为 (结果保留 π).
宇轩图书
【 解 析 】 如 图 , 连 接 OB , OC . ∵ AB 为 ⊙ O 的 切 线 , ∴ OB⊥ AB.在△ AOB 中 ,OA= 2 3,∠ BAO= 60° ,∴∠ AOB= 30° , ∴ AB = 3 , OB = 3.∵ BC∥ OA , ∴∠ OBC = ∠ AOB =
宇轩图书
【解析】∵ AB 为 ⊙O 的直径,EF 切 ⊙O 于点 B,∴ AB⊥ EF. ︵ 又 ∵ AB⊥ CD,∴ EF∥ CD,选项 A 正确;∵ AB⊥弦 CD,∴BC= ︵ BD,∴∠ COB= 2∠ A= 60° .又∵ OC= OB,∴△ COB 是等边三角 ︵ 形, 选项 B 正确; ∵ AB⊥弦 CD, ∴ CG= DG, 选项 C 正确;∴BC 60π× 3 的长为 = π,选项 D 错误.故选 D. 180 【答案】 D
宇轩图书
2. (2017· 自贡 )AB 是⊙O 的直径, PA 切⊙O 于点 A, PO 交 ⊙ O 于点 C,连接 BC,若∠ P= 40° ,则∠ B 等于 ( B )
A. 20° B. 25° C. 30° D. 40° 【解析】∵ PA 切⊙ O 于点 A,∴∠ PAO= 90° .∵∠ P= 40° , ∴∠ POA = 180°- 90°- 40°= 50° .∵ OC = OB , ∴∠ B = ∠ OCB. ∵∠ POA 是△ COB 的外角 , ∴∠ B+∠ OCB= 50° , ∴∠ B = 50° ÷ 2= 25° .故选 B.
【答案】 C
宇轩图书
6 .如图,△ ABC 是等腰直角三角形,分别以直角边 AC, BC 为直径画弧,若 AB= 2 2,则图中阴影部分的面积是( ) 【导学号 32974346】
π 1 A. - 4 2
3π 3 B. - 4 2
3π 3 C. - 4 4
π 3 D. + 4 2
宇轩图书
【解析】 ∵△ ABC 是等腰直角三角形 , AB= 2 2,∴ AC= BC= 2.连接 AC,BC 的中点与弧的交点,如图,S 阴影= 3(S 扇形 EBF
宇轩图书
12.如图,在 Rt△ ABC 中,AB⊥ BC,AB= 6,BC= 4,P 是 △ ABC 内部的一个动点,且满足∠ PAB=∠ PBC,则线段 CP 长 的最小值为 ( 3 A. 2 8 13 C. 13 ) 【导学号 32974350】 B. 2 12 13 D. 13
宇轩图书
【 解析 】 ∵∠ ABC = 90° , ∴∠ ABP + ∠ PBC = 90° .∵∠ PAB = ∠ PBC , ∴∠ PAB+∠ ABP= 90° ,∴∠ APB= 90° , ∴点 P 在以 AB 为直径的⊙ O 上 ,如图 , 连接 OC 交 ⊙O 于点 P,此时 PC 最小. 在 Rt△ BCO 中,∵∠OBC= 90° , BC= 4, OB= 3, ∴ OC= BO + BC = 5,∴ PC= OC- OP= 5- 3= 2. ∴ PC 的最小值为 2.故选 B. 【答案】 B
B. 6 cm
C. 7 cm
D. 8 cm
216π× 10 【解析】扇形的弧长为 = 12π(cm) , 则圆锥的底面半 180 径为 6 cm, 由勾股定理, 得圆锥的高为 10 - 6 = 8(cm). 故选 D.
2 2
宇轩图书
8.若点 O 是等腰三角形 ABC 的外心,且∠ BOC= 60° ,底边 BC= 2,则△ ABC 的面积为 ( ) 【导学号 32974347】 A. 2+ 3 C. 2+ 3或 2- 3 2 3 B. 3 D. 4+ 2 3或 2- 3
2 90π × 1 1 π 1 3 3 1× 1 = 3× - = π- .故选 B. - S△ BEF)= 3 360 -2× 4 2 4 2
【答案】 B
宇轩图书
7.如图,圆锥的母线长为 10 cm,其侧面展开图是圆心角为 216° 的扇形,则该圆锥的高为( D )
A. 5 cm
【解析】 分两种情况讨论: ① 如图①, 连接 OA, 过 O 作 OE⊥ AC 于点 E,OF⊥ AB 于点 F,∴∠ OEA=∠ OFA= 90° ,由垂径定理, 3 2 AE 3 得 AE= CE= , AF= BF= , cos ∠OAE= = , cos ∠ OAF 2 2 OA 2 AF 2 = = ,∴∠ OAE= 30° ,∠ OAF= 45° ,∴∠ BAC= 30° + 45° OA 2 = 75° ;
【答案】 B
宇轩图书
5.如图,过⊙ O 外一点 P 引⊙ O 的两条切线 PA, PB,切点 ︵ 分别是 A, B, OP 交⊙ O 于点 C,点 D 是ABC上不与点 A、点 C 重合的一个动点,连接 AD,CD,若∠ APB= 80° ,则∠ ADC 的度 数是( ) 【导学号 32974345】
30° .∵ OB= OC,∴∠ OBC= ∠ OCB= 30° ,∴∠ BOC= 120° ,则 ︵ 120π× 3 lBC= = 2π. 180
【答案】 2π
宇轩图书
14.⊙ O 的半径为 1,弦 AB= 2,弦 AC= 3,则∠ BAC 的 度数为 . 【导学号 32974351】
宇轩图书
宇轩图书
【解析】如图,分两种情况讨论: ①当△ ABC 为△ A1BC 时,连接 OB,OC. ∵点 O 是等腰三 角形 ABC 的外心,且∠BOC = 60° ,底边 BC= 2, OB= OC, ∴△OBC 为等边三角形,∴OB=OC=BC=2,OA1⊥BC 于点 D, 1 ∴CD=1, OD= 2 -1 = 3, ∴A1D=2- 3, ∴S△A BC= BC· A 1D 2
宇轩图书
15. (2017· 舟山 )如图,小明自制一块乒乓球拍,正面是半径 ︵ 为 8 cm 的⊙ O,AB= 90° ,弓形 ACB(阴影部分)粘贴胶皮,则胶 皮面积为 .
宇轩图书
︵ 【解析】如图 ,连接 AO,OB,作 OD⊥ AB 于点 D.∵AB= 90° ,∴∠ AOB= 90° ,∴ S 弓形 ACB= S⊙O-(S 扇形 OAB- S△ AOB)= π× 82 90π× 8 1 8× 8 = 64π- (16π- 32)= (48π+ 32)cm2. - 360 -2×
2 2
1
1 = × 2× (2- 3)=2- 3; 2
宇轩图书
② 当△ ABC 为△ A2BC 时 ,连接 OB,OC. ∵点 O 是等腰三 角形 ABC 的外心 , 且 ∠ BOC= 60° , 底边 BC= 2 , OB= OC, ∴△OBC 为等边三角形,∴ OB= OC= BC= 2,连接 A2O 并延长 交 BC 于点 D,则 A2D⊥ BC,∴ CD= 1,OD= 22- 12= 3,DA2 1 1 = 2+ 3,∴ S△ A2BC= BC· DA2 = × 2× (2 + 3)= 2+ 3.综上所 2 2 述 ,△ ABC 的面积为 2- 3或 2+ 3.故选 C. 【答案】 C
宇轩图书
9.如图,AB 为⊙ O 的直径,AB= 6,AB⊥弦 CD,垂足为 G, EF 切⊙ O 于点 B,∠ A= 30° ,连接 AD, OC, BC,下列结论不 正确的是 ( ) 【导学号 32974348】
A. EF∥ CD C. CG= DG
B. △ COB 是等边三角形 ︵ 3 D.BC的长为 π 2
宇轩图书
3.(2017· 泸州)如图,AB 是⊙ O 的直径,弦 CD⊥ AB 于点 E, 若 AB= 8, AE= 1,则弦 CD 的长是 ( B )
A. 7
B. 2 7
C. 6
D. 8
【解析】连接 OC,则 OC= 4,OE= 3,在 Rt△ OCE 中,CE = OC2- OE2= 42- 32= 7.∵ AB⊥ CD,∴ CD= 2CE= 2 7.故 选 B.
宇轩图书
《圆》阶段练习 (时间:60分钟 分值:100分)
宇轩图书
一、选择题 (每小题 4 分,共 48 分) 1.图示为 4× 4 的网格图, A, B, C, D, O 均在格点上,点 O 是( B ) A. △ ACD 的外心 B.△ ABC 的外心 C. △ ACD 的内心 D. △ ABC 的内心 【解析】由图可知 , OA= OB= OC= 12+ 22= 5, ∴点 O 是 △ ABC 的外心.故选 B.
A. 2 017π C. 3 024π
B. 2 034π D. 3 026π
宇轩图书
90π×4 【解析】转动第一次顶点 A 经过的路径长是 = 2π, 转动 180 90π×5 5 第二次顶点 A 经过的路径长是 = π, 转动第三次顶点 A 经 180 2 90π×3 3 过的路径长是 = π, 转动第四次顶点 A 经过的路径长是 0, 180 2 90π×4 转动第五次顶点 A 经过的路径长是 = 2π, 以此类推, 每四次 180 5 3 循环,故顶点 A 转动四次经过的路径长为 2π+ π+ π= 6π. 2 2 ∵ 2 017÷ 4= 504……1,∴这样连续旋转 2 017 次后,顶点 A 在整 个旋转过程中所经过的路径总长为 6π×504+ 2π= 3 026π. 故选 D. 【答案】 D